1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AllocationOrder.h" 15 #include "InterferenceCache.h" 16 #include "LiveDebugVariables.h" 17 #include "RegAllocBase.h" 18 #include "SpillPlacement.h" 19 #include "SplitKit.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/BitVector.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/IndexedMap.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/Analysis/AliasAnalysis.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/CodeGen/CalcSpillWeights.h" 34 #include "llvm/CodeGen/EdgeBundles.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/LiveIntervalUnion.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveRangeEdit.h" 39 #include "llvm/CodeGen/LiveRegMatrix.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineLoopInfo.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RegAllocRegistry.h" 53 #include "llvm/CodeGen/RegisterClassInfo.h" 54 #include "llvm/CodeGen/SlotIndexes.h" 55 #include "llvm/CodeGen/Spiller.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/CodeGen/VirtRegMap.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/MC/MCRegisterInfo.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/BlockFrequency.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/Timer.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Target/TargetMachine.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <memory> 76 #include <queue> 77 #include <tuple> 78 #include <utility> 79 80 using namespace llvm; 81 82 #define DEBUG_TYPE "regalloc" 83 84 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 85 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 86 STATISTIC(NumEvicted, "Number of interferences evicted"); 87 88 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 89 "split-spill-mode", cl::Hidden, 90 cl::desc("Spill mode for splitting live ranges"), 91 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 92 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 93 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 94 cl::init(SplitEditor::SM_Speed)); 95 96 static cl::opt<unsigned> 97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 98 cl::desc("Last chance recoloring max depth"), 99 cl::init(5)); 100 101 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 102 "lcr-max-interf", cl::Hidden, 103 cl::desc("Last chance recoloring maximum number of considered" 104 " interference at a time"), 105 cl::init(8)); 106 107 static cl::opt<bool> ExhaustiveSearch( 108 "exhaustive-register-search", cl::NotHidden, 109 cl::desc("Exhaustive Search for registers bypassing the depth " 110 "and interference cutoffs of last chance recoloring"), 111 cl::Hidden); 112 113 static cl::opt<bool> EnableLocalReassignment( 114 "enable-local-reassign", cl::Hidden, 115 cl::desc("Local reassignment can yield better allocation decisions, but " 116 "may be compile time intensive"), 117 cl::init(false)); 118 119 static cl::opt<bool> EnableDeferredSpilling( 120 "enable-deferred-spilling", cl::Hidden, 121 cl::desc("Instead of spilling a variable right away, defer the actual " 122 "code insertion to the end of the allocation. That way the " 123 "allocator might still find a suitable coloring for this " 124 "variable because of other evicted variables."), 125 cl::init(false)); 126 127 // FIXME: Find a good default for this flag and remove the flag. 128 static cl::opt<unsigned> 129 CSRFirstTimeCost("regalloc-csr-first-time-cost", 130 cl::desc("Cost for first time use of callee-saved register."), 131 cl::init(0), cl::Hidden); 132 133 static cl::opt<bool> ConsiderLocalIntervalCost( 134 "consider-local-interval-cost", cl::Hidden, 135 cl::desc("Consider the cost of local intervals created by a split " 136 "candidate when choosing the best split candidate."), 137 cl::init(false)); 138 139 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 140 createGreedyRegisterAllocator); 141 142 namespace { 143 144 class RAGreedy : public MachineFunctionPass, 145 public RegAllocBase, 146 private LiveRangeEdit::Delegate { 147 // Convenient shortcuts. 148 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>; 149 using SmallLISet = SmallPtrSet<LiveInterval *, 4>; 150 using SmallVirtRegSet = SmallSet<Register, 16>; 151 152 // context 153 MachineFunction *MF; 154 155 // Shortcuts to some useful interface. 156 const TargetInstrInfo *TII; 157 const TargetRegisterInfo *TRI; 158 RegisterClassInfo RCI; 159 160 // analyses 161 SlotIndexes *Indexes; 162 MachineBlockFrequencyInfo *MBFI; 163 MachineDominatorTree *DomTree; 164 MachineLoopInfo *Loops; 165 MachineOptimizationRemarkEmitter *ORE; 166 EdgeBundles *Bundles; 167 SpillPlacement *SpillPlacer; 168 LiveDebugVariables *DebugVars; 169 AliasAnalysis *AA; 170 171 // state 172 std::unique_ptr<Spiller> SpillerInstance; 173 PQueue Queue; 174 unsigned NextCascade; 175 std::unique_ptr<VirtRegAuxInfo> VRAI; 176 177 // Live ranges pass through a number of stages as we try to allocate them. 178 // Some of the stages may also create new live ranges: 179 // 180 // - Region splitting. 181 // - Per-block splitting. 182 // - Local splitting. 183 // - Spilling. 184 // 185 // Ranges produced by one of the stages skip the previous stages when they are 186 // dequeued. This improves performance because we can skip interference checks 187 // that are unlikely to give any results. It also guarantees that the live 188 // range splitting algorithm terminates, something that is otherwise hard to 189 // ensure. 190 enum LiveRangeStage { 191 /// Newly created live range that has never been queued. 192 RS_New, 193 194 /// Only attempt assignment and eviction. Then requeue as RS_Split. 195 RS_Assign, 196 197 /// Attempt live range splitting if assignment is impossible. 198 RS_Split, 199 200 /// Attempt more aggressive live range splitting that is guaranteed to make 201 /// progress. This is used for split products that may not be making 202 /// progress. 203 RS_Split2, 204 205 /// Live range will be spilled. No more splitting will be attempted. 206 RS_Spill, 207 208 209 /// Live range is in memory. Because of other evictions, it might get moved 210 /// in a register in the end. 211 RS_Memory, 212 213 /// There is nothing more we can do to this live range. Abort compilation 214 /// if it can't be assigned. 215 RS_Done 216 }; 217 218 // Enum CutOffStage to keep a track whether the register allocation failed 219 // because of the cutoffs encountered in last chance recoloring. 220 // Note: This is used as bitmask. New value should be next power of 2. 221 enum CutOffStage { 222 // No cutoffs encountered 223 CO_None = 0, 224 225 // lcr-max-depth cutoff encountered 226 CO_Depth = 1, 227 228 // lcr-max-interf cutoff encountered 229 CO_Interf = 2 230 }; 231 232 uint8_t CutOffInfo; 233 234 #ifndef NDEBUG 235 static const char *const StageName[]; 236 #endif 237 238 // RegInfo - Keep additional information about each live range. 239 struct RegInfo { 240 LiveRangeStage Stage = RS_New; 241 242 // Cascade - Eviction loop prevention. See canEvictInterference(). 243 unsigned Cascade = 0; 244 245 RegInfo() = default; 246 }; 247 248 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 249 250 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 251 return ExtraRegInfo[VirtReg.reg()].Stage; 252 } 253 254 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 255 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 256 ExtraRegInfo[VirtReg.reg()].Stage = Stage; 257 } 258 259 template<typename Iterator> 260 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 261 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 262 for (;Begin != End; ++Begin) { 263 Register Reg = *Begin; 264 if (ExtraRegInfo[Reg].Stage == RS_New) 265 ExtraRegInfo[Reg].Stage = NewStage; 266 } 267 } 268 269 /// Cost of evicting interference. 270 struct EvictionCost { 271 unsigned BrokenHints = 0; ///< Total number of broken hints. 272 float MaxWeight = 0; ///< Maximum spill weight evicted. 273 274 EvictionCost() = default; 275 276 bool isMax() const { return BrokenHints == ~0u; } 277 278 void setMax() { BrokenHints = ~0u; } 279 280 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } 281 282 bool operator<(const EvictionCost &O) const { 283 return std::tie(BrokenHints, MaxWeight) < 284 std::tie(O.BrokenHints, O.MaxWeight); 285 } 286 }; 287 288 /// EvictionTrack - Keeps track of past evictions in order to optimize region 289 /// split decision. 290 class EvictionTrack { 291 292 public: 293 using EvictorInfo = 294 std::pair<Register /* evictor */, MCRegister /* physreg */>; 295 using EvicteeInfo = llvm::DenseMap<Register /* evictee */, EvictorInfo>; 296 297 private: 298 /// Each Vreg that has been evicted in the last stage of selectOrSplit will 299 /// be mapped to the evictor Vreg and the PhysReg it was evicted from. 300 EvicteeInfo Evictees; 301 302 public: 303 /// Clear all eviction information. 304 void clear() { Evictees.clear(); } 305 306 /// Clear eviction information for the given evictee Vreg. 307 /// E.g. when Vreg get's a new allocation, the old eviction info is no 308 /// longer relevant. 309 /// \param Evictee The evictee Vreg for whom we want to clear collected 310 /// eviction info. 311 void clearEvicteeInfo(Register Evictee) { Evictees.erase(Evictee); } 312 313 /// Track new eviction. 314 /// The Evictor vreg has evicted the Evictee vreg from Physreg. 315 /// \param PhysReg The physical register Evictee was evicted from. 316 /// \param Evictor The evictor Vreg that evicted Evictee. 317 /// \param Evictee The evictee Vreg. 318 void addEviction(MCRegister PhysReg, Register Evictor, Register Evictee) { 319 Evictees[Evictee].first = Evictor; 320 Evictees[Evictee].second = PhysReg; 321 } 322 323 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg. 324 /// \param Evictee The evictee vreg. 325 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if 326 /// nobody has evicted Evictee from PhysReg. 327 EvictorInfo getEvictor(Register Evictee) { 328 if (Evictees.count(Evictee)) { 329 return Evictees[Evictee]; 330 } 331 332 return EvictorInfo(0, 0); 333 } 334 }; 335 336 // Keeps track of past evictions in order to optimize region split decision. 337 EvictionTrack LastEvicted; 338 339 // splitting state. 340 std::unique_ptr<SplitAnalysis> SA; 341 std::unique_ptr<SplitEditor> SE; 342 343 /// Cached per-block interference maps 344 InterferenceCache IntfCache; 345 346 /// All basic blocks where the current register has uses. 347 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 348 349 /// Global live range splitting candidate info. 350 struct GlobalSplitCandidate { 351 // Register intended for assignment, or 0. 352 MCRegister PhysReg; 353 354 // SplitKit interval index for this candidate. 355 unsigned IntvIdx; 356 357 // Interference for PhysReg. 358 InterferenceCache::Cursor Intf; 359 360 // Bundles where this candidate should be live. 361 BitVector LiveBundles; 362 SmallVector<unsigned, 8> ActiveBlocks; 363 364 void reset(InterferenceCache &Cache, MCRegister Reg) { 365 PhysReg = Reg; 366 IntvIdx = 0; 367 Intf.setPhysReg(Cache, Reg); 368 LiveBundles.clear(); 369 ActiveBlocks.clear(); 370 } 371 372 // Set B[I] = C for every live bundle where B[I] was NoCand. 373 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 374 unsigned Count = 0; 375 for (unsigned I : LiveBundles.set_bits()) 376 if (B[I] == NoCand) { 377 B[I] = C; 378 Count++; 379 } 380 return Count; 381 } 382 }; 383 384 /// Candidate info for each PhysReg in AllocationOrder. 385 /// This vector never shrinks, but grows to the size of the largest register 386 /// class. 387 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 388 389 enum : unsigned { NoCand = ~0u }; 390 391 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 392 /// NoCand which indicates the stack interval. 393 SmallVector<unsigned, 32> BundleCand; 394 395 /// Callee-save register cost, calculated once per machine function. 396 BlockFrequency CSRCost; 397 398 /// Run or not the local reassignment heuristic. This information is 399 /// obtained from the TargetSubtargetInfo. 400 bool EnableLocalReassign; 401 402 /// Enable or not the consideration of the cost of local intervals created 403 /// by a split candidate when choosing the best split candidate. 404 bool EnableAdvancedRASplitCost; 405 406 /// Set of broken hints that may be reconciled later because of eviction. 407 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 408 409 public: 410 RAGreedy(); 411 412 /// Return the pass name. 413 StringRef getPassName() const override { return "Greedy Register Allocator"; } 414 415 /// RAGreedy analysis usage. 416 void getAnalysisUsage(AnalysisUsage &AU) const override; 417 void releaseMemory() override; 418 Spiller &spiller() override { return *SpillerInstance; } 419 void enqueue(LiveInterval *LI) override; 420 LiveInterval *dequeue() override; 421 MCRegister selectOrSplit(LiveInterval &, 422 SmallVectorImpl<Register> &) override; 423 void aboutToRemoveInterval(LiveInterval &) override; 424 425 /// Perform register allocation. 