1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the generic RegisterCoalescer interface which 10 // is used as the common interface used by all clients and 11 // implementations of register coalescing. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "RegisterCoalescer.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveIntervals.h" 26 #include "llvm/CodeGen/LiveRangeEdit.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/RegisterClassInfo.h" 37 #include "llvm/CodeGen/SlotIndexes.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetOpcodes.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/LaneBitmask.h" 45 #include "llvm/MC/MCInstrDesc.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <iterator> 56 #include <limits> 57 #include <tuple> 58 #include <utility> 59 #include <vector> 60 61 using namespace llvm; 62 63 #define DEBUG_TYPE "regalloc" 64 65 STATISTIC(numJoins , "Number of interval joins performed"); 66 STATISTIC(numCrossRCs , "Number of cross class joins performed"); 67 STATISTIC(numCommutes , "Number of instruction commuting performed"); 68 STATISTIC(numExtends , "Number of copies extended"); 69 STATISTIC(NumReMats , "Number of instructions re-materialized"); 70 STATISTIC(NumInflated , "Number of register classes inflated"); 71 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested"); 72 STATISTIC(NumLaneResolves, "Number of dead lane conflicts resolved"); 73 STATISTIC(NumShrinkToUses, "Number of shrinkToUses called"); 74 75 static cl::opt<bool> EnableJoining("join-liveintervals", 76 cl::desc("Coalesce copies (default=true)"), 77 cl::init(true), cl::Hidden); 78 79 static cl::opt<bool> UseTerminalRule("terminal-rule", 80 cl::desc("Apply the terminal rule"), 81 cl::init(false), cl::Hidden); 82 83 /// Temporary flag to test critical edge unsplitting. 84 static cl::opt<bool> 85 EnableJoinSplits("join-splitedges", 86 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden); 87 88 /// Temporary flag to test global copy optimization. 89 static cl::opt<cl::boolOrDefault> 90 EnableGlobalCopies("join-globalcopies", 91 cl::desc("Coalesce copies that span blocks (default=subtarget)"), 92 cl::init(cl::BOU_UNSET), cl::Hidden); 93 94 static cl::opt<bool> 95 VerifyCoalescing("verify-coalescing", 96 cl::desc("Verify machine instrs before and after register coalescing"), 97 cl::Hidden); 98 99 static cl::opt<unsigned> LateRematUpdateThreshold( 100 "late-remat-update-threshold", cl::Hidden, 101 cl::desc("During rematerialization for a copy, if the def instruction has " 102 "many other copy uses to be rematerialized, delay the multiple " 103 "separate live interval update work and do them all at once after " 104 "all those rematerialization are done. It will save a lot of " 105 "repeated work. "), 106 cl::init(100)); 107 108 static cl::opt<unsigned> LargeIntervalSizeThreshold( 109 "large-interval-size-threshold", cl::Hidden, 110 cl::desc("If the valnos size of an interval is larger than the threshold, " 111 "it is regarded as a large interval. "), 112 cl::init(100)); 113 114 static cl::opt<unsigned> LargeIntervalFreqThreshold( 115 "large-interval-freq-threshold", cl::Hidden, 116 cl::desc("For a large interval, if it is coalesed with other live " 117 "intervals many times more than the threshold, stop its " 118 "coalescing to control the compile time. "), 119 cl::init(100)); 120 121 namespace { 122 123 class JoinVals; 124 125 class RegisterCoalescer : public MachineFunctionPass, 126 private LiveRangeEdit::Delegate { 127 MachineFunction* MF = nullptr; 128 MachineRegisterInfo* MRI = nullptr; 129 const TargetRegisterInfo* TRI = nullptr; 130 const TargetInstrInfo* TII = nullptr; 131 LiveIntervals *LIS = nullptr; 132 const MachineLoopInfo* Loops = nullptr; 133 AliasAnalysis *AA = nullptr; 134 RegisterClassInfo RegClassInfo; 135 136 /// Position and VReg of a PHI instruction during coalescing. 137 struct PHIValPos { 138 SlotIndex SI; ///< Slot where this PHI occurs. 139 Register Reg; ///< VReg the PHI occurs in. 140 unsigned SubReg; ///< Qualifying subregister for Reg. 141 }; 142 143 /// Map from debug instruction number to PHI position during coalescing. 144 DenseMap<unsigned, PHIValPos> PHIValToPos; 145 /// Index of, for each VReg, which debug instruction numbers and 146 /// corresponding PHIs are sensitive to coalescing. Each VReg may have 147 /// multiple PHI defs, at different positions. 148 DenseMap<Register, SmallVector<unsigned, 2>> RegToPHIIdx; 149 150 /// Debug variable location tracking -- for each VReg, maintain an 151 /// ordered-by-slot-index set of DBG_VALUEs, to help quick 152 /// identification of whether coalescing may change location validity. 153 using DbgValueLoc = std::pair<SlotIndex, MachineInstr*>; 154 DenseMap<Register, std::vector<DbgValueLoc>> DbgVRegToValues; 155 156 /// VRegs may be repeatedly coalesced, and have many DBG_VALUEs attached. 157 /// To avoid repeatedly merging sets of DbgValueLocs, instead record 158 /// which vregs have been coalesced, and where to. This map is from 159 /// vreg => {set of vregs merged in}. 160 DenseMap<Register, SmallVector<Register, 4>> DbgMergedVRegNums; 161 162 /// A LaneMask to remember on which subregister live ranges we need to call 163 /// shrinkToUses() later. 164 LaneBitmask ShrinkMask; 165 166 /// True if the main range of the currently coalesced intervals should be 167 /// checked for smaller live intervals. 168 bool ShrinkMainRange = false; 169 170 /// True if the coalescer should aggressively coalesce global copies 171 /// in favor of keeping local copies. 172 bool JoinGlobalCopies = false; 173 174 /// True if the coalescer should aggressively coalesce fall-thru 175 /// blocks exclusively containing copies. 176 bool JoinSplitEdges = false; 177 178 /// Copy instructions yet to be coalesced. 179 SmallVector<MachineInstr*, 8> WorkList; 180 SmallVector<MachineInstr*, 8> LocalWorkList; 181 182 /// Set of instruction pointers that have been erased, and 183 /// that may be present in WorkList. 184 SmallPtrSet<MachineInstr*, 8> ErasedInstrs; 185 186 /// Dead instructions that are about to be deleted. 187 SmallVector<MachineInstr*, 8> DeadDefs; 188 189 /// Virtual registers to be considered for register class inflation. 190 SmallVector<Register, 8> InflateRegs; 191 192 /// The collection of live intervals which should have been updated 193 /// immediately after rematerialiation but delayed until 194 /// lateLiveIntervalUpdate is called. 195 DenseSet<Register> ToBeUpdated; 196 197 /// Record how many times the large live interval with many valnos 198 /// has been tried to join with other live interval. 199 DenseMap<Register, unsigned long> LargeLIVisitCounter; 200 201 /// Recursively eliminate dead defs in DeadDefs. 202 void eliminateDeadDefs(LiveRangeEdit *Edit = nullptr); 203 204 /// LiveRangeEdit callback for eliminateDeadDefs(). 205 void LRE_WillEraseInstruction(MachineInstr *MI) override; 206 207 /// Coalesce the LocalWorkList. 208 void coalesceLocals(); 209 210 /// Join compatible live intervals 211 void joinAllIntervals(); 212 213 /// Coalesce copies in the specified MBB, putting 214 /// copies that cannot yet be coalesced into WorkList. 215 void copyCoalesceInMBB(MachineBasicBlock *MBB); 216 217 /// Tries to coalesce all copies in CurrList. Returns true if any progress 218 /// was made. 219 bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList); 220 221 /// If one def has many copy like uses, and those copy uses are all 222 /// rematerialized, the live interval update needed for those 223 /// rematerializations will be delayed and done all at once instead 224 /// of being done multiple times. This is to save compile cost because 225 /// live interval update is costly. 226 void lateLiveIntervalUpdate(); 227 228 /// Check if the incoming value defined by a COPY at \p SLRQ in the subrange 229 /// has no value defined in the predecessors. If the incoming value is the 230 /// same as defined by the copy itself, the value is considered undefined. 231 bool copyValueUndefInPredecessors(LiveRange &S, 232 const MachineBasicBlock *MBB, 233 LiveQueryResult SLRQ); 234 235 /// Set necessary undef flags on subregister uses after pruning out undef 236 /// lane segments from the subrange. 237 void setUndefOnPrunedSubRegUses(LiveInterval &LI, Register Reg, 238 LaneBitmask PrunedLanes); 239 240 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the 241 /// src/dst of the copy instruction CopyMI. This returns true if the copy 242 /// was successfully coalesced away. If it is not currently possible to 243 /// coalesce this interval, but it may be possible if other things get 244 /// coalesced, then it returns true by reference in 'Again'. 245 bool joinCopy(MachineInstr *CopyMI, bool &Again); 246 247 /// Attempt to join these two intervals. On failure, this 248 /// returns false. The output "SrcInt" will not have been modified, so we 249 /// can use this information below to update aliases. 250 bool joinIntervals(CoalescerPair &CP); 251 252 /// Attempt joining two virtual registers. Return true on success. 253 bool joinVirtRegs(CoalescerPair &CP); 254 255 /// If a live interval has many valnos and is coalesced with other 256 /// live intervals many times, we regard such live interval as having 257 /// high compile time cost. 258 bool isHighCostLiveInterval(LiveInterval &LI); 259 260 /// Attempt joining with a reserved physreg. 261 bool joinReservedPhysReg(CoalescerPair &CP); 262 263 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI. 264 /// Subranges in @p LI which only partially interfere with the desired 265 /// LaneMask are split as necessary. @p LaneMask are the lanes that 266 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange 267 /// lanemasks already adjusted to the coalesced register. 268 void mergeSubRangeInto(LiveInterval &LI, const LiveRange &ToMerge, 269 LaneBitmask LaneMask, CoalescerPair &CP, 270 unsigned DstIdx); 271 272 /// Join the liveranges of two subregisters. Joins @p RRange into 273 /// @p LRange, @p RRange may be invalid afterwards. 274 void joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 275 LaneBitmask LaneMask, const CoalescerPair &CP); 276 277 /// We found a non-trivially-coalescable copy. If the source value number is 278 /// defined by a copy from the destination reg see if we can merge these two 279 /// destination reg valno# into a single value number, eliminating a copy. 280 /// This returns true if an interval was modified. 281 bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI); 282 283 /// Return true if there are definitions of IntB 284 /// other than BValNo val# that can reach uses of AValno val# of IntA. 285 bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB, 286 VNInfo *AValNo, VNInfo *BValNo); 287 288 /// We found a non-trivially-coalescable copy. 289 /// If the source value number is defined by a commutable instruction and 290 /// its other operand is coalesced to the copy dest register, see if we 291 /// can transform the copy into a noop by commuting the definition. 292 /// This returns a pair of two flags: 293 /// - the first element is true if an interval was modified, 294 /// - the second element is true if the destination interval needs 295 /// to be shrunk after deleting the copy. 296 std::pair<bool,bool> removeCopyByCommutingDef(const CoalescerPair &CP, 297 MachineInstr *CopyMI); 298 299 /// We found a copy which can be moved to its less frequent predecessor. 300 bool removePartialRedundancy(const CoalescerPair &CP, MachineInstr &CopyMI); 301 302 /// If the source of a copy is defined by a 303 /// trivial computation, replace the copy by rematerialize the definition. 304 bool reMaterializeTrivialDef(const CoalescerPair &CP, MachineInstr *CopyMI, 305 bool &IsDefCopy); 306 307 /// Return true if a copy involving a physreg should be joined. 308 bool canJoinPhys(const CoalescerPair &CP); 309 310 /// Replace all defs and uses of SrcReg to DstReg and update the subregister 311 /// number if it is not zero. If DstReg is a physical register and the 312 /// existing subregister number of the def / use being updated is not zero, 313 /// make sure to set it to the correct physical subregister. 314 void updateRegDefsUses(Register SrcReg, Register DstReg, unsigned SubIdx); 315 316 /// If the given machine operand reads only undefined lanes add an undef 317 /// flag. 318 /// This can happen when undef uses were previously concealed by a copy 319 /// which we coalesced. Example: 320 /// %0:sub0<def,read-undef> = ... 321 /// %1 = COPY %0 <-- Coalescing COPY reveals undef 322 /// = use %1:sub1 <-- hidden undef use 323 void addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 324 MachineOperand &MO, unsigned SubRegIdx); 325 326 /// Handle copies of undef values. If the undef value is an incoming 327 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF. 328 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise, 329 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point). 330 MachineInstr *eliminateUndefCopy(MachineInstr *CopyMI); 331 332 /// Check whether or not we should apply the terminal rule on the 333 /// destination (Dst) of \p Copy. 334 /// When the terminal rule applies, Copy is not profitable to 335 /// coalesce. 336 /// Dst is terminal if it has exactly one affinity (Dst, Src) and 337 /// at least one interference (Dst, Dst2). If Dst is terminal, the 338 /// terminal rule consists in checking that at least one of 339 /// interfering node, say Dst2, has an affinity of equal or greater 340 /// weight with Src. 341 /// In that case, Dst2 and Dst will not be able to be both coalesced 342 /// with Src. Since Dst2 exposes more coalescing opportunities than 343 /// Dst, we can drop \p Copy. 344 bool applyTerminalRule(const MachineInstr &Copy) const; 345 346 /// Wrapper method for \see LiveIntervals::shrinkToUses. 347 /// This method does the proper fixing of the live-ranges when the afore 348 /// mentioned method returns true. 349 void shrinkToUses(LiveInterval *LI, 350 SmallVectorImpl<MachineInstr * > *Dead = nullptr) { 351 NumShrinkToUses++; 352 if (LIS->shrinkToUses(LI, Dead)) { 353 /// Check whether or not \p LI is composed by multiple connected 354 /// components and if that is the case, fix that. 355 SmallVector<LiveInterval*, 8> SplitLIs; 356 LIS->splitSeparateComponents(*LI, SplitLIs); 357 } 358 } 359 360 /// Wrapper Method to do all the necessary work when an Instruction is 361 /// deleted. 362 /// Optimizations should use this to make sure that deleted instructions 363 /// are always accounted for. 364 void deleteInstr(MachineInstr* MI) { 365 ErasedInstrs.insert(MI); 366 LIS->RemoveMachineInstrFromMaps(*MI); 367 MI->eraseFromParent(); 368 } 369 370 /// Walk over function and initialize the DbgVRegToValues map. 371 void buildVRegToDbgValueMap(MachineFunction &MF); 372 373 /// Test whether, after merging, any DBG_VALUEs would refer to a 374 /// different value number than before merging, and whether this can 375 /// be resolved. If not, mark the DBG_VALUE as being undef. 376 void checkMergingChangesDbgValues(CoalescerPair &CP, LiveRange &LHS, 377 JoinVals &LHSVals, LiveRange &RHS, 378 JoinVals &RHSVals); 379 380 void checkMergingChangesDbgValuesImpl(Register Reg, LiveRange &OtherRange, 381 LiveRange &RegRange, JoinVals &Vals2); 382 383 public: 384 static char ID; ///< Class identification, replacement for typeinfo 385 386 RegisterCoalescer() : MachineFunctionPass(ID) { 387 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry()); 388 } 389 390 void getAnalysisUsage(AnalysisUsage &AU) const override; 391 392 void releaseMemory() override; 393 394 /// This is the pass entry point. 395 bool runOnMachineFunction(MachineFunction&) override; 396 397 /// Implement the dump method. 398 void print(raw_ostream &O, const Module* = nullptr) const override; 399 }; 400 401 } // end anonymous namespace 402 403 char RegisterCoalescer::ID = 0; 404 405 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID; 406 407 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing", 408 "Simple Register Coalescing", false, false) 409 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 410 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 411 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 412 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 413 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing", 414 "Simple Register Coalescing", false, false) 415 416 [[nodiscard]] static bool isMoveInstr(const TargetRegisterInfo &tri, 417 const MachineInstr *MI, Register &Src, 418 Register &Dst, unsigned &SrcSub, 419 unsigned &DstSub) { 420 if (MI->isCopy()) { 421 Dst = MI->getOperand(0).getReg(); 422 DstSub = MI->getOperand(0).getSubReg(); 423 Src = MI->getOperand(1).getReg(); 424 SrcSub = MI->getOperand(1).getSubReg(); 425 } else if (MI->isSubregToReg()) { 426 Dst = MI->getOperand(0).getReg(); 427 DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(), 428 MI->getOperand(3).getImm()); 429 Src = MI->getOperand(2).getReg(); 430 SrcSub = MI->getOperand(2).getSubReg(); 431 } else 432 return false; 433 return true; 434 } 435 436 /// Return true if this block should be vacated by the coalescer to eliminate 437 /// branches. The important cases to handle in the coalescer are critical edges 438 /// split during phi elimination which contain only copies. Simple blocks that 439 /// contain non-branches should also be vacated, but this can be handled by an 440 /// earlier pass similar to early if-conversion. 441 static bool isSplitEdge(const MachineBasicBlock *MBB) { 442 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 443 return false; 444 445 for (const auto &MI : *MBB) { 446 if (!MI.isCopyLike() && !MI.isUnconditionalBranch()) 447 return false; 448 } 449 return true; 450 } 451 452 bool CoalescerPair::setRegisters(const MachineInstr *MI) { 453 SrcReg = DstReg = Register(); 454 SrcIdx = DstIdx = 0; 455 NewRC = nullptr; 456 Flipped = CrossClass = false; 457 458 Register Src, Dst; 459 unsigned SrcSub = 0, DstSub = 0; 460 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 461 return false; 462 Partial = SrcSub || DstSub; 463 464 // If one register is a physreg, it must be Dst. 465 if (Src.isPhysical()) { 466 if (Dst.isPhysical()) 467 return false; 468 std::swap(Src, Dst); 469 std::swap(SrcSub, DstSub); 470 Flipped = true; 471 } 472 473 const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); 474 475 if (Dst.isPhysical()) { 476 // Eliminate DstSub on a physreg. 477 if (DstSub) { 478 Dst = TRI.getSubReg(Dst, DstSub); 479 if (!Dst) return false; 480 DstSub = 0; 481 } 482 483 // Eliminate SrcSub by picking a corresponding Dst superregister. 484 if (SrcSub) { 485 Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src)); 486 if (!Dst) return false; 487 } else if (!MRI.getRegClass(Src)->contains(Dst)) { 488 return false; 489 } 490 } else { 491 // Both registers are virtual. 492 const TargetRegisterClass *SrcRC = MRI.getRegClass(Src); 493 const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); 494 495 // Both registers have subreg indices. 496 if (SrcSub && DstSub) { 497 // Copies between different sub-registers are never coalescable. 498 if (Src == Dst && SrcSub != DstSub) 499 return false; 500 501 NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub, 502 SrcIdx, DstIdx); 503 if (!NewRC) 504 return false; 505 } else if (DstSub) { 506 // SrcReg will be merged with a sub-register of DstReg. 507 SrcIdx = DstSub; 508 NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub); 509 } else if (SrcSub) { 510 // DstReg will be merged with a sub-register of SrcReg. 511 DstIdx = SrcSub; 512 NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub); 513 } else { 514 // This is a straight copy without sub-registers. 515 NewRC = TRI.getCommonSubClass(DstRC, SrcRC); 516 } 517 518 // The combined constraint may be impossible to satisfy. 519 if (!NewRC) 520 return false; 521 522 // Prefer SrcReg to be a sub-register of DstReg. 523 // FIXME: Coalescer should support subregs symmetrically. 524 if (DstIdx && !SrcIdx) { 525 std::swap(Src, Dst); 526 std::swap(SrcIdx, DstIdx); 527 Flipped = !Flipped; 528 } 529 530 CrossClass = NewRC != DstRC || NewRC != SrcRC; 531 } 532 // Check our invariants 533 assert(Src.isVirtual() && "Src must be virtual"); 534 assert(!