xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/RegAllocPBQP.cpp (revision 5ca8e32633c4ffbbcd6762e5888b6a4ba0708c6c)
1 //===- RegAllocPBQP.cpp ---- PBQP Register Allocator ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
10 // register allocator for LLVM. This allocator works by constructing a PBQP
11 // problem representing the register allocation problem under consideration,
12 // solving this using a PBQP solver, and mapping the solution back to a
13 // register assignment. If any variables are selected for spilling then spill
14 // code is inserted and the process repeated.
15 //
16 // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
17 // for register allocation. For more information on PBQP for register
18 // allocation, see the following papers:
19 //
20 //   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
21 //   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
22 //   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
23 //
24 //   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
25 //   architectures. In Proceedings of the Joint Conference on Languages,
26 //   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
27 //   NY, USA, 139-148.
28 //
29 //===----------------------------------------------------------------------===//
30 
31 #include "llvm/CodeGen/RegAllocPBQP.h"
32 #include "RegisterCoalescer.h"
33 #include "llvm/ADT/ArrayRef.h"
34 #include "llvm/ADT/BitVector.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/DenseSet.h"
37 #include "llvm/ADT/STLExtras.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/ADT/StringRef.h"
41 #include "llvm/Analysis/AliasAnalysis.h"
42 #include "llvm/CodeGen/CalcSpillWeights.h"
43 #include "llvm/CodeGen/LiveInterval.h"
44 #include "llvm/CodeGen/LiveIntervals.h"
45 #include "llvm/CodeGen/LiveRangeEdit.h"
46 #include "llvm/CodeGen/LiveStacks.h"
47 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
48 #include "llvm/CodeGen/MachineDominators.h"
49 #include "llvm/CodeGen/MachineFunction.h"
50 #include "llvm/CodeGen/MachineFunctionPass.h"
51 #include "llvm/CodeGen/MachineInstr.h"
52 #include "llvm/CodeGen/MachineLoopInfo.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/PBQP/Graph.h"
55 #include "llvm/CodeGen/PBQP/Math.h"
56 #include "llvm/CodeGen/PBQP/Solution.h"
57 #include "llvm/CodeGen/PBQPRAConstraint.h"
58 #include "llvm/CodeGen/RegAllocRegistry.h"
59 #include "llvm/CodeGen/SlotIndexes.h"
60 #include "llvm/CodeGen/Spiller.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/VirtRegMap.h"
64 #include "llvm/Config/llvm-config.h"
65 #include "llvm/IR/Function.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/MC/MCRegisterInfo.h"
68 #include "llvm/Pass.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/FileSystem.h"
73 #include "llvm/Support/Printable.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <limits>
79 #include <map>
80 #include <memory>
81 #include <queue>
82 #include <set>
83 #include <sstream>
84 #include <string>
85 #include <system_error>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 
92 #define DEBUG_TYPE "regalloc"
93 
94 static RegisterRegAlloc
95 RegisterPBQPRepAlloc("pbqp", "PBQP register allocator",
96                        createDefaultPBQPRegisterAllocator);
97 
98 static cl::opt<bool>
99 PBQPCoalescing("pbqp-coalescing",
100                 cl::desc("Attempt coalescing during PBQP register allocation."),
101                 cl::init(false), cl::Hidden);
102 
103 #ifndef NDEBUG
104 static cl::opt<bool>
105 PBQPDumpGraphs("pbqp-dump-graphs",
106                cl::desc("Dump graphs for each function/round in the compilation unit."),
107                cl::init(false), cl::Hidden);
108 #endif
109 
110 namespace {
111 
112 ///
113 /// PBQP based allocators solve the register allocation problem by mapping
114 /// register allocation problems to Partitioned Boolean Quadratic
115 /// Programming problems.
116 class RegAllocPBQP : public MachineFunctionPass {
117 public:
118   static char ID;
119 
120   /// Construct a PBQP register allocator.
121   RegAllocPBQP(char *cPassID = nullptr)
122       : MachineFunctionPass(ID), customPassID(cPassID) {
123     initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
124     initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
125     initializeLiveStacksPass(*PassRegistry::getPassRegistry());
126     initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
127   }
128 
129   /// Return the pass name.
130   StringRef getPassName() const override { return "PBQP Register Allocator"; }
131 
132   /// PBQP analysis usage.