426 bool runOnMachineFunction(MachineFunction &mf) override; 427 428 MachineFunctionProperties getRequiredProperties() const override { 429 return MachineFunctionProperties().set( 430 MachineFunctionProperties::Property::NoPHIs); 431 } 432 433 MachineFunctionProperties getClearedProperties() const override { 434 return MachineFunctionProperties().set( 435 MachineFunctionProperties::Property::IsSSA); 436 } 437 438 static char ID; 439 440 private: 441 MCRegister selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &, 442 SmallVirtRegSet &, unsigned = 0); 443 444 bool LRE_CanEraseVirtReg(Register) override; 445 void LRE_WillShrinkVirtReg(Register) override; 446 void LRE_DidCloneVirtReg(Register, Register) override; 447 void enqueue(PQueue &CurQueue, LiveInterval *LI); 448 LiveInterval *dequeue(PQueue &CurQueue); 449 450 BlockFrequency calcSpillCost(); 451 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 452 bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 453 bool growRegion(GlobalSplitCandidate &Cand); 454 bool splitCanCauseEvictionChain(Register Evictee, GlobalSplitCandidate &Cand, 455 unsigned BBNumber, 456 const AllocationOrder &Order); 457 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit, 458 GlobalSplitCandidate &Cand, unsigned BBNumber, 459 const AllocationOrder &Order); 460 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &, 461 const AllocationOrder &Order, 462 bool *CanCauseEvictionChain); 463 bool calcCompactRegion(GlobalSplitCandidate&); 464 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 465 void calcGapWeights(MCRegister, SmallVectorImpl<float> &); 466 Register canReassign(LiveInterval &VirtReg, Register PrevReg); 467 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); 468 bool canEvictInterference(LiveInterval &, MCRegister, bool, EvictionCost &, 469 const SmallVirtRegSet &); 470 bool canEvictInterferenceInRange(LiveInterval &VirtReg, MCRegister PhysReg, 471 SlotIndex Start, SlotIndex End, 472 EvictionCost &MaxCost); 473 MCRegister getCheapestEvicteeWeight(const AllocationOrder &Order, 474 LiveInterval &VirtReg, SlotIndex Start, 475 SlotIndex End, float *BestEvictWeight); 476 void evictInterference(LiveInterval &, MCRegister, 477 SmallVectorImpl<Register> &); 478 bool mayRecolorAllInterferences(MCRegister PhysReg, LiveInterval &VirtReg, 479 SmallLISet &RecoloringCandidates, 480 const SmallVirtRegSet &FixedRegisters); 481 482 Register tryAssign(LiveInterval&, AllocationOrder&, 483 SmallVectorImpl<Register>&, 484 const SmallVirtRegSet&); 485 unsigned tryEvict(LiveInterval&, AllocationOrder&, 486 SmallVectorImpl<Register>&, unsigned, 487 const SmallVirtRegSet&); 488 MCRegister tryRegionSplit(LiveInterval &, AllocationOrder &, 489 SmallVectorImpl<Register> &); 490 /// Calculate cost of region splitting. 491 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 492 AllocationOrder &Order, 493 BlockFrequency &BestCost, 494 unsigned &NumCands, bool IgnoreCSR, 495 bool *CanCauseEvictionChain = nullptr); 496 /// Perform region splitting. 497 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 498 bool HasCompact, 499 SmallVectorImpl<Register> &NewVRegs); 500 /// Check other options before using a callee-saved register for the first 501 /// time. 502 MCRegister tryAssignCSRFirstTime(LiveInterval &VirtReg, 503 AllocationOrder &Order, MCRegister PhysReg, 504 unsigned &CostPerUseLimit, 505 SmallVectorImpl<Register> &NewVRegs); 506 void initializeCSRCost(); 507 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 508 SmallVectorImpl<Register>&); 509 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 510 SmallVectorImpl<Register>&); 511 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 512 SmallVectorImpl<Register>&); 513 unsigned trySplit(LiveInterval&, AllocationOrder&, 514 SmallVectorImpl<Register>&, 515 const SmallVirtRegSet&); 516 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 517 SmallVectorImpl<Register> &, 518 SmallVirtRegSet &, unsigned); 519 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &, 520 SmallVirtRegSet &, unsigned); 521 void tryHintRecoloring(LiveInterval &); 522 void tryHintsRecoloring(); 523 524 /// Model the information carried by one end of a copy. 525 struct HintInfo { 526 /// The frequency of the copy. 527 BlockFrequency Freq; 528 /// The virtual register or physical register. 529 Register Reg; 530 /// Its currently assigned register. 531 /// In case of a physical register Reg == PhysReg. 532 MCRegister PhysReg; 533 534 HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg) 535 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 536 }; 537 using HintsInfo = SmallVector<HintInfo, 4>; 538 539 BlockFrequency getBrokenHintFreq(const HintsInfo &, MCRegister); 540 void collectHintInfo(Register, HintsInfo &); 541 542 bool isUnusedCalleeSavedReg(MCRegister PhysReg) const; 543 544 /// Compute and report the number of spills and reloads for a loop. 545 void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 546 unsigned &FoldedReloads, unsigned &Spills, 547 unsigned &FoldedSpills); 548 549 /// Report the number of spills and reloads for each loop. 550 void reportNumberOfSplillsReloads() { 551 for (MachineLoop *L : *Loops) { 552 unsigned Reloads, FoldedReloads, Spills, FoldedSpills; 553 reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills, 554 FoldedSpills); 555 } 556 } 557 }; 558 559 } // end anonymous namespace 560 561 char RAGreedy::ID = 0; 562 char &llvm::RAGreedyID = RAGreedy::ID; 563 564 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 565 "Greedy Register Allocator", false, false) 566 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 567 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 568 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 569 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 570 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 571 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 572 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 573 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 574 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 575 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 576 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 577 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 578 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 579 INITIALIZE_PASS_END(RAGreedy, "greedy", 580 "Greedy Register Allocator", false, false) 581 582 #ifndef NDEBUG 583 const char *const RAGreedy::StageName[] = { 584 "RS_New", 585 "RS_Assign", 586 "RS_Split", 587 "RS_Split2", 588 "RS_Spill", 589 "RS_Memory", 590 "RS_Done" 591 }; 592 #endif 593 594 // Hysteresis to use when comparing floats. 595 // This helps stabilize decisions based on float comparisons. 596 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 597 598 FunctionPass* llvm::createGreedyRegisterAllocator() { 599 return new RAGreedy(); 600 } 601 602 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 603 } 604 605 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 606 AU.setPreservesCFG(); 607 AU.addRequired<MachineBlockFrequencyInfo>(); 608 AU.addPreserved<MachineBlockFrequencyInfo>(); 609 AU.addRequired<AAResultsWrapperPass>(); 610 AU.addPreserved<AAResultsWrapperPass>(); 611 AU.addRequired<LiveIntervals>(); 612 AU.addPreserved<LiveIntervals>(); 613 AU.addRequired<SlotIndexes>(); 614 AU.addPreserved<SlotIndexes>(); 615 AU.addRequired<LiveDebugVariables>(); 616 AU.addPreserved<LiveDebugVariables>(); 617 AU.addRequired<LiveStacks>(); 618 AU.addPreserved<LiveStacks>(); 619 AU.addRequired<MachineDominatorTree>(); 620 AU.addPreserved<MachineDominatorTree>(); 621 AU.addRequired<MachineLoopInfo>(); 622 AU.addPreserved<MachineLoopInfo>(); 623 AU.addRequired<VirtRegMap>(); 624 AU.addPreserved<VirtRegMap>(); 625 AU.addRequired<LiveRegMatrix>(); 626 AU.addPreserved<LiveRegMatrix>(); 627 AU.addRequired<EdgeBundles>(); 628 AU.addRequired<SpillPlacement>(); 629 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 630 MachineFunctionPass::getAnalysisUsage(AU); 631 } 632 633 //===----------------------------------------------------------------------===// 634 // LiveRangeEdit delegate methods 635 //===----------------------------------------------------------------------===// 636 637 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) { 638 LiveInterval &LI = LIS->getInterval(VirtReg); 639 if (VRM->hasPhys(VirtReg)) { 640 Matrix->unassign(LI); 641 aboutToRemoveInterval(LI); 642 return true; 643 } 644 // Unassigned virtreg is probably in the priority queue. 645 // RegAllocBase will erase it after dequeueing. 646 // Nonetheless, clear the live-range so that the debug 647 // dump will show the right state for that VirtReg. 648 LI.clear(); 649 return false; 650 } 651 652 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) { 653 if (!VRM->hasPhys(VirtReg)) 654 return; 655 656 // Register is assigned, put it back on the queue for reassignment. 657 LiveInterval &LI = LIS->getInterval(VirtReg); 658 Matrix->unassign(LI); 659 enqueue(&LI); 660 } 661 662 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) { 663 // Cloning a register we haven't even heard about yet? Just ignore it. 664 if (!ExtraRegInfo.inBounds(Old)) 665 return; 666 667 // LRE may clone a virtual register because dead code elimination causes it to 668 // be split into connected components. The new components are much smaller 669 // than the original, so they should get a new chance at being assigned. 670 // same stage as the parent. 671 ExtraRegInfo[Old].Stage = RS_Assign; 672 ExtraRegInfo.grow(New); 673 ExtraRegInfo[New] = ExtraRegInfo[Old]; 674 } 675 676 void RAGreedy::releaseMemory() { 677 SpillerInstance.reset(); 678 ExtraRegInfo.clear(); 679 GlobalCand.clear(); 680 } 681 682 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); } 683 684 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 685 // Prioritize live ranges by size, assigning larger ranges first. 686 // The queue holds (size, reg) pairs. 687 const unsigned Size = LI->getSize(); 688 const Register Reg = LI->reg(); 689 assert(Reg.isVirtual() && "Can only enqueue virtual registers"); 690 unsigned Prio; 691 692 ExtraRegInfo.grow(Reg); 693 if (ExtraRegInfo[Reg].Stage == RS_New) 694 ExtraRegInfo[Reg].Stage = RS_Assign; 695 696 if (ExtraRegInfo[Reg].Stage == RS_Split) { 697 // Unsplit ranges that couldn't be allocated immediately are deferred until 698 // everything else has been allocated. 699 Prio = Size; 700 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 701 // Memory operand should be considered last. 702 // Change the priority such that Memory operand are assigned in 703 // the reverse order that they came in. 704 // TODO: Make this a member variable and probably do something about hints. 705 static unsigned MemOp = 0; 706 Prio = MemOp++; 707 } else { 708 // Giant live ranges fall back to the global assignment heuristic, which 709 // prevents excessive spilling in pathological cases. 710 bool ReverseLocal = TRI->reverseLocalAssignment(); 711 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 712 bool ForceGlobal = !ReverseLocal && 713 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); 714 715 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 716 LIS->intervalIsInOneMBB(*LI)) { 717 // Allocate original local ranges in linear instruction order. Since they 718 // are singly defined, this produces optimal coloring in the absence of 719 // global interference and other constraints. 720 if (!ReverseLocal) 721 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 722 else { 723 // Allocating bottom up may allow many short LRGs to be assigned first 724 // to one of the cheap registers. This could be much faster for very 725 // large blocks on targets with many physical registers. 726 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 727 } 728 Prio |= RC.AllocationPriority << 24; 729 } else { 730 // Allocate global and split ranges in long->short order. Long ranges that 731 // don't fit should be spilled (or split) ASAP so they don't create 732 // interference. Mark a bit to prioritize global above local ranges. 733 Prio = (1u << 29) + Size; 734 } 735 // Mark a higher bit to prioritize global and local above RS_Split. 736 Prio |= (1u << 31); 737 738 // Boost ranges that have a physical register hint. 739 if (VRM->hasKnownPreference(Reg)) 740 Prio |= (1u << 30); 741 } 742 // The virtual register number is a tie breaker for same-sized ranges. 743 // Give lower vreg numbers higher priority to assign them first. 744 CurQueue.push(std::make_pair(Prio, ~Reg)); 745 } 746 747 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 748 749 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 750 if (CurQueue.empty()) 751 return nullptr; 752 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 753 CurQueue.pop(); 754 return LI; 755 } 756 757 //===----------------------------------------------------------------------===// 758 // Direct Assignment 759 //===----------------------------------------------------------------------===// 760 761 /// tryAssign - Try to assign VirtReg to an available register. 762 Register RAGreedy::tryAssign(LiveInterval &VirtReg, 763 AllocationOrder &Order, 764 SmallVectorImpl<Register> &NewVRegs, 765 const SmallVirtRegSet &FixedRegisters) { 766 Register PhysReg; 767 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 768 assert(*I); 769 if (!Matrix->checkInterference(VirtReg, *I)) { 770 if (I.isHint()) 771 return *I; 772 else 773 PhysReg = *I; 774 } 775 } 776 if (!PhysReg.isValid()) 777 return PhysReg; 778 779 // PhysReg is available, but there may be a better choice. 780 781 // If we missed a simple hint, try to cheaply evict interference from the 782 // preferred register. 783 if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) 784 if (Order.isHint(Hint)) { 785 MCRegister PhysHint = Hint.asMCReg(); 786 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n'); 787 EvictionCost MaxCost; 788 MaxCost.setBrokenHints(1); 789 if (canEvictInterference(VirtReg, PhysHint, true, MaxCost, 790 FixedRegisters)) { 791 evictInterference(VirtReg, PhysHint, NewVRegs); 792 return PhysHint; 793 } 794 // Record the missed hint, we may be able to recover 795 // at the end if the surrounding allocation changed. 796 SetOfBrokenHints.insert(&VirtReg); 797 } 798 799 // Try to evict interference from a cheaper alternative. 800 unsigned Cost = TRI->getCostPerUse(PhysReg); 801 802 // Most registers have 0 additional cost. 803 if (!Cost) 804 return PhysReg; 805 806 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 807 << Cost << '\n'); 808 Register CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 809 return CheapReg ? CheapReg : PhysReg; 810 } 811 812 //===----------------------------------------------------------------------===// 813 // Interference eviction 814 //===----------------------------------------------------------------------===// 815 816 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) { 817 auto Order = 818 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 819 MCRegister PhysReg; 820 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 821 if ((*I).id() == PrevReg.id()) 822 continue; 823 824 MCRegUnitIterator Units(*I, TRI); 825 for (; Units.isValid(); ++Units) { 826 // Instantiate a "subquery", not to be confused with the Queries array. 