(Dst.isPhysical() && DstSub) && "Cannot have a physical SubIdx"); 535 SrcReg = Src; 536 DstReg = Dst; 537 return true; 538 } 539 540 bool CoalescerPair::flip() { 541 if (DstReg.isPhysical()) 542 return false; 543 std::swap(SrcReg, DstReg); 544 std::swap(SrcIdx, DstIdx); 545 Flipped = !Flipped; 546 return true; 547 } 548 549 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const { 550 if (!MI) 551 return false; 552 Register Src, Dst; 553 unsigned SrcSub = 0, DstSub = 0; 554 if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub)) 555 return false; 556 557 // Find the virtual register that is SrcReg. 558 if (Dst == SrcReg) { 559 std::swap(Src, Dst); 560 std::swap(SrcSub, DstSub); 561 } else if (Src != SrcReg) { 562 return false; 563 } 564 565 // Now check that Dst matches DstReg. 566 if (DstReg.isPhysical()) { 567 if (!Dst.isPhysical()) 568 return false; 569 assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state."); 570 // DstSub could be set for a physreg from INSERT_SUBREG. 571 if (DstSub) 572 Dst = TRI.getSubReg(Dst, DstSub); 573 // Full copy of Src. 574 if (!SrcSub) 575 return DstReg == Dst; 576 // This is a partial register copy. Check that the parts match. 577 return Register(TRI.getSubReg(DstReg, SrcSub)) == Dst; 578 } else { 579 // DstReg is virtual. 580 if (DstReg != Dst) 581 return false; 582 // Registers match, do the subregisters line up? 583 return TRI.composeSubRegIndices(SrcIdx, SrcSub) == 584 TRI.composeSubRegIndices(DstIdx, DstSub); 585 } 586 } 587 588 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const { 589 AU.setPreservesCFG(); 590 AU.addRequired<AAResultsWrapperPass>(); 591 AU.addRequired<LiveIntervals>(); 592 AU.addPreserved<LiveIntervals>(); 593 AU.addPreserved<SlotIndexes>(); 594 AU.addRequired<MachineLoopInfo>(); 595 AU.addPreserved<MachineLoopInfo>(); 596 AU.addPreservedID(MachineDominatorsID); 597 MachineFunctionPass::getAnalysisUsage(AU); 598 } 599 600 void RegisterCoalescer::eliminateDeadDefs(LiveRangeEdit *Edit) { 601 if (Edit) { 602 Edit->eliminateDeadDefs(DeadDefs); 603 return; 604 } 605 SmallVector<Register, 8> NewRegs; 606 LiveRangeEdit(nullptr, NewRegs, *MF, *LIS, 607 nullptr, this).eliminateDeadDefs(DeadDefs); 608 } 609 610 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) { 611 // MI may be in WorkList. Make sure we don't visit it. 612 ErasedInstrs.insert(MI); 613 } 614 615 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP, 616 MachineInstr *CopyMI) { 617 assert(!CP.isPartial() && "This doesn't work for partial copies."); 618 assert(!CP.isPhys() && "This doesn't work for physreg copies."); 619 620 LiveInterval &IntA = 621 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 622 LiveInterval &IntB = 623 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 624 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 625 626 // We have a non-trivially-coalescable copy with IntA being the source and 627 // IntB being the dest, thus this defines a value number in IntB. If the 628 // source value number (in IntA) is defined by a copy from B, see if we can 629 // merge these two pieces of B into a single value number, eliminating a copy. 630 // For example: 631 // 632 // A3 = B0 633 // ... 634 // B1 = A3 <- this copy 635 // 636 // In this case, B0 can be extended to where the B1 copy lives, allowing the 637 // B1 value number to be replaced with B0 (which simplifies the B 638 // liveinterval). 639 640 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 641 // the example above. 642 LiveInterval::iterator BS = IntB.FindSegmentContaining(CopyIdx); 643 if (BS == IntB.end()) return false; 644 VNInfo *BValNo = BS->valno; 645 646 // Get the location that B is defined at. Two options: either this value has 647 // an unknown definition point or it is defined at CopyIdx. If unknown, we 648 // can't process it. 649 if (BValNo->def != CopyIdx) return false; 650 651 // AValNo is the value number in A that defines the copy, A3 in the example. 652 SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true); 653 LiveInterval::iterator AS = IntA.FindSegmentContaining(CopyUseIdx); 654 // The live segment might not exist after fun with physreg coalescing. 655 if (AS == IntA.end()) return false; 656 VNInfo *AValNo = AS->valno; 657 658 // If AValNo is defined as a copy from IntB, we can potentially process this. 659 // Get the instruction that defines this value number. 660 MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def); 661 // Don't allow any partial copies, even if isCoalescable() allows them. 662 if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy()) 663 return false; 664 665 // Get the Segment in IntB that this value number starts with. 666 LiveInterval::iterator ValS = 667 IntB.FindSegmentContaining(AValNo->def.getPrevSlot()); 668 if (ValS == IntB.end()) 669 return false; 670 671 // Make sure that the end of the live segment is inside the same block as 672 // CopyMI. 673 MachineInstr *ValSEndInst = 674 LIS->getInstructionFromIndex(ValS->end.getPrevSlot()); 675 if (!ValSEndInst || ValSEndInst->getParent() != CopyMI->getParent()) 676 return false; 677 678 // Okay, we now know that ValS ends in the same block that the CopyMI 679 // live-range starts. If there are no intervening live segments between them 680 // in IntB, we can merge them. 681 if (ValS+1 != BS) return false; 682 683 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB.reg(), TRI)); 684 685 SlotIndex FillerStart = ValS->end, FillerEnd = BS->start; 686 // We are about to delete CopyMI, so need to remove it as the 'instruction 687 // that defines this value #'. Update the valnum with the new defining 688 // instruction #. 689 BValNo->def = FillerStart; 690 691 // Okay, we can merge them. We need to insert a new liverange: 692 // [ValS.end, BS.begin) of either value number, then we merge the 693 // two value numbers. 694 IntB.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, BValNo)); 695 696 // Okay, merge "B1" into the same value number as "B0". 697 if (BValNo != ValS->valno) 698 IntB.MergeValueNumberInto(BValNo, ValS->valno); 699 700 // Do the same for the subregister segments. 701 for (LiveInterval::SubRange &S : IntB.subranges()) { 702 // Check for SubRange Segments of the form [1234r,1234d:0) which can be 703 // removed to prevent creating bogus SubRange Segments. 704 LiveInterval::iterator SS = S.FindSegmentContaining(CopyIdx); 705 if (SS != S.end() && SlotIndex::isSameInstr(SS->start, SS->end)) { 706 S.removeSegment(*SS, true); 707 continue; 708 } 709 // The subrange may have ended before FillerStart. If so, extend it. 710 if (!S.getVNInfoAt(FillerStart)) { 711 SlotIndex BBStart = 712 LIS->getMBBStartIdx(LIS->getMBBFromIndex(FillerStart)); 713 S.extendInBlock(BBStart, FillerStart); 714 } 715 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 716 S.addSegment(LiveInterval::Segment(FillerStart, FillerEnd, SubBValNo)); 717 VNInfo *SubValSNo = S.getVNInfoAt(AValNo->def.getPrevSlot()); 718 if (SubBValNo != SubValSNo) 719 S.MergeValueNumberInto(SubBValNo, SubValSNo); 720 } 721 722 LLVM_DEBUG(dbgs() << " result = " << IntB << '\n'); 723 724 // If the source instruction was killing the source register before the 725 // merge, unset the isKill marker given the live range has been extended. 726 int UIdx = ValSEndInst->findRegisterUseOperandIdx(IntB.reg(), true); 727 if (UIdx != -1) { 728 ValSEndInst->getOperand(UIdx).setIsKill(false); 729 } 730 731 // Rewrite the copy. 732 CopyMI->substituteRegister(IntA.reg(), IntB.reg(), 0, *TRI); 733 // If the copy instruction was killing the destination register or any 734 // subrange before the merge trim the live range. 735 bool RecomputeLiveRange = AS->end == CopyIdx; 736 if (!RecomputeLiveRange) { 737 for (LiveInterval::SubRange &S : IntA.subranges()) { 738 LiveInterval::iterator SS = S.FindSegmentContaining(CopyUseIdx); 739 if (SS != S.end() && SS->end == CopyIdx) { 740 RecomputeLiveRange = true; 741 break; 742 } 743 } 744 } 745 if (RecomputeLiveRange) 746 shrinkToUses(&IntA); 747 748 ++numExtends; 749 return true; 750 } 751 752 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA, 753 LiveInterval &IntB, 754 VNInfo *AValNo, 755 VNInfo *BValNo) { 756 // If AValNo has PHI kills, conservatively assume that IntB defs can reach 757 // the PHI values. 758 if (LIS->hasPHIKill(IntA, AValNo)) 759 return true; 760 761 for (LiveRange::Segment &ASeg : IntA.segments) { 762 if (ASeg.valno != AValNo) continue; 763 LiveInterval::iterator BI = llvm::upper_bound(IntB, ASeg.start); 764 if (BI != IntB.begin()) 765 --BI; 766 for (; BI != IntB.end() && ASeg.end >= BI->start; ++BI) { 767 if (BI->valno == BValNo) 768 continue; 769 if (BI->start <= ASeg.start && BI->end > ASeg.start) 770 return true; 771 if (BI->start > ASeg.start && BI->start < ASeg.end) 772 return true; 773 } 774 } 775 return false; 776 } 777 778 /// Copy segments with value number @p SrcValNo from liverange @p Src to live 779 /// range @Dst and use value number @p DstValNo there. 780 static std::pair<bool,bool> 781 addSegmentsWithValNo(LiveRange &Dst, VNInfo *DstValNo, const LiveRange &Src, 782 const VNInfo *SrcValNo) { 783 bool Changed = false; 784 bool MergedWithDead = false; 785 for (const LiveRange::Segment &S : Src.segments) { 786 if (S.valno != SrcValNo) 787 continue; 788 // This is adding a segment from Src that ends in a copy that is about 789 // to be removed. This segment is going to be merged with a pre-existing 790 // segment in Dst. This works, except in cases when the corresponding 791 // segment in Dst is dead. For example: adding [192r,208r:1) from Src 792 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst. 793 // Recognized such cases, so that the segments can be shrunk. 794 LiveRange::Segment Added = LiveRange::Segment(S.start, S.end, DstValNo); 795 LiveRange::Segment &Merged = *Dst.addSegment(Added); 796 if (Merged.end.isDead()) 797 MergedWithDead = true; 798 Changed = true; 799 } 800 return std::make_pair(Changed, MergedWithDead); 801 } 802 803 std::pair<bool,bool> 804 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP, 805 MachineInstr *CopyMI) { 806 assert(!CP.isPhys()); 807 808 LiveInterval &IntA = 809 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 810 LiveInterval &IntB = 811 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 812 813 // We found a non-trivially-coalescable copy with IntA being the source and 814 // IntB being the dest, thus this defines a value number in IntB. If the 815 // source value number (in IntA) is defined by a commutable instruction and 816 // its other operand is coalesced to the copy dest register, see if we can 817 // transform the copy into a noop by commuting the definition. For example, 818 // 819 // A3 = op A2 killed B0 820 // ... 821 // B1 = A3 <- this copy 822 // ... 823 // = op A3 <- more uses 824 // 825 // ==> 826 // 827 // B2 = op B0 killed A2 828 // ... 829 // B1 = B2 <- now an identity copy 830 // ... 831 // = op B2 <- more uses 832 833 // BValNo is a value number in B that is defined by a copy from A. 'B1' in 834 // the example above. 835 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 836 VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx); 837 assert(BValNo != nullptr && BValNo->def == CopyIdx); 838 839 // AValNo is the value number in A that defines the copy, A3 in the example. 840 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true)); 841 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 842 if (AValNo->isPHIDef()) 843 return { false, false }; 844 MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def); 845 if (!DefMI) 846 return { false, false }; 847 if (!DefMI->isCommutable()) 848 return { false, false }; 849 // If DefMI is a two-address instruction then commuting it will change the 850 // destination register. 851 int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg()); 852 assert(DefIdx != -1); 853 unsigned UseOpIdx; 854 if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx)) 855 return { false, false }; 856 857 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other 858 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value 859 // passed to the method. That _other_ operand is chosen by 860 // the findCommutedOpIndices() method. 861 // 862 // That is obviously an area for improvement in case of instructions having 863 // more than 2 operands. For example, if some instruction has 3 commutable 864 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3, 865 // op#2<->op#3) of commute transformation should be considered/tried here. 866 unsigned NewDstIdx = TargetInstrInfo::CommuteAnyOperandIndex; 867 if (!TII->findCommutedOpIndices(*DefMI, UseOpIdx, NewDstIdx)) 868 return { false, false }; 869 870 MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx); 871 Register NewReg = NewDstMO.getReg(); 872 if (NewReg != IntB.reg() || !IntB.Query(AValNo->def).isKill()) 873 return { false, false }; 874 875 // Make sure there are no other definitions of IntB that would reach the 876 // uses which the new definition can reach. 877 if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo)) 878 return { false, false }; 879 880 // If some of the uses of IntA.reg is already coalesced away, return false. 881 // It's not possible to determine whether it's safe to perform the coalescing. 882 for (MachineOperand &MO : MRI->use_nodbg_operands(IntA.reg())) { 883 MachineInstr *UseMI = MO.getParent(); 884 unsigned OpNo = &MO - &UseMI->getOperand(0); 885 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI); 886 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 887 if (US == IntA.end() || US->valno != AValNo) 888 continue; 889 // If this use is tied to a def, we can't rewrite the register. 890 if (UseMI->isRegTiedToDefOperand(OpNo)) 891 return { false, false }; 892 } 893 894 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t' 895 << *DefMI); 896 897 // At this point we have decided that it is legal to do this 898 // transformation. Start by commuting the instruction. 899 MachineBasicBlock *MBB = DefMI->getParent(); 900 MachineInstr *NewMI = 901 TII->commuteInstruction(*DefMI, false, UseOpIdx, NewDstIdx); 902 if (!NewMI) 903 return { false, false }; 904 if (IntA.reg().isVirtual() && IntB.reg().isVirtual() && 905 !MRI->constrainRegClass(IntB.reg(), MRI->getRegClass(IntA.reg()))) 906 return { false, false }; 907 if (NewMI != DefMI) { 908 LIS->ReplaceMachineInstrInMaps(*DefMI, *NewMI); 909 MachineBasicBlock::iterator Pos = DefMI; 910 MBB->insert(Pos, NewMI); 911 MBB->erase(DefMI); 912 } 913 914 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g. 915 // A = or A, B 916 // ... 917 // B = A 918 // ... 919 // C = killed A 920 // ... 921 // = B 922 923 // Update uses of IntA of the specific Val# with IntB. 924 for (MachineOperand &UseMO : 925 llvm::make_early_inc_range(MRI->use_operands(IntA.reg()))) { 926 if (UseMO.isUndef()) 927 continue; 928 MachineInstr *UseMI = UseMO.getParent(); 929 if (UseMI->isDebugInstr()) { 930 // FIXME These don't have an instruction index. Not clear we have enough 931 // info to decide whether to do this replacement or not. For now do it. 932 UseMO.setReg(NewReg); 933 continue; 934 } 935 SlotIndex UseIdx = LIS->getInstructionIndex(*UseMI).getRegSlot(true); 936 LiveInterval::iterator US = IntA.FindSegmentContaining(UseIdx); 937 assert(US != IntA.end() && "Use must be live"); 938 if (US->valno != AValNo) 939 continue; 940 // Kill flags are no longer accurate. They are recomputed after RA. 941 UseMO.setIsKill(false); 942 if (NewReg.isPhysical()) 943 UseMO.substPhysReg(NewReg, *TRI); 944 else 945 UseMO.setReg(NewReg); 946 if (UseMI == CopyMI) 947 continue; 948 if (!UseMI->isCopy()) 949 continue; 950 if (UseMI->getOperand(0).getReg() != IntB.reg() || 951 UseMI->getOperand(0).getSubReg()) 952 continue; 953 954 // This copy will become a noop. If it's defining a new val#, merge it into 955 // BValNo. 956 SlotIndex DefIdx = UseIdx.getRegSlot(); 957 VNInfo *DVNI = IntB.getVNInfoAt(DefIdx); 958 if (!DVNI) 959 continue; 960 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI); 961 assert(DVNI->def == DefIdx); 962 BValNo = IntB.MergeValueNumberInto(DVNI, BValNo); 963 for (LiveInterval::SubRange &S : IntB.subranges()) { 964 VNInfo *SubDVNI = S.getVNInfoAt(DefIdx); 965 if (!SubDVNI) 966 continue; 967 VNInfo *SubBValNo = S.getVNInfoAt(CopyIdx); 968 assert(SubBValNo->def == CopyIdx); 969 S.MergeValueNumberInto(SubDVNI, SubBValNo); 970 } 971 972 deleteInstr(UseMI); 973 } 974 975 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition 976 // is updated. 977 bool ShrinkB = false; 978 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 979 if (IntA.hasSubRanges() || IntB.hasSubRanges()) { 980 if (!IntA.hasSubRanges()) { 981 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntA.reg()); 982 IntA.createSubRangeFrom(Allocator, Mask, IntA); 983 } else if (!IntB.hasSubRanges()) { 984 LaneBitmask Mask = MRI->getMaxLaneMaskForVReg(IntB.reg()); 985 IntB.createSubRangeFrom(Allocator, Mask, IntB); 986 } 987 SlotIndex AIdx = CopyIdx.getRegSlot(true); 988 LaneBitmask MaskA; 989 const SlotIndexes &Indexes = *LIS->getSlotIndexes(); 990 for (LiveInterval::SubRange &SA : IntA.subranges()) { 991 VNInfo *ASubValNo = SA.getVNInfoAt(AIdx); 992 // Even if we are dealing with a full copy, some lanes can 993 // still be undefined. 994 // E.g., 995 // undef A.subLow = ... 996 // B = COPY A <== A.subHigh is undefined here and does 997 // not have a value number. 998 if (!ASubValNo) 999 continue; 1000 MaskA |= SA.LaneMask; 1001 1002 IntB.refineSubRanges( 1003 Allocator, SA.LaneMask, 1004 [&Allocator, &SA, CopyIdx, ASubValNo, 1005 &ShrinkB](LiveInterval::SubRange &SR) { 1006 VNInfo *BSubValNo = SR.empty() ? SR.getNextValue(CopyIdx, Allocator) 1007 : SR.getVNInfoAt(CopyIdx); 1008 assert(BSubValNo != nullptr); 1009 auto P = addSegmentsWithValNo(SR, BSubValNo, SA, ASubValNo); 1010 ShrinkB |= P.second; 1011 if (P.first) 1012 BSubValNo->def = ASubValNo->def; 1013 }, 1014 Indexes, *TRI); 1015 } 1016 // Go over all subranges of IntB that have not been covered by IntA, 1017 // and delete the segments starting at CopyIdx. This can happen if 1018 // IntA has undef lanes that are defined in IntB. 1019 for (LiveInterval::SubRange &SB : IntB.subranges()) { 1020 if ((SB.LaneMask & MaskA).any()) 1021 continue; 1022 if (LiveRange::Segment *S = SB.getSegmentContaining(CopyIdx)) 1023 if (S->start.getBaseIndex() == CopyIdx.getBaseIndex()) 1024 SB.removeSegment(*S, true); 1025 } 1026 } 1027 1028 BValNo->def = AValNo->def; 1029 auto P = addSegmentsWithValNo(IntB, BValNo, IntA, AValNo); 1030 ShrinkB |= P.second; 1031 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB << '\n'); 1032 1033 LIS->removeVRegDefAt(IntA, AValNo->def); 1034 1035 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA << '\n'); 1036 ++numCommutes; 1037 return { true, ShrinkB }; 1038 } 1039 1040 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a 1041 /// predecessor of BB2, and if B is not redefined on the way from A = B 1042 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the 1043 /// execution goes through the path from BB0 to BB2. We may move B = A 1044 /// to the predecessor without such reversed copy. 1045 /// So we will transform the program from: 1046 /// BB0: 1047 /// A = B; BB1: 1048 /// ... ... 1049 /// / \ / 1050 /// BB2: 1051 /// ... 1052 /// B = A; 1053 /// 1054 /// to: 1055 /// 1056 /// BB0: BB1: 1057 /// A = B; ... 1058 /// ... B = A; 1059 /// / \ / 1060 /// BB2: 1061 /// ... 1062 /// 1063 /// A special case is when BB0 and BB2 are the same BB which is the only 1064 /// BB in a loop: 1065 /// BB1: 1066 /// ... 1067 /// BB0/BB2: ---- 1068 /// B = A; | 1069 /// ... | 1070 /// A = B; | 1071 /// |------- 1072 /// | 1073 /// We may hoist B = A from BB0/BB2 to BB1. 1074 /// 1075 /// The major preconditions for correctness to remove such partial 1076 /// redundancy include: 1077 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of 1078 /// the PHI is defined by the reversed copy A = B in BB0. 1079 /// 2. No B is referenced from the start of BB2 to B = A. 1080 /// 3. No B is defined from A = B to the end of BB0. 1081 /// 4. BB1 has only one successor. 1082 /// 1083 /// 2 and 4 implicitly ensure B is not live at the end of BB1. 