133   void getAnalysisUsage(AnalysisUsage &au) const override;
134 
135   /// Perform register allocation
136   bool runOnMachineFunction(MachineFunction &MF) override;
137 
138   MachineFunctionProperties getRequiredProperties() const override {
139     return MachineFunctionProperties().set(
140         MachineFunctionProperties::Property::NoPHIs);
141   }
142 
143   MachineFunctionProperties getClearedProperties() const override {
144     return MachineFunctionProperties().set(
145       MachineFunctionProperties::Property::IsSSA);
146   }
147 
148 private:
149   using RegSet = std::set<Register>;
150 
151   char *customPassID;
152 
153   RegSet VRegsToAlloc, EmptyIntervalVRegs;
154 
155   /// Inst which is a def of an original reg and whose defs are already all
156   /// dead after remat is saved in DeadRemats. The deletion of such inst is
157   /// postponed till all the allocations are done, so its remat expr is
158   /// always available for the remat of all the siblings of the original reg.
159   SmallPtrSet<MachineInstr *, 32> DeadRemats;
160 
161   /// Finds the initial set of vreg intervals to allocate.
162   void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS);
163 
164   /// Constructs an initial graph.
165   void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller);
166 
167   /// Spill the given VReg.
168   void spillVReg(Register VReg, SmallVectorImpl<Register> &NewIntervals,
169                  MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM,
170                  Spiller &VRegSpiller);
171 
172   /// Given a solved PBQP problem maps this solution back to a register
173   /// assignment.
174   bool mapPBQPToRegAlloc(const PBQPRAGraph &G,
175                          const PBQP::Solution &Solution,
176                          VirtRegMap &VRM,
177                          Spiller &VRegSpiller);
178 
179   /// Postprocessing before final spilling. Sets basic block "live in"
180   /// variables.
181   void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS,
182                      VirtRegMap &VRM) const;
183 
184   void postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS);
185 };
186 
187 char RegAllocPBQP::ID = 0;
188 
189 /// Set spill costs for each node in the PBQP reg-alloc graph.
190 class SpillCosts : public PBQPRAConstraint {
191 public:
192   void apply(PBQPRAGraph &G) override {
193     LiveIntervals &LIS = G.getMetadata().LIS;
194 
195     // A minimum spill costs, so that register constraints can can be set
196     // without normalization in the [0.0:MinSpillCost( interval.
197     const PBQP::PBQPNum MinSpillCost = 10.0;
198 
199     for (auto NId : G.nodeIds()) {
200       PBQP::PBQPNum SpillCost =
201           LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight();
202       if (SpillCost == 0.0)
203         SpillCost = std::numeric_limits<PBQP::PBQPNum>::min();
204       else
205         SpillCost += MinSpillCost;
206       PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId));
207       NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost;
208       G.setNodeCosts(NId, std::move(NodeCosts));
209     }
210   }
211 };
212 
213 /// Add interference edges between overlapping vregs.
214 class Interference : public PBQPRAConstraint {
215 private:
216   using AllowedRegVecPtr = const PBQP::RegAlloc::AllowedRegVector *;
217   using IKey = std::pair<AllowedRegVecPtr, AllowedRegVecPtr>;
218   using IMatrixCache = DenseMap<IKey, PBQPRAGraph::MatrixPtr>;
219   using DisjointAllowedRegsCache = DenseSet<IKey>;
220   using IEdgeKey = std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId>;
221   using IEdgeCache = DenseSet<IEdgeKey>;
222 
223   bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
224                                PBQPRAGraph::NodeId MId,
225                                const DisjointAllowedRegsCache &D) const {
226     const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
227     const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
228 
229     if (NRegs == MRegs)
230       return false;
231 
232     if (NRegs < MRegs)
233       return D.contains(IKey(NRegs, MRegs));
234 
235     return D.contains(IKey(MRegs, NRegs));
236   }
237 
238   void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
239                               PBQPRAGraph::NodeId MId,
240                               DisjointAllowedRegsCache &D) {
241     const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
242     const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
243 
244     assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself");
245 
246     if (NRegs < MRegs)
247       D.insert(IKey(NRegs, MRegs));
248     else
249       D.insert(IKey(MRegs, NRegs));
250   }
251 
252   // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required
253   // for the fast interference graph construction algorithm. The last is there
254   // to save us from looking up node ids via the VRegToNode map in the graph
255   // metadata.