827 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 828 if (subQ.checkInterference()) 829 break; 830 } 831 // If no units have interference, break out with the current PhysReg. 832 if (!Units.isValid()) 833 PhysReg = *I; 834 } 835 if (PhysReg) 836 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 837 << printReg(PrevReg, TRI) << " to " 838 << printReg(PhysReg, TRI) << '\n'); 839 return PhysReg; 840 } 841 842 /// shouldEvict - determine if A should evict the assigned live range B. The 843 /// eviction policy defined by this function together with the allocation order 844 /// defined by enqueue() decides which registers ultimately end up being split 845 /// and spilled. 846 /// 847 /// Cascade numbers are used to prevent infinite loops if this function is a 848 /// cyclic relation. 849 /// 850 /// @param A The live range to be assigned. 851 /// @param IsHint True when A is about to be assigned to its preferred 852 /// register. 853 /// @param B The live range to be evicted. 854 /// @param BreaksHint True when B is already assigned to its preferred register. 855 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 856 LiveInterval &B, bool BreaksHint) { 857 bool CanSplit = getStage(B) < RS_Spill; 858 859 // Be fairly aggressive about following hints as long as the evictee can be 860 // split. 861 if (CanSplit && IsHint && !BreaksHint) 862 return true; 863 864 if (A.weight() > B.weight()) { 865 LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n'); 866 return true; 867 } 868 return false; 869 } 870 871 /// canEvictInterference - Return true if all interferences between VirtReg and 872 /// PhysReg can be evicted. 873 /// 874 /// @param VirtReg Live range that is about to be assigned. 875 /// @param PhysReg Desired register for assignment. 876 /// @param IsHint True when PhysReg is VirtReg's preferred register. 877 /// @param MaxCost Only look for cheaper candidates and update with new cost 878 /// when returning true. 879 /// @returns True when interference can be evicted cheaper than MaxCost. 880 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, MCRegister PhysReg, 881 bool IsHint, EvictionCost &MaxCost, 882 const SmallVirtRegSet &FixedRegisters) { 883 // It is only possible to evict virtual register interference. 884 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 885 return false; 886 887 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 888 889 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 890 // involved in an eviction before. If a cascade number was assigned, deny 891 // evicting anything with the same or a newer cascade number. This prevents 892 // infinite eviction loops. 893 // 894 // This works out so a register without a cascade number is allowed to evict 895 // anything, and it can be evicted by anything. 896 unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade; 897 if (!Cascade) 898 Cascade = NextCascade; 899 900 EvictionCost Cost; 901 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 902 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 903 // If there is 10 or more interferences, chances are one is heavier. 904 if (Q.collectInterferingVRegs(10) >= 10) 905 return false; 906 907 // Check if any interfering live range is heavier than MaxWeight. 908 for (LiveInterval *Intf : reverse(Q.interferingVRegs())) { 909 assert(Register::isVirtualRegister(Intf->reg()) && 910 "Only expecting virtual register interference from query"); 911 912 // Do not allow eviction of a virtual register if we are in the middle 913 // of last-chance recoloring and this virtual register is one that we 914 // have scavenged a physical register for. 915 if (FixedRegisters.count(Intf->reg())) 916 return false; 917 918 // Never evict spill products. They cannot split or spill. 919 if (getStage(*Intf) == RS_Done) 920 return false; 921 // Once a live range becomes small enough, it is urgent that we find a 922 // register for it. This is indicated by an infinite spill weight. These 923 // urgent live ranges get to evict almost anything. 924 // 925 // Also allow urgent evictions of unspillable ranges from a strictly 926 // larger allocation order. 927 bool Urgent = 928 !VirtReg.isSpillable() && 929 (Intf->isSpillable() || 930 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) < 931 RegClassInfo.getNumAllocatableRegs( 932 MRI->getRegClass(Intf->reg()))); 933 // Only evict older cascades or live ranges without a cascade. 934 unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade; 935 if (Cascade <= IntfCascade) { 936 if (!Urgent) 937 return false; 938 // We permit breaking cascades for urgent evictions. It should be the 939 // last resort, though, so make it really expensive. 940 Cost.BrokenHints += 10; 941 } 942 // Would this break a satisfied hint? 943 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 944 // Update eviction cost. 945 Cost.BrokenHints += BreaksHint; 946 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 947 // Abort if this would be too expensive. 948 if (!(Cost < MaxCost)) 949 return false; 950 if (Urgent) 951 continue; 952 // Apply the eviction policy for non-urgent evictions. 953 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 954 return false; 955 // If !MaxCost.isMax(), then we're just looking for a cheap register. 956 // Evicting another local live range in this case could lead to suboptimal 957 // coloring. 958 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 959 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 960 return false; 961 } 962 } 963 } 964 MaxCost = Cost; 965 return true; 966 } 967 968 /// Return true if all interferences between VirtReg and PhysReg between 969 /// Start and End can be evicted. 970 /// 971 /// \param VirtReg Live range that is about to be assigned. 972 /// \param PhysReg Desired register for assignment. 973 /// \param Start Start of range to look for interferences. 974 /// \param End End of range to look for interferences. 975 /// \param MaxCost Only look for cheaper candidates and update with new cost 976 /// when returning true. 977 /// \return True when interference can be evicted cheaper than MaxCost. 978 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg, 979 MCRegister PhysReg, SlotIndex Start, 980 SlotIndex End, 981 EvictionCost &MaxCost) { 982 EvictionCost Cost; 983 984 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 985 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 986 987 // Check if any interfering live range is heavier than MaxWeight. 988 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 989 // Check if interference overlast the segment in interest. 990 if (!Intf->overlaps(Start, End)) 991 continue; 992 993 // Cannot evict non virtual reg interference. 994 if (!Register::isVirtualRegister(Intf->reg())) 995 return false; 996 // Never evict spill products. They cannot split or spill. 997 if (getStage(*Intf) == RS_Done) 998 return false; 999 1000 // Would this break a satisfied hint? 1001 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 1002 // Update eviction cost. 1003 Cost.BrokenHints += BreaksHint; 1004 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 1005 // Abort if this would be too expensive. 1006 if (!(Cost < MaxCost)) 1007 return false; 1008 } 1009 } 1010 1011 if (Cost.MaxWeight == 0) 1012 return false; 1013 1014 MaxCost = Cost; 1015 return true; 1016 } 1017 1018 /// Return the physical register that will be best 1019 /// candidate for eviction by a local split interval that will be created 1020 /// between Start and End. 1021 /// 1022 /// \param Order The allocation order 1023 /// \param VirtReg Live range that is about to be assigned. 1024 /// \param Start Start of range to look for interferences 1025 /// \param End End of range to look for interferences 1026 /// \param BestEvictweight The eviction cost of that eviction 1027 /// \return The PhysReg which is the best candidate for eviction and the 1028 /// eviction cost in BestEvictweight 1029 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 1030 LiveInterval &VirtReg, 1031 SlotIndex Start, SlotIndex End, 1032 float *BestEvictweight) { 1033 EvictionCost BestEvictCost; 1034 BestEvictCost.setMax(); 1035 BestEvictCost.MaxWeight = VirtReg.weight(); 1036 MCRegister BestEvicteePhys; 1037 1038 // Go over all physical registers and find the best candidate for eviction 1039 for (MCRegister PhysReg : Order.getOrder()) { 1040 1041 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 1042 BestEvictCost)) 1043 continue; 1044 1045 // Best so far. 1046 BestEvicteePhys = PhysReg; 1047 } 1048 *BestEvictweight = BestEvictCost.MaxWeight; 1049 return BestEvicteePhys; 1050 } 1051 1052 /// evictInterference - Evict any interferring registers that prevent VirtReg 1053 /// from being assigned to Physreg. This assumes that canEvictInterference 1054 /// returned true. 1055 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg, 1056 SmallVectorImpl<Register> &NewVRegs) { 1057 // Make sure that VirtReg has a cascade number, and assign that cascade 1058 // number to every evicted register. These live ranges than then only be 1059 // evicted by a newer cascade, preventing infinite loops. 1060 unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade; 1061 if (!Cascade) 1062 Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++; 1063 1064 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 1065 << " interference: Cascade " << Cascade << '\n'); 1066 1067 // Collect all interfering virtregs first. 1068 SmallVector<LiveInterval*, 8> Intfs; 1069 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1070 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1071 // We usually have the interfering VRegs cached so collectInterferingVRegs() 1072 // should be fast, we may need to recalculate if when different physregs 1073 // overlap the same register unit so we had different SubRanges queried 1074 // against it. 1075 Q.collectInterferingVRegs(); 1076 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 1077 Intfs.append(IVR.begin(), IVR.end()); 1078 } 1079 1080 // Evict them second. This will invalidate the queries. 1081 for (LiveInterval *Intf : Intfs) { 1082 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 1083 if (!VRM->hasPhys(Intf->reg())) 1084 continue; 1085 1086 LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg()); 1087 1088 Matrix->unassign(*Intf); 1089 assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade || 1090 VirtReg.isSpillable() < Intf->isSpillable()) && 1091 "Cannot decrease cascade number, illegal eviction"); 1092 ExtraRegInfo[Intf->reg()].Cascade = Cascade; 1093 ++NumEvicted; 1094 NewVRegs.push_back(Intf->reg()); 1095 } 1096 } 1097 1098 /// Returns true if the given \p PhysReg is a callee saved register and has not 1099 /// been used for allocation yet. 1100 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 1101 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 1102 if (!CSR) 1103 return false; 1104 1105 return !Matrix->isPhysRegUsed(PhysReg); 1106 } 1107 1108 /// tryEvict - Try to evict all interferences for a physreg. 1109 /// @param VirtReg Currently unassigned virtual register. 1110 /// @param Order Physregs to try. 1111 /// @return Physreg to assign VirtReg, or 0. 1112 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, 1113 AllocationOrder &Order, 1114 SmallVectorImpl<Register> &NewVRegs, 1115 unsigned CostPerUseLimit, 1116 const SmallVirtRegSet &FixedRegisters) { 1117 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 1118 TimePassesIsEnabled); 1119 1120 // Keep track of the cheapest interference seen so far. 1121 EvictionCost BestCost; 1122 BestCost.setMax(); 1123 MCRegister BestPhys; 1124 unsigned OrderLimit = Order.getOrder().size(); 1125 1126 // When we are just looking for a reduced cost per use, don't break any 1127 // hints, and only evict smaller spill weights. 1128 if (CostPerUseLimit < ~0u) { 1129 BestCost.BrokenHints = 0; 1130 BestCost.MaxWeight = VirtReg.weight(); 1131 1132 // Check of any registers in RC are below CostPerUseLimit. 1133 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); 1134 unsigned MinCost = RegClassInfo.getMinCost(RC); 1135 if (MinCost >= CostPerUseLimit) { 1136 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 1137 << MinCost << ", no cheaper registers to be found.\n"); 1138 return 0; 1139 } 1140 1141 // It is normal for register classes to have a long tail of registers with 1142 // the same cost. We don't need to look at them if they're too expensive. 1143 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) { 1144 OrderLimit = RegClassInfo.getLastCostChange(RC); 1145 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 1146 << " regs.\n"); 1147 } 1148 } 1149 1150 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E; 1151 ++I) { 1152 MCRegister PhysReg = *I; 1153 assert(PhysReg); 1154 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) 1155 continue; 1156 // The first use of a callee-saved register in a function has cost 1. 1157 // Don't start using a CSR when the CostPerUseLimit is low. 1158 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 1159 LLVM_DEBUG( 1160 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 1161 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 1162 << '\n'); 1163 continue; 1164 } 1165 1166 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost, 1167 FixedRegisters)) 1168 continue; 1169 1170 // Best so far. 1171 BestPhys = PhysReg; 1172 1173 // Stop if the hint can be used. 1174 if (I.isHint()) 1175 break; 1176 } 1177 1178 if (!BestPhys) 1179 return 0; 1180 1181 evictInterference(VirtReg, BestPhys, NewVRegs); 1182 return BestPhys; 1183 } 1184 1185 //===----------------------------------------------------------------------===// 1186 // Region Splitting 1187 //===----------------------------------------------------------------------===// 1188 1189 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 1190 /// interference pattern in Physreg and its aliases. Add the constraints to 1191 /// SpillPlacement and return the static cost of this split in Cost, assuming 1192 /// that all preferences in SplitConstraints are met. 1193 /// Return false if there are no bundles with positive bias. 1194 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 1195 BlockFrequency &Cost) { 1196 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1197 1198 // Reset interference dependent info. 1199 SplitConstraints.resize(UseBlocks.size()); 1200 BlockFrequency StaticCost = 0; 1201 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1202 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1203 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1204 1205 BC.Number = BI.MBB->getNumber(); 1206 Intf.moveToBlock(BC.Number); 1207 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1208 BC.Exit = (BI.LiveOut && 1209 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 1210 ? SpillPlacement::PrefReg 1211 : SpillPlacement::DontCare; 1212 BC.ChangesValue = BI.FirstDef.isValid(); 1213 1214 if (!Intf.hasInterference()) 1215 continue; 1216 1217 // Number of spill code instructions to insert. 