1084 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a 1085 /// colder place, which not only prevent endless loop, but also make sure 1086 /// the movement of copy is beneficial. 1087 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair &CP, 1088 MachineInstr &CopyMI) { 1089 assert(!CP.isPhys()); 1090 if (!CopyMI.isFullCopy()) 1091 return false; 1092 1093 MachineBasicBlock &MBB = *CopyMI.getParent(); 1094 // If this block is the target of an invoke/inlineasm_br, moving the copy into 1095 // the predecessor is tricker, and we don't handle it. 1096 if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget()) 1097 return false; 1098 1099 if (MBB.pred_size() != 2) 1100 return false; 1101 1102 LiveInterval &IntA = 1103 LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg()); 1104 LiveInterval &IntB = 1105 LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg()); 1106 1107 // A is defined by PHI at the entry of MBB. 1108 SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true); 1109 VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx); 1110 assert(AValNo && !AValNo->isUnused() && "COPY source not live"); 1111 if (!AValNo->isPHIDef()) 1112 return false; 1113 1114 // No B is referenced before CopyMI in MBB. 1115 if (IntB.overlaps(LIS->getMBBStartIdx(&MBB), CopyIdx)) 1116 return false; 1117 1118 // MBB has two predecessors: one contains A = B so no copy will be inserted 1119 // for it. The other one will have a copy moved from MBB. 1120 bool FoundReverseCopy = false; 1121 MachineBasicBlock *CopyLeftBB = nullptr; 1122 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1123 VNInfo *PVal = IntA.getVNInfoBefore(LIS->getMBBEndIdx(Pred)); 1124 MachineInstr *DefMI = LIS->getInstructionFromIndex(PVal->def); 1125 if (!DefMI || !DefMI->isFullCopy()) { 1126 CopyLeftBB = Pred; 1127 continue; 1128 } 1129 // Check DefMI is a reverse copy and it is in BB Pred. 1130 if (DefMI->getOperand(0).getReg() != IntA.reg() || 1131 DefMI->getOperand(1).getReg() != IntB.reg() || 1132 DefMI->getParent() != Pred) { 1133 CopyLeftBB = Pred; 1134 continue; 1135 } 1136 // If there is any other def of B after DefMI and before the end of Pred, 1137 // we need to keep the copy of B = A at the end of Pred if we remove 1138 // B = A from MBB. 1139 bool ValB_Changed = false; 1140 for (auto *VNI : IntB.valnos) { 1141 if (VNI->isUnused()) 1142 continue; 1143 if (PVal->def < VNI->def && VNI->def < LIS->getMBBEndIdx(Pred)) { 1144 ValB_Changed = true; 1145 break; 1146 } 1147 } 1148 if (ValB_Changed) { 1149 CopyLeftBB = Pred; 1150 continue; 1151 } 1152 FoundReverseCopy = true; 1153 } 1154 1155 // If no reverse copy is found in predecessors, nothing to do. 1156 if (!FoundReverseCopy) 1157 return false; 1158 1159 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains 1160 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated. 1161 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and 1162 // update IntA/IntB. 1163 // 1164 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so 1165 // MBB is hotter than CopyLeftBB. 1166 if (CopyLeftBB && CopyLeftBB->succ_size() > 1) 1167 return false; 1168 1169 // Now (almost sure it's) ok to move copy. 1170 if (CopyLeftBB) { 1171 // Position in CopyLeftBB where we should insert new copy. 1172 auto InsPos = CopyLeftBB->getFirstTerminator(); 1173 1174 // Make sure that B isn't referenced in the terminators (if any) at the end 1175 // of the predecessor since we're about to insert a new definition of B 1176 // before them. 1177 if (InsPos != CopyLeftBB->end()) { 1178 SlotIndex InsPosIdx = LIS->getInstructionIndex(*InsPos).getRegSlot(true); 1179 if (IntB.overlaps(InsPosIdx, LIS->getMBBEndIdx(CopyLeftBB))) 1180 return false; 1181 } 1182 1183 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to " 1184 << printMBBReference(*CopyLeftBB) << '\t' << CopyMI); 1185 1186 // Insert new copy to CopyLeftBB. 1187 MachineInstr *NewCopyMI = BuildMI(*CopyLeftBB, InsPos, CopyMI.getDebugLoc(), 1188 TII->get(TargetOpcode::COPY), IntB.reg()) 1189 .addReg(IntA.reg()); 1190 SlotIndex NewCopyIdx = 1191 LIS->InsertMachineInstrInMaps(*NewCopyMI).getRegSlot(); 1192 IntB.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1193 for (LiveInterval::SubRange &SR : IntB.subranges()) 1194 SR.createDeadDef(NewCopyIdx, LIS->getVNInfoAllocator()); 1195 1196 // If the newly created Instruction has an address of an instruction that was 1197 // deleted before (object recycled by the allocator) it needs to be removed from 1198 // the deleted list. 1199 ErasedInstrs.erase(NewCopyMI); 1200 } else { 1201 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from " 1202 << printMBBReference(MBB) << '\t' << CopyMI); 1203 } 1204 1205 // Remove CopyMI. 1206 // Note: This is fine to remove the copy before updating the live-ranges. 1207 // While updating the live-ranges, we only look at slot indices and 1208 // never go back to the instruction. 1209 // Mark instructions as deleted. 1210 deleteInstr(&CopyMI); 1211 1212 // Update the liveness. 1213 SmallVector<SlotIndex, 8> EndPoints; 1214 VNInfo *BValNo = IntB.Query(CopyIdx).valueOutOrDead(); 1215 LIS->pruneValue(*static_cast<LiveRange *>(&IntB), CopyIdx.getRegSlot(), 1216 &EndPoints); 1217 BValNo->markUnused(); 1218 // Extend IntB to the EndPoints of its original live interval. 1219 LIS->extendToIndices(IntB, EndPoints); 1220 1221 // Now, do the same for its subranges. 1222 for (LiveInterval::SubRange &SR : IntB.subranges()) { 1223 EndPoints.clear(); 1224 VNInfo *BValNo = SR.Query(CopyIdx).valueOutOrDead(); 1225 assert(BValNo && "All sublanes should be live"); 1226 LIS->pruneValue(SR, CopyIdx.getRegSlot(), &EndPoints); 1227 BValNo->markUnused(); 1228 // We can have a situation where the result of the original copy is live, 1229 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes 1230 // the copy appear as an endpoint from pruneValue(), but we don't want it 1231 // to because the copy has been removed. We can go ahead and remove that 1232 // endpoint; there is no other situation here that there could be a use at 1233 // the same place as we know that the copy is a full copy. 1234 for (unsigned I = 0; I != EndPoints.size(); ) { 1235 if (SlotIndex::isSameInstr(EndPoints[I], CopyIdx)) { 1236 EndPoints[I] = EndPoints.back(); 1237 EndPoints.pop_back(); 1238 continue; 1239 } 1240 ++I; 1241 } 1242 SmallVector<SlotIndex, 8> Undefs; 1243 IntB.computeSubRangeUndefs(Undefs, SR.LaneMask, *MRI, 1244 *LIS->getSlotIndexes()); 1245 LIS->extendToIndices(SR, EndPoints, Undefs); 1246 } 1247 // If any dead defs were extended, truncate them. 1248 shrinkToUses(&IntB); 1249 1250 // Finally, update the live-range of IntA. 1251 shrinkToUses(&IntA); 1252 return true; 1253 } 1254 1255 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just 1256 /// defining a subregister. 1257 static bool definesFullReg(const MachineInstr &MI, Register Reg) { 1258 assert(!Reg.isPhysical() && "This code cannot handle physreg aliasing"); 1259 1260 for (const MachineOperand &Op : MI.operands()) { 1261 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 1262 continue; 1263 // Return true if we define the full register or don't care about the value 1264 // inside other subregisters. 1265 if (Op.getSubReg() == 0 || Op.isUndef()) 1266 return true; 1267 } 1268 return false; 1269 } 1270 1271 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair &CP, 1272 MachineInstr *CopyMI, 1273 bool &IsDefCopy) { 1274 IsDefCopy = false; 1275 Register SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg(); 1276 unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx(); 1277 Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 1278 unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx(); 1279 if (SrcReg.isPhysical()) 1280 return false; 1281 1282 LiveInterval &SrcInt = LIS->getInterval(SrcReg); 1283 SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1284 VNInfo *ValNo = SrcInt.Query(CopyIdx).valueIn(); 1285 if (!ValNo) 1286 return false; 1287 if (ValNo->isPHIDef() || ValNo->isUnused()) 1288 return false; 1289 MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def); 1290 if (!DefMI) 1291 return false; 1292 if (DefMI->isCopyLike()) { 1293 IsDefCopy = true; 1294 return false; 1295 } 1296 if (!TII->isAsCheapAsAMove(*DefMI)) 1297 return false; 1298 1299 SmallVector<Register, 8> NewRegs; 1300 LiveRangeEdit Edit(&SrcInt, NewRegs, *MF, *LIS, nullptr, this); 1301 if (!Edit.checkRematerializable(ValNo, DefMI)) 1302 return false; 1303 1304 if (!definesFullReg(*DefMI, SrcReg)) 1305 return false; 1306 bool SawStore = false; 1307 if (!DefMI->isSafeToMove(AA, SawStore)) 1308 return false; 1309 const MCInstrDesc &MCID = DefMI->getDesc(); 1310 if (MCID.getNumDefs() != 1) 1311 return false; 1312 // Only support subregister destinations when the def is read-undef. 1313 MachineOperand &DstOperand = CopyMI->getOperand(0); 1314 Register CopyDstReg = DstOperand.getReg(); 1315 if (DstOperand.getSubReg() && !DstOperand.isUndef()) 1316 return false; 1317 1318 // If both SrcIdx and DstIdx are set, correct rematerialization would widen 1319 // the register substantially (beyond both source and dest size). This is bad 1320 // for performance since it can cascade through a function, introducing many 1321 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers 1322 // around after a few subreg copies). 1323 if (SrcIdx && DstIdx) 1324 return false; 1325 1326 const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF); 1327 if (!DefMI->isImplicitDef()) { 1328 if (DstReg.isPhysical()) { 1329 Register NewDstReg = DstReg; 1330 1331 unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(), 1332 DefMI->getOperand(0).getSubReg()); 1333 if (NewDstIdx) 1334 NewDstReg = TRI->getSubReg(DstReg, NewDstIdx); 1335 1336 // Finally, make sure that the physical subregister that will be 1337 // constructed later is permitted for the instruction. 1338 if (!DefRC->contains(NewDstReg)) 1339 return false; 1340 } else { 1341 // Theoretically, some stack frame reference could exist. Just make sure 1342 // it hasn't actually happened. 1343 assert(DstReg.isVirtual() && 1344 "Only expect to deal with virtual or physical registers"); 1345 } 1346 } 1347 1348 LiveRangeEdit::Remat RM(ValNo); 1349 RM.OrigMI = DefMI; 1350 if (!Edit.canRematerializeAt(RM, ValNo, CopyIdx, true)) 1351 return false; 1352 1353 DebugLoc DL = CopyMI->getDebugLoc(); 1354 MachineBasicBlock *MBB = CopyMI->getParent(); 1355 MachineBasicBlock::iterator MII = 1356 std::next(MachineBasicBlock::iterator(CopyMI)); 1357 Edit.rematerializeAt(*MBB, MII, DstReg, RM, *TRI, false, SrcIdx, CopyMI); 1358 MachineInstr &NewMI = *std::prev(MII); 1359 NewMI.setDebugLoc(DL); 1360 1361 // In a situation like the following: 1362 // %0:subreg = instr ; DefMI, subreg = DstIdx 1363 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0 1364 // instead of widening %1 to the register class of %0 simply do: 1365 // %1 = instr 1366 const TargetRegisterClass *NewRC = CP.getNewRC(); 1367 if (DstIdx != 0) { 1368 MachineOperand &DefMO = NewMI.getOperand(0); 1369 if (DefMO.getSubReg() == DstIdx) { 1370 assert(SrcIdx == 0 && CP.isFlipped() 1371 && "Shouldn't have SrcIdx+DstIdx at this point"); 1372 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 1373 const TargetRegisterClass *CommonRC = 1374 TRI->getCommonSubClass(DefRC, DstRC); 1375 if (CommonRC != nullptr) { 1376 NewRC = CommonRC; 1377 1378 // Instruction might contain "undef %0:subreg" as use operand: 1379 // %0:subreg = instr op_1, ..., op_N, undef %0:subreg, op_N+2, ... 1380 // 1381 // Need to check all operands. 1382 for (MachineOperand &MO : NewMI.operands()) { 1383 if (MO.isReg() && MO.getReg() == DstReg && MO.getSubReg() == DstIdx) { 1384 MO.setSubReg(0); 1385 } 1386 } 1387 1388 DstIdx = 0; 1389 DefMO.setIsUndef(false); // Only subregs can have def+undef. 1390 } 1391 } 1392 } 1393 1394 // CopyMI may have implicit operands, save them so that we can transfer them 1395 // over to the newly materialized instruction after CopyMI is removed. 1396 SmallVector<MachineOperand, 4> ImplicitOps; 1397 ImplicitOps.reserve(CopyMI->getNumOperands() - 1398 CopyMI->getDesc().getNumOperands()); 1399 for (unsigned I = CopyMI->getDesc().getNumOperands(), 1400 E = CopyMI->getNumOperands(); 1401 I != E; ++I) { 1402 MachineOperand &MO = CopyMI->getOperand(I); 1403 if (MO.isReg()) { 1404 assert(MO.isImplicit() && "No explicit operands after implicit operands."); 1405 // Discard VReg implicit defs. 1406 if (MO.getReg().isPhysical()) 1407 ImplicitOps.push_back(MO); 1408 } 1409 } 1410 1411 CopyMI->eraseFromParent(); 1412 ErasedInstrs.insert(CopyMI); 1413 1414 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86). 1415 // We need to remember these so we can add intervals once we insert 1416 // NewMI into SlotIndexes. 1417 SmallVector<MCRegister, 4> NewMIImplDefs; 1418 for (unsigned i = NewMI.getDesc().getNumOperands(), 1419 e = NewMI.getNumOperands(); 1420 i != e; ++i) { 1421 MachineOperand &MO = NewMI.getOperand(i); 1422 if (MO.isReg() && MO.isDef()) { 1423 assert(MO.isImplicit() && MO.isDead() && MO.getReg().isPhysical()); 1424 NewMIImplDefs.push_back(MO.getReg().asMCReg()); 1425 } 1426 } 1427 1428 if (DstReg.isVirtual()) { 1429 unsigned NewIdx = NewMI.getOperand(0).getSubReg(); 1430 1431 if (DefRC != nullptr) { 1432 if (NewIdx) 1433 NewRC = TRI->getMatchingSuperRegClass(NewRC, DefRC, NewIdx); 1434 else 1435 NewRC = TRI->getCommonSubClass(NewRC, DefRC); 1436 assert(NewRC && "subreg chosen for remat incompatible with instruction"); 1437 } 1438 // Remap subranges to new lanemask and change register class. 1439 LiveInterval &DstInt = LIS->getInterval(DstReg); 1440 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1441 SR.LaneMask = TRI->composeSubRegIndexLaneMask(DstIdx, SR.LaneMask); 1442 } 1443 MRI->setRegClass(DstReg, NewRC); 1444 1445 // Update machine operands and add flags. 1446 updateRegDefsUses(DstReg, DstReg, DstIdx); 1447 NewMI.getOperand(0).setSubReg(NewIdx); 1448 // updateRegDefUses can add an "undef" flag to the definition, since 1449 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make 1450 // sure that "undef" is not set. 1451 if (NewIdx == 0) 1452 NewMI.getOperand(0).setIsUndef(false); 1453 // Add dead subregister definitions if we are defining the whole register 1454 // but only part of it is live. 1455 // This could happen if the rematerialization instruction is rematerializing 1456 // more than actually is used in the register. 1457 // An example would be: 1458 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs 1459 // ; Copying only part of the register here, but the rest is undef. 1460 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit 1461 // ==> 1462 // ; Materialize all the constants but only using one 1463 // %2 = LOAD_CONSTANTS 5, 8 1464 // 1465 // at this point for the part that wasn't defined before we could have 1466 // subranges missing the definition. 1467 if (NewIdx == 0 && DstInt.hasSubRanges()) { 1468 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1469 SlotIndex DefIndex = 1470 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1471 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(DstReg); 1472 VNInfo::Allocator& Alloc = LIS->getVNInfoAllocator(); 1473 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1474 if (!SR.liveAt(DefIndex)) 1475 SR.createDeadDef(DefIndex, Alloc); 1476 MaxMask &= ~SR.LaneMask; 1477 } 1478 if (MaxMask.any()) { 1479 LiveInterval::SubRange *SR = DstInt.createSubRange(Alloc, MaxMask); 1480 SR->createDeadDef(DefIndex, Alloc); 1481 } 1482 } 1483 1484 // Make sure that the subrange for resultant undef is removed 1485 // For example: 1486 // %1:sub1<def,read-undef> = LOAD CONSTANT 1 1487 // %2 = COPY %1 1488 // ==> 1489 // %2:sub1<def, read-undef> = LOAD CONSTANT 1 1490 // ; Correct but need to remove the subrange for %2:sub0 1491 // ; as it is now undef 1492 if (NewIdx != 0 && DstInt.hasSubRanges()) { 1493 // The affected subregister segments can be removed. 1494 SlotIndex CurrIdx = LIS->getInstructionIndex(NewMI); 1495 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(NewIdx); 1496 bool UpdatedSubRanges = false; 1497 SlotIndex DefIndex = 1498 CurrIdx.getRegSlot(NewMI.getOperand(0).isEarlyClobber()); 1499 VNInfo::Allocator &Alloc = LIS->getVNInfoAllocator(); 1500 for (LiveInterval::SubRange &SR : DstInt.subranges()) { 1501 if ((SR.LaneMask & DstMask).none()) { 1502 LLVM_DEBUG(dbgs() 1503 << "Removing undefined SubRange " 1504 << PrintLaneMask(SR.LaneMask) << " : " << SR << "\n"); 1505 // VNI is in ValNo - remove any segments in this SubRange that have this ValNo 1506 if (VNInfo *RmValNo = SR.getVNInfoAt(CurrIdx.getRegSlot())) { 1507 SR.removeValNo(RmValNo); 1508 UpdatedSubRanges = true; 1509 } 1510 } else { 1511 // We know that this lane is defined by this instruction, 1512 // but at this point it may be empty because it is not used by 1513 // anything. This happens when updateRegDefUses adds the missing 1514 // lanes. Assign that lane a dead def so that the interferences 1515 // are properly modeled. 1516 if (SR.empty()) 1517 SR.createDeadDef(DefIndex, Alloc); 1518 } 1519 } 1520 if (UpdatedSubRanges) 1521 DstInt.removeEmptySubRanges(); 1522 } 1523 } else if (NewMI.getOperand(0).getReg() != CopyDstReg) { 1524 // The New instruction may be defining a sub-register of what's actually 1525 // been asked for. If so it must implicitly define the whole thing. 1526 assert(DstReg.isPhysical() && 1527 "Only expect virtual or physical registers in remat"); 1528 NewMI.getOperand(0).setIsDead(true); 1529 NewMI.addOperand(MachineOperand::CreateReg( 1530 CopyDstReg, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/)); 1531 // Record small dead def live-ranges for all the subregisters 1532 // of the destination register. 1533 // Otherwise, variables that live through may miss some 1534 // interferences, thus creating invalid allocation. 1535 // E.g., i386 code: 1536 // %1 = somedef ; %1 GR8 1537 // %2 = remat ; %2 GR32 1538 // CL = COPY %2.sub_8bit 1539 // = somedef %1 ; %1 GR8 1540 // => 1541 // %1 = somedef ; %1 GR8 1542 // dead ECX = remat ; implicit-def CL 1543 // = somedef %1 ; %1 GR8 1544 // %1 will see the interferences with CL but not with CH since 1545 // no live-ranges would have been created for ECX. 1546 // Fix that! 1547 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1548 for (MCRegUnitIterator Units(NewMI.getOperand(0).getReg(), TRI); 1549 Units.isValid(); ++Units) 1550 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1551 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1552 } 1553 1554 if (NewMI.getOperand(0).getSubReg()) 1555 NewMI.getOperand(0).setIsUndef(); 1556 1557 // Transfer over implicit operands to the rematerialized instruction. 1558 for (MachineOperand &MO : ImplicitOps) 1559 NewMI.addOperand(MO); 1560 1561 SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI); 1562 for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) { 1563 MCRegister Reg = NewMIImplDefs[i]; 1564 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1565 if (LiveRange *LR = LIS->getCachedRegUnit(*Units)) 1566 LR->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator()); 1567 } 1568 1569 LLVM_DEBUG(dbgs() << "Remat: " << NewMI); 1570 ++NumReMats; 1571 1572 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs 1573 // to describe DstReg instead. 1574 if (MRI->use_nodbg_empty(SrcReg)) { 1575 for (MachineOperand &UseMO : 1576 llvm::make_early_inc_range(MRI->use_operands(SrcReg))) { 1577 MachineInstr *UseMI = UseMO.getParent(); 1578 if (UseMI->isDebugInstr()) { 1579 if (DstReg.isPhysical()) 1580 UseMO.substPhysReg(DstReg, *TRI); 1581 else 1582 UseMO.setReg(DstReg); 1583 // Move the debug value directly after the def of the rematerialized 1584 // value in DstReg. 1585 MBB->splice(std::next(NewMI.getIterator()), UseMI->getParent(), UseMI); 1586 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI); 1587 } 1588 } 1589 } 1590 1591 if (ToBeUpdated.count(SrcReg)) 1592 return true; 1593 1594 unsigned NumCopyUses = 0; 1595 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { 1596 if (UseMO.getParent()->isCopyLike()) 1597 NumCopyUses++; 1598 } 1599 if (NumCopyUses < LateRematUpdateThreshold) { 1600 // The source interval can become smaller because we removed a use. 1601 shrinkToUses(&SrcInt, &DeadDefs); 1602 if (!DeadDefs.empty()) 1603 eliminateDeadDefs(&Edit); 1604 } else { 1605 ToBeUpdated.insert(SrcReg); 1606 } 1607 return true; 1608 } 1609 1610 MachineInstr *RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI) { 1611 // ProcessImplicitDefs may leave some copies of <undef> values, it only 1612 // removes local variables. When we have a copy like: 1613 // 1614 // %1 = COPY undef %2 1615 // 1616 // We delete the copy and remove the corresponding value number from %1. 