256   using IntervalInfo =
257       std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId>;
258 
259   static SlotIndex getStartPoint(const IntervalInfo &I) {
260     return std::get<0>(I)->segments[std::get<1>(I)].start;
261   }
262 
263   static SlotIndex getEndPoint(const IntervalInfo &I) {
264     return std::get<0>(I)->segments[std::get<1>(I)].end;
265   }
266 
267   static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) {
268     return std::get<2>(I);
269   }
270 
271   static bool lowestStartPoint(const IntervalInfo &I1,
272                                const IntervalInfo &I2) {
273     // Condition reversed because priority queue has the *highest* element at
274     // the front, rather than the lowest.
275     return getStartPoint(I1) > getStartPoint(I2);
276   }
277 
278   static bool lowestEndPoint(const IntervalInfo &I1,
279                              const IntervalInfo &I2) {
280     SlotIndex E1 = getEndPoint(I1);
281     SlotIndex E2 = getEndPoint(I2);
282 
283     if (E1 < E2)
284       return true;
285 
286     if (E1 > E2)
287       return false;
288 
289     // If two intervals end at the same point, we need a way to break the tie or
290     // the set will assume they're actually equal and refuse to insert a
291     // "duplicate". Just compare the vregs - fast and guaranteed unique.
292     return std::get<0>(I1)->reg() < std::get<0>(I2)->reg();
293   }
294 
295   static bool isAtLastSegment(const IntervalInfo &I) {
296     return std::get<1>(I) == std::get<0>(I)->size() - 1;
297   }
298 
299   static IntervalInfo nextSegment(const IntervalInfo &I) {
300     return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I));
301   }
302 
303 public:
304   void apply(PBQPRAGraph &G) override {
305     // The following is loosely based on the linear scan algorithm introduced in
306     // "Linear Scan Register Allocation" by Poletto and Sarkar. This version
307     // isn't linear, because the size of the active set isn't bound by the
308     // number of registers, but rather the size of the largest clique in the
309     // graph. Still, we expect this to be better than N^2.
310     LiveIntervals &LIS = G.getMetadata().LIS;
311 
312     // Interferenc matrices are incredibly regular - they're only a function of
313     // the allowed sets, so we cache them to avoid the overhead of constructing
314     // and uniquing them.
315     IMatrixCache C;
316 
317     // Finding an edge is expensive in the worst case (O(max_clique(G))). So
318     // cache locally edges we have already seen.
319     IEdgeCache EC;
320 
321     // Cache known disjoint allowed registers pairs
322     DisjointAllowedRegsCache D;
323 
324     using IntervalSet = std::set<IntervalInfo, decltype(&lowestEndPoint)>;
325     using IntervalQueue =
326         std::priority_queue<IntervalInfo, std::vector<IntervalInfo>,
327                             decltype(&lowestStartPoint)>;
328     IntervalSet Active(lowestEndPoint);
329     IntervalQueue Inactive(lowestStartPoint);
330 
331     // Start by building the inactive set.
332     for (auto NId : G.nodeIds()) {
333       Register VReg = G.getNodeMetadata(NId).getVReg();
334       LiveInterval &LI = LIS.getInterval(VReg);
335       assert(!LI.empty() && "PBQP graph contains node for empty interval");
336       Inactive.push(std::make_tuple(&LI, 0, NId));
337     }
338 
339     while (!Inactive.empty()) {
340       // Tentatively grab the "next" interval - this choice may be overriden
341       // below.
342       IntervalInfo Cur = Inactive.top();
343 
344       // Retire any active intervals that end before Cur starts.
345       IntervalSet::iterator RetireItr = Active.begin();
346       while (RetireItr != Active.end() &&
347              (getEndPoint(*RetireItr) <= getStartPoint(Cur))) {
348         // If this interval has subsequent segments, add the next one to the
349         // inactive list.
350         if (!isAtLastSegment(*RetireItr))
351           Inactive.push(nextSegment(*RetireItr));
352 
353         ++RetireItr;
354       }
355       Active.erase(Active.begin(), RetireItr);
356 
357       // One of the newly retired segments may actually start before the
358       // Cur segment, so re-grab the front of the inactive list.
359       Cur = Inactive.top();
360       Inactive.pop();
361 
362       // At this point we know that Cur overlaps all active intervals. Add the
363       // interference edges.