1218 unsigned Ins = 0; 1219 1220 // Interference for the live-in value. 1221 if (BI.LiveIn) { 1222 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 1223 BC.Entry = SpillPlacement::MustSpill; 1224 ++Ins; 1225 } else if (Intf.first() < BI.FirstInstr) { 1226 BC.Entry = SpillPlacement::PrefSpill; 1227 ++Ins; 1228 } else if (Intf.first() < BI.LastInstr) { 1229 ++Ins; 1230 } 1231 1232 // Abort if the spill cannot be inserted at the MBB' start 1233 if (((BC.Entry == SpillPlacement::MustSpill) || 1234 (BC.Entry == SpillPlacement::PrefSpill)) && 1235 SlotIndex::isEarlierInstr(BI.FirstInstr, 1236 SA->getFirstSplitPoint(BC.Number))) 1237 return false; 1238 } 1239 1240 // Interference for the live-out value. 1241 if (BI.LiveOut) { 1242 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 1243 BC.Exit = SpillPlacement::MustSpill; 1244 ++Ins; 1245 } else if (Intf.last() > BI.LastInstr) { 1246 BC.Exit = SpillPlacement::PrefSpill; 1247 ++Ins; 1248 } else if (Intf.last() > BI.FirstInstr) { 1249 ++Ins; 1250 } 1251 } 1252 1253 // Accumulate the total frequency of inserted spill code. 1254 while (Ins--) 1255 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 1256 } 1257 Cost = StaticCost; 1258 1259 // Add constraints for use-blocks. Note that these are the only constraints 1260 // that may add a positive bias, it is downhill from here. 1261 SpillPlacer->addConstraints(SplitConstraints); 1262 return SpillPlacer->scanActiveBundles(); 1263 } 1264 1265 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1266 /// live-through blocks in Blocks. 1267 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1268 ArrayRef<unsigned> Blocks) { 1269 const unsigned GroupSize = 8; 1270 SpillPlacement::BlockConstraint BCS[GroupSize]; 1271 unsigned TBS[GroupSize]; 1272 unsigned B = 0, T = 0; 1273 1274 for (unsigned Number : Blocks) { 1275 Intf.moveToBlock(Number); 1276 1277 if (!Intf.hasInterference()) { 1278 assert(T < GroupSize && "Array overflow"); 1279 TBS[T] = Number; 1280 if (++T == GroupSize) { 1281 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1282 T = 0; 1283 } 1284 continue; 1285 } 1286 1287 assert(B < GroupSize && "Array overflow"); 1288 BCS[B].Number = Number; 1289 1290 // Abort if the spill cannot be inserted at the MBB' start 1291 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 1292 if (!MBB->empty() && 1293 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()), 1294 SA->getFirstSplitPoint(Number))) 1295 return false; 1296 // Interference for the live-in value. 1297 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1298 BCS[B].Entry = SpillPlacement::MustSpill; 1299 else 1300 BCS[B].Entry = SpillPlacement::PrefSpill; 1301 1302 // Interference for the live-out value. 1303 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1304 BCS[B].Exit = SpillPlacement::MustSpill; 1305 else 1306 BCS[B].Exit = SpillPlacement::PrefSpill; 1307 1308 if (++B == GroupSize) { 1309 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1310 B = 0; 1311 } 1312 } 1313 1314 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1315 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1316 return true; 1317 } 1318 1319 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1320 // Keep track of through blocks that have not been added to SpillPlacer. 1321 BitVector Todo = SA->getThroughBlocks(); 1322 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1323 unsigned AddedTo = 0; 1324 #ifndef NDEBUG 1325 unsigned Visited = 0; 1326 #endif 1327 1328 while (true) { 1329 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1330 // Find new through blocks in the periphery of PrefRegBundles. 1331 for (unsigned Bundle : NewBundles) { 1332 // Look at all blocks connected to Bundle in the full graph. 1333 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1334 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 1335 I != E; ++I) { 1336 unsigned Block = *I; 1337 if (!Todo.test(Block)) 1338 continue; 1339 Todo.reset(Block); 1340 // This is a new through block. Add it to SpillPlacer later. 1341 ActiveBlocks.push_back(Block); 1342 #ifndef NDEBUG 1343 ++Visited; 1344 #endif 1345 } 1346 } 1347 // Any new blocks to add? 1348 if (ActiveBlocks.size() == AddedTo) 1349 break; 1350 1351 // Compute through constraints from the interference, or assume that all 1352 // through blocks prefer spilling when forming compact regions. 1353 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1354 if (Cand.PhysReg) { 1355 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 1356 return false; 1357 } else 1358 // Provide a strong negative bias on through blocks to prevent unwanted 1359 // liveness on loop backedges. 1360 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1361 AddedTo = ActiveBlocks.size(); 1362 1363 // Perhaps iterating can enable more bundles? 1364 SpillPlacer->iterate(); 1365 } 1366 LLVM_DEBUG(dbgs() << ", v=" << Visited); 1367 return true; 1368 } 1369 1370 /// calcCompactRegion - Compute the set of edge bundles that should be live 1371 /// when splitting the current live range into compact regions. Compact 1372 /// regions can be computed without looking at interference. They are the 1373 /// regions formed by removing all the live-through blocks from the live range. 1374 /// 1375 /// Returns false if the current live range is already compact, or if the 1376 /// compact regions would form single block regions anyway. 1377 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1378 // Without any through blocks, the live range is already compact. 1379 if (!SA->getNumThroughBlocks()) 1380 return false; 1381 1382 // Compact regions don't correspond to any physreg. 1383 Cand.reset(IntfCache, MCRegister::NoRegister); 1384 1385 LLVM_DEBUG(dbgs() << "Compact region bundles"); 1386 1387 // Use the spill placer to determine the live bundles. GrowRegion pretends 1388 // that all the through blocks have interference when PhysReg is unset. 1389 SpillPlacer->prepare(Cand.LiveBundles); 1390 1391 // The static split cost will be zero since Cand.Intf reports no interference. 1392 BlockFrequency Cost; 1393 if (!addSplitConstraints(Cand.Intf, Cost)) { 1394 LLVM_DEBUG(dbgs() << ", none.\n"); 1395 return false; 1396 } 1397 1398 if (!growRegion(Cand)) { 1399 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1400 return false; 1401 } 1402 1403 SpillPlacer->finish(); 1404 1405 if (!Cand.LiveBundles.any()) { 1406 LLVM_DEBUG(dbgs() << ", none.\n"); 1407 return false; 1408 } 1409 1410 LLVM_DEBUG({ 1411 for (int I : Cand.LiveBundles.set_bits()) 1412 dbgs() << " EB#" << I; 1413 dbgs() << ".\n"; 1414 }); 1415 return true; 1416 } 1417 1418 /// calcSpillCost - Compute how expensive it would be to split the live range in 1419 /// SA around all use blocks instead of forming bundle regions. 1420 BlockFrequency RAGreedy::calcSpillCost() { 1421 BlockFrequency Cost = 0; 1422 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1423 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1424 unsigned Number = BI.MBB->getNumber(); 1425 // We normally only need one spill instruction - a load or a store. 1426 Cost += SpillPlacer->getBlockFrequency(Number); 1427 1428 // Unless the value is redefined in the block. 1429 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1430 Cost += SpillPlacer->getBlockFrequency(Number); 1431 } 1432 return Cost; 1433 } 1434 1435 /// Check if splitting Evictee will create a local split interval in 1436 /// basic block number BBNumber that may cause a bad eviction chain. This is 1437 /// intended to prevent bad eviction sequences like: 1438 /// movl %ebp, 8(%esp) # 4-byte Spill 1439 /// movl %ecx, %ebp 1440 /// movl %ebx, %ecx 1441 /// movl %edi, %ebx 1442 /// movl %edx, %edi 1443 /// cltd 1444 /// idivl %esi 1445 /// movl %edi, %edx 1446 /// movl %ebx, %edi 1447 /// movl %ecx, %ebx 1448 /// movl %ebp, %ecx 1449 /// movl 16(%esp), %ebp # 4 - byte Reload 1450 /// 1451 /// Such sequences are created in 2 scenarios: 1452 /// 1453 /// Scenario #1: 1454 /// %0 is evicted from physreg0 by %1. 1455 /// Evictee %0 is intended for region splitting with split candidate 1456 /// physreg0 (the reg %0 was evicted from). 1457 /// Region splitting creates a local interval because of interference with the 1458 /// evictor %1 (normally region splitting creates 2 interval, the "by reg" 1459 /// and "by stack" intervals and local interval created when interference 1460 /// occurs). 1461 /// One of the split intervals ends up evicting %2 from physreg1. 1462 /// Evictee %2 is intended for region splitting with split candidate 1463 /// physreg1. 1464 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1465 /// 1466 /// Scenario #2 1467 /// %0 is evicted from physreg0 by %1. 1468 /// %2 is evicted from physreg2 by %3 etc. 1469 /// Evictee %0 is intended for region splitting with split candidate 1470 /// physreg1. 1471 /// Region splitting creates a local interval because of interference with the 1472 /// evictor %1. 1473 /// One of the split intervals ends up evicting back original evictor %1 1474 /// from physreg0 (the reg %0 was evicted from). 1475 /// Another evictee %2 is intended for region splitting with split candidate 1476 /// physreg1. 1477 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1478 /// 1479 /// \param Evictee The register considered to be split. 1480 /// \param Cand The split candidate that determines the physical register 1481 /// we are splitting for and the interferences. 1482 /// \param BBNumber The number of a BB for which the region split process will 1483 /// create a local split interval. 1484 /// \param Order The physical registers that may get evicted by a split 1485 /// artifact of Evictee. 1486 /// \return True if splitting Evictee may cause a bad eviction chain, false 1487 /// otherwise. 1488 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee, 1489 GlobalSplitCandidate &Cand, 1490 unsigned BBNumber, 1491 const AllocationOrder &Order) { 1492 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 1493 unsigned Evictor = VregEvictorInfo.first; 1494 MCRegister PhysReg = VregEvictorInfo.second; 1495 1496 // No actual evictor. 1497 if (!Evictor || !PhysReg) 1498 return false; 1499 1500 float MaxWeight = 0; 1501 MCRegister FutureEvictedPhysReg = 1502 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 1503 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 1504 1505 // The bad eviction chain occurs when either the split candidate is the 1506 // evicting reg or one of the split artifact will evict the evicting reg. 1507 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 1508 return false; 1509 1510 Cand.Intf.moveToBlock(BBNumber); 1511 1512 // Check to see if the Evictor contains interference (with Evictee) in the 1513 // given BB. If so, this interference caused the eviction of Evictee from 1514 // PhysReg. This suggest that we will create a local interval during the 1515 // region split to avoid this interference This local interval may cause a bad 1516 // eviction chain. 1517 if (!LIS->hasInterval(Evictor)) 1518 return false; 1519 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 1520 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 1521 return false; 1522 1523 // Now, check to see if the local interval we will create is going to be 1524 // expensive enough to evict somebody If so, this may cause a bad eviction 1525 // chain. 1526 float splitArtifactWeight = 1527 VRAI->futureWeight(LIS->getInterval(Evictee), 1528 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1529 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 1530 return false; 1531 1532 return true; 1533 } 1534 1535 /// Check if splitting VirtRegToSplit will create a local split interval 1536 /// in basic block number BBNumber that may cause a spill. 1537 /// 1538 /// \param VirtRegToSplit The register considered to be split. 1539 /// \param Cand The split candidate that determines the physical 1540 /// register we are splitting for and the interferences. 1541 /// \param BBNumber The number of a BB for which the region split process 1542 /// will create a local split interval. 1543 /// \param Order The physical registers that may get evicted by a 1544 /// split artifact of VirtRegToSplit. 1545 /// \return True if splitting VirtRegToSplit may cause a spill, false 1546 /// otherwise. 1547 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit, 1548 GlobalSplitCandidate &Cand, 1549 unsigned BBNumber, 1550 const AllocationOrder &Order) { 1551 Cand.Intf.moveToBlock(BBNumber); 1552 1553 // Check if the local interval will find a non interfereing assignment. 1554 for (auto PhysReg : Order.getOrder()) { 1555 if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(), 1556 Cand.Intf.last(), PhysReg)) 1557 return false; 1558 } 1559 1560 // Check if the local interval will evict a cheaper interval. 1561 float CheapestEvictWeight = 0; 1562 MCRegister FutureEvictedPhysReg = getCheapestEvicteeWeight( 1563 Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(), 1564 Cand.Intf.last(), &CheapestEvictWeight); 1565 1566 // Have we found an interval that can be evicted? 1567 if (FutureEvictedPhysReg) { 1568 float splitArtifactWeight = 1569 VRAI->futureWeight(LIS->getInterval(VirtRegToSplit), 1570 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1571 // Will the weight of the local interval be higher than the cheapest evictee 1572 // weight? If so it will evict it and will not cause a spill. 