1617 // Any uses of that value number are marked as <undef>. 1618 1619 // Note that we do not query CoalescerPair here but redo isMoveInstr as the 1620 // CoalescerPair may have a new register class with adjusted subreg indices 1621 // at this point. 1622 Register SrcReg, DstReg; 1623 unsigned SrcSubIdx = 0, DstSubIdx = 0; 1624 if(!isMoveInstr(*TRI, CopyMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) 1625 return nullptr; 1626 1627 SlotIndex Idx = LIS->getInstructionIndex(*CopyMI); 1628 const LiveInterval &SrcLI = LIS->getInterval(SrcReg); 1629 // CopyMI is undef iff SrcReg is not live before the instruction. 1630 if (SrcSubIdx != 0 && SrcLI.hasSubRanges()) { 1631 LaneBitmask SrcMask = TRI->getSubRegIndexLaneMask(SrcSubIdx); 1632 for (const LiveInterval::SubRange &SR : SrcLI.subranges()) { 1633 if ((SR.LaneMask & SrcMask).none()) 1634 continue; 1635 if (SR.liveAt(Idx)) 1636 return nullptr; 1637 } 1638 } else if (SrcLI.liveAt(Idx)) 1639 return nullptr; 1640 1641 // If the undef copy defines a live-out value (i.e. an input to a PHI def), 1642 // then replace it with an IMPLICIT_DEF. 1643 LiveInterval &DstLI = LIS->getInterval(DstReg); 1644 SlotIndex RegIndex = Idx.getRegSlot(); 1645 LiveRange::Segment *Seg = DstLI.getSegmentContaining(RegIndex); 1646 assert(Seg != nullptr && "No segment for defining instruction"); 1647 VNInfo *V = DstLI.getVNInfoAt(Seg->end); 1648 1649 // The source interval may also have been on an undef use, in which case the 1650 // copy introduced a live value. 1651 if (((V && V->isPHIDef()) || (!V && !DstLI.liveAt(Idx)))) { 1652 CopyMI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1653 for (unsigned i = CopyMI->getNumOperands(); i != 0; --i) { 1654 MachineOperand &MO = CopyMI->getOperand(i-1); 1655 if (MO.isReg() && MO.isUse()) 1656 CopyMI->removeOperand(i-1); 1657 } 1658 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an " 1659 "implicit def\n"); 1660 return CopyMI; 1661 } 1662 1663 // Remove any DstReg segments starting at the instruction. 1664 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n"); 1665 1666 // Remove value or merge with previous one in case of a subregister def. 1667 if (VNInfo *PrevVNI = DstLI.getVNInfoAt(Idx)) { 1668 VNInfo *VNI = DstLI.getVNInfoAt(RegIndex); 1669 DstLI.MergeValueNumberInto(VNI, PrevVNI); 1670 1671 // The affected subregister segments can be removed. 1672 LaneBitmask DstMask = TRI->getSubRegIndexLaneMask(DstSubIdx); 1673 for (LiveInterval::SubRange &SR : DstLI.subranges()) { 1674 if ((SR.LaneMask & DstMask).none()) 1675 continue; 1676 1677 VNInfo *SVNI = SR.getVNInfoAt(RegIndex); 1678 assert(SVNI != nullptr && SlotIndex::isSameInstr(SVNI->def, RegIndex)); 1679 SR.removeValNo(SVNI); 1680 } 1681 DstLI.removeEmptySubRanges(); 1682 } else 1683 LIS->removeVRegDefAt(DstLI, RegIndex); 1684 1685 // Mark uses as undef. 1686 for (MachineOperand &MO : MRI->reg_nodbg_operands(DstReg)) { 1687 if (MO.isDef() /*|| MO.isUndef()*/) 1688 continue; 1689 const MachineInstr &MI = *MO.getParent(); 1690 SlotIndex UseIdx = LIS->getInstructionIndex(MI); 1691 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1692 bool isLive; 1693 if (!UseMask.all() && DstLI.hasSubRanges()) { 1694 isLive = false; 1695 for (const LiveInterval::SubRange &SR : DstLI.subranges()) { 1696 if ((SR.LaneMask & UseMask).none()) 1697 continue; 1698 if (SR.liveAt(UseIdx)) { 1699 isLive = true; 1700 break; 1701 } 1702 } 1703 } else 1704 isLive = DstLI.liveAt(UseIdx); 1705 if (isLive) 1706 continue; 1707 MO.setIsUndef(true); 1708 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx << '\t' << MI); 1709 } 1710 1711 // A def of a subregister may be a use of the other subregisters, so 1712 // deleting a def of a subregister may also remove uses. Since CopyMI 1713 // is still part of the function (but about to be erased), mark all 1714 // defs of DstReg in it as <undef>, so that shrinkToUses would 1715 // ignore them. 1716 for (MachineOperand &MO : CopyMI->operands()) 1717 if (MO.isReg() && MO.isDef() && MO.getReg() == DstReg) 1718 MO.setIsUndef(true); 1719 LIS->shrinkToUses(&DstLI); 1720 1721 return CopyMI; 1722 } 1723 1724 void RegisterCoalescer::addUndefFlag(const LiveInterval &Int, SlotIndex UseIdx, 1725 MachineOperand &MO, unsigned SubRegIdx) { 1726 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1727 if (MO.isDef()) 1728 Mask = ~Mask; 1729 bool IsUndef = true; 1730 for (const LiveInterval::SubRange &S : Int.subranges()) { 1731 if ((S.LaneMask & Mask).none()) 1732 continue; 1733 if (S.liveAt(UseIdx)) { 1734 IsUndef = false; 1735 break; 1736 } 1737 } 1738 if (IsUndef) { 1739 MO.setIsUndef(true); 1740 // We found out some subregister use is actually reading an undefined 1741 // value. In some cases the whole vreg has become undefined at this 1742 // point so we have to potentially shrink the main range if the 1743 // use was ending a live segment there. 1744 LiveQueryResult Q = Int.Query(UseIdx); 1745 if (Q.valueOut() == nullptr) 1746 ShrinkMainRange = true; 1747 } 1748 } 1749 1750 void RegisterCoalescer::updateRegDefsUses(Register SrcReg, Register DstReg, 1751 unsigned SubIdx) { 1752 bool DstIsPhys = DstReg.isPhysical(); 1753 LiveInterval *DstInt = DstIsPhys ? nullptr : &LIS->getInterval(DstReg); 1754 1755 if (DstInt && DstInt->hasSubRanges() && DstReg != SrcReg) { 1756 for (MachineOperand &MO : MRI->reg_operands(DstReg)) { 1757 unsigned SubReg = MO.getSubReg(); 1758 if (SubReg == 0 || MO.isUndef()) 1759 continue; 1760 MachineInstr &MI = *MO.getParent(); 1761 if (MI.isDebugInstr()) 1762 continue; 1763 SlotIndex UseIdx = LIS->getInstructionIndex(MI).getRegSlot(true); 1764 addUndefFlag(*DstInt, UseIdx, MO, SubReg); 1765 } 1766 } 1767 1768 SmallPtrSet<MachineInstr*, 8> Visited; 1769 for (MachineRegisterInfo::reg_instr_iterator 1770 I = MRI->reg_instr_begin(SrcReg), E = MRI->reg_instr_end(); 1771 I != E; ) { 1772 MachineInstr *UseMI = &*(I++); 1773 1774 // Each instruction can only be rewritten once because sub-register 1775 // composition is not always idempotent. When SrcReg != DstReg, rewriting 1776 // the UseMI operands removes them from the SrcReg use-def chain, but when 1777 // SrcReg is DstReg we could encounter UseMI twice if it has multiple 1778 // operands mentioning the virtual register. 1779 if (SrcReg == DstReg && !Visited.insert(UseMI).second) 1780 continue; 1781 1782 SmallVector<unsigned,8> Ops; 1783 bool Reads, Writes; 1784 std::tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops); 1785 1786 // If SrcReg wasn't read, it may still be the case that DstReg is live-in 1787 // because SrcReg is a sub-register. 1788 if (DstInt && !Reads && SubIdx && !UseMI->isDebugInstr()) 1789 Reads = DstInt->liveAt(LIS->getInstructionIndex(*UseMI)); 1790 1791 // Replace SrcReg with DstReg in all UseMI operands. 1792 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 1793 MachineOperand &MO = UseMI->getOperand(Ops[i]); 1794 1795 // Adjust <undef> flags in case of sub-register joins. We don't want to 1796 // turn a full def into a read-modify-write sub-register def and vice 1797 // versa. 1798 if (SubIdx && MO.isDef()) 1799 MO.setIsUndef(!Reads); 1800 1801 // A subreg use of a partially undef (super) register may be a complete 1802 // undef use now and then has to be marked that way. 1803 if (MO.isUse() && !DstIsPhys) { 1804 unsigned SubUseIdx = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); 1805 if (SubUseIdx != 0 && MRI->shouldTrackSubRegLiveness(DstReg)) { 1806 if (!DstInt->hasSubRanges()) { 1807 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 1808 LaneBitmask FullMask = MRI->getMaxLaneMaskForVReg(DstInt->reg()); 1809 LaneBitmask UsedLanes = TRI->getSubRegIndexLaneMask(SubIdx); 1810 LaneBitmask UnusedLanes = FullMask & ~UsedLanes; 1811 DstInt->createSubRangeFrom(Allocator, UsedLanes, *DstInt); 1812 // The unused lanes are just empty live-ranges at this point. 1813 // It is the caller responsibility to set the proper 1814 // dead segments if there is an actual dead def of the 1815 // unused lanes. This may happen with rematerialization. 1816 DstInt->createSubRange(Allocator, UnusedLanes); 1817 } 1818 SlotIndex MIIdx = UseMI->isDebugInstr() 1819 ? LIS->getSlotIndexes()->getIndexBefore(*UseMI) 1820 : LIS->getInstructionIndex(*UseMI); 1821 SlotIndex UseIdx = MIIdx.getRegSlot(true); 1822 addUndefFlag(*DstInt, UseIdx, MO, SubUseIdx); 1823 } 1824 } 1825 1826 if (DstIsPhys) 1827 MO.substPhysReg(DstReg, *TRI); 1828 else 1829 MO.substVirtReg(DstReg, SubIdx, *TRI); 1830 } 1831 1832 LLVM_DEBUG({ 1833 dbgs() << "\t\tupdated: "; 1834 if (!UseMI->isDebugInstr()) 1835 dbgs() << LIS->getInstructionIndex(*UseMI) << "\t"; 1836 dbgs() << *UseMI; 1837 }); 1838 } 1839 } 1840 1841 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) { 1842 // Always join simple intervals that are defined by a single copy from a 1843 // reserved register. This doesn't increase register pressure, so it is 1844 // always beneficial. 1845 if (!MRI->isReserved(CP.getDstReg())) { 1846 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n"); 1847 return false; 1848 } 1849 1850 LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg()); 1851 if (JoinVInt.containsOneValue()) 1852 return true; 1853 1854 LLVM_DEBUG( 1855 dbgs() << "\tCannot join complex intervals into reserved register.\n"); 1856 return false; 1857 } 1858 1859 bool RegisterCoalescer::copyValueUndefInPredecessors( 1860 LiveRange &S, const MachineBasicBlock *MBB, LiveQueryResult SLRQ) { 1861 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 1862 SlotIndex PredEnd = LIS->getMBBEndIdx(Pred); 1863 if (VNInfo *V = S.getVNInfoAt(PredEnd.getPrevSlot())) { 1864 // If this is a self loop, we may be reading the same value. 1865 if (V->id != SLRQ.valueOutOrDead()->id) 1866 return false; 1867 } 1868 } 1869 1870 return true; 1871 } 1872 1873 void RegisterCoalescer::setUndefOnPrunedSubRegUses(LiveInterval &LI, 1874 Register Reg, 1875 LaneBitmask PrunedLanes) { 1876 // If we had other instructions in the segment reading the undef sublane 1877 // value, we need to mark them with undef. 1878 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 1879 unsigned SubRegIdx = MO.getSubReg(); 1880 if (SubRegIdx == 0 || MO.isUndef()) 1881 continue; 1882 1883 LaneBitmask SubRegMask = TRI->getSubRegIndexLaneMask(SubRegIdx); 1884 SlotIndex Pos = LIS->getInstructionIndex(*MO.getParent()); 1885 for (LiveInterval::SubRange &S : LI.subranges()) { 1886 if (!S.liveAt(Pos) && (PrunedLanes & SubRegMask).any()) { 1887 MO.setIsUndef(); 1888 break; 1889 } 1890 } 1891 } 1892 1893 LI.removeEmptySubRanges(); 1894 1895 // A def of a subregister may be a use of other register lanes. Replacing 1896 // such a def with a def of a different register will eliminate the use, 1897 // and may cause the recorded live range to be larger than the actual 1898 // liveness in the program IR. 1899 LIS->shrinkToUses(&LI); 1900 } 1901 1902 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) { 1903 Again = false; 1904 LLVM_DEBUG(dbgs() << LIS->getInstructionIndex(*CopyMI) << '\t' << *CopyMI); 1905 1906 CoalescerPair CP(*TRI); 1907 if (!CP.setRegisters(CopyMI)) { 1908 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n"); 1909 return false; 1910 } 1911 1912 if (CP.getNewRC()) { 1913 auto SrcRC = MRI->getRegClass(CP.getSrcReg()); 1914 auto DstRC = MRI->getRegClass(CP.getDstReg()); 1915 unsigned SrcIdx = CP.getSrcIdx(); 1916 unsigned DstIdx = CP.getDstIdx(); 1917 if (CP.isFlipped()) { 1918 std::swap(SrcIdx, DstIdx); 1919 std::swap(SrcRC, DstRC); 1920 } 1921 if (!TRI->shouldCoalesce(CopyMI, SrcRC, SrcIdx, DstRC, DstIdx, 1922 CP.getNewRC(), *LIS)) { 1923 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n"); 1924 return false; 1925 } 1926 } 1927 1928 // Dead code elimination. This really should be handled by MachineDCE, but 1929 // sometimes dead copies slip through, and we can't generate invalid live 1930 // ranges. 1931 if (!CP.isPhys() && CopyMI->allDefsAreDead()) { 1932 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n"); 1933 DeadDefs.push_back(CopyMI); 1934 eliminateDeadDefs(); 1935 return true; 1936 } 1937 1938 // Eliminate undefs. 1939 if (!CP.isPhys()) { 1940 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce. 1941 if (MachineInstr *UndefMI = eliminateUndefCopy(CopyMI)) { 1942 if (UndefMI->isImplicitDef()) 1943 return false; 1944 deleteInstr(CopyMI); 1945 return false; // Not coalescable. 1946 } 1947 } 1948 1949 // Coalesced copies are normally removed immediately, but transformations 1950 // like removeCopyByCommutingDef() can inadvertently create identity copies. 1951 // When that happens, just join the values and remove the copy. 1952 if (CP.getSrcReg() == CP.getDstReg()) { 1953 LiveInterval &LI = LIS->getInterval(CP.getSrcReg()); 1954 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n'); 1955 const SlotIndex CopyIdx = LIS->getInstructionIndex(*CopyMI); 1956 LiveQueryResult LRQ = LI.Query(CopyIdx); 1957 if (VNInfo *DefVNI = LRQ.valueDefined()) { 1958 VNInfo *ReadVNI = LRQ.valueIn(); 1959 assert(ReadVNI && "No value before copy and no <undef> flag."); 1960 assert(ReadVNI != DefVNI && "Cannot read and define the same value."); 1961 1962 // Track incoming undef lanes we need to eliminate from the subrange. 1963 LaneBitmask PrunedLanes; 1964 MachineBasicBlock *MBB = CopyMI->getParent(); 1965 1966 // Process subregister liveranges. 1967 for (LiveInterval::SubRange &S : LI.subranges()) { 1968 LiveQueryResult SLRQ = S.Query(CopyIdx); 1969 if (VNInfo *SDefVNI = SLRQ.valueDefined()) { 1970 if (VNInfo *SReadVNI = SLRQ.valueIn()) 1971 SDefVNI = S.MergeValueNumberInto(SDefVNI, SReadVNI); 1972 1973 // If this copy introduced an undef subrange from an incoming value, 1974 // we need to eliminate the undef live in values from the subrange. 1975 if (copyValueUndefInPredecessors(S, MBB, SLRQ)) { 1976 LLVM_DEBUG(dbgs() << "Incoming sublane value is undef at copy\n"); 1977 PrunedLanes |= S.LaneMask; 1978 S.removeValNo(SDefVNI); 1979 } 1980 } 1981 } 1982 1983 LI.MergeValueNumberInto(DefVNI, ReadVNI); 1984 if (PrunedLanes.any()) { 1985 LLVM_DEBUG(dbgs() << "Pruning undef incoming lanes: " 1986 << PrunedLanes << '\n'); 1987 setUndefOnPrunedSubRegUses(LI, CP.getSrcReg(), PrunedLanes); 1988 } 1989 1990 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI << '\n'); 1991 } 1992 deleteInstr(CopyMI); 1993 return true; 1994 } 1995 1996 // Enforce policies. 1997 if (CP.isPhys()) { 1998 LLVM_DEBUG(dbgs() << "\tConsidering merging " 1999 << printReg(CP.getSrcReg(), TRI) << " with " 2000 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'); 2001 if (!canJoinPhys(CP)) { 2002 // Before giving up coalescing, if definition of source is defined by 2003 // trivial computation, try rematerializing it. 2004 bool IsDefCopy = false; 2005 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 2006 return true; 2007 if (IsDefCopy) 2008 Again = true; // May be possible to coalesce later. 2009 return false; 2010 } 2011 } else { 2012 // When possible, let DstReg be the larger interval. 2013 if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).size() > 2014 LIS->getInterval(CP.getDstReg()).size()) 2015 CP.flip(); 2016 2017 LLVM_DEBUG({ 2018 dbgs() << "\tConsidering merging to " 2019 << TRI->getRegClassName(CP.getNewRC()) << " with "; 2020 if (CP.getDstIdx() && CP.getSrcIdx()) 2021 dbgs() << printReg(CP.getDstReg()) << " in " 2022 << TRI->getSubRegIndexName(CP.getDstIdx()) << " and " 2023 << printReg(CP.getSrcReg()) << " in " 2024 << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n'; 2025 else 2026 dbgs() << printReg(CP.getSrcReg(), TRI) << " in " 2027 << printReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n'; 2028 }); 2029 } 2030 2031 ShrinkMask = LaneBitmask::getNone(); 2032 ShrinkMainRange = false; 2033 2034 // Okay, attempt to join these two intervals. On failure, this returns false. 2035 // Otherwise, if one of the intervals being joined is a physreg, this method 2036 // always canonicalizes DstInt to be it. The output "SrcInt" will not have 2037 // been modified, so we can use this information below to update aliases. 2038 if (!joinIntervals(CP)) { 2039 // Coalescing failed. 2040 2041 // If definition of source is defined by trivial computation, try 2042 // rematerializing it. 2043 bool IsDefCopy = false; 2044 if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy)) 2045 return true; 2046 2047 // If we can eliminate the copy without merging the live segments, do so 2048 // now. 2049 if (!CP.isPartial() && !CP.isPhys()) { 2050 bool Changed = adjustCopiesBackFrom(CP, CopyMI); 2051 bool Shrink = false; 2052 if (!Changed) 2053 std::tie(Changed, Shrink) = removeCopyByCommutingDef(CP, CopyMI); 2054 if (Changed) { 2055 deleteInstr(CopyMI); 2056 if (Shrink) { 2057 Register DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg(); 2058 LiveInterval &DstLI = LIS->getInterval(DstReg); 2059 shrinkToUses(&DstLI); 2060 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI << '\n'); 2061 } 2062 LLVM_DEBUG(dbgs() << "\tTrivial!\n"); 2063 return true; 2064 } 2065 } 2066 2067 // Try and see if we can partially eliminate the copy by moving the copy to 2068 // its predecessor. 2069 if (!CP.isPartial() && !CP.isPhys()) 2070 if (removePartialRedundancy(CP, *CopyMI)) 2071 return true; 2072 2073 // Otherwise, we are unable to join the intervals. 2074 LLVM_DEBUG(dbgs() << "\tInterference!\n"); 2075 Again = true; // May be possible to coalesce later. 2076 return false; 2077 } 2078 2079 // Coalescing to a virtual register that is of a sub-register class of the 2080 // other. Make sure the resulting register is set to the right register class. 2081 if (CP.isCrossClass()) { 2082 ++numCrossRCs; 2083 MRI->setRegClass(CP.getDstReg(), CP.getNewRC()); 2084 } 2085 2086 // Removing sub-register copies can ease the register class constraints. 2087 // Make sure we attempt to inflate the register class of DstReg. 2088 if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC())) 2089 InflateRegs.push_back(CP.getDstReg()); 2090 2091 // CopyMI has been erased by joinIntervals at this point. Remove it from 2092 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back 2093 // to the work list. This keeps ErasedInstrs from growing needlessly. 2094 ErasedInstrs.erase(CopyMI); 2095 2096 // Rewrite all SrcReg operands to DstReg. 2097 // Also update DstReg operands to include DstIdx if it is set. 2098 if (CP.getDstIdx()) 2099 updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx()); 2100 updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx()); 2101 2102 // Shrink subregister ranges if necessary. 2103 if (ShrinkMask.any()) { 2104 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 2105 for (LiveInterval::SubRange &S : LI.subranges()) { 2106 if ((S.LaneMask & ShrinkMask).none()) 2107 continue; 2108 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S.LaneMask) 2109 << ")\n"); 2110 LIS->shrinkToUses(S, LI.reg()); 2111 ShrinkMainRange = true; 2112 } 2113 LI.removeEmptySubRanges(); 2114 } 2115 2116 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live 2117 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval 2118 // is not up-to-date, need to update the merged live interval here. 2119 if (ToBeUpdated.count(CP.getSrcReg())) 2120 ShrinkMainRange = true; 2121 2122 if (ShrinkMainRange) { 2123 LiveInterval &LI = LIS->getInterval(CP.getDstReg()); 2124 shrinkToUses(&LI); 2125 } 2126 2127 // SrcReg is guaranteed to be the register whose live interval that is 2128 // being merged. 