364       PBQP::GraphBase::NodeId NId = getNodeId(Cur);
365       for (const auto &A : Active) {
366         PBQP::GraphBase::NodeId MId = getNodeId(A);
367 
368         // Do not add an edge when the nodes' allowed registers do not
369         // intersect: there is obviously no interference.
370         if (haveDisjointAllowedRegs(G, NId, MId, D))
371           continue;
372 
373         // Check that we haven't already added this edge
374         IEdgeKey EK(std::min(NId, MId), std::max(NId, MId));
375         if (EC.count(EK))
376           continue;
377 
378         // This is a new edge - add it to the graph.
379         if (!createInterferenceEdge(G, NId, MId, C))
380           setDisjointAllowedRegs(G, NId, MId, D);
381         else
382           EC.insert(EK);
383       }
384 
385       // Finally, add Cur to the Active set.
386       Active.insert(Cur);
387     }
388   }
389 
390 private:
391   // Create an Interference edge and add it to the graph, unless it is
392   // a null matrix, meaning the nodes' allowed registers do not have any
393   // interference. This case occurs frequently between integer and floating
394   // point registers for example.
395   // return true iff both nodes interferes.
396   bool createInterferenceEdge(PBQPRAGraph &G,
397                               PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId,
398                               IMatrixCache &C) {
399     const TargetRegisterInfo &TRI =
400         *G.getMetadata().MF.getSubtarget().getRegisterInfo();
401     const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs();
402     const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs();
403 
404     // Try looking the edge costs up in the IMatrixCache first.
405     IKey K(&NRegs, &MRegs);
406     IMatrixCache::iterator I = C.find(K);
407     if (I != C.end()) {
408       G.addEdgeBypassingCostAllocator(NId, MId, I->second);
409       return true;
410     }
411 
412     PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0);
413     bool NodesInterfere = false;
414     for (unsigned I = 0; I != NRegs.size(); ++I) {
415       MCRegister PRegN = NRegs[I];
416       for (unsigned J = 0; J != MRegs.size(); ++J) {
417         MCRegister PRegM = MRegs[J];
418         if (TRI.regsOverlap(PRegN, PRegM)) {
419           M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
420           NodesInterfere = true;
421         }
422       }
423     }
424 
425     if (!NodesInterfere)
426       return false;
427 
428     PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M));
429     C[K] = G.getEdgeCostsPtr(EId);
430 
431     return true;
432   }
433 };
434 
435 class Coalescing : public PBQPRAConstraint {
436 public:
437   void apply(PBQPRAGraph &G) override {
438     MachineFunction &MF = G.getMetadata().MF;
439     MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI;
440     CoalescerPair CP(*MF.getSubtarget().getRegisterInfo());
441 
442     // Scan the machine function and add a coalescing cost whenever CoalescerPair
443     // gives the Ok.
444     for (const auto &MBB : MF) {
445       for (const auto &MI : MBB) {
446         // Skip not-coalescable or already coalesced copies.
447         if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg())
448           continue;
449 
450         Register DstReg = CP.getDstReg();
451         Register SrcReg = CP.getSrcReg();
452 
453         PBQP::PBQPNum CBenefit = MBFI.getBlockFreqRelativeToEntryBlock(&MBB);
454 
455         if (CP.isPhys()) {
456           if (!MF.getRegInfo().isAllocatable(DstReg))
457             continue;
458 
459           PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg);
460 
461           const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed =
462             G.getNodeMetadata(NId).getAllowedRegs();
463 
464           unsigned PRegOpt = 0;
465           while (PRegOpt < Allowed.size() && Allowed[PRegOpt].id() != DstReg)
466             ++PRegOpt;
467 
468           if (PRegOpt < Allowed.size()) {
469             PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId));
470             NewCosts[PRegOpt + 1] -= CBenefit;
471             G.setNodeCosts(NId, std::move(NewCosts));
472           }
473         } else {
474           PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg);
475           PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg);
476           const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 =
477             &G.getNodeMetadata(N1Id).getAllowedRegs();
478           const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 =
479             &G.getNodeMetadata(N2Id).getAllowedRegs();
480 
481           PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id);
482           if (EId == G.invalidEdgeId()) {
483             PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1,
484                                          Allowed2->size() + 1, 0);
485             addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
486             G.addEdge(N1Id, N2Id, std::move(Costs));
487           } else {
488             if (G.getEdgeNode1Id(EId) == N2Id) {
489               std::swap(N1Id, N2Id);
490               std::swap(Allowed1, Allowed2);
491             }
492             PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId));
493             addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
494             G.updateEdgeCosts(EId, std::move(Costs));
495           }
496         }
497       }
498     }
499   }
500 
501 private:
502   void addVirtRegCoalesce(
503                     PBQPRAGraph::RawMatrix &CostMat,
504                     const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1,
505                     const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2,
506                     PBQP::PBQPNum Benefit) {
507     assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch.");
508     assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch.");
509     for (unsigned I = 0; I != Allowed1.size(); ++I) {
510       MCRegister PReg1 = Allowed1[I];
511       for (unsigned J = 0; J != Allowed2.size(); ++J) {
512         MCRegister PReg2 = Allowed2[J];
513         if (PReg1 == PReg2)
514           CostMat[I + 1][J + 1] -= Benefit;
515       }
516     }
517   }
518 };
519 
520 /// PBQP-specific implementation of weight normalization.