1573 if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight) 1574 return false; 1575 } 1576 1577 // The local interval is not able to find non interferencing assignment and 1578 // not able to evict a less worthy interval, therfore, it can cause a spill. 1579 return true; 1580 } 1581 1582 /// calcGlobalSplitCost - Return the global split cost of following the split 1583 /// pattern in LiveBundles. This cost should be added to the local cost of the 1584 /// interference pattern in SplitConstraints. 1585 /// 1586 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 1587 const AllocationOrder &Order, 1588 bool *CanCauseEvictionChain) { 1589 BlockFrequency GlobalCost = 0; 1590 const BitVector &LiveBundles = Cand.LiveBundles; 1591 Register VirtRegToSplit = SA->getParent().reg(); 1592 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1593 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1594 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1595 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1596 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1597 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1598 unsigned Ins = 0; 1599 1600 Cand.Intf.moveToBlock(BC.Number); 1601 // Check wheather a local interval is going to be created during the region 1602 // split. Calculate adavanced spilt cost (cost of local intervals) if option 1603 // is enabled. 1604 if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn && 1605 BI.LiveOut && RegIn && RegOut) { 1606 1607 if (CanCauseEvictionChain && 1608 splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { 1609 // This interference causes our eviction from this assignment, we might 1610 // evict somebody else and eventually someone will spill, add that cost. 1611 // See splitCanCauseEvictionChain for detailed description of scenarios. 1612 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1613 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1614 1615 *CanCauseEvictionChain = true; 1616 1617 } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number, 1618 Order)) { 1619 // This interference causes local interval to spill, add that cost. 1620 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1621 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1622 } 1623 } 1624 1625 if (BI.LiveIn) 1626 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1627 if (BI.LiveOut) 1628 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1629 while (Ins--) 1630 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1631 } 1632 1633 for (unsigned Number : Cand.ActiveBlocks) { 1634 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1635 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1636 if (!RegIn && !RegOut) 1637 continue; 1638 if (RegIn && RegOut) { 1639 // We need double spill code if this block has interference. 1640 Cand.Intf.moveToBlock(Number); 1641 if (Cand.Intf.hasInterference()) { 1642 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1643 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1644 1645 // Check wheather a local interval is going to be created during the 1646 // region split. 1647 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1648 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { 1649 // This interference cause our eviction from this assignment, we might 1650 // evict somebody else, add that cost. 1651 // See splitCanCauseEvictionChain for detailed description of 1652 // scenarios. 1653 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1654 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1655 1656 *CanCauseEvictionChain = true; 1657 } 1658 } 1659 continue; 1660 } 1661 // live-in / stack-out or stack-in live-out. 1662 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1663 } 1664 return GlobalCost; 1665 } 1666 1667 /// splitAroundRegion - Split the current live range around the regions 1668 /// determined by BundleCand and GlobalCand. 1669 /// 1670 /// Before calling this function, GlobalCand and BundleCand must be initialized 1671 /// so each bundle is assigned to a valid candidate, or NoCand for the 1672 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1673 /// objects must be initialized for the current live range, and intervals 1674 /// created for the used candidates. 1675 /// 1676 /// @param LREdit The LiveRangeEdit object handling the current split. 1677 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1678 /// must appear in this list. 1679 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1680 ArrayRef<unsigned> UsedCands) { 1681 // These are the intervals created for new global ranges. We may create more 1682 // intervals for local ranges. 1683 const unsigned NumGlobalIntvs = LREdit.size(); 1684 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 1685 << " globals.\n"); 1686 assert(NumGlobalIntvs && "No global intervals configured"); 1687 1688 // Isolate even single instructions when dealing with a proper sub-class. 1689 // That guarantees register class inflation for the stack interval because it 1690 // is all copies. 1691 Register Reg = SA->getParent().reg(); 1692 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1693 1694 // First handle all the blocks with uses. 1695 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1696 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1697 unsigned Number = BI.MBB->getNumber(); 1698 unsigned IntvIn = 0, IntvOut = 0; 1699 SlotIndex IntfIn, IntfOut; 1700 if (BI.LiveIn) { 1701 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1702 if (CandIn != NoCand) { 1703 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1704 IntvIn = Cand.IntvIdx; 1705 Cand.Intf.moveToBlock(Number); 1706 IntfIn = Cand.Intf.first(); 1707 } 1708 } 1709 if (BI.LiveOut) { 1710 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1711 if (CandOut != NoCand) { 1712 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1713 IntvOut = Cand.IntvIdx; 1714 Cand.Intf.moveToBlock(Number); 1715 IntfOut = Cand.Intf.last(); 1716 } 1717 } 1718 1719 // Create separate intervals for isolated blocks with multiple uses. 1720 if (!IntvIn && !IntvOut) { 1721 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 1722 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1723 SE->splitSingleBlock(BI); 1724 continue; 1725 } 1726 1727 if (IntvIn && IntvOut) 1728 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1729 else if (IntvIn) 1730 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1731 else 1732 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1733 } 1734 1735 // Handle live-through blocks. The relevant live-through blocks are stored in 1736 // the ActiveBlocks list with each candidate. We need to filter out 1737 // duplicates. 1738 BitVector Todo = SA->getThroughBlocks(); 1739 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1740 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1741 for (unsigned Number : Blocks) { 1742 if (!Todo.test(Number)) 1743 continue; 1744 Todo.reset(Number); 1745 1746 unsigned IntvIn = 0, IntvOut = 0; 1747 SlotIndex IntfIn, IntfOut; 1748 1749 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1750 if (CandIn != NoCand) { 1751 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1752 IntvIn = Cand.IntvIdx; 1753 Cand.Intf.moveToBlock(Number); 1754 IntfIn = Cand.Intf.first(); 1755 } 1756 1757 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1758 if (CandOut != NoCand) { 1759 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1760 IntvOut = Cand.IntvIdx; 1761 Cand.Intf.moveToBlock(Number); 1762 IntfOut = Cand.Intf.last(); 1763 } 1764 if (!IntvIn && !IntvOut) 1765 continue; 1766 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1767 } 1768 } 1769 1770 ++NumGlobalSplits; 1771 1772 SmallVector<unsigned, 8> IntvMap; 1773 SE->finish(&IntvMap); 1774 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1775 1776 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1777 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1778 1779 // Sort out the new intervals created by splitting. We get four kinds: 1780 // - Remainder intervals should not be split again. 1781 // - Candidate intervals can be assigned to Cand.PhysReg. 1782 // - Block-local splits are candidates for local splitting. 1783 // - DCE leftovers should go back on the queue. 1784 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1785 LiveInterval &Reg = LIS->getInterval(LREdit.get(I)); 1786 1787 // Ignore old intervals from DCE. 1788 if (getStage(Reg) != RS_New) 1789 continue; 1790 1791 // Remainder interval. Don't try splitting again, spill if it doesn't 1792 // allocate. 1793 if (IntvMap[I] == 0) { 1794 setStage(Reg, RS_Spill); 1795 continue; 1796 } 1797 1798 // Global intervals. Allow repeated splitting as long as the number of live 1799 // blocks is strictly decreasing. 1800 if (IntvMap[I] < NumGlobalIntvs) { 1801 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1802 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1803 << " blocks as original.\n"); 1804 // Don't allow repeated splitting as a safe guard against looping. 1805 setStage(Reg, RS_Split2); 1806 } 1807 continue; 1808 } 1809 1810 // Other intervals are treated as new. This includes local intervals created 1811 // for blocks with multiple uses, and anything created by DCE. 1812 } 1813 1814 if (VerifyEnabled) 1815 MF->verify(this, "After splitting live range around region"); 1816 } 1817 1818 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg, 1819 AllocationOrder &Order, 1820 SmallVectorImpl<Register> &NewVRegs) { 1821 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1822 return MCRegister::NoRegister; 1823 unsigned NumCands = 0; 1824 BlockFrequency SpillCost = calcSpillCost(); 1825 BlockFrequency BestCost; 1826 1827 // Check if we can split this live range around a compact region. 1828 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1829 if (HasCompact) { 1830 // Yes, keep GlobalCand[0] as the compact region candidate. 1831 NumCands = 1; 1832 BestCost = BlockFrequency::getMaxFrequency(); 1833 } else { 1834 // No benefit from the compact region, our fallback will be per-block 1835 // splitting. Make sure we find a solution that is cheaper than spilling. 1836 BestCost = SpillCost; 1837 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1838 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1839 } 1840 1841 bool CanCauseEvictionChain = false; 1842 unsigned BestCand = 1843 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1844 false /*IgnoreCSR*/, &CanCauseEvictionChain); 1845 1846 // Split candidates with compact regions can cause a bad eviction sequence. 1847 // See splitCanCauseEvictionChain for detailed description of scenarios. 1848 // To avoid it, we need to comapre the cost with the spill cost and not the 1849 // current max frequency. 1850 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && 1851 CanCauseEvictionChain) { 1852 return MCRegister::NoRegister; 1853 } 1854 1855 // No solutions found, fall back to single block splitting. 1856 if (!HasCompact && BestCand == NoCand) 1857 return MCRegister::NoRegister; 1858 1859 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1860 } 1861 1862 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1863 AllocationOrder &Order, 1864 BlockFrequency &BestCost, 1865 unsigned &NumCands, bool IgnoreCSR, 1866 bool *CanCauseEvictionChain) { 1867 unsigned BestCand = NoCand; 1868 for (MCPhysReg PhysReg : Order) { 1869 assert(PhysReg); 1870 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1871 continue; 1872 1873 // Discard bad candidates before we run out of interference cache cursors. 1874 // This will only affect register classes with a lot of registers (>32). 1875 if (NumCands == IntfCache.getMaxCursors()) { 1876 unsigned WorstCount = ~0u; 1877 unsigned Worst = 0; 1878 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) { 1879 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg) 1880 continue; 1881 unsigned Count = GlobalCand[CandIndex].LiveBundles.count(); 1882 if (Count < WorstCount) { 1883 Worst = CandIndex; 1884 WorstCount = Count; 1885 } 1886 } 1887 --NumCands; 1888 GlobalCand[Worst] = GlobalCand[NumCands]; 1889 if (BestCand == NumCands) 1890 BestCand = Worst; 1891 } 1892 1893 if (GlobalCand.size() <= NumCands) 1894 GlobalCand.resize(NumCands+1); 1895 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1896 Cand.reset(IntfCache, PhysReg); 1897 1898 SpillPlacer->prepare(Cand.LiveBundles); 1899 BlockFrequency Cost; 1900 if (!addSplitConstraints(Cand.Intf, Cost)) { 1901 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1902 continue; 1903 } 1904 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1905 MBFI->printBlockFreq(dbgs(), Cost)); 1906 if (Cost >= BestCost) { 1907 LLVM_DEBUG({ 1908 if (BestCand == NoCand) 1909 dbgs() << " worse than no bundles\n"; 1910 else 1911 dbgs() << " worse than " 1912 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1913 }); 1914 continue; 1915 } 1916 if (!growRegion(Cand)) { 1917 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1918 continue; 1919 } 1920 1921 SpillPlacer->finish(); 1922 1923 // No live bundles, defer to splitSingleBlocks(). 1924 if (!Cand.LiveBundles.any()) { 1925 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1926 continue; 1927 } 1928 1929 bool HasEvictionChain = false; 1930 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); 1931 LLVM_DEBUG({ 1932 dbgs() << ", total = "; 1933 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1934 for (int I : Cand.LiveBundles.set_bits()) 1935 dbgs() << " EB#" << I; 1936 dbgs() << ".\n"; 1937 }); 1938 if (Cost < BestCost) { 1939 BestCand = NumCands; 1940 BestCost = Cost; 1941 // See splitCanCauseEvictionChain for detailed description of bad 1942 // eviction chain scenarios. 1943 if (CanCauseEvictionChain) 1944 *CanCauseEvictionChain = HasEvictionChain; 1945 } 1946 ++NumCands; 1947 } 1948 1949 if (CanCauseEvictionChain && BestCand != NoCand) { 1950 // See splitCanCauseEvictionChain for detailed description of bad 1951 // eviction chain scenarios. 1952 LLVM_DEBUG(dbgs() << "Best split candidate of vreg " 1953 << printReg(VirtReg.reg(), TRI) << " may "); 1954 if (!