2129 LIS->removeInterval(CP.getSrcReg()); 2130 2131 // Update regalloc hint. 2132 TRI->updateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF); 2133 2134 LLVM_DEBUG({ 2135 dbgs() << "\tSuccess: " << printReg(CP.getSrcReg(), TRI, CP.getSrcIdx()) 2136 << " -> " << printReg(CP.getDstReg(), TRI, CP.getDstIdx()) << '\n'; 2137 dbgs() << "\tResult = "; 2138 if (CP.isPhys()) 2139 dbgs() << printReg(CP.getDstReg(), TRI); 2140 else 2141 dbgs() << LIS->getInterval(CP.getDstReg()); 2142 dbgs() << '\n'; 2143 }); 2144 2145 ++numJoins; 2146 return true; 2147 } 2148 2149 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) { 2150 Register DstReg = CP.getDstReg(); 2151 Register SrcReg = CP.getSrcReg(); 2152 assert(CP.isPhys() && "Must be a physreg copy"); 2153 assert(MRI->isReserved(DstReg) && "Not a reserved register"); 2154 LiveInterval &RHS = LIS->getInterval(SrcReg); 2155 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << '\n'); 2156 2157 assert(RHS.containsOneValue() && "Invalid join with reserved register"); 2158 2159 // Optimization for reserved registers like ESP. We can only merge with a 2160 // reserved physreg if RHS has a single value that is a copy of DstReg. 2161 // The live range of the reserved register will look like a set of dead defs 2162 // - we don't properly track the live range of reserved registers. 2163 2164 // Deny any overlapping intervals. This depends on all the reserved 2165 // register live ranges to look like dead defs. 2166 if (!MRI->isConstantPhysReg(DstReg)) { 2167 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 2168 // Abort if not all the regunits are reserved. 2169 for (MCRegUnitRootIterator RI(*UI, TRI); RI.isValid(); ++RI) { 2170 if (!MRI->isReserved(*RI)) 2171 return false; 2172 } 2173 if (RHS.overlaps(LIS->getRegUnit(*UI))) { 2174 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(*UI, TRI) 2175 << '\n'); 2176 return false; 2177 } 2178 } 2179 2180 // We must also check for overlaps with regmask clobbers. 2181 BitVector RegMaskUsable; 2182 if (LIS->checkRegMaskInterference(RHS, RegMaskUsable) && 2183 !RegMaskUsable.test(DstReg)) { 2184 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n"); 2185 return false; 2186 } 2187 } 2188 2189 // Skip any value computations, we are not adding new values to the 2190 // reserved register. Also skip merging the live ranges, the reserved 2191 // register live range doesn't need to be accurate as long as all the 2192 // defs are there. 2193 2194 // Delete the identity copy. 2195 MachineInstr *CopyMI; 2196 if (CP.isFlipped()) { 2197 // Physreg is copied into vreg 2198 // %y = COPY %physreg_x 2199 // ... //< no other def of %physreg_x here 2200 // use %y 2201 // => 2202 // ... 2203 // use %physreg_x 2204 CopyMI = MRI->getVRegDef(SrcReg); 2205 } else { 2206 // VReg is copied into physreg: 2207 // %y = def 2208 // ... //< no other def or use of %physreg_x here 2209 // %physreg_x = COPY %y 2210 // => 2211 // %physreg_x = def 2212 // ... 2213 if (!MRI->hasOneNonDBGUse(SrcReg)) { 2214 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n"); 2215 return false; 2216 } 2217 2218 if (!LIS->intervalIsInOneMBB(RHS)) { 2219 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n"); 2220 return false; 2221 } 2222 2223 MachineInstr &DestMI = *MRI->getVRegDef(SrcReg); 2224 CopyMI = &*MRI->use_instr_nodbg_begin(SrcReg); 2225 SlotIndex CopyRegIdx = LIS->getInstructionIndex(*CopyMI).getRegSlot(); 2226 SlotIndex DestRegIdx = LIS->getInstructionIndex(DestMI).getRegSlot(); 2227 2228 if (!MRI->isConstantPhysReg(DstReg)) { 2229 // We checked above that there are no interfering defs of the physical 2230 // register. However, for this case, where we intend to move up the def of 2231 // the physical register, we also need to check for interfering uses. 2232 SlotIndexes *Indexes = LIS->getSlotIndexes(); 2233 for (SlotIndex SI = Indexes->getNextNonNullIndex(DestRegIdx); 2234 SI != CopyRegIdx; SI = Indexes->getNextNonNullIndex(SI)) { 2235 MachineInstr *MI = LIS->getInstructionFromIndex(SI); 2236 if (MI->readsRegister(DstReg, TRI)) { 2237 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI); 2238 return false; 2239 } 2240 } 2241 } 2242 2243 // We're going to remove the copy which defines a physical reserved 2244 // register, so remove its valno, etc. 2245 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of " 2246 << printReg(DstReg, TRI) << " at " << CopyRegIdx << "\n"); 2247 2248 LIS->removePhysRegDefAt(DstReg.asMCReg(), CopyRegIdx); 2249 // Create a new dead def at the new def location. 2250 for (MCRegUnitIterator UI(DstReg, TRI); UI.isValid(); ++UI) { 2251 LiveRange &LR = LIS->getRegUnit(*UI); 2252 LR.createDeadDef(DestRegIdx, LIS->getVNInfoAllocator()); 2253 } 2254 } 2255 2256 deleteInstr(CopyMI); 2257 2258 // We don't track kills for reserved registers. 2259 MRI->clearKillFlags(CP.getSrcReg()); 2260 2261 return true; 2262 } 2263 2264 //===----------------------------------------------------------------------===// 2265 // Interference checking and interval joining 2266 //===----------------------------------------------------------------------===// 2267 // 2268 // In the easiest case, the two live ranges being joined are disjoint, and 2269 // there is no interference to consider. It is quite common, though, to have 2270 // overlapping live ranges, and we need to check if the interference can be 2271 // resolved. 2272 // 2273 // The live range of a single SSA value forms a sub-tree of the dominator tree. 2274 // This means that two SSA values overlap if and only if the def of one value 2275 // is contained in the live range of the other value. As a special case, the 2276 // overlapping values can be defined at the same index. 2277 // 2278 // The interference from an overlapping def can be resolved in these cases: 2279 // 2280 // 1. Coalescable copies. The value is defined by a copy that would become an 2281 // identity copy after joining SrcReg and DstReg. The copy instruction will 2282 // be removed, and the value will be merged with the source value. 2283 // 2284 // There can be several copies back and forth, causing many values to be 2285 // merged into one. We compute a list of ultimate values in the joined live 2286 // range as well as a mappings from the old value numbers. 2287 // 2288 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI 2289 // predecessors have a live out value. It doesn't cause real interference, 2290 // and can be merged into the value it overlaps. Like a coalescable copy, it 2291 // can be erased after joining. 2292 // 2293 // 3. Copy of external value. The overlapping def may be a copy of a value that 2294 // is already in the other register. This is like a coalescable copy, but 2295 // the live range of the source register must be trimmed after erasing the 2296 // copy instruction: 2297 // 2298 // %src = COPY %ext 2299 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext. 2300 // 2301 // 4. Clobbering undefined lanes. Vector registers are sometimes built by 2302 // defining one lane at a time: 2303 // 2304 // %dst:ssub0<def,read-undef> = FOO 2305 // %src = BAR 2306 // %dst:ssub1 = COPY %src 2307 // 2308 // The live range of %src overlaps the %dst value defined by FOO, but 2309 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane 2310 // which was undef anyway. 2311 // 2312 // The value mapping is more complicated in this case. The final live range 2313 // will have different value numbers for both FOO and BAR, but there is no 2314 // simple mapping from old to new values. It may even be necessary to add 2315 // new PHI values. 2316 // 2317 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that 2318 // is live, but never read. This can happen because we don't compute 2319 // individual live ranges per lane. 2320 // 2321 // %dst = FOO 2322 // %src = BAR 2323 // %dst:ssub1 = COPY %src 2324 // 2325 // This kind of interference is only resolved locally. If the clobbered 2326 // lane value escapes the block, the join is aborted. 2327 2328 namespace { 2329 2330 /// Track information about values in a single virtual register about to be 2331 /// joined. Objects of this class are always created in pairs - one for each 2332 /// side of the CoalescerPair (or one for each lane of a side of the coalescer 2333 /// pair) 2334 class JoinVals { 2335 /// Live range we work on. 2336 LiveRange &LR; 2337 2338 /// (Main) register we work on. 2339 const Register Reg; 2340 2341 /// Reg (and therefore the values in this liverange) will end up as 2342 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or 2343 /// CP.SrcIdx. 2344 const unsigned SubIdx; 2345 2346 /// The LaneMask that this liverange will occupy the coalesced register. May 2347 /// be smaller than the lanemask produced by SubIdx when merging subranges. 2348 const LaneBitmask LaneMask; 2349 2350 /// This is true when joining sub register ranges, false when joining main 2351 /// ranges. 2352 const bool SubRangeJoin; 2353 2354 /// Whether the current LiveInterval tracks subregister liveness. 2355 const bool TrackSubRegLiveness; 2356 2357 /// Values that will be present in the final live range. 2358 SmallVectorImpl<VNInfo*> &NewVNInfo; 2359 2360 const CoalescerPair &CP; 2361 LiveIntervals *LIS; 2362 SlotIndexes *Indexes; 2363 const TargetRegisterInfo *TRI; 2364 2365 /// Value number assignments. Maps value numbers in LI to entries in 2366 /// NewVNInfo. This is suitable for passing to LiveInterval::join(). 2367 SmallVector<int, 8> Assignments; 2368 2369 public: 2370 /// Conflict resolution for overlapping values. 2371 enum ConflictResolution { 2372 /// No overlap, simply keep this value. 2373 CR_Keep, 2374 2375 /// Merge this value into OtherVNI and erase the defining instruction. 2376 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external 2377 /// values. 2378 CR_Erase, 2379 2380 /// Merge this value into OtherVNI but keep the defining instruction. 2381 /// This is for the special case where OtherVNI is defined by the same 2382 /// instruction. 2383 CR_Merge, 2384 2385 /// Keep this value, and have it replace OtherVNI where possible. This 2386 /// complicates value mapping since OtherVNI maps to two different values 2387 /// before and after this def. 2388 /// Used when clobbering undefined or dead lanes. 2389 CR_Replace, 2390 2391 /// Unresolved conflict. Visit later when all values have been mapped. 2392 CR_Unresolved, 2393 2394 /// Unresolvable conflict. Abort the join. 2395 CR_Impossible 2396 }; 2397 2398 private: 2399 /// Per-value info for LI. The lane bit masks are all relative to the final 2400 /// joined register, so they can be compared directly between SrcReg and 2401 /// DstReg. 2402 struct Val { 2403 ConflictResolution Resolution = CR_Keep; 2404 2405 /// Lanes written by this def, 0 for unanalyzed values. 2406 LaneBitmask WriteLanes; 2407 2408 /// Lanes with defined values in this register. Other lanes are undef and 2409 /// safe to clobber. 2410 LaneBitmask ValidLanes; 2411 2412 /// Value in LI being redefined by this def. 2413 VNInfo *RedefVNI = nullptr; 2414 2415 /// Value in the other live range that overlaps this def, if any. 2416 VNInfo *OtherVNI = nullptr; 2417 2418 /// Is this value an IMPLICIT_DEF that can be erased? 2419 /// 2420 /// IMPLICIT_DEF values should only exist at the end of a basic block that 2421 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be 2422 /// safely erased if they are overlapping a live value in the other live 2423 /// interval. 2424 /// 2425 /// Weird control flow graphs and incomplete PHI handling in 2426 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with 2427 /// longer live ranges. Such IMPLICIT_DEF values should be treated like 2428 /// normal values. 2429 bool ErasableImplicitDef = false; 2430 2431 /// True when the live range of this value will be pruned because of an 2432 /// overlapping CR_Replace value in the other live range. 2433 bool Pruned = false; 2434 2435 /// True once Pruned above has been computed. 2436 bool PrunedComputed = false; 2437 2438 /// True if this value is determined to be identical to OtherVNI 2439 /// (in valuesIdentical). This is used with CR_Erase where the erased 2440 /// copy is redundant, i.e. the source value is already the same as 2441 /// the destination. In such cases the subranges need to be updated 2442 /// properly. See comment at pruneSubRegValues for more info. 2443 bool Identical = false; 2444 2445 Val() = default; 2446 2447 bool isAnalyzed() const { return WriteLanes.any(); } 2448 }; 2449 2450 /// One entry per value number in LI. 2451 SmallVector<Val, 8> Vals; 2452 2453 /// Compute the bitmask of lanes actually written by DefMI. 2454 /// Set Redef if there are any partial register definitions that depend on the 2455 /// previous value of the register. 2456 LaneBitmask computeWriteLanes(const MachineInstr *DefMI, bool &Redef) const; 2457 2458 /// Find the ultimate value that VNI was copied from. 2459 std::pair<const VNInfo *, Register> followCopyChain(const VNInfo *VNI) const; 2460 2461 bool valuesIdentical(VNInfo *Value0, VNInfo *Value1, const JoinVals &Other) const; 2462 2463 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo]. 2464 /// Return a conflict resolution when possible, but leave the hard cases as 2465 /// CR_Unresolved. 2466 /// Recursively calls computeAssignment() on this and Other, guaranteeing that 2467 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning. 2468 /// The recursion always goes upwards in the dominator tree, making loops 2469 /// impossible. 2470 ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other); 2471 2472 /// Compute the value assignment for ValNo in RI. 2473 /// This may be called recursively by analyzeValue(), but never for a ValNo on 2474 /// the stack. 2475 void computeAssignment(unsigned ValNo, JoinVals &Other); 2476 2477 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute 2478 /// the extent of the tainted lanes in the block. 2479 /// 2480 /// Multiple values in Other.LR can be affected since partial redefinitions 2481 /// can preserve previously tainted lanes. 2482 /// 2483 /// 1 %dst = VLOAD <-- Define all lanes in %dst 2484 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0 2485 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0 2486 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read 2487 /// 2488 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes) 2489 /// entry to TaintedVals. 2490 /// 2491 /// Returns false if the tainted lanes extend beyond the basic block. 2492 bool 2493 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2494 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent); 2495 2496 /// Return true if MI uses any of the given Lanes from Reg. 2497 /// This does not include partial redefinitions of Reg. 2498 bool usesLanes(const MachineInstr &MI, Register, unsigned, LaneBitmask) const; 2499 2500 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will 2501 /// be pruned: 2502 /// 2503 /// %dst = COPY %src 2504 /// %src = COPY %dst <-- This value to be pruned. 2505 /// %dst = COPY %src <-- This value is a copy of a pruned value. 2506 bool isPrunedValue(unsigned ValNo, JoinVals &Other); 2507 2508 public: 2509 JoinVals(LiveRange &LR, Register Reg, unsigned SubIdx, LaneBitmask LaneMask, 2510 SmallVectorImpl<VNInfo *> &newVNInfo, const CoalescerPair &cp, 2511 LiveIntervals *lis, const TargetRegisterInfo *TRI, bool SubRangeJoin, 2512 bool TrackSubRegLiveness) 2513 : LR(LR), Reg(Reg), SubIdx(SubIdx), LaneMask(LaneMask), 2514 SubRangeJoin(SubRangeJoin), TrackSubRegLiveness(TrackSubRegLiveness), 2515 NewVNInfo(newVNInfo), CP(cp), LIS(lis), Indexes(LIS->getSlotIndexes()), 2516 TRI(TRI), Assignments(LR.getNumValNums(), -1), 2517 Vals(LR.getNumValNums()) {} 2518 2519 /// Analyze defs in LR and compute a value mapping in NewVNInfo. 2520 /// Returns false if any conflicts were impossible to resolve. 2521 bool mapValues(JoinVals &Other); 2522 2523 /// Try to resolve conflicts that require all values to be mapped. 2524 /// Returns false if any conflicts were impossible to resolve. 2525 bool resolveConflicts(JoinVals &Other); 2526 2527 /// Prune the live range of values in Other.LR where they would conflict with 2528 /// CR_Replace values in LR. Collect end points for restoring the live range 2529 /// after joining. 2530 void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints, 2531 bool changeInstrs); 2532 2533 /// Removes subranges starting at copies that get removed. This sometimes 2534 /// happens when undefined subranges are copied around. These ranges contain 2535 /// no useful information and can be removed. 2536 void pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask); 2537 2538 /// Pruning values in subranges can lead to removing segments in these 2539 /// subranges started by IMPLICIT_DEFs. The corresponding segments in 2540 /// the main range also need to be removed. This function will mark 2541 /// the corresponding values in the main range as pruned, so that 2542 /// eraseInstrs can do the final cleanup. 2543 /// The parameter @p LI must be the interval whose main range is the 2544 /// live range LR. 2545 void pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange); 2546 2547 /// Erase any machine instructions that have been coalesced away. 2548 /// Add erased instructions to ErasedInstrs. 2549 /// Add foreign virtual registers to ShrinkRegs if their live range ended at 2550 /// the erased instrs. 2551 void eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 2552 SmallVectorImpl<Register> &ShrinkRegs, 2553 LiveInterval *LI = nullptr); 2554 2555 /// Remove liverange defs at places where implicit defs will be removed. 2556 void removeImplicitDefs(); 2557 2558 /// Get the value assignments suitable for passing to LiveInterval::join. 2559 const int *getAssignments() const { return Assignments.data(); } 2560 2561 /// Get the conflict resolution for a value number. 2562 ConflictResolution getResolution(unsigned Num) const { 2563 return Vals[Num].Resolution; 2564 } 2565 }; 2566 2567 } // end anonymous namespace 2568 2569 LaneBitmask JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) 2570 const { 2571 LaneBitmask L; 2572 for (const MachineOperand &MO : DefMI->operands()) { 2573 if (!MO.isReg() || MO.getReg() != Reg || !MO.isDef()) 2574 continue; 2575 L |= TRI->getSubRegIndexLaneMask( 2576 TRI->composeSubRegIndices(SubIdx, MO.getSubReg())); 2577 if (MO.readsReg()) 2578 Redef = true; 2579 } 2580 return L; 2581 } 2582 2583 std::pair<const VNInfo *, Register> 2584 JoinVals::followCopyChain(const VNInfo *VNI) const { 2585 Register TrackReg = Reg; 2586 2587 while (!VNI->isPHIDef()) { 2588 SlotIndex Def = VNI->def; 2589 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 2590 assert(MI && "No defining instruction"); 2591 if (!MI->isFullCopy()) 2592 return std::make_pair(VNI, TrackReg); 2593 Register SrcReg = MI->getOperand(1).getReg(); 2594 if (!SrcReg.isVirtual()) 2595 return std::make_pair(VNI, TrackReg); 2596 2597 const LiveInterval &LI = LIS->getInterval(SrcReg); 2598 const VNInfo *ValueIn; 2599 // No subrange involved. 2600 if (!SubRangeJoin || !LI.hasSubRanges()) { 2601 LiveQueryResult LRQ = LI.Query(Def); 2602 ValueIn = LRQ.valueIn(); 2603 } else { 2604 // Query subranges. Ensure that all matching ones take us to the same def 2605 // (allowing some of them to be undef). 2606 ValueIn = nullptr; 2607 for (const LiveInterval::SubRange &S : LI.subranges()) { 2608 // Transform lanemask to a mask in the joined live interval. 2609 LaneBitmask SMask = TRI->composeSubRegIndexLaneMask(SubIdx, S.LaneMask); 2610 if ((SMask & LaneMask).none()) 2611 continue; 2612 LiveQueryResult LRQ = S.Query(Def); 2613 if (!ValueIn) { 2614 ValueIn = LRQ.valueIn(); 2615 continue; 2616 } 2617 if (LRQ.valueIn() && ValueIn != LRQ.valueIn()) 2618 return std::make_pair(VNI, TrackReg); 2619 } 2620 } 2621 if (ValueIn == nullptr) { 2622 // Reaching an undefined value is legitimate, for example: 2623 // 2624 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef 2625 // 2 %1 = COPY %0 ;; %1 is defined here. 2626 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition, 2627 // ;; but it's equivalent to "undef". 2628 return std::make_pair(nullptr, SrcReg); 2629 } 2630 VNI = ValueIn; 2631 TrackReg = SrcReg; 2632 } 2633 return std::make_pair(VNI, TrackReg); 2634 } 2635 2636 bool JoinVals::valuesIdentical(VNInfo *Value0, VNInfo *Value1, 2637 const JoinVals &Other) const { 2638 const VNInfo *Orig0; 2639 Register Reg0; 2640 std::tie(Orig0, Reg0) = followCopyChain(Value0); 2641 if (Orig0 == Value1 && Reg0 == Other.Reg) 2642 return true; 2643 2644 const VNInfo *Orig1; 2645 Register Reg1; 2646 std::tie(Orig1, Reg1) = Other.followCopyChain(Value1); 2647 // If both values are undefined, and the source registers are the same 2648 // register, the values are identical. Filter out cases where only one 2649 // value is defined. 