521 class PBQPVirtRegAuxInfo final : public VirtRegAuxInfo {
522   float normalize(float UseDefFreq, unsigned Size, unsigned NumInstr) override {
523     // All intervals have a spill weight that is mostly proportional to the
524     // number of uses, with uses in loops having a bigger weight.
525     return NumInstr * VirtRegAuxInfo::normalize(UseDefFreq, Size, 1);
526   }
527 
528 public:
529   PBQPVirtRegAuxInfo(MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM,
530                      const MachineLoopInfo &Loops,
531                      const MachineBlockFrequencyInfo &MBFI)
532       : VirtRegAuxInfo(MF, LIS, VRM, Loops, MBFI) {}
533 };
534 } // end anonymous namespace
535 
536 // Out-of-line destructor/anchor for PBQPRAConstraint.
537 PBQPRAConstraint::~PBQPRAConstraint() = default;
538 
539 void PBQPRAConstraint::anchor() {}
540 
541 void PBQPRAConstraintList::anchor() {}
542 
543 void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
544   au.setPreservesCFG();
545   au.addRequired<AAResultsWrapperPass>();
546   au.addPreserved<AAResultsWrapperPass>();
547   au.addRequired<SlotIndexes>();
548   au.addPreserved<SlotIndexes>();
549   au.addRequired<LiveIntervals>();
550   au.addPreserved<LiveIntervals>();
551   //au.addRequiredID(SplitCriticalEdgesID);
552   if (customPassID)
553     au.addRequiredID(*customPassID);
554   au.addRequired<LiveStacks>();
555   au.addPreserved<LiveStacks>();
556   au.addRequired<MachineBlockFrequencyInfo>();
557   au.addPreserved<MachineBlockFrequencyInfo>();
558   au.addRequired<MachineLoopInfo>();
559   au.addPreserved<MachineLoopInfo>();
560   au.addRequired<MachineDominatorTree>();
561   au.addPreserved<MachineDominatorTree>();
562   au.addRequired<VirtRegMap>();
563   au.addPreserved<VirtRegMap>();
564   MachineFunctionPass::getAnalysisUsage(au);
565 }
566 
567 void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF,
568                                             LiveIntervals &LIS) {
569   const MachineRegisterInfo &MRI = MF.getRegInfo();
570 
571   // Iterate over all live ranges.
572   for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
573     Register Reg = Register::index2VirtReg(I);
574     if (MRI.reg_nodbg_empty(Reg))
575       continue;
576     VRegsToAlloc.insert(Reg);
577   }
578 }
579 
580 static bool isACalleeSavedRegister(MCRegister Reg,
581                                    const TargetRegisterInfo &TRI,
582                                    const MachineFunction &MF) {
583   const MCPhysReg *CSR = MF.getRegInfo().getCalleeSavedRegs();
584   for (unsigned i = 0; CSR[i] != 0; ++i)
585     if (TRI.regsOverlap(Reg, CSR[i]))
586       return true;
587   return false;
588 }
589 
590 void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM,
591                                    Spiller &VRegSpiller) {
592   MachineFunction &MF = G.getMetadata().MF;
593 
594   LiveIntervals &LIS = G.getMetadata().LIS;
595   const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
596   const TargetRegisterInfo &TRI =
597       *G.getMetadata().MF.getSubtarget().getRegisterInfo();
598 
599   std::vector<Register> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end());
600 
601   std::map<Register, std::vector<MCRegister>> VRegAllowedMap;
602 
603   while (!Worklist.empty()) {
604     Register VReg = Worklist.back();
605     Worklist.pop_back();
606 
607     LiveInterval &VRegLI = LIS.getInterval(VReg);
608 
609     // If this is an empty interval move it to the EmptyIntervalVRegs set then
610     // continue.