(*CanCauseEvictionChain)) 1955 LLVM_DEBUG(dbgs() << "not "); 1956 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n"); 1957 } 1958 1959 return BestCand; 1960 } 1961 1962 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1963 bool HasCompact, 1964 SmallVectorImpl<Register> &NewVRegs) { 1965 SmallVector<unsigned, 8> UsedCands; 1966 // Prepare split editor. 1967 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1968 SE->reset(LREdit, SplitSpillMode); 1969 1970 // Assign all edge bundles to the preferred candidate, or NoCand. 1971 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1972 1973 // Assign bundles for the best candidate region. 1974 if (BestCand != NoCand) { 1975 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1976 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1977 UsedCands.push_back(BestCand); 1978 Cand.IntvIdx = SE->openIntv(); 1979 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1980 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1981 (void)B; 1982 } 1983 } 1984 1985 // Assign bundles for the compact region. 1986 if (HasCompact) { 1987 GlobalSplitCandidate &Cand = GlobalCand.front(); 1988 assert(!Cand.PhysReg && "Compact region has no physreg"); 1989 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1990 UsedCands.push_back(0); 1991 Cand.IntvIdx = SE->openIntv(); 1992 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 1993 << " bundles, intv " << Cand.IntvIdx << ".\n"); 1994 (void)B; 1995 } 1996 } 1997 1998 splitAroundRegion(LREdit, UsedCands); 1999 return 0; 2000 } 2001 2002 //===----------------------------------------------------------------------===// 2003 // Per-Block Splitting 2004 //===----------------------------------------------------------------------===// 2005 2006 /// tryBlockSplit - Split a global live range around every block with uses. This 2007 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 2008 /// they don't allocate. 2009 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2010 SmallVectorImpl<Register> &NewVRegs) { 2011 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 2012 Register Reg = VirtReg.reg(); 2013 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 2014 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2015 SE->reset(LREdit, SplitSpillMode); 2016 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 2017 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 2018 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 2019 SE->splitSingleBlock(BI); 2020 } 2021 // No blocks were split. 2022 if (LREdit.empty()) 2023 return 0; 2024 2025 // We did split for some blocks. 2026 SmallVector<unsigned, 8> IntvMap; 2027 SE->finish(&IntvMap); 2028 2029 // Tell LiveDebugVariables about the new ranges. 2030 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 2031 2032 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2033 2034 // Sort out the new intervals created by splitting. The remainder interval 2035 // goes straight to spilling, the new local ranges get to stay RS_New. 2036 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 2037 LiveInterval &LI = LIS->getInterval(LREdit.get(I)); 2038 if (getStage(LI) == RS_New && IntvMap[I] == 0) 2039 setStage(LI, RS_Spill); 2040 } 2041 2042 if (VerifyEnabled) 2043 MF->verify(this, "After splitting live range around basic blocks"); 2044 return 0; 2045 } 2046 2047 //===----------------------------------------------------------------------===// 2048 // Per-Instruction Splitting 2049 //===----------------------------------------------------------------------===// 2050 2051 /// Get the number of allocatable registers that match the constraints of \p Reg 2052 /// on \p MI and that are also in \p SuperRC. 2053 static unsigned getNumAllocatableRegsForConstraints( 2054 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, 2055 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 2056 const RegisterClassInfo &RCI) { 2057 assert(SuperRC && "Invalid register class"); 2058 2059 const TargetRegisterClass *ConstrainedRC = 2060 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 2061 /* ExploreBundle */ true); 2062 if (!ConstrainedRC) 2063 return 0; 2064 return RCI.getNumAllocatableRegs(ConstrainedRC); 2065 } 2066 2067 /// tryInstructionSplit - Split a live range around individual instructions. 2068 /// This is normally not worthwhile since the spiller is doing essentially the 2069 /// same thing. However, when the live range is in a constrained register 2070 /// class, it may help to insert copies such that parts of the live range can 2071 /// be moved to a larger register class. 2072 /// 2073 /// This is similar to spilling to a larger register class. 2074 unsigned 2075 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2076 SmallVectorImpl<Register> &NewVRegs) { 2077 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2078 // There is no point to this if there are no larger sub-classes. 2079 if (!RegClassInfo.isProperSubClass(CurRC)) 2080 return 0; 2081 2082 // Always enable split spill mode, since we're effectively spilling to a 2083 // register. 2084 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2085 SE->reset(LREdit, SplitEditor::SM_Size); 2086 2087 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2088 if (Uses.size() <= 1) 2089 return 0; 2090 2091 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 2092 << " individual instrs.\n"); 2093 2094 const TargetRegisterClass *SuperRC = 2095 TRI->getLargestLegalSuperClass(CurRC, *MF); 2096 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 2097 // Split around every non-copy instruction if this split will relax 2098 // the constraints on the virtual register. 2099 // Otherwise, splitting just inserts uncoalescable copies that do not help 2100 // the allocation. 2101 for (const auto &Use : Uses) { 2102 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) 2103 if (MI->isFullCopy() || 2104 SuperRCNumAllocatableRegs == 2105 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, 2106 TII, TRI, RCI)) { 2107 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI); 2108 continue; 2109 } 2110 SE->openIntv(); 2111 SlotIndex SegStart = SE->enterIntvBefore(Use); 2112 SlotIndex SegStop = SE->leaveIntvAfter(Use); 2113 SE->useIntv(SegStart, SegStop); 2114 } 2115 2116 if (LREdit.empty()) { 2117 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 2118 return 0; 2119 } 2120 2121 SmallVector<unsigned, 8> IntvMap; 2122 SE->finish(&IntvMap); 2123 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2124 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2125 2126 // Assign all new registers to RS_Spill. This was the last chance. 2127 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 2128 return 0; 2129 } 2130 2131 //===----------------------------------------------------------------------===// 2132 // Local Splitting 2133 //===----------------------------------------------------------------------===// 2134 2135 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 2136 /// in order to use PhysReg between two entries in SA->UseSlots. 2137 /// 2138 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1]. 2139 /// 2140 void RAGreedy::calcGapWeights(MCRegister PhysReg, 2141 SmallVectorImpl<float> &GapWeight) { 2142 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2143 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2144 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2145 const unsigned NumGaps = Uses.size()-1; 2146 2147 // Start and end points for the interference check. 2148 SlotIndex StartIdx = 2149 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 2150 SlotIndex StopIdx = 2151 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 2152 2153 GapWeight.assign(NumGaps, 0.0f); 2154 2155 // Add interference from each overlapping register. 2156 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2157 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 2158 .checkInterference()) 2159 continue; 2160 2161 // We know that VirtReg is a continuous interval from FirstInstr to 2162 // LastInstr, so we don't need InterferenceQuery. 2163 // 2164 // Interference that overlaps an instruction is counted in both gaps 2165 // surrounding the instruction. The exception is interference before 2166 // StartIdx and after StopIdx. 2167 // 2168 LiveIntervalUnion::SegmentIter IntI = 2169 Matrix->getLiveUnions()[*Units] .find(StartIdx); 2170 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 2171 // Skip the gaps before IntI. 2172 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 2173 if (++Gap == NumGaps) 2174 break; 2175 if (Gap == NumGaps) 2176 break; 2177 2178 // Update the gaps covered by IntI. 2179 const float weight = IntI.value()->weight(); 2180 for (; Gap != NumGaps; ++Gap) { 2181 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 2182 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 2183 break; 2184 } 2185 if (Gap == NumGaps) 2186 break; 2187 } 2188 } 2189 2190 // Add fixed interference. 2191 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2192 const LiveRange &LR = LIS->getRegUnit(*Units); 2193 LiveRange::const_iterator I = LR.find(StartIdx); 2194 LiveRange::const_iterator E = LR.end(); 2195 2196 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 2197 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 2198 while (Uses[Gap+1].getBoundaryIndex() < I->start) 2199 if (++Gap == NumGaps) 2200 break; 2201 if (Gap == NumGaps) 2202 break; 2203 2204 for (; Gap != NumGaps; ++Gap) { 2205 GapWeight[Gap] = huge_valf; 2206 if (Uses[Gap+1].getBaseIndex() >= I->end) 2207 break; 2208 } 2209 if (Gap == NumGaps) 2210 break; 2211 } 2212 } 2213 } 2214 2215 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 2216 /// basic block. 2217 /// 2218 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2219 SmallVectorImpl<Register> &NewVRegs) { 2220 // TODO: the function currently only handles a single UseBlock; it should be 2221 // possible to generalize. 2222 if (SA->getUseBlocks().size() != 1) 2223 return 0; 2224 2225 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2226 2227 // Note that it is possible to have an interval that is live-in or live-out 2228 // while only covering a single block - A phi-def can use undef values from 2229 // predecessors, and the block could be a single-block loop. 2230 // We don't bother doing anything clever about such a case, we simply assume 2231 // that the interval is continuous from FirstInstr to LastInstr. We should 2232 // make sure that we don't do anything illegal to such an interval, though. 2233 2234 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2235 if (Uses.size() <= 2) 2236 return 0; 2237 const unsigned NumGaps = Uses.size()-1; 2238 2239 LLVM_DEBUG({ 2240 dbgs() << "tryLocalSplit: "; 2241 for (const auto &Use : Uses) 2242 dbgs() << ' ' << Use; 2243 dbgs() << '\n'; 2244 }); 2245 2246 // If VirtReg is live across any register mask operands, compute a list of 2247 // gaps with register masks. 2248 SmallVector<unsigned, 8> RegMaskGaps; 2249 if (Matrix->checkRegMaskInterference(VirtReg)) { 2250 // Get regmask slots for the whole block. 2251 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 2252 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 2253 // Constrain to VirtReg's live range. 2254 unsigned RI = 2255 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 2256 unsigned RE = RMS.size(); 2257 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) { 2258 // Look for Uses[I] <= RMS <= Uses[I + 1]. 2259 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I])); 2260 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI])) 2261 continue; 2262 // Skip a regmask on the same instruction as the last use. It doesn't 2263 // overlap the live range. 2264 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps) 2265 break; 2266 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-' 2267 << Uses[I + 1]); 2268 RegMaskGaps.push_back(I); 2269 // Advance ri to the next gap. A regmask on one of the uses counts in 2270 // both gaps. 2271 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1])) 2272 ++RI; 2273 } 2274 LLVM_DEBUG(dbgs() << '\n'); 2275 } 2276 2277 // Since we allow local split results to be split again, there is a risk of 2278 // creating infinite loops. It is tempting to require that the new live 2279 // ranges have less instructions than the original. That would guarantee 2280 // convergence, but it is too strict. A live range with 3 instructions can be 2281 // split 2+3 (including the COPY), and we want to allow that. 2282 // 2283 // Instead we use these rules: 2284 // 2285 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 2286 // noop split, of course). 2287 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 2288 // the new ranges must have fewer instructions than before the split. 2289 // 3. New ranges with the same number of instructions are marked RS_Split2, 2290 // smaller ranges are marked RS_New. 2291 // 2292 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 2293 // excessive splitting and infinite loops. 2294 // 2295 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 2296 2297 // Best split candidate. 2298 unsigned BestBefore = NumGaps; 2299 unsigned BestAfter = 0; 2300 float BestDiff = 0; 2301 2302 const float blockFreq = 2303 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 2304 (1.0f / MBFI->getEntryFreq()); 2305 SmallVector<float, 8> GapWeight; 2306 2307 for (MCPhysReg PhysReg : Order) { 2308 assert(PhysReg); 2309 // Keep track of the largest spill weight that would need to be evicted in 2310 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1]. 2311 calcGapWeights(PhysReg, GapWeight); 2312 2313 // Remove any gaps with regmask clobbers. 2314 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 2315 for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I) 2316 GapWeight[RegMaskGaps[I]] = huge_valf; 2317 2318 // Try to find the best sequence of gaps to close. 2319 // The new spill weight must be larger than any gap interference. 2320 2321 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 2322 unsigned SplitBefore = 0, SplitAfter = 1; 2323 2324 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 2325 // It is the spill weight that needs to be evicted. 