2650 if (Orig0 == nullptr || Orig1 == nullptr) 2651 return Orig0 == Orig1 && Reg0 == Reg1; 2652 2653 // The values are equal if they are defined at the same place and use the 2654 // same register. Note that we cannot compare VNInfos directly as some of 2655 // them might be from a copy created in mergeSubRangeInto() while the other 2656 // is from the original LiveInterval. 2657 return Orig0->def == Orig1->def && Reg0 == Reg1; 2658 } 2659 2660 JoinVals::ConflictResolution 2661 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) { 2662 Val &V = Vals[ValNo]; 2663 assert(!V.isAnalyzed() && "Value has already been analyzed!"); 2664 VNInfo *VNI = LR.getValNumInfo(ValNo); 2665 if (VNI->isUnused()) { 2666 V.WriteLanes = LaneBitmask::getAll(); 2667 return CR_Keep; 2668 } 2669 2670 // Get the instruction defining this value, compute the lanes written. 2671 const MachineInstr *DefMI = nullptr; 2672 if (VNI->isPHIDef()) { 2673 // Conservatively assume that all lanes in a PHI are valid. 2674 LaneBitmask Lanes = SubRangeJoin ? LaneBitmask::getLane(0) 2675 : TRI->getSubRegIndexLaneMask(SubIdx); 2676 V.ValidLanes = V.WriteLanes = Lanes; 2677 } else { 2678 DefMI = Indexes->getInstructionFromIndex(VNI->def); 2679 assert(DefMI != nullptr); 2680 if (SubRangeJoin) { 2681 // We don't care about the lanes when joining subregister ranges. 2682 V.WriteLanes = V.ValidLanes = LaneBitmask::getLane(0); 2683 if (DefMI->isImplicitDef()) { 2684 V.ValidLanes = LaneBitmask::getNone(); 2685 V.ErasableImplicitDef = true; 2686 } 2687 } else { 2688 bool Redef = false; 2689 V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef); 2690 2691 // If this is a read-modify-write instruction, there may be more valid 2692 // lanes than the ones written by this instruction. 2693 // This only covers partial redef operands. DefMI may have normal use 2694 // operands reading the register. They don't contribute valid lanes. 2695 // 2696 // This adds ssub1 to the set of valid lanes in %src: 2697 // 2698 // %src:ssub1 = FOO 2699 // 2700 // This leaves only ssub1 valid, making any other lanes undef: 2701 // 2702 // %src:ssub1<def,read-undef> = FOO %src:ssub2 2703 // 2704 // The <read-undef> flag on the def operand means that old lane values are 2705 // not important. 2706 if (Redef) { 2707 V.RedefVNI = LR.Query(VNI->def).valueIn(); 2708 assert((TrackSubRegLiveness || V.RedefVNI) && 2709 "Instruction is reading nonexistent value"); 2710 if (V.RedefVNI != nullptr) { 2711 computeAssignment(V.RedefVNI->id, Other); 2712 V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes; 2713 } 2714 } 2715 2716 // An IMPLICIT_DEF writes undef values. 2717 if (DefMI->isImplicitDef()) { 2718 // We normally expect IMPLICIT_DEF values to be live only until the end 2719 // of their block. If the value is really live longer and gets pruned in 2720 // another block, this flag is cleared again. 2721 // 2722 // Clearing the valid lanes is deferred until it is sure this can be 2723 // erased. 2724 V.ErasableImplicitDef = true; 2725 } 2726 } 2727 } 2728 2729 // Find the value in Other that overlaps VNI->def, if any. 2730 LiveQueryResult OtherLRQ = Other.LR.Query(VNI->def); 2731 2732 // It is possible that both values are defined by the same instruction, or 2733 // the values are PHIs defined in the same block. When that happens, the two 2734 // values should be merged into one, but not into any preceding value. 2735 // The first value defined or visited gets CR_Keep, the other gets CR_Merge. 2736 if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) { 2737 assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ"); 2738 2739 // One value stays, the other is merged. Keep the earlier one, or the first 2740 // one we see. 2741 if (OtherVNI->def < VNI->def) 2742 Other.computeAssignment(OtherVNI->id, *this); 2743 else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) { 2744 // This is an early-clobber def overlapping a live-in value in the other 2745 // register. Not mergeable. 2746 V.OtherVNI = OtherLRQ.valueIn(); 2747 return CR_Impossible; 2748 } 2749 V.OtherVNI = OtherVNI; 2750 Val &OtherV = Other.Vals[OtherVNI->id]; 2751 // Keep this value, check for conflicts when analyzing OtherVNI. Avoid 2752 // revisiting OtherVNI->id in JoinVals::computeAssignment() below before it 2753 // is assigned. 2754 if (!OtherV.isAnalyzed() || Other.Assignments[OtherVNI->id] == -1) 2755 return CR_Keep; 2756 // Both sides have been analyzed now. 2757 // Allow overlapping PHI values. Any real interference would show up in a 2758 // predecessor, the PHI itself can't introduce any conflicts. 2759 if (VNI->isPHIDef()) 2760 return CR_Merge; 2761 if ((V.ValidLanes & OtherV.ValidLanes).any()) 2762 // Overlapping lanes can't be resolved. 2763 return CR_Impossible; 2764 else 2765 return CR_Merge; 2766 } 2767 2768 // No simultaneous def. Is Other live at the def? 2769 V.OtherVNI = OtherLRQ.valueIn(); 2770 if (!V.OtherVNI) 2771 // No overlap, no conflict. 2772 return CR_Keep; 2773 2774 assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ"); 2775 2776 // We have overlapping values, or possibly a kill of Other. 2777 // Recursively compute assignments up the dominator tree. 2778 Other.computeAssignment(V.OtherVNI->id, *this); 2779 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2780 2781 if (OtherV.ErasableImplicitDef) { 2782 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block. 2783 // This shouldn't normally happen, but ProcessImplicitDefs can leave such 2784 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it 2785 // technically. 2786 // 2787 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try 2788 // to erase the IMPLICIT_DEF instruction. 2789 if (DefMI && 2790 DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) { 2791 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def 2792 << " extends into " 2793 << printMBBReference(*DefMI->getParent()) 2794 << ", keeping it.\n"); 2795 OtherV.ErasableImplicitDef = false; 2796 } else { 2797 // We deferred clearing these lanes in case we needed to save them 2798 OtherV.ValidLanes &= ~OtherV.WriteLanes; 2799 } 2800 } 2801 2802 // Allow overlapping PHI values. Any real interference would show up in a 2803 // predecessor, the PHI itself can't introduce any conflicts. 2804 if (VNI->isPHIDef()) 2805 return CR_Replace; 2806 2807 // Check for simple erasable conflicts. 2808 if (DefMI->isImplicitDef()) 2809 return CR_Erase; 2810 2811 // Include the non-conflict where DefMI is a coalescable copy that kills 2812 // OtherVNI. We still want the copy erased and value numbers merged. 2813 if (CP.isCoalescable(DefMI)) { 2814 // Some of the lanes copied from OtherVNI may be undef, making them undef 2815 // here too. 2816 V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes; 2817 return CR_Erase; 2818 } 2819 2820 // This may not be a real conflict if DefMI simply kills Other and defines 2821 // VNI. 2822 if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def) 2823 return CR_Keep; 2824 2825 // Handle the case where VNI and OtherVNI can be proven to be identical: 2826 // 2827 // %other = COPY %ext 2828 // %this = COPY %ext <-- Erase this copy 2829 // 2830 if (DefMI->isFullCopy() && !CP.isPartial() && 2831 valuesIdentical(VNI, V.OtherVNI, Other)) { 2832 V.Identical = true; 2833 return CR_Erase; 2834 } 2835 2836 // The remaining checks apply to the lanes, which aren't tracked here. This 2837 // was already decided to be OK via the following CR_Replace condition. 2838 // CR_Replace. 2839 if (SubRangeJoin) 2840 return CR_Replace; 2841 2842 // If the lanes written by this instruction were all undef in OtherVNI, it is 2843 // still safe to join the live ranges. This can't be done with a simple value 2844 // mapping, though - OtherVNI will map to multiple values: 2845 // 2846 // 1 %dst:ssub0 = FOO <-- OtherVNI 2847 // 2 %src = BAR <-- VNI 2848 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy. 2849 // 4 BAZ killed %dst 2850 // 5 QUUX killed %src 2851 // 2852 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace 2853 // handles this complex value mapping. 2854 if ((V.WriteLanes & OtherV.ValidLanes).none()) 2855 return CR_Replace; 2856 2857 // If the other live range is killed by DefMI and the live ranges are still 2858 // overlapping, it must be because we're looking at an early clobber def: 2859 // 2860 // %dst<def,early-clobber> = ASM killed %src 2861 // 2862 // In this case, it is illegal to merge the two live ranges since the early 2863 // clobber def would clobber %src before it was read. 2864 if (OtherLRQ.isKill()) { 2865 // This case where the def doesn't overlap the kill is handled above. 2866 assert(VNI->def.isEarlyClobber() && 2867 "Only early clobber defs can overlap a kill"); 2868 return CR_Impossible; 2869 } 2870 2871 // VNI is clobbering live lanes in OtherVNI, but there is still the 2872 // possibility that no instructions actually read the clobbered lanes. 2873 // If we're clobbering all the lanes in OtherVNI, at least one must be read. 2874 // Otherwise Other.RI wouldn't be live here. 2875 if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes).none()) 2876 return CR_Impossible; 2877 2878 if (TrackSubRegLiveness) { 2879 auto &OtherLI = LIS->getInterval(Other.Reg); 2880 // If OtherVNI does not have subranges, it means all the lanes of OtherVNI 2881 // share the same live range, so we just need to check whether they have 2882 // any conflict bit in their LaneMask. 2883 if (!OtherLI.hasSubRanges()) { 2884 LaneBitmask OtherMask = TRI->getSubRegIndexLaneMask(Other.SubIdx); 2885 return (OtherMask & V.WriteLanes).none() ? CR_Replace : CR_Impossible; 2886 } 2887 2888 // If we are clobbering some active lanes of OtherVNI at VNI->def, it is 2889 // impossible to resolve the conflict. Otherwise, we can just replace 2890 // OtherVNI because of no real conflict. 2891 for (LiveInterval::SubRange &OtherSR : OtherLI.subranges()) { 2892 LaneBitmask OtherMask = 2893 TRI->composeSubRegIndexLaneMask(Other.SubIdx, OtherSR.LaneMask); 2894 if ((OtherMask & V.WriteLanes).none()) 2895 continue; 2896 2897 auto OtherSRQ = OtherSR.Query(VNI->def); 2898 if (OtherSRQ.valueIn() && OtherSRQ.endPoint() > VNI->def) { 2899 // VNI is clobbering some lanes of OtherVNI, they have real conflict. 2900 return CR_Impossible; 2901 } 2902 } 2903 2904 // VNI is NOT clobbering any lane of OtherVNI, just replace OtherVNI. 2905 return CR_Replace; 2906 } 2907 2908 // We need to verify that no instructions are reading the clobbered lanes. 2909 // To save compile time, we'll only check that locally. Don't allow the 2910 // tainted value to escape the basic block. 2911 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2912 if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB)) 2913 return CR_Impossible; 2914 2915 // There are still some things that could go wrong besides clobbered lanes 2916 // being read, for example OtherVNI may be only partially redefined in MBB, 2917 // and some clobbered lanes could escape the block. Save this analysis for 2918 // resolveConflicts() when all values have been mapped. We need to know 2919 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute 2920 // that now - the recursive analyzeValue() calls must go upwards in the 2921 // dominator tree. 2922 return CR_Unresolved; 2923 } 2924 2925 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) { 2926 Val &V = Vals[ValNo]; 2927 if (V.isAnalyzed()) { 2928 // Recursion should always move up the dominator tree, so ValNo is not 2929 // supposed to reappear before it has been assigned. 2930 assert(Assignments[ValNo] != -1 && "Bad recursion?"); 2931 return; 2932 } 2933 switch ((V.Resolution = analyzeValue(ValNo, Other))) { 2934 case CR_Erase: 2935 case CR_Merge: 2936 // Merge this ValNo into OtherVNI. 2937 assert(V.OtherVNI && "OtherVNI not assigned, can't merge."); 2938 assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion"); 2939 Assignments[ValNo] = Other.Assignments[V.OtherVNI->id]; 2940 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg) << ':' << ValNo << '@' 2941 << LR.getValNumInfo(ValNo)->def << " into " 2942 << printReg(Other.Reg) << ':' << V.OtherVNI->id << '@' 2943 << V.OtherVNI->def << " --> @" 2944 << NewVNInfo[Assignments[ValNo]]->def << '\n'); 2945 break; 2946 case CR_Replace: 2947 case CR_Unresolved: { 2948 // The other value is going to be pruned if this join is successful. 2949 assert(V.OtherVNI && "OtherVNI not assigned, can't prune"); 2950 Val &OtherV = Other.Vals[V.OtherVNI->id]; 2951 // We cannot erase an IMPLICIT_DEF if we don't have valid values for all 2952 // its lanes. 2953 if (OtherV.ErasableImplicitDef && 2954 TrackSubRegLiveness && 2955 (OtherV.WriteLanes & ~V.ValidLanes).any()) { 2956 LLVM_DEBUG(dbgs() << "Cannot erase implicit_def with missing values\n"); 2957 2958 OtherV.ErasableImplicitDef = false; 2959 // The valid lanes written by the implicit_def were speculatively cleared 2960 // before, so make this more conservative. It may be better to track this, 2961 // I haven't found a testcase where it matters. 2962 OtherV.ValidLanes = LaneBitmask::getAll(); 2963 } 2964 2965 OtherV.Pruned = true; 2966 [[fallthrough]]; 2967 } 2968 default: 2969 // This value number needs to go in the final joined live range. 2970 Assignments[ValNo] = NewVNInfo.size(); 2971 NewVNInfo.push_back(LR.getValNumInfo(ValNo)); 2972 break; 2973 } 2974 } 2975 2976 bool JoinVals::mapValues(JoinVals &Other) { 2977 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 2978 computeAssignment(i, Other); 2979 if (Vals[i].Resolution == CR_Impossible) { 2980 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg) << ':' << i 2981 << '@' << LR.getValNumInfo(i)->def << '\n'); 2982 return false; 2983 } 2984 } 2985 return true; 2986 } 2987 2988 bool JoinVals:: 2989 taintExtent(unsigned ValNo, LaneBitmask TaintedLanes, JoinVals &Other, 2990 SmallVectorImpl<std::pair<SlotIndex, LaneBitmask>> &TaintExtent) { 2991 VNInfo *VNI = LR.getValNumInfo(ValNo); 2992 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 2993 SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB); 2994 2995 // Scan Other.LR from VNI.def to MBBEnd. 2996 LiveInterval::iterator OtherI = Other.LR.find(VNI->def); 2997 assert(OtherI != Other.LR.end() && "No conflict?"); 2998 do { 2999 // OtherI is pointing to a tainted value. Abort the join if the tainted 3000 // lanes escape the block. 3001 SlotIndex End = OtherI->end; 3002 if (End >= MBBEnd) { 3003 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other.Reg) << ':' 3004 << OtherI->valno->id << '@' << OtherI->start << '\n'); 3005 return false; 3006 } 3007 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other.Reg) << ':' 3008 << OtherI->valno->id << '@' << OtherI->start << " to " 3009 << End << '\n'); 3010 // A dead def is not a problem. 3011 if (End.isDead()) 3012 break; 3013 TaintExtent.push_back(std::make_pair(End, TaintedLanes)); 3014 3015 // Check for another def in the MBB. 3016 if (++OtherI == Other.LR.end() || OtherI->start >= MBBEnd) 3017 break; 3018 3019 // Lanes written by the new def are no longer tainted. 3020 const Val &OV = Other.Vals[OtherI->valno->id]; 3021 TaintedLanes &= ~OV.WriteLanes; 3022 if (!OV.RedefVNI) 3023 break; 3024 } while (TaintedLanes.any()); 3025 return true; 3026 } 3027 3028 bool JoinVals::usesLanes(const MachineInstr &MI, Register Reg, unsigned SubIdx, 3029 LaneBitmask Lanes) const { 3030 if (MI.isDebugOrPseudoInstr()) 3031 return false; 3032 for (const MachineOperand &MO : MI.operands()) { 3033 if (!MO.isReg() || MO.isDef() || MO.getReg() != Reg) 3034 continue; 3035 if (!MO.readsReg()) 3036 continue; 3037 unsigned S = TRI->composeSubRegIndices(SubIdx, MO.getSubReg()); 3038 if ((Lanes & TRI->getSubRegIndexLaneMask(S)).any()) 3039 return true; 3040 } 3041 return false; 3042 } 3043 3044 bool JoinVals::resolveConflicts(JoinVals &Other) { 3045 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3046 Val &V = Vals[i]; 3047 assert(V.Resolution != CR_Impossible && "Unresolvable conflict"); 3048 if (V.Resolution != CR_Unresolved) 3049 continue; 3050 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg) << ':' << i << '@' 3051 << LR.getValNumInfo(i)->def 3052 << ' ' << PrintLaneMask(LaneMask) << '\n'); 3053 if (SubRangeJoin) 3054 return false; 3055 3056 ++NumLaneConflicts; 3057 assert(V.OtherVNI && "Inconsistent conflict resolution."); 3058 VNInfo *VNI = LR.getValNumInfo(i); 3059 const Val &OtherV = Other.Vals[V.OtherVNI->id]; 3060 3061 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the 3062 // join, those lanes will be tainted with a wrong value. Get the extent of 3063 // the tainted lanes. 3064 LaneBitmask TaintedLanes = V.WriteLanes & OtherV.ValidLanes; 3065 SmallVector<std::pair<SlotIndex, LaneBitmask>, 8> TaintExtent; 3066 if (!taintExtent(i, TaintedLanes, Other, TaintExtent)) 3067 // Tainted lanes would extend beyond the basic block. 3068 return false; 3069 3070 assert(!TaintExtent.empty() && "There should be at least one conflict."); 3071 3072 // Now look at the instructions from VNI->def to TaintExtent (inclusive). 3073 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def); 3074 MachineBasicBlock::iterator MI = MBB->begin(); 3075 if (!VNI->isPHIDef()) { 3076 MI = Indexes->getInstructionFromIndex(VNI->def); 3077 if (!VNI->def.isEarlyClobber()) { 3078 // No need to check the instruction defining VNI for reads. 3079 ++MI; 3080 } 3081 } 3082 assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) && 3083 "Interference ends on VNI->def. Should have been handled earlier"); 3084 MachineInstr *LastMI = 3085 Indexes->getInstructionFromIndex(TaintExtent.front().first); 3086 assert(LastMI && "Range must end at a proper instruction"); 3087 unsigned TaintNum = 0; 3088 while (true) { 3089 assert(MI != MBB->end() && "Bad LastMI"); 3090 if (usesLanes(*MI, Other.Reg, Other.SubIdx, TaintedLanes)) { 3091 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI); 3092 return false; 3093 } 3094 // LastMI is the last instruction to use the current value. 3095 if (&*MI == LastMI) { 3096 if (++TaintNum == TaintExtent.size()) 3097 break; 3098 LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first); 3099 assert(LastMI && "Range must end at a proper instruction"); 3100 TaintedLanes = TaintExtent[TaintNum].second; 3101 } 3102 ++MI; 3103 } 3104 3105 // The tainted lanes are unused. 3106 V.Resolution = CR_Replace; 3107 ++NumLaneResolves; 3108 } 3109 return true; 3110 } 3111 3112 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) { 3113 Val &V = Vals[ValNo]; 3114 if (V.Pruned || V.PrunedComputed) 3115 return V.Pruned; 3116 3117 if (V.Resolution != CR_Erase && V.Resolution != CR_Merge) 3118 return V.Pruned; 3119 3120 // Follow copies up the dominator tree and check if any intermediate value 3121 // has been pruned. 3122 V.PrunedComputed = true; 3123 V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this); 3124 return V.Pruned; 3125 } 3126 3127 void JoinVals::pruneValues(JoinVals &Other, 3128 SmallVectorImpl<SlotIndex> &EndPoints, 3129 bool changeInstrs) { 3130 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3131 SlotIndex Def = LR.getValNumInfo(i)->def; 3132 switch (Vals[i].Resolution) { 3133 case CR_Keep: 3134 break; 3135 case CR_Replace: { 3136 // This value takes precedence over the value in Other.LR. 3137 LIS->pruneValue(Other.LR, Def, &EndPoints); 3138 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF 3139 // instructions are only inserted to provide a live-out value for PHI 3140 // predecessors, so the instruction should simply go away once its value 3141 // has been replaced. 3142 Val &OtherV = Other.Vals[Vals[i].OtherVNI->id]; 3143 bool EraseImpDef = OtherV.ErasableImplicitDef && 3144 OtherV.Resolution == CR_Keep; 3145 if (!Def.isBlock()) { 3146 if (changeInstrs) { 3147 // Remove <def,read-undef> flags. This def is now a partial redef. 3148 // Also remove dead flags since the joined live range will 3149 // continue past this instruction. 