611     if (VRegLI.empty()) {
612       EmptyIntervalVRegs.insert(VRegLI.reg());
613       VRegsToAlloc.erase(VRegLI.reg());
614       continue;
615     }
616 
617     const TargetRegisterClass *TRC = MRI.getRegClass(VReg);
618 
619     // Record any overlaps with regmask operands.
620     BitVector RegMaskOverlaps;
621     LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps);
622 
623     // Compute an initial allowed set for the current vreg.
624     std::vector<MCRegister> VRegAllowed;
625     ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF);
626     for (MCPhysReg R : RawPRegOrder) {
627       MCRegister PReg(R);
628       if (MRI.isReserved(PReg))
629         continue;
630 
631       // vregLI crosses a regmask operand that clobbers preg.
632       if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg))
633         continue;
634 
635       // vregLI overlaps fixed regunit interference.
636       bool Interference = false;
637       for (MCRegUnit Unit : TRI.regunits(PReg)) {
638         if (VRegLI.overlaps(LIS.getRegUnit(Unit))) {
639           Interference = true;
640           break;
641         }
642       }
643       if (Interference)
644         continue;
645 
646       // preg is usable for this virtual register.
647       VRegAllowed.push_back(PReg);
648     }
649 
650     // Check for vregs that have no allowed registers. These should be
651     // pre-spilled and the new vregs added to the worklist.
652     if (VRegAllowed.empty()) {
653       SmallVector<Register, 8> NewVRegs;
654       spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
655       llvm::append_range(Worklist, NewVRegs);
656       continue;
657     }
658 
659     VRegAllowedMap[VReg.id()] = std::move(VRegAllowed);
660   }
661 
662   for (auto &KV : VRegAllowedMap) {
663     auto VReg = KV.first;
664 
665     // Move empty intervals to the EmptyIntervalVReg set.
666     if (LIS.getInterval(VReg).empty()) {
667       EmptyIntervalVRegs.insert(VReg);
668       VRegsToAlloc.erase(VReg);
669       continue;
670     }
671 
672     auto &VRegAllowed = KV.second;
673 
674     PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0);
675 
676     // Tweak cost of callee saved registers, as using then force spilling and
677     // restoring them. This would only happen in the prologue / epilogue though.
678     for (unsigned i = 0; i != VRegAllowed.size(); ++i)
679       if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF))
680         NodeCosts[1 + i] += 1.0;
681 
682     PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts));
683     G.getNodeMetadata(NId).setVReg(VReg);
684     G.getNodeMetadata(NId).setAllowedRegs(
685       G.getMetadata().getAllowedRegs(std::move(VRegAllowed)));
686     G.getMetadata().setNodeIdForVReg(VReg, NId);
687   }
688 }
689 
690 void RegAllocPBQP::spillVReg(Register VReg,
691                              SmallVectorImpl<Register> &NewIntervals,
692                              MachineFunction &MF, LiveIntervals &LIS,
693                              VirtRegMap &VRM, Spiller &VRegSpiller) {
694   VRegsToAlloc.erase(VReg);
695   LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM,
696                     nullptr, &DeadRemats);
697   VRegSpiller.spill(LRE);
698 
699   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
700   (void)TRI;
701   LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> SPILLED (Cost: "
702                     << LRE.getParent().weight() << ", New vregs: ");
703 
704   // Copy any newly inserted live intervals into the list of regs to
705   // allocate.
706   for (const Register &R : LRE) {
707     const LiveInterval &LI = LIS.getInterval(R);
708     assert(!LI.empty() && "Empty spill range.");
709     LLVM_DEBUG(dbgs() << printReg(LI.reg(), &TRI) << " ");
710     VRegsToAlloc.insert(LI.reg());
711   }
712 
713   LLVM_DEBUG(dbgs() << ")\n");
714 }
715 
716 bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G,
717                                      const PBQP::Solution &Solution,
718                                      VirtRegMap &VRM,
719                                      Spiller &VRegSpiller) {
720   MachineFunction &MF = G.getMetadata().MF;
721   LiveIntervals &LIS = G.getMetadata().LIS;
722   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
723   (void)TRI;
724 
725   // Set to true if we have any spills
726   bool AnotherRoundNeeded = false;
727 
728   // Clear the existing allocation.