2326 float MaxGap = GapWeight[0]; 2327 2328 while (true) { 2329 // Live before/after split? 2330 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 2331 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 2332 2333 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 2334 << '-' << Uses[SplitAfter] << " I=" << MaxGap); 2335 2336 // Stop before the interval gets so big we wouldn't be making progress. 2337 if (!LiveBefore && !LiveAfter) { 2338 LLVM_DEBUG(dbgs() << " all\n"); 2339 break; 2340 } 2341 // Should the interval be extended or shrunk? 2342 bool Shrink = true; 2343 2344 // How many gaps would the new range have? 2345 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 2346 2347 // Legally, without causing looping? 2348 bool Legal = !ProgressRequired || NewGaps < NumGaps; 2349 2350 if (Legal && MaxGap < huge_valf) { 2351 // Estimate the new spill weight. Each instruction reads or writes the 2352 // register. Conservatively assume there are no read-modify-write 2353 // instructions. 2354 // 2355 // Try to guess the size of the new interval. 2356 const float EstWeight = normalizeSpillWeight( 2357 blockFreq * (NewGaps + 1), 2358 Uses[SplitBefore].distance(Uses[SplitAfter]) + 2359 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 2360 1); 2361 // Would this split be possible to allocate? 2362 // Never allocate all gaps, we wouldn't be making progress. 2363 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 2364 if (EstWeight * Hysteresis >= MaxGap) { 2365 Shrink = false; 2366 float Diff = EstWeight - MaxGap; 2367 if (Diff > BestDiff) { 2368 LLVM_DEBUG(dbgs() << " (best)"); 2369 BestDiff = Hysteresis * Diff; 2370 BestBefore = SplitBefore; 2371 BestAfter = SplitAfter; 2372 } 2373 } 2374 } 2375 2376 // Try to shrink. 2377 if (Shrink) { 2378 if (++SplitBefore < SplitAfter) { 2379 LLVM_DEBUG(dbgs() << " shrink\n"); 2380 // Recompute the max when necessary. 2381 if (GapWeight[SplitBefore - 1] >= MaxGap) { 2382 MaxGap = GapWeight[SplitBefore]; 2383 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I) 2384 MaxGap = std::max(MaxGap, GapWeight[I]); 2385 } 2386 continue; 2387 } 2388 MaxGap = 0; 2389 } 2390 2391 // Try to extend the interval. 2392 if (SplitAfter >= NumGaps) { 2393 LLVM_DEBUG(dbgs() << " end\n"); 2394 break; 2395 } 2396 2397 LLVM_DEBUG(dbgs() << " extend\n"); 2398 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 2399 } 2400 } 2401 2402 // Didn't find any candidates? 2403 if (BestBefore == NumGaps) 2404 return 0; 2405 2406 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 2407 << Uses[BestAfter] << ", " << BestDiff << ", " 2408 << (BestAfter - BestBefore + 1) << " instrs\n"); 2409 2410 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2411 SE->reset(LREdit); 2412 2413 SE->openIntv(); 2414 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 2415 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 2416 SE->useIntv(SegStart, SegStop); 2417 SmallVector<unsigned, 8> IntvMap; 2418 SE->finish(&IntvMap); 2419 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2420 2421 // If the new range has the same number of instructions as before, mark it as 2422 // RS_Split2 so the next split will be forced to make progress. Otherwise, 2423 // leave the new intervals as RS_New so they can compete. 2424 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 2425 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 2426 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 2427 if (NewGaps >= NumGaps) { 2428 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: "); 2429 assert(!ProgressRequired && "Didn't make progress when it was required."); 2430 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I) 2431 if (IntvMap[I] == 1) { 2432 setStage(LIS->getInterval(LREdit.get(I)), RS_Split2); 2433 LLVM_DEBUG(dbgs() << printReg(LREdit.get(I))); 2434 } 2435 LLVM_DEBUG(dbgs() << '\n'); 2436 } 2437 ++NumLocalSplits; 2438 2439 return 0; 2440 } 2441 2442 //===----------------------------------------------------------------------===// 2443 // Live Range Splitting 2444 //===----------------------------------------------------------------------===// 2445 2446 /// trySplit - Try to split VirtReg or one of its interferences, making it 2447 /// assignable. 2448 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 2449 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 2450 SmallVectorImpl<Register> &NewVRegs, 2451 const SmallVirtRegSet &FixedRegisters) { 2452 // Ranges must be Split2 or less. 2453 if (getStage(VirtReg) >= RS_Spill) 2454 return 0; 2455 2456 // Local intervals are handled separately. 2457 if (LIS->intervalIsInOneMBB(VirtReg)) { 2458 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 2459 TimerGroupDescription, TimePassesIsEnabled); 2460 SA->analyze(&VirtReg); 2461 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 2462 if (PhysReg || !NewVRegs.empty()) 2463 return PhysReg; 2464 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2465 } 2466 2467 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2468 TimerGroupDescription, TimePassesIsEnabled); 2469 2470 SA->analyze(&VirtReg); 2471 2472 // FIXME: SplitAnalysis may repair broken live ranges coming from the 2473 // coalescer. That may cause the range to become allocatable which means that 2474 // tryRegionSplit won't be making progress. This check should be replaced with 2475 // an assertion when the coalescer is fixed. 2476 if (SA->didRepairRange()) { 2477 // VirtReg has changed, so all cached queries are invalid. 2478 Matrix->invalidateVirtRegs(); 2479 if (Register PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) 2480 return PhysReg; 2481 } 2482 2483 // First try to split around a region spanning multiple blocks. RS_Split2 2484 // ranges already made dubious progress with region splitting, so they go 2485 // straight to single block splitting. 2486 if (getStage(VirtReg) < RS_Split2) { 2487 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2488 if (PhysReg || !NewVRegs.empty()) 2489 return PhysReg; 2490 } 2491 2492 // Then isolate blocks. 2493 return tryBlockSplit(VirtReg, Order, NewVRegs); 2494 } 2495 2496 //===----------------------------------------------------------------------===// 2497 // Last Chance Recoloring 2498 //===----------------------------------------------------------------------===// 2499 2500 /// Return true if \p reg has any tied def operand. 2501 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 2502 for (const MachineOperand &MO : MRI->def_operands(reg)) 2503 if (MO.isTied()) 2504 return true; 2505 2506 return false; 2507 } 2508 2509 /// mayRecolorAllInterferences - Check if the virtual registers that 2510 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2511 /// recolored to free \p PhysReg. 2512 /// When true is returned, \p RecoloringCandidates has been augmented with all 2513 /// the live intervals that need to be recolored in order to free \p PhysReg 2514 /// for \p VirtReg. 2515 /// \p FixedRegisters contains all the virtual registers that cannot be 2516 /// recolored. 2517 bool RAGreedy::mayRecolorAllInterferences( 2518 MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates, 2519 const SmallVirtRegSet &FixedRegisters) { 2520 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2521 2522 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2523 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2524 // If there is LastChanceRecoloringMaxInterference or more interferences, 2525 // chances are one would not be recolorable. 2526 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= 2527 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { 2528 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2529 CutOffInfo |= CO_Interf; 2530 return false; 2531 } 2532 for (LiveInterval *Intf : reverse(Q.interferingVRegs())) { 2533 // If Intf is done and sit on the same register class as VirtReg, 2534 // it would not be recolorable as it is in the same state as VirtReg. 2535 // However, if VirtReg has tied defs and Intf doesn't, then 2536 // there is still a point in examining if it can be recolorable. 2537 if (((getStage(*Intf) == RS_Done && 2538 MRI->getRegClass(Intf->reg()) == CurRC) && 2539 !(hasTiedDef(MRI, VirtReg.reg()) && 2540 !hasTiedDef(MRI, Intf->reg()))) || 2541 FixedRegisters.count(Intf->reg())) { 2542 LLVM_DEBUG( 2543 dbgs() << "Early abort: the interference is not recolorable.\n"); 2544 return false; 2545 } 2546 RecoloringCandidates.insert(Intf); 2547 } 2548 } 2549 return true; 2550 } 2551 2552 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2553 /// its interferences. 2554 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2555 /// virtual register that was using it. The recoloring process may recursively 2556 /// use the last chance recoloring. Therefore, when a virtual register has been 2557 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2558 /// be last-chance-recolored again during this recoloring "session". 2559 /// E.g., 2560 /// Let 2561 /// vA can use {R1, R2 } 2562 /// vB can use { R2, R3} 2563 /// vC can use {R1 } 2564 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2565 /// instance) and they all interfere. 2566 /// 2567 /// vA is assigned R1 2568 /// vB is assigned R2 2569 /// vC tries to evict vA but vA is already done. 2570 /// Regular register allocation fails. 2571 /// 2572 /// Last chance recoloring kicks in: 2573 /// vC does as if vA was evicted => vC uses R1. 2574 /// vC is marked as fixed. 2575 /// vA needs to find a color. 2576 /// None are available. 2577 /// vA cannot evict vC: vC is a fixed virtual register now. 2578 /// vA does as if vB was evicted => vA uses R2. 2579 /// vB needs to find a color. 2580 /// R3 is available. 2581 /// Recoloring => vC = R1, vA = R2, vB = R3 2582 /// 2583 /// \p Order defines the preferred allocation order for \p VirtReg. 2584 /// \p NewRegs will contain any new virtual register that have been created 2585 /// (split, spill) during the process and that must be assigned. 2586 /// \p FixedRegisters contains all the virtual registers that cannot be 2587 /// recolored. 2588 /// \p Depth gives the current depth of the last chance recoloring. 2589 /// \return a physical register that can be used for VirtReg or ~0u if none 2590 /// exists. 2591 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2592 AllocationOrder &Order, 2593 SmallVectorImpl<Register> &NewVRegs, 2594 SmallVirtRegSet &FixedRegisters, 2595 unsigned Depth) { 2596 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) 2597 return ~0u; 2598 2599 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2600 // Ranges must be Done. 2601 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2602 "Last chance recoloring should really be last chance"); 2603 // Set the max depth to LastChanceRecoloringMaxDepth. 2604 // We may want to reconsider that if we end up with a too large search space 2605 // for target with hundreds of registers. 2606 // Indeed, in that case we may want to cut the search space earlier. 2607 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2608 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2609 CutOffInfo |= CO_Depth; 2610 return ~0u; 2611 } 2612 2613 // Set of Live intervals that will need to be recolored. 2614 SmallLISet RecoloringCandidates; 2615 // Record the original mapping virtual register to physical register in case 2616 // the recoloring fails. 2617 DenseMap<Register, MCRegister> VirtRegToPhysReg; 2618 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2619 // this recoloring "session". 2620 assert(!FixedRegisters.count(VirtReg.reg())); 2621 FixedRegisters.insert(VirtReg.reg()); 2622 SmallVector<Register, 4> CurrentNewVRegs; 2623 2624 for (MCRegister PhysReg : Order) { 2625 assert(PhysReg.isValid()); 2626 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2627 << printReg(PhysReg, TRI) << '\n'); 2628 RecoloringCandidates.clear(); 2629 VirtRegToPhysReg.clear(); 2630 CurrentNewVRegs.clear(); 2631 2632 // It is only possible to recolor virtual register interference. 2633 if (Matrix->checkInterference(VirtReg, PhysReg) > 2634 LiveRegMatrix::IK_VirtReg) { 2635 LLVM_DEBUG( 2636 dbgs() << "Some interferences are not with virtual registers.\n"); 2637 2638 continue; 2639 } 2640 2641 // Early give up on this PhysReg if it is obvious we cannot recolor all 2642 // the interferences. 2643 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2644 FixedRegisters)) { 2645 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2646 continue; 2647 } 2648 2649 // RecoloringCandidates contains all the virtual registers that interfer 2650 // with VirtReg on PhysReg (or one of its aliases). 2651 // Enqueue them for recoloring and perform the actual recoloring. 2652 PQueue RecoloringQueue; 2653 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2654 EndIt = RecoloringCandidates.end(); 2655 It != EndIt; ++It) { 2656 Register ItVirtReg = (*It)->reg(); 2657 enqueue(RecoloringQueue, *It); 2658 assert(VRM->hasPhys(ItVirtReg) && 2659 "Interferences are supposed to be with allocated variables"); 2660 2661 // Record the current allocation. 2662 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2663 // unset the related struct. 2664 Matrix->unassign(**It); 2665 } 2666 2667 // Do as if VirtReg was assigned to PhysReg so that the underlying 2668 // recoloring has the right information about the interferes and 2669 // available colors. 2670 Matrix->assign(VirtReg, PhysReg); 2671 2672 // Save the current recoloring state. 2673 // If we cannot recolor all the interferences, we will have to start again 2674 // at this point for the next physical register. 2675 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2676 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2677 FixedRegisters, Depth)) { 2678 // Push the queued vregs into the main queue. 2679 for (Register NewVReg : CurrentNewVRegs) 2680 NewVRegs.push_back(NewVReg); 2681 // Do not mess up with the global assignment process. 2682 // I.e., VirtReg must be unassigned. 2683 Matrix->unassign(VirtReg); 2684 return PhysReg; 2685 } 2686 2687 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2688 << printReg(PhysReg, TRI) << '\n'); 2689 2690 // The recoloring attempt failed, undo the changes. 