3150 for (MachineOperand &MO : 3151 Indexes->getInstructionFromIndex(Def)->operands()) { 3152 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) { 3153 if (MO.getSubReg() != 0 && MO.isUndef() && !EraseImpDef) 3154 MO.setIsUndef(false); 3155 MO.setIsDead(false); 3156 } 3157 } 3158 } 3159 // This value will reach instructions below, but we need to make sure 3160 // the live range also reaches the instruction at Def. 3161 if (!EraseImpDef) 3162 EndPoints.push_back(Def); 3163 } 3164 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other.Reg) << " at " << Def 3165 << ": " << Other.LR << '\n'); 3166 break; 3167 } 3168 case CR_Erase: 3169 case CR_Merge: 3170 if (isPrunedValue(i, Other)) { 3171 // This value is ultimately a copy of a pruned value in LR or Other.LR. 3172 // We can no longer trust the value mapping computed by 3173 // computeAssignment(), the value that was originally copied could have 3174 // been replaced. 3175 LIS->pruneValue(LR, Def, &EndPoints); 3176 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg) << " at " 3177 << Def << ": " << LR << '\n'); 3178 } 3179 break; 3180 case CR_Unresolved: 3181 case CR_Impossible: 3182 llvm_unreachable("Unresolved conflicts"); 3183 } 3184 } 3185 } 3186 3187 // Check if the segment consists of a copied live-through value (i.e. the copy 3188 // in the block only extended the liveness, of an undef value which we may need 3189 // to handle). 3190 static bool isLiveThrough(const LiveQueryResult Q) { 3191 return Q.valueIn() && Q.valueIn()->isPHIDef() && Q.valueIn() == Q.valueOut(); 3192 } 3193 3194 /// Consider the following situation when coalescing the copy between 3195 /// %31 and %45 at 800. (The vertical lines represent live range segments.) 3196 /// 3197 /// Main range Subrange 0004 (sub2) 3198 /// %31 %45 %31 %45 3199 /// 544 %45 = COPY %28 + + 3200 /// | v1 | v1 3201 /// 560B bb.1: + + 3202 /// 624 = %45.sub2 | v2 | v2 3203 /// 800 %31 = COPY %45 + + + + 3204 /// | v0 | v0 3205 /// 816 %31.sub1 = ... + | 3206 /// 880 %30 = COPY %31 | v1 + 3207 /// 928 %45 = COPY %30 | + + 3208 /// | | v0 | v0 <--+ 3209 /// 992B ; backedge -> bb.1 | + + | 3210 /// 1040 = %31.sub0 + | 3211 /// This value must remain 3212 /// live-out! 3213 /// 3214 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes 3215 /// redundant, since it copies the value from %45 back into it. The 3216 /// conflict resolution for the main range determines that %45.v0 is 3217 /// to be erased, which is ok since %31.v1 is identical to it. 3218 /// The problem happens with the subrange for sub2: it has to be live 3219 /// on exit from the block, but since 928 was actually a point of 3220 /// definition of %45.sub2, %45.sub2 was not live immediately prior 3221 /// to that definition. As a result, when 928 was erased, the value v0 3222 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an 3223 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2, 3224 /// providing an incorrect value to the use at 624. 3225 /// 3226 /// Since the main-range values %31.v1 and %45.v0 were proved to be 3227 /// identical, the corresponding values in subranges must also be the 3228 /// same. A redundant copy is removed because it's not needed, and not 3229 /// because it copied an undefined value, so any liveness that originated 3230 /// from that copy cannot disappear. When pruning a value that started 3231 /// at the removed copy, the corresponding identical value must be 3232 /// extended to replace it. 3233 void JoinVals::pruneSubRegValues(LiveInterval &LI, LaneBitmask &ShrinkMask) { 3234 // Look for values being erased. 3235 bool DidPrune = false; 3236 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3237 Val &V = Vals[i]; 3238 // We should trigger in all cases in which eraseInstrs() does something. 3239 // match what eraseInstrs() is doing, print a message so 3240 if (V.Resolution != CR_Erase && 3241 (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned)) 3242 continue; 3243 3244 // Check subranges at the point where the copy will be removed. 3245 SlotIndex Def = LR.getValNumInfo(i)->def; 3246 SlotIndex OtherDef; 3247 if (V.Identical) 3248 OtherDef = V.OtherVNI->def; 3249 3250 // Print message so mismatches with eraseInstrs() can be diagnosed. 3251 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def 3252 << '\n'); 3253 for (LiveInterval::SubRange &S : LI.subranges()) { 3254 LiveQueryResult Q = S.Query(Def); 3255 3256 // If a subrange starts at the copy then an undefined value has been 3257 // copied and we must remove that subrange value as well. 3258 VNInfo *ValueOut = Q.valueOutOrDead(); 3259 if (ValueOut != nullptr && (Q.valueIn() == nullptr || 3260 (V.Identical && V.Resolution == CR_Erase && 3261 ValueOut->def == Def))) { 3262 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S.LaneMask) 3263 << " at " << Def << "\n"); 3264 SmallVector<SlotIndex,8> EndPoints; 3265 LIS->pruneValue(S, Def, &EndPoints); 3266 DidPrune = true; 3267 // Mark value number as unused. 3268 ValueOut->markUnused(); 3269 3270 if (V.Identical && S.Query(OtherDef).valueOutOrDead()) { 3271 // If V is identical to V.OtherVNI (and S was live at OtherDef), 3272 // then we can't simply prune V from S. V needs to be replaced 3273 // with V.OtherVNI. 3274 LIS->extendToIndices(S, EndPoints); 3275 } 3276 3277 // We may need to eliminate the subrange if the copy introduced a live 3278 // out undef value. 3279 if (ValueOut->isPHIDef()) 3280 ShrinkMask |= S.LaneMask; 3281 continue; 3282 } 3283 3284 // If a subrange ends at the copy, then a value was copied but only 3285 // partially used later. Shrink the subregister range appropriately. 3286 // 3287 // Ultimately this calls shrinkToUses, so assuming ShrinkMask is 3288 // conservatively correct. 3289 if ((Q.valueIn() != nullptr && Q.valueOut() == nullptr) || 3290 (V.Resolution == CR_Erase && isLiveThrough(Q))) { 3291 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane " 3292 << PrintLaneMask(S.LaneMask) << " at " << Def 3293 << "\n"); 3294 ShrinkMask |= S.LaneMask; 3295 } 3296 } 3297 } 3298 if (DidPrune) 3299 LI.removeEmptySubRanges(); 3300 } 3301 3302 /// Check if any of the subranges of @p LI contain a definition at @p Def. 3303 static bool isDefInSubRange(LiveInterval &LI, SlotIndex Def) { 3304 for (LiveInterval::SubRange &SR : LI.subranges()) { 3305 if (VNInfo *VNI = SR.Query(Def).valueOutOrDead()) 3306 if (VNI->def == Def) 3307 return true; 3308 } 3309 return false; 3310 } 3311 3312 void JoinVals::pruneMainSegments(LiveInterval &LI, bool &ShrinkMainRange) { 3313 assert(&static_cast<LiveRange&>(LI) == &LR); 3314 3315 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3316 if (Vals[i].Resolution != CR_Keep) 3317 continue; 3318 VNInfo *VNI = LR.getValNumInfo(i); 3319 if (VNI->isUnused() || VNI->isPHIDef() || isDefInSubRange(LI, VNI->def)) 3320 continue; 3321 Vals[i].Pruned = true; 3322 ShrinkMainRange = true; 3323 } 3324 } 3325 3326 void JoinVals::removeImplicitDefs() { 3327 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3328 Val &V = Vals[i]; 3329 if (V.Resolution != CR_Keep || !V.ErasableImplicitDef || !V.Pruned) 3330 continue; 3331 3332 VNInfo *VNI = LR.getValNumInfo(i); 3333 VNI->markUnused(); 3334 LR.removeValNo(VNI); 3335 } 3336 } 3337 3338 void JoinVals::eraseInstrs(SmallPtrSetImpl<MachineInstr*> &ErasedInstrs, 3339 SmallVectorImpl<Register> &ShrinkRegs, 3340 LiveInterval *LI) { 3341 for (unsigned i = 0, e = LR.getNumValNums(); i != e; ++i) { 3342 // Get the def location before markUnused() below invalidates it. 3343 VNInfo *VNI = LR.getValNumInfo(i); 3344 SlotIndex Def = VNI->def; 3345 switch (Vals[i].Resolution) { 3346 case CR_Keep: { 3347 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any 3348 // longer. The IMPLICIT_DEF instructions are only inserted by 3349 // PHIElimination to guarantee that all PHI predecessors have a value. 3350 if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned) 3351 break; 3352 // Remove value number i from LR. 3353 // For intervals with subranges, removing a segment from the main range 3354 // may require extending the previous segment: for each definition of 3355 // a subregister, there will be a corresponding def in the main range. 3356 // That def may fall in the middle of a segment from another subrange. 3357 // In such cases, removing this def from the main range must be 3358 // complemented by extending the main range to account for the liveness 3359 // of the other subrange. 3360 // The new end point of the main range segment to be extended. 3361 SlotIndex NewEnd; 3362 if (LI != nullptr) { 3363 LiveRange::iterator I = LR.FindSegmentContaining(Def); 3364 assert(I != LR.end()); 3365 // Do not extend beyond the end of the segment being removed. 3366 // The segment may have been pruned in preparation for joining 3367 // live ranges. 3368 NewEnd = I->end; 3369 } 3370 3371 LR.removeValNo(VNI); 3372 // Note that this VNInfo is reused and still referenced in NewVNInfo, 3373 // make it appear like an unused value number. 3374 VNI->markUnused(); 3375 3376 if (LI != nullptr && LI->hasSubRanges()) { 3377 assert(static_cast<LiveRange*>(LI) == &LR); 3378 // Determine the end point based on the subrange information: 3379 // minimum of (earliest def of next segment, 3380 // latest end point of containing segment) 3381 SlotIndex ED, LE; 3382 for (LiveInterval::SubRange &SR : LI->subranges()) { 3383 LiveRange::iterator I = SR.find(Def); 3384 if (I == SR.end()) 3385 continue; 3386 if (I->start > Def) 3387 ED = ED.isValid() ? std::min(ED, I->start) : I->start; 3388 else 3389 LE = LE.isValid() ? std::max(LE, I->end) : I->end; 3390 } 3391 if (LE.isValid()) 3392 NewEnd = std::min(NewEnd, LE); 3393 if (ED.isValid()) 3394 NewEnd = std::min(NewEnd, ED); 3395 3396 // We only want to do the extension if there was a subrange that 3397 // was live across Def. 3398 if (LE.isValid()) { 3399 LiveRange::iterator S = LR.find(Def); 3400 if (S != LR.begin()) 3401 std::prev(S)->end = NewEnd; 3402 } 3403 } 3404 LLVM_DEBUG({ 3405 dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LR << '\n'; 3406 if (LI != nullptr) 3407 dbgs() << "\t\t LHS = " << *LI << '\n'; 3408 }); 3409 [[fallthrough]]; 3410 } 3411 3412 case CR_Erase: { 3413 MachineInstr *MI = Indexes->getInstructionFromIndex(Def); 3414 assert(MI && "No instruction to erase"); 3415 if (MI->isCopy()) { 3416 Register Reg = MI->getOperand(1).getReg(); 3417 if (Reg.isVirtual() && Reg != CP.getSrcReg() && Reg != CP.getDstReg()) 3418 ShrinkRegs.push_back(Reg); 3419 } 3420 ErasedInstrs.insert(MI); 3421 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI); 3422 LIS->RemoveMachineInstrFromMaps(*MI); 3423 MI->eraseFromParent(); 3424 break; 3425 } 3426 default: 3427 break; 3428 } 3429 } 3430 } 3431 3432 void RegisterCoalescer::joinSubRegRanges(LiveRange &LRange, LiveRange &RRange, 3433 LaneBitmask LaneMask, 3434 const CoalescerPair &CP) { 3435 SmallVector<VNInfo*, 16> NewVNInfo; 3436 JoinVals RHSVals(RRange, CP.getSrcReg(), CP.getSrcIdx(), LaneMask, 3437 NewVNInfo, CP, LIS, TRI, true, true); 3438 JoinVals LHSVals(LRange, CP.getDstReg(), CP.getDstIdx(), LaneMask, 3439 NewVNInfo, CP, LIS, TRI, true, true); 3440 3441 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs()) 3442 // We should be able to resolve all conflicts here as we could successfully do 3443 // it on the mainrange already. There is however a problem when multiple 3444 // ranges get mapped to the "overflow" lane mask bit which creates unexpected 3445 // interferences. 3446 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) { 3447 // We already determined that it is legal to merge the intervals, so this 3448 // should never fail. 3449 llvm_unreachable("*** Couldn't join subrange!\n"); 3450 } 3451 if (!LHSVals.resolveConflicts(RHSVals) || 3452 !RHSVals.resolveConflicts(LHSVals)) { 3453 // We already determined that it is legal to merge the intervals, so this 3454 // should never fail. 3455 llvm_unreachable("*** Couldn't join subrange!\n"); 3456 } 3457 3458 // The merging algorithm in LiveInterval::join() can't handle conflicting 3459 // value mappings, so we need to remove any live ranges that overlap a 3460 // CR_Replace resolution. Collect a set of end points that can be used to 3461 // restore the live range after joining. 3462 SmallVector<SlotIndex, 8> EndPoints; 3463 LHSVals.pruneValues(RHSVals, EndPoints, false); 3464 RHSVals.pruneValues(LHSVals, EndPoints, false); 3465 3466 LHSVals.removeImplicitDefs(); 3467 RHSVals.removeImplicitDefs(); 3468 3469 LRange.verify(); 3470 RRange.verify(); 3471 3472 // Join RRange into LHS. 3473 LRange.join(RRange, LHSVals.getAssignments(), RHSVals.getAssignments(), 3474 NewVNInfo); 3475 3476 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask) 3477 << ' ' << LRange << "\n"); 3478 if (EndPoints.empty()) 3479 return; 3480 3481 // Recompute the parts of the live range we had to remove because of 3482 // CR_Replace conflicts. 3483 LLVM_DEBUG({ 3484 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3485 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3486 dbgs() << EndPoints[i]; 3487 if (i != n-1) 3488 dbgs() << ','; 3489 } 3490 dbgs() << ": " << LRange << '\n'; 3491 }); 3492 LIS->extendToIndices(LRange, EndPoints); 3493 } 3494 3495 void RegisterCoalescer::mergeSubRangeInto(LiveInterval &LI, 3496 const LiveRange &ToMerge, 3497 LaneBitmask LaneMask, 3498 CoalescerPair &CP, 3499 unsigned ComposeSubRegIdx) { 3500 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3501 LI.refineSubRanges( 3502 Allocator, LaneMask, 3503 [this, &Allocator, &ToMerge, &CP](LiveInterval::SubRange &SR) { 3504 if (SR.empty()) { 3505 SR.assign(ToMerge, Allocator); 3506 } else { 3507 // joinSubRegRange() destroys the merged range, so we need a copy. 3508 LiveRange RangeCopy(ToMerge, Allocator); 3509 joinSubRegRanges(SR, RangeCopy, SR.LaneMask, CP); 3510 } 3511 }, 3512 *LIS->getSlotIndexes(), *TRI, ComposeSubRegIdx); 3513 } 3514 3515 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval &LI) { 3516 if (LI.valnos.size() < LargeIntervalSizeThreshold) 3517 return false; 3518 auto &Counter = LargeLIVisitCounter[LI.reg()]; 3519 if (Counter < LargeIntervalFreqThreshold) { 3520 Counter++; 3521 return false; 3522 } 3523 return true; 3524 } 3525 3526 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) { 3527 SmallVector<VNInfo*, 16> NewVNInfo; 3528 LiveInterval &RHS = LIS->getInterval(CP.getSrcReg()); 3529 LiveInterval &LHS = LIS->getInterval(CP.getDstReg()); 3530 bool TrackSubRegLiveness = MRI->shouldTrackSubRegLiveness(*CP.getNewRC()); 3531 JoinVals RHSVals(RHS, CP.getSrcReg(), CP.getSrcIdx(), LaneBitmask::getNone(), 3532 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3533 JoinVals LHSVals(LHS, CP.getDstReg(), CP.getDstIdx(), LaneBitmask::getNone(), 3534 NewVNInfo, CP, LIS, TRI, false, TrackSubRegLiveness); 3535 3536 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS << "\n\t\tLHS = " << LHS << '\n'); 3537 3538 if (isHighCostLiveInterval(LHS) || isHighCostLiveInterval(RHS)) 3539 return false; 3540 3541 // First compute NewVNInfo and the simple value mappings. 3542 // Detect impossible conflicts early. 3543 if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals)) 3544 return false; 3545 3546 // Some conflicts can only be resolved after all values have been mapped. 3547 if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals)) 3548 return false; 3549 3550 // All clear, the live ranges can be merged. 3551 if (RHS.hasSubRanges() || LHS.hasSubRanges()) { 3552 BumpPtrAllocator &Allocator = LIS->getVNInfoAllocator(); 3553 3554 // Transform lanemasks from the LHS to masks in the coalesced register and 3555 // create initial subranges if necessary. 3556 unsigned DstIdx = CP.getDstIdx(); 3557 if (!LHS.hasSubRanges()) { 3558 LaneBitmask Mask = DstIdx == 0 ? CP.getNewRC()->getLaneMask() 3559 : TRI->getSubRegIndexLaneMask(DstIdx); 3560 // LHS must support subregs or we wouldn't be in this codepath. 3561 assert(Mask.any()); 3562 LHS.createSubRangeFrom(Allocator, Mask, LHS); 3563 } else if (DstIdx != 0) { 3564 // Transform LHS lanemasks to new register class if necessary. 3565 for (LiveInterval::SubRange &R : LHS.subranges()) { 3566 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(DstIdx, R.LaneMask); 3567 R.LaneMask = Mask; 3568 } 3569 } 3570 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP.getDstReg()) << ' ' << LHS 3571 << '\n'); 3572 3573 // Determine lanemasks of RHS in the coalesced register and merge subranges. 3574 unsigned SrcIdx = CP.getSrcIdx(); 3575 if (!RHS.hasSubRanges()) { 3576 LaneBitmask Mask = SrcIdx == 0 ? CP.getNewRC()->getLaneMask() 3577 : TRI->getSubRegIndexLaneMask(SrcIdx); 3578 mergeSubRangeInto(LHS, RHS, Mask, CP, DstIdx); 3579 } else { 3580 // Pair up subranges and merge. 3581 for (LiveInterval::SubRange &R : RHS.subranges()) { 3582 LaneBitmask Mask = TRI->composeSubRegIndexLaneMask(SrcIdx, R.LaneMask); 3583 mergeSubRangeInto(LHS, R, Mask, CP, DstIdx); 3584 } 3585 } 3586 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS << "\n"); 3587 3588 // Pruning implicit defs from subranges may result in the main range 3589 // having stale segments. 3590 LHSVals.pruneMainSegments(LHS, ShrinkMainRange); 3591 3592 LHSVals.pruneSubRegValues(LHS, ShrinkMask); 3593 RHSVals.pruneSubRegValues(LHS, ShrinkMask); 3594 } 3595 3596 // The merging algorithm in LiveInterval::join() can't handle conflicting 3597 // value mappings, so we need to remove any live ranges that overlap a 3598 // CR_Replace resolution. Collect a set of end points that can be used to 3599 // restore the live range after joining. 3600 SmallVector<SlotIndex, 8> EndPoints; 3601 LHSVals.pruneValues(RHSVals, EndPoints, true); 3602 RHSVals.pruneValues(LHSVals, EndPoints, true); 3603 3604 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external 3605 // registers to require trimming. 3606 SmallVector<Register, 8> ShrinkRegs; 3607 LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs, &LHS); 3608 RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs); 3609 while (!ShrinkRegs.empty()) 3610 shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val())); 3611 3612 // Scan and mark undef any DBG_VALUEs that would refer to a different value. 3613 checkMergingChangesDbgValues(CP, LHS, LHSVals, RHS, RHSVals); 3614 3615 // If the RHS covers any PHI locations that were tracked for debug-info, we 3616 // must update tracking information to reflect the join. 3617 auto RegIt = RegToPHIIdx.find(CP.getSrcReg()); 3618 if (RegIt != RegToPHIIdx.end()) { 3619 // Iterate over all the debug instruction numbers assigned this register. 3620 for (unsigned InstID : RegIt->second) { 3621 auto PHIIt = PHIValToPos.find(InstID); 3622 assert(PHIIt != PHIValToPos.end()); 3623 const SlotIndex &SI = PHIIt->second.SI; 3624 3625 // Does the RHS cover the position of this PHI? 3626 auto LII = RHS.find(SI); 3627 if (LII == RHS.end() || LII->start > SI) 3628 continue; 3629 3630 // Accept two kinds of subregister movement: 3631 // * When we merge from one register class into a larger register: 3632 // %1:gr16 = some-inst 3633 // -> 3634 // %2:gr32.sub_16bit = some-inst 3635 // * When the PHI is already in a subregister, and the larger class 3636 // is coalesced: 3637 // %2:gr32.sub_16bit = some-inst 3638 // %3:gr32 = COPY %2 3639 // -> 3640 // %3:gr32.sub_16bit = some-inst 3641 // Test for subregister move: 3642 if (CP.getSrcIdx() != 0 || CP.getDstIdx() != 0) 3643 // If we're moving between different subregisters, ignore this join. 3644 // The PHI will not get a location, dropping variable locations. 3645 if (PHIIt->second.SubReg && PHIIt->second.SubReg != CP.getSrcIdx()) 3646 continue; 3647 3648 // Update our tracking of where the PHI is. 3649 PHIIt->second.Reg = CP.getDstReg(); 3650 3651 // If we merge into a sub-register of a larger class (test above), 3652 // update SubReg. 3653 if (CP.getSrcIdx() != 0) 3654 PHIIt->second.SubReg = CP.getSrcIdx(); 3655 } 3656 3657 // Rebuild the register index in RegToPHIIdx to account for PHIs tracking 3658 // different VRegs now. Copy old collection of debug instruction numbers and 3659 // erase the old one: 3660 auto InstrNums = RegIt->second; 3661 RegToPHIIdx.erase(RegIt); 3662 3663 // There might already be PHIs being tracked in the destination VReg. Insert 3664 // into an existing tracking collection, or insert a new one. 3665 RegIt = RegToPHIIdx.find(CP.getDstReg()); 3666 if (RegIt != RegToPHIIdx.end()) 3667 RegIt->second.insert(RegIt->second.end(), InstrNums.begin(), 3668 InstrNums.end()); 3669 else 3670 RegToPHIIdx.insert({CP.getDstReg(), InstrNums}); 3671 } 3672 3673 // Join RHS into LHS. 3674 LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo); 3675 3676 // Kill flags are going to be wrong if the live ranges were overlapping. 