729   VRM.clearAllVirt();
730 
731   // Iterate over the nodes mapping the PBQP solution to a register
732   // assignment.
733   for (auto NId : G.nodeIds()) {
734     Register VReg = G.getNodeMetadata(NId).getVReg();
735     unsigned AllocOpt = Solution.getSelection(NId);
736 
737     if (AllocOpt != PBQP::RegAlloc::getSpillOptionIdx()) {
738       MCRegister PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOpt - 1];
739       LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> "
740                         << TRI.getName(PReg) << "\n");
741       assert(PReg != 0 && "Invalid preg selected.");
742       VRM.assignVirt2Phys(VReg, PReg);
743     } else {
744       // Spill VReg. If this introduces new intervals we'll need another round
745       // of allocation.
746       SmallVector<Register, 8> NewVRegs;
747       spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
748       AnotherRoundNeeded |= !NewVRegs.empty();
749     }
750   }
751 
752   return !AnotherRoundNeeded;
753 }
754 
755 void RegAllocPBQP::finalizeAlloc(MachineFunction &MF,
756                                  LiveIntervals &LIS,
757                                  VirtRegMap &VRM) const {
758   MachineRegisterInfo &MRI = MF.getRegInfo();
759 
760   // First allocate registers for the empty intervals.
761   for (const Register &R : EmptyIntervalVRegs) {
762     LiveInterval &LI = LIS.getInterval(R);
763 
764     Register PReg = MRI.getSimpleHint(LI.reg());
765 
766     if (PReg == 0) {
767       const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg());
768       const ArrayRef<MCPhysReg> RawPRegOrder = RC.getRawAllocationOrder(MF);
769       for (MCRegister CandidateReg : RawPRegOrder) {
770         if (!VRM.getRegInfo().isReserved(CandidateReg)) {
771           PReg = CandidateReg;
772           break;
773         }
774       }
775       assert(PReg &&
776              "No un-reserved physical registers in this register class");
777     }
778 
779     VRM.assignVirt2Phys(LI.reg(), PReg);
780   }
781 }
782 
783 void RegAllocPBQP::postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS) {
784   VRegSpiller.postOptimization();
785   /// Remove dead defs because of rematerialization.
786   for (auto *DeadInst : DeadRemats) {
787     LIS.RemoveMachineInstrFromMaps(*DeadInst);
788     DeadInst->eraseFromParent();
789   }
790   DeadRemats.clear();
791 }
792 
793 bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
794   LiveIntervals &LIS = getAnalysis<LiveIntervals>();
795   MachineBlockFrequencyInfo &MBFI =
796     getAnalysis<MachineBlockFrequencyInfo>();
797 
798   VirtRegMap &VRM = getAnalysis<VirtRegMap>();
799 
800   PBQPVirtRegAuxInfo VRAI(MF, LIS, VRM, getAnalysis<MachineLoopInfo>(), MBFI);
801   VRAI.calculateSpillWeightsAndHints();
802 
803   // FIXME: we create DefaultVRAI here to match existing behavior pre-passing
804   // the VRAI through the spiller to the live range editor. However, it probably
805   // makes more sense to pass the PBQP VRAI. The existing behavior had
806   // LiveRangeEdit make its own VirtRegAuxInfo object.
807   VirtRegAuxInfo DefaultVRAI(MF, LIS, VRM, getAnalysis<MachineLoopInfo>(),
808                              MBFI);
809   std::unique_ptr<Spiller> VRegSpiller(
810       createInlineSpiller(*this, MF, VRM, DefaultVRAI));
811 
812   MF.getRegInfo().freezeReservedRegs(MF);
813 
814   LLVM_DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n");
815 
816   // Allocator main loop:
817   //
818   // * Map current regalloc problem to a PBQP problem
819   // * Solve the PBQP problem
820   // * Map the solution back to a register allocation
821   // * Spill if necessary
822   //
823   // This process is continued till no more spills are generated.
824 
825   // Find the vreg intervals in need of allocation.
826   findVRegIntervalsToAlloc(MF, LIS);
827 
828 #ifndef NDEBUG
829   const Function &F = MF.getFunction();
830   std::string FullyQualifiedName =
831     F.getParent()->getModuleIdentifier() + "." + F.getName().str();
832 #endif
833 
834   // If there are non-empty intervals allocate them using pbqp.
835   if (!VRegsToAlloc.empty()) {
836     const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
837     std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot =
838       std::make_unique<PBQPRAConstraintList>();
839     ConstraintsRoot->addConstraint(std::make_unique<SpillCosts>());
840     ConstraintsRoot->addConstraint(std::make_unique<Interference>());
841     if (PBQPCoalescing)
842       ConstraintsRoot->addConstraint(std::make_unique<Coalescing>());
843     ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints());
844 
845     bool PBQPAllocComplete = false;
846     unsigned Round = 0;
847 
848     while (!PBQPAllocComplete) {
849       LLVM_DEBUG(dbgs() << "  PBQP Regalloc round " << Round << ":\n");
850       (void) Round;
851 
852       PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI));
853       initializeGraph(G, VRM, *VRegSpiller);
854       ConstraintsRoot->apply(G);
855 
856 #ifndef NDEBUG
857       if (PBQPDumpGraphs) {
858         std::ostringstream RS;
859         RS << Round;
860         std::string GraphFileName = FullyQualifiedName + "." + RS.str() +
861                                     ".pbqpgraph";
862         std::error_code EC;
863         raw_fd_ostream OS(GraphFileName, EC, sys::fs::OF_TextWithCRLF);
864         LLVM_DEBUG(dbgs() << "Dumping graph for round " << Round << " to \""
865                           << GraphFileName << "\"\n");
866         G.dump(OS);
867       }
868 #endif
869 
870       PBQP::Solution Solution = PBQP::RegAlloc::solve(G);
871       PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller);
872       ++Round;
873     }
874   }
875 
876   // Finalise allocation, allocate empty ranges.
877   finalizeAlloc(MF, LIS, VRM);
878   postOptimization(*VRegSpiller, LIS);
879   VRegsToAlloc.clear();
880   EmptyIntervalVRegs.clear();
881 
882   LLVM_DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n");
883 
884   return true;
885 }
886 
887 /// Create Printable object for node and register info.
888 static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId,
889                                const PBQP::RegAlloc::PBQPRAGraph &G) {
890   return Printable([NId, &G](raw_ostream &OS) {
891     const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
892     const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
893     Register VReg = G.getNodeMetadata(NId).getVReg();
894     const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg));
895     OS << NId << " (" << RegClassName << ':' << printReg(VReg, TRI) << ')';
896   });
897 }
898 
899 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
900 LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const {
901   for (auto NId : nodeIds()) {
902     const Vector &Costs = getNodeCosts(NId);
903     assert(Costs.getLength() != 0 && "Empty vector in graph.");
904     OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n';
905   }
906   OS << '\n';
907 
908   for (auto EId : edgeIds()) {
909     NodeId N1Id = getEdgeNode1Id(EId);
910     NodeId N2Id = getEdgeNode2Id(EId);
911     assert(N1Id != N2Id && "PBQP graphs should not have self-edges.");
912     const Matrix &M = getEdgeCosts(EId);
913     assert(M.getRows() != 0 && "No rows in matrix.");
914     assert(M.getCols() != 0 && "No cols in matrix.");
915     OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / ";
916     OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n";
917     OS << M << '\n';
918   }
919 }
920 
921 LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump() const {
922   dump(dbgs());
923 }
924 #endif
925 
926 void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const {
927   OS << "graph {\n";
928   for (auto NId : nodeIds()) {
929     OS << "  node" << NId << " [ label=\""
930        << PrintNodeInfo(NId, *this) << "\\n"
931        << getNodeCosts(NId) << "\" ]\n";
932   }
933 
934   OS << "  edge [ len=" << nodeIds().size() << " ]\n";
935   for (auto EId : edgeIds()) {
936     OS << "  node" << getEdgeNode1Id(EId)
937        << " -- node" << getEdgeNode2Id(EId)
938        << " [ label=\"";
939     const Matrix &EdgeCosts = getEdgeCosts(EId);
940     for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) {
941       OS << EdgeCosts.getRowAsVector(i) << "\\n";
942     }
943     OS << "\" ]\n";
944   }
945   OS << "}\n";
946 }
947 
948 FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) {
949   return new RegAllocPBQP(customPassID);
950 }
951 
952 FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
953   return createPBQPRegisterAllocator();
954 }
955