3677 // Eventually, we should simply clear all kill flags when computing live 3678 // ranges. They are reinserted after register allocation. 3679 MRI->clearKillFlags(LHS.reg()); 3680 MRI->clearKillFlags(RHS.reg()); 3681 3682 if (!EndPoints.empty()) { 3683 // Recompute the parts of the live range we had to remove because of 3684 // CR_Replace conflicts. 3685 LLVM_DEBUG({ 3686 dbgs() << "\t\trestoring liveness to " << EndPoints.size() << " points: "; 3687 for (unsigned i = 0, n = EndPoints.size(); i != n; ++i) { 3688 dbgs() << EndPoints[i]; 3689 if (i != n-1) 3690 dbgs() << ','; 3691 } 3692 dbgs() << ": " << LHS << '\n'; 3693 }); 3694 LIS->extendToIndices((LiveRange&)LHS, EndPoints); 3695 } 3696 3697 return true; 3698 } 3699 3700 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) { 3701 return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP); 3702 } 3703 3704 void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction &MF) 3705 { 3706 const SlotIndexes &Slots = *LIS->getSlotIndexes(); 3707 SmallVector<MachineInstr *, 8> ToInsert; 3708 3709 // After collecting a block of DBG_VALUEs into ToInsert, enter them into the 3710 // vreg => DbgValueLoc map. 3711 auto CloseNewDVRange = [this, &ToInsert](SlotIndex Slot) { 3712 for (auto *X : ToInsert) { 3713 for (const auto &Op : X->debug_operands()) { 3714 if (Op.isReg() && Op.getReg().isVirtual()) 3715 DbgVRegToValues[Op.getReg()].push_back({Slot, X}); 3716 } 3717 } 3718 3719 ToInsert.clear(); 3720 }; 3721 3722 // Iterate over all instructions, collecting them into the ToInsert vector. 3723 // Once a non-debug instruction is found, record the slot index of the 3724 // collected DBG_VALUEs. 3725 for (auto &MBB : MF) { 3726 SlotIndex CurrentSlot = Slots.getMBBStartIdx(&MBB); 3727 3728 for (auto &MI : MBB) { 3729 if (MI.isDebugValue()) { 3730 if (any_of(MI.debug_operands(), [](const MachineOperand &MO) { 3731 return MO.isReg() && MO.getReg().isVirtual(); 3732 })) 3733 ToInsert.push_back(&MI); 3734 } else if (!MI.isDebugOrPseudoInstr()) { 3735 CurrentSlot = Slots.getInstructionIndex(MI); 3736 CloseNewDVRange(CurrentSlot); 3737 } 3738 } 3739 3740 // Close range of DBG_VALUEs at the end of blocks. 3741 CloseNewDVRange(Slots.getMBBEndIdx(&MBB)); 3742 } 3743 3744 // Sort all DBG_VALUEs we've seen by slot number. 3745 for (auto &Pair : DbgVRegToValues) 3746 llvm::sort(Pair.second); 3747 } 3748 3749 void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair &CP, 3750 LiveRange &LHS, 3751 JoinVals &LHSVals, 3752 LiveRange &RHS, 3753 JoinVals &RHSVals) { 3754 auto ScanForDstReg = [&](Register Reg) { 3755 checkMergingChangesDbgValuesImpl(Reg, RHS, LHS, LHSVals); 3756 }; 3757 3758 auto ScanForSrcReg = [&](Register Reg) { 3759 checkMergingChangesDbgValuesImpl(Reg, LHS, RHS, RHSVals); 3760 }; 3761 3762 // Scan for potentially unsound DBG_VALUEs: examine first the register number 3763 // Reg, and then any other vregs that may have been merged into it. 3764 auto PerformScan = [this](Register Reg, std::function<void(Register)> Func) { 3765 Func(Reg); 3766 if (DbgMergedVRegNums.count(Reg)) 3767 for (Register X : DbgMergedVRegNums[Reg]) 3768 Func(X); 3769 }; 3770 3771 // Scan for unsound updates of both the source and destination register. 3772 PerformScan(CP.getSrcReg(), ScanForSrcReg); 3773 PerformScan(CP.getDstReg(), ScanForDstReg); 3774 } 3775 3776 void RegisterCoalescer::checkMergingChangesDbgValuesImpl(Register Reg, 3777 LiveRange &OtherLR, 3778 LiveRange &RegLR, 3779 JoinVals &RegVals) { 3780 // Are there any DBG_VALUEs to examine? 3781 auto VRegMapIt = DbgVRegToValues.find(Reg); 3782 if (VRegMapIt == DbgVRegToValues.end()) 3783 return; 3784 3785 auto &DbgValueSet = VRegMapIt->second; 3786 auto DbgValueSetIt = DbgValueSet.begin(); 3787 auto SegmentIt = OtherLR.begin(); 3788 3789 bool LastUndefResult = false; 3790 SlotIndex LastUndefIdx; 3791 3792 // If the "Other" register is live at a slot Idx, test whether Reg can 3793 // safely be merged with it, or should be marked undef. 3794 auto ShouldUndef = [&RegVals, &RegLR, &LastUndefResult, 3795 &LastUndefIdx](SlotIndex Idx) -> bool { 3796 // Our worst-case performance typically happens with asan, causing very 3797 // many DBG_VALUEs of the same location. Cache a copy of the most recent 3798 // result for this edge-case. 3799 if (LastUndefIdx == Idx) 3800 return LastUndefResult; 3801 3802 // If the other range was live, and Reg's was not, the register coalescer 3803 // will not have tried to resolve any conflicts. We don't know whether 3804 // the DBG_VALUE will refer to the same value number, so it must be made 3805 // undef. 3806 auto OtherIt = RegLR.find(Idx); 3807 if (OtherIt == RegLR.end()) 3808 return true; 3809 3810 // Both the registers were live: examine the conflict resolution record for 3811 // the value number Reg refers to. CR_Keep meant that this value number 3812 // "won" and the merged register definitely refers to that value. CR_Erase 3813 // means the value number was a redundant copy of the other value, which 3814 // was coalesced and Reg deleted. It's safe to refer to the other register 3815 // (which will be the source of the copy). 3816 auto Resolution = RegVals.getResolution(OtherIt->valno->id); 3817 LastUndefResult = Resolution != JoinVals::CR_Keep && 3818 Resolution != JoinVals::CR_Erase; 3819 LastUndefIdx = Idx; 3820 return LastUndefResult; 3821 }; 3822 3823 // Iterate over both the live-range of the "Other" register, and the set of 3824 // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest 3825 // slot index. This relies on the DbgValueSet being ordered. 3826 while (DbgValueSetIt != DbgValueSet.end() && SegmentIt != OtherLR.end()) { 3827 if (DbgValueSetIt->first < SegmentIt->end) { 3828 // "Other" is live and there is a DBG_VALUE of Reg: test if we should 3829 // set it undef. 3830 if (DbgValueSetIt->first >= SegmentIt->start) { 3831 bool HasReg = DbgValueSetIt->second->hasDebugOperandForReg(Reg); 3832 bool ShouldUndefReg = ShouldUndef(DbgValueSetIt->first); 3833 if (HasReg && ShouldUndefReg) { 3834 // Mark undef, erase record of this DBG_VALUE to avoid revisiting. 3835 DbgValueSetIt->second->setDebugValueUndef(); 3836 continue; 3837 } 3838 } 3839 ++DbgValueSetIt; 3840 } else { 3841 ++SegmentIt; 3842 } 3843 } 3844 } 3845 3846 namespace { 3847 3848 /// Information concerning MBB coalescing priority. 3849 struct MBBPriorityInfo { 3850 MachineBasicBlock *MBB; 3851 unsigned Depth; 3852 bool IsSplit; 3853 3854 MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit) 3855 : MBB(mbb), Depth(depth), IsSplit(issplit) {} 3856 }; 3857 3858 } // end anonymous namespace 3859 3860 /// C-style comparator that sorts first based on the loop depth of the basic 3861 /// block (the unsigned), and then on the MBB number. 3862 /// 3863 /// EnableGlobalCopies assumes that the primary sort key is loop depth. 3864 static int compareMBBPriority(const MBBPriorityInfo *LHS, 3865 const MBBPriorityInfo *RHS) { 3866 // Deeper loops first 3867 if (LHS->Depth != RHS->Depth) 3868 return LHS->Depth > RHS->Depth ? -1 : 1; 3869 3870 // Try to unsplit critical edges next. 3871 if (LHS->IsSplit != RHS->IsSplit) 3872 return LHS->IsSplit ? -1 : 1; 3873 3874 // Prefer blocks that are more connected in the CFG. This takes care of 3875 // the most difficult copies first while intervals are short. 3876 unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size(); 3877 unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size(); 3878 if (cl != cr) 3879 return cl > cr ? -1 : 1; 3880 3881 // As a last resort, sort by block number. 3882 return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1; 3883 } 3884 3885 /// \returns true if the given copy uses or defines a local live range. 3886 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) { 3887 if (!Copy->isCopy()) 3888 return false; 3889 3890 if (Copy->getOperand(1).isUndef()) 3891 return false; 3892 3893 Register SrcReg = Copy->getOperand(1).getReg(); 3894 Register DstReg = Copy->getOperand(0).getReg(); 3895 if (SrcReg.isPhysical() || DstReg.isPhysical()) 3896 return false; 3897 3898 return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg)) 3899 || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg)); 3900 } 3901 3902 void RegisterCoalescer::lateLiveIntervalUpdate() { 3903 for (Register reg : ToBeUpdated) { 3904 if (!LIS->hasInterval(reg)) 3905 continue; 3906 LiveInterval &LI = LIS->getInterval(reg); 3907 shrinkToUses(&LI, &DeadDefs); 3908 if (!DeadDefs.empty()) 3909 eliminateDeadDefs(); 3910 } 3911 ToBeUpdated.clear(); 3912 } 3913 3914 bool RegisterCoalescer:: 3915 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) { 3916 bool Progress = false; 3917 for (MachineInstr *&MI : CurrList) { 3918 if (!MI) 3919 continue; 3920 // Skip instruction pointers that have already been erased, for example by 3921 // dead code elimination. 3922 if (ErasedInstrs.count(MI)) { 3923 MI = nullptr; 3924 continue; 3925 } 3926 bool Again = false; 3927 bool Success = joinCopy(MI, Again); 3928 Progress |= Success; 3929 if (Success || !Again) 3930 MI = nullptr; 3931 } 3932 return Progress; 3933 } 3934 3935 /// Check if DstReg is a terminal node. 3936 /// I.e., it does not have any affinity other than \p Copy. 3937 static bool isTerminalReg(Register DstReg, const MachineInstr &Copy, 3938 const MachineRegisterInfo *MRI) { 3939 assert(Copy.isCopyLike()); 3940 // Check if the destination of this copy as any other affinity. 3941 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(DstReg)) 3942 if (&MI != &Copy && MI.isCopyLike()) 3943 return false; 3944 return true; 3945 } 3946 3947 bool RegisterCoalescer::applyTerminalRule(const MachineInstr &Copy) const { 3948 assert(Copy.isCopyLike()); 3949 if (!UseTerminalRule) 3950 return false; 3951 Register SrcReg, DstReg; 3952 unsigned SrcSubReg = 0, DstSubReg = 0; 3953 if (!isMoveInstr(*TRI, &Copy, SrcReg, DstReg, SrcSubReg, DstSubReg)) 3954 return false; 3955 // Check if the destination of this copy has any other affinity. 3956 if (DstReg.isPhysical() || 3957 // If SrcReg is a physical register, the copy won't be coalesced. 3958 // Ignoring it may have other side effect (like missing 3959 // rematerialization). So keep it. 3960 SrcReg.isPhysical() || !isTerminalReg(DstReg, Copy, MRI)) 3961 return false; 3962 3963 // DstReg is a terminal node. Check if it interferes with any other 3964 // copy involving SrcReg. 3965 const MachineBasicBlock *OrigBB = Copy.getParent(); 3966 const LiveInterval &DstLI = LIS->getInterval(DstReg); 3967 for (const MachineInstr &MI : MRI->reg_nodbg_instructions(SrcReg)) { 3968 // Technically we should check if the weight of the new copy is 3969 // interesting compared to the other one and update the weight 3970 // of the copies accordingly. However, this would only work if 3971 // we would gather all the copies first then coalesce, whereas 3972 // right now we interleave both actions. 3973 // For now, just consider the copies that are in the same block. 3974 if (&MI == &Copy || !MI.isCopyLike() || MI.getParent() != OrigBB) 3975 continue; 3976 Register OtherSrcReg, OtherReg; 3977 unsigned OtherSrcSubReg = 0, OtherSubReg = 0; 3978 if (!isMoveInstr(*TRI, &Copy, OtherSrcReg, OtherReg, OtherSrcSubReg, 3979 OtherSubReg)) 3980 return false; 3981 if (OtherReg == SrcReg) 3982 OtherReg = OtherSrcReg; 3983 // Check if OtherReg is a non-terminal. 3984 if (OtherReg.isPhysical() || isTerminalReg(OtherReg, MI, MRI)) 3985 continue; 3986 // Check that OtherReg interfere with DstReg. 3987 if (LIS->getInterval(OtherReg).overlaps(DstLI)) { 3988 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg) 3989 << '\n'); 3990 return true; 3991 } 3992 } 3993 return false; 3994 } 3995 3996 void 3997 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) { 3998 LLVM_DEBUG(dbgs() << MBB->getName() << ":\n"); 3999 4000 // Collect all copy-like instructions in MBB. Don't start coalescing anything 4001 // yet, it might invalidate the iterator. 4002 const unsigned PrevSize = WorkList.size(); 4003 if (JoinGlobalCopies) { 4004 SmallVector<MachineInstr*, 2> LocalTerminals; 4005 SmallVector<MachineInstr*, 2> GlobalTerminals; 4006 // Coalesce copies bottom-up to coalesce local defs before local uses. They 4007 // are not inherently easier to resolve, but slightly preferable until we 4008 // have local live range splitting. In particular this is required by 4009 // cmp+jmp macro fusion. 4010 for (MachineInstr &MI : *MBB) { 4011 if (!MI.isCopyLike()) 4012 continue; 4013 bool ApplyTerminalRule = applyTerminalRule(MI); 4014 if (isLocalCopy(&MI, LIS)) { 4015 if (ApplyTerminalRule) 4016 LocalTerminals.push_back(&MI); 4017 else 4018 LocalWorkList.push_back(&MI); 4019 } else { 4020 if (ApplyTerminalRule) 4021 GlobalTerminals.push_back(&MI); 4022 else 4023 WorkList.push_back(&MI); 4024 } 4025 } 4026 // Append the copies evicted by the terminal rule at the end of the list. 4027 LocalWorkList.append(LocalTerminals.begin(), LocalTerminals.end()); 4028 WorkList.append(GlobalTerminals.begin(), GlobalTerminals.end()); 4029 } 4030 else { 4031 SmallVector<MachineInstr*, 2> Terminals; 4032 for (MachineInstr &MII : *MBB) 4033 if (MII.isCopyLike()) { 4034 if (applyTerminalRule(MII)) 4035 Terminals.push_back(&MII); 4036 else 4037 WorkList.push_back(&MII); 4038 } 4039 // Append the copies evicted by the terminal rule at the end of the list. 4040 WorkList.append(Terminals.begin(), Terminals.end()); 4041 } 4042 // Try coalescing the collected copies immediately, and remove the nulls. 4043 // This prevents the WorkList from getting too large since most copies are 4044 // joinable on the first attempt. 4045 MutableArrayRef<MachineInstr*> 4046 CurrList(WorkList.begin() + PrevSize, WorkList.end()); 4047 if (copyCoalesceWorkList(CurrList)) 4048 WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(), 4049 nullptr), WorkList.end()); 4050 } 4051 4052 void RegisterCoalescer::coalesceLocals() { 4053 copyCoalesceWorkList(LocalWorkList); 4054 for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) { 4055 if (LocalWorkList[j]) 4056 WorkList.push_back(LocalWorkList[j]); 4057 } 4058 LocalWorkList.clear(); 4059 } 4060 4061 void RegisterCoalescer::joinAllIntervals() { 4062 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n"); 4063 assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around."); 4064 4065 std::vector<MBBPriorityInfo> MBBs; 4066 MBBs.reserve(MF->size()); 4067 for (MachineBasicBlock &MBB : *MF) { 4068 MBBs.push_back(MBBPriorityInfo(&MBB, Loops->getLoopDepth(&MBB), 4069 JoinSplitEdges && isSplitEdge(&MBB))); 4070 } 4071 array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority); 4072 4073 // Coalesce intervals in MBB priority order. 4074 unsigned CurrDepth = std::numeric_limits<unsigned>::max(); 4075 for (MBBPriorityInfo &MBB : MBBs) { 4076 // Try coalescing the collected local copies for deeper loops. 4077 if (JoinGlobalCopies && MBB.Depth < CurrDepth) { 4078 coalesceLocals(); 4079 CurrDepth = MBB.Depth; 4080 } 4081 copyCoalesceInMBB(MBB.MBB); 4082 } 4083 lateLiveIntervalUpdate(); 4084 coalesceLocals(); 4085 4086 // Joining intervals can allow other intervals to be joined. Iteratively join 4087 // until we make no progress. 4088 while (copyCoalesceWorkList(WorkList)) 4089 /* empty */ ; 4090 lateLiveIntervalUpdate(); 4091 } 4092 4093 void RegisterCoalescer::releaseMemory() { 4094 ErasedInstrs.clear(); 4095 WorkList.clear(); 4096 DeadDefs.clear(); 4097 InflateRegs.clear(); 4098 LargeLIVisitCounter.clear(); 4099 } 4100 4101 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) { 4102 LLVM_DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n" 4103 << "********** Function: " << fn.getName() << '\n'); 4104 4105 // Variables changed between a setjmp and a longjump can have undefined value 4106 // after the longjmp. This behaviour can be observed if such a variable is 4107 // spilled, so longjmp won't restore the value in the spill slot. 4108 // RegisterCoalescer should not run in functions with a setjmp to avoid 4109 // merging such undefined variables with predictable ones. 4110 // 4111 // TODO: Could specifically disable coalescing registers live across setjmp 4112 // calls 4113 if (fn.exposesReturnsTwice()) { 4114 LLVM_DEBUG( 4115 dbgs() << "* Skipped as it exposes functions that returns twice.\n"); 4116 return false; 4117 } 4118 4119 MF = &fn; 4120 MRI = &fn.getRegInfo(); 4121 const TargetSubtargetInfo &STI = fn.getSubtarget(); 4122 TRI = STI.getRegisterInfo(); 4123 TII = STI.getInstrInfo(); 4124 LIS = &getAnalysis<LiveIntervals>(); 4125 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4126 Loops = &getAnalysis<MachineLoopInfo>(); 4127 if (EnableGlobalCopies == cl::BOU_UNSET) 4128 JoinGlobalCopies = STI.enableJoinGlobalCopies(); 4129 else 4130 JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE); 4131 4132 // If there are PHIs tracked by debug-info, they will need updating during 4133 // coalescing. Build an index of those PHIs to ease updating. 4134 SlotIndexes *Slots = LIS->getSlotIndexes(); 4135 for (const auto &DebugPHI : MF->DebugPHIPositions) { 4136 MachineBasicBlock *MBB = DebugPHI.second.MBB; 4137 Register Reg = DebugPHI.second.Reg; 4138 unsigned SubReg = DebugPHI.second.SubReg; 4139 SlotIndex SI = Slots->getMBBStartIdx(MBB); 4140 PHIValPos P = {SI, Reg, SubReg}; 4141 PHIValToPos.insert(std::make_pair(DebugPHI.first, P)); 4142 RegToPHIIdx[Reg].push_back(DebugPHI.first); 4143 } 4144 4145 // The MachineScheduler does not currently require JoinSplitEdges. This will 4146 // either be enabled unconditionally or replaced by a more general live range 4147 // splitting optimization. 4148 JoinSplitEdges = EnableJoinSplits; 4149 4150 if (VerifyCoalescing) 4151 MF->verify(this, "Before register coalescing"); 4152 4153 DbgVRegToValues.clear(); 4154 DbgMergedVRegNums.clear(); 4155 buildVRegToDbgValueMap(fn); 4156 4157 RegClassInfo.runOnMachineFunction(fn); 4158 4159 // Join (coalesce) intervals if requested. 4160 if (EnableJoining) 4161 joinAllIntervals(); 4162 4163 // After deleting a lot of copies, register classes may be less constrained. 4164 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 -> 4165 // DPR inflation. 4166 array_pod_sort(InflateRegs.begin(), InflateRegs.end()); 4167 InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()), 4168 InflateRegs.end()); 4169 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() 4170 << " regs.\n"); 4171 for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) { 4172 Register Reg = InflateRegs[i]; 4173 if (MRI->reg_nodbg_empty(Reg)) 4174 continue; 4175 if (MRI->recomputeRegClass(Reg)) { 4176 LLVM_DEBUG(dbgs() << printReg(Reg) << " inflated to " 4177 << TRI->getRegClassName(MRI->getRegClass(Reg)) << '\n'); 4178 ++NumInflated; 4179 4180 LiveInterval &LI = LIS->getInterval(Reg); 4181 if (LI.hasSubRanges()) { 4182 // If the inflated register class does not support subregisters anymore 4183 // remove the subranges. 4184 if (!MRI->shouldTrackSubRegLiveness(Reg)) { 4185 LI.clearSubRanges(); 4186 } else { 4187 #ifndef NDEBUG 4188 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 4189 // If subranges are still supported, then the same subregs 4190 // should still be supported. 4191 for (LiveInterval::SubRange &S : LI.subranges()) { 4192 assert((S.LaneMask & ~MaxMask).none()); 4193 } 4194 #endif 4195 } 4196 } 4197 } 4198 } 4199 4200 // After coalescing, update any PHIs that are being tracked by debug-info 4201 // with their new VReg locations. 4202 for (auto &p : MF->DebugPHIPositions) { 4203 auto it = PHIValToPos.find(p.first); 4204 assert(it != PHIValToPos.end()); 4205 p.second.Reg = it->second.Reg; 4206 p.second.SubReg = it->second.SubReg; 4207 } 4208 4209 PHIValToPos.clear(); 4210 RegToPHIIdx.clear(); 4211 4212 LLVM_DEBUG(dump()); 4213 if (VerifyCoalescing) 4214 MF->verify(this, "After register coalescing"); 4215 return true; 4216 } 4217 4218 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const { 4219 LIS->print(O, m); 4220 } 4221