2691 FixedRegisters = SaveFixedRegisters; 2692 Matrix->unassign(VirtReg); 2693 2694 // For a newly created vreg which is also in RecoloringCandidates, 2695 // don't add it to NewVRegs because its physical register will be restored 2696 // below. Other vregs in CurrentNewVRegs are created by calling 2697 // selectOrSplit and should be added into NewVRegs. 2698 for (SmallVectorImpl<Register>::iterator Next = CurrentNewVRegs.begin(), 2699 End = CurrentNewVRegs.end(); 2700 Next != End; ++Next) { 2701 if (RecoloringCandidates.count(&LIS->getInterval(*Next))) 2702 continue; 2703 NewVRegs.push_back(*Next); 2704 } 2705 2706 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2707 EndIt = RecoloringCandidates.end(); 2708 It != EndIt; ++It) { 2709 Register ItVirtReg = (*It)->reg(); 2710 if (VRM->hasPhys(ItVirtReg)) 2711 Matrix->unassign(**It); 2712 MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2713 Matrix->assign(**It, ItPhysReg); 2714 } 2715 } 2716 2717 // Last chance recoloring did not worked either, give up. 2718 return ~0u; 2719 } 2720 2721 /// tryRecoloringCandidates - Try to assign a new color to every register 2722 /// in \RecoloringQueue. 2723 /// \p NewRegs will contain any new virtual register created during the 2724 /// recoloring process. 2725 /// \p FixedRegisters[in/out] contains all the registers that have been 2726 /// recolored. 2727 /// \return true if all virtual registers in RecoloringQueue were successfully 2728 /// recolored, false otherwise. 2729 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2730 SmallVectorImpl<Register> &NewVRegs, 2731 SmallVirtRegSet &FixedRegisters, 2732 unsigned Depth) { 2733 while (!RecoloringQueue.empty()) { 2734 LiveInterval *LI = dequeue(RecoloringQueue); 2735 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2736 MCRegister PhysReg = 2737 selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2738 // When splitting happens, the live-range may actually be empty. 2739 // In that case, this is okay to continue the recoloring even 2740 // if we did not find an alternative color for it. Indeed, 2741 // there will not be anything to color for LI in the end. 2742 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2743 return false; 2744 2745 if (!PhysReg) { 2746 assert(LI->empty() && "Only empty live-range do not require a register"); 2747 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2748 << " succeeded. Empty LI.\n"); 2749 continue; 2750 } 2751 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2752 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2753 2754 Matrix->assign(*LI, PhysReg); 2755 FixedRegisters.insert(LI->reg()); 2756 } 2757 return true; 2758 } 2759 2760 //===----------------------------------------------------------------------===// 2761 // Main Entry Point 2762 //===----------------------------------------------------------------------===// 2763 2764 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2765 SmallVectorImpl<Register> &NewVRegs) { 2766 CutOffInfo = CO_None; 2767 LLVMContext &Ctx = MF->getFunction().getContext(); 2768 SmallVirtRegSet FixedRegisters; 2769 MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2770 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2771 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2772 if (CutOffEncountered == CO_Depth) 2773 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2774 "reached. Use -fexhaustive-register-search to skip " 2775 "cutoffs"); 2776 else if (CutOffEncountered == CO_Interf) 2777 Ctx.emitError("register allocation failed: maximum interference for " 2778 "recoloring reached. Use -fexhaustive-register-search " 2779 "to skip cutoffs"); 2780 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2781 Ctx.emitError("register allocation failed: maximum interference and " 2782 "depth for recoloring reached. Use " 2783 "-fexhaustive-register-search to skip cutoffs"); 2784 } 2785 return Reg; 2786 } 2787 2788 /// Using a CSR for the first time has a cost because it causes push|pop 2789 /// to be added to prologue|epilogue. Splitting a cold section of the live 2790 /// range can have lower cost than using the CSR for the first time; 2791 /// Spilling a live range in the cold path can have lower cost than using 2792 /// the CSR for the first time. Returns the physical register if we decide 2793 /// to use the CSR; otherwise return 0. 2794 MCRegister 2795 RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 2796 MCRegister PhysReg, unsigned &CostPerUseLimit, 2797 SmallVectorImpl<Register> &NewVRegs) { 2798 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2799 // We choose spill over using the CSR for the first time if the spill cost 2800 // is lower than CSRCost. 2801 SA->analyze(&VirtReg); 2802 if (calcSpillCost() >= CSRCost) 2803 return PhysReg; 2804 2805 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2806 // we will not use a callee-saved register in tryEvict. 2807 CostPerUseLimit = 1; 2808 return 0; 2809 } 2810 if (getStage(VirtReg) < RS_Split) { 2811 // We choose pre-splitting over using the CSR for the first time if 2812 // the cost of splitting is lower than CSRCost. 2813 SA->analyze(&VirtReg); 2814 unsigned NumCands = 0; 2815 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2816 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2817 NumCands, true /*IgnoreCSR*/); 2818 if (BestCand == NoCand) 2819 // Use the CSR if we can't find a region split below CSRCost. 2820 return PhysReg; 2821 2822 // Perform the actual pre-splitting. 2823 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2824 return 0; 2825 } 2826 return PhysReg; 2827 } 2828 2829 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2830 // Do not keep invalid information around. 2831 SetOfBrokenHints.remove(&LI); 2832 } 2833 2834 void RAGreedy::initializeCSRCost() { 2835 // We use the larger one out of the command-line option and the value report 2836 // by TRI. 2837 CSRCost = BlockFrequency( 2838 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2839 if (!CSRCost.getFrequency()) 2840 return; 2841 2842 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2843 uint64_t ActualEntry = MBFI->getEntryFreq(); 2844 if (!ActualEntry) { 2845 CSRCost = 0; 2846 return; 2847 } 2848 uint64_t FixedEntry = 1 << 14; 2849 if (ActualEntry < FixedEntry) 2850 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2851 else if (ActualEntry <= UINT32_MAX) 2852 // Invert the fraction and divide. 2853 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2854 else 2855 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2856 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2857 } 2858 2859 /// Collect the hint info for \p Reg. 2860 /// The results are stored into \p Out. 2861 /// \p Out is not cleared before being populated. 2862 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) { 2863 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2864 if (!Instr.isFullCopy()) 2865 continue; 2866 // Look for the other end of the copy. 2867 Register OtherReg = Instr.getOperand(0).getReg(); 2868 if (OtherReg == Reg) { 2869 OtherReg = Instr.getOperand(1).getReg(); 2870 if (OtherReg == Reg) 2871 continue; 2872 } 2873 // Get the current assignment. 2874 MCRegister OtherPhysReg = 2875 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 2876 // Push the collected information. 2877 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2878 OtherPhysReg)); 2879 } 2880 } 2881 2882 /// Using the given \p List, compute the cost of the broken hints if 2883 /// \p PhysReg was used. 2884 /// \return The cost of \p List for \p PhysReg. 2885 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2886 MCRegister PhysReg) { 2887 BlockFrequency Cost = 0; 2888 for (const HintInfo &Info : List) { 2889 if (Info.PhysReg != PhysReg) 2890 Cost += Info.Freq; 2891 } 2892 return Cost; 2893 } 2894 2895 /// Using the register assigned to \p VirtReg, try to recolor 2896 /// all the live ranges that are copy-related with \p VirtReg. 2897 /// The recoloring is then propagated to all the live-ranges that have 2898 /// been recolored and so on, until no more copies can be coalesced or 2899 /// it is not profitable. 2900 /// For a given live range, profitability is determined by the sum of the 2901 /// frequencies of the non-identity copies it would introduce with the old 2902 /// and new register. 2903 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2904 // We have a broken hint, check if it is possible to fix it by 2905 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2906 // some register and PhysReg may be available for the other live-ranges. 2907 SmallSet<Register, 4> Visited; 2908 SmallVector<unsigned, 2> RecoloringCandidates; 2909 HintsInfo Info; 2910 Register Reg = VirtReg.reg(); 2911 MCRegister PhysReg = VRM->getPhys(Reg); 2912 // Start the recoloring algorithm from the input live-interval, then 2913 // it will propagate to the ones that are copy-related with it. 2914 Visited.insert(Reg); 2915 RecoloringCandidates.push_back(Reg); 2916 2917 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2918 << '(' << printReg(PhysReg, TRI) << ")\n"); 2919 2920 do { 2921 Reg = RecoloringCandidates.pop_back_val(); 2922 2923 // We cannot recolor physical register. 2924 if (Register::isPhysicalRegister(Reg)) 2925 continue; 2926 2927 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!"); 2928 2929 // Get the live interval mapped with this virtual register to be able 2930 // to check for the interference with the new color. 2931 LiveInterval &LI = LIS->getInterval(Reg); 2932 MCRegister CurrPhys = VRM->getPhys(Reg); 2933 // Check that the new color matches the register class constraints and 2934 // that it is free for this live range. 2935 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2936 Matrix->checkInterference(LI, PhysReg))) 2937 continue; 2938 2939 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2940 << ") is recolorable.\n"); 2941 2942 // Gather the hint info. 2943 Info.clear(); 2944 collectHintInfo(Reg, Info); 2945 // Check if recoloring the live-range will increase the cost of the 2946 // non-identity copies. 2947 if (CurrPhys != PhysReg) { 2948 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2949 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2950 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2951 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2952 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2953 << '\n'); 2954 if (OldCopiesCost < NewCopiesCost) { 2955 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2956 continue; 2957 } 2958 // At this point, the cost is either cheaper or equal. If it is 2959 // equal, we consider this is profitable because it may expose 2960 // more recoloring opportunities. 2961 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2962 // Recolor the live-range. 2963 Matrix->unassign(LI); 2964 Matrix->assign(LI, PhysReg); 2965 } 2966 // Push all copy-related live-ranges to keep reconciling the broken 2967 // hints. 2968 for (const HintInfo &HI : Info) { 2969 if (Visited.insert(HI.Reg).second) 2970 RecoloringCandidates.push_back(HI.Reg); 2971 } 2972 } while (!RecoloringCandidates.empty()); 2973 } 2974 2975 /// Try to recolor broken hints. 2976 /// Broken hints may be repaired by recoloring when an evicted variable 2977 /// freed up a register for a larger live-range. 2978 /// Consider the following example: 2979 /// BB1: 2980 /// a = 2981 /// b = 2982 /// BB2: 2983 /// ... 2984 /// = b 2985 /// = a 2986 /// Let us assume b gets split: 2987 /// BB1: 2988 /// a = 2989 /// b = 2990 /// BB2: 2991 /// c = b 2992 /// ... 2993 /// d = c 2994 /// = d 2995 /// = a 2996 /// Because of how the allocation work, b, c, and d may be assigned different 2997 /// colors. Now, if a gets evicted later: 2998 /// BB1: 2999 /// a = 3000 /// st a, SpillSlot 3001 /// b = 3002 /// BB2: 3003 /// c = b 3004 /// ... 3005 /// d = c 3006 /// = d 3007 /// e = ld SpillSlot 3008 /// = e 3009 /// This is likely that we can assign the same register for b, c, and d, 3010 /// getting rid of 2 copies. 3011 void RAGreedy::tryHintsRecoloring() { 3012 for (LiveInterval *LI : SetOfBrokenHints) { 3013 assert(Register::isVirtualRegister(LI->reg()) && 3014 "Recoloring is possible only for virtual registers"); 3015 // Some dead defs may be around (e.g., because of debug uses). 3016 // Ignore those. 3017 if (!VRM->hasPhys(LI->reg())) 3018 continue; 3019 tryHintRecoloring(*LI); 3020 } 3021 } 3022 3023 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 3024 SmallVectorImpl<Register> &NewVRegs, 3025 SmallVirtRegSet &FixedRegisters, 3026 unsigned Depth) { 3027 unsigned CostPerUseLimit = ~0u; 3028 // First try assigning a free register. 3029 auto Order = 3030 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 3031 if (MCRegister PhysReg = 3032 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 3033 // If VirtReg got an assignment, the eviction info is no longre relevant. 3034 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3035 // When NewVRegs is not empty, we may have made decisions such as evicting 3036 // a virtual register, go with the earlier decisions and use the physical 3037 // register. 3038 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 3039 NewVRegs.empty()) { 3040 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 3041 CostPerUseLimit, NewVRegs); 3042 if (CSRReg || !NewVRegs.empty()) 3043 // Return now if we decide to use a CSR or create new vregs due to 3044 // pre-splitting. 3045 return CSRReg; 3046 } else 3047 return PhysReg; 3048 } 3049 3050 LiveRangeStage Stage = getStage(VirtReg); 3051 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 3052 << ExtraRegInfo[VirtReg.reg()].Cascade << '\n'); 3053 3054 // Try to evict a less worthy live range, but only for ranges from the primary 3055 // queue. The RS_Split ranges already failed to do this, and they should not 3056 // get a second chance until they have been split. 3057 if (Stage != RS_Split) 3058 if (Register PhysReg = 3059 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 3060 FixedRegisters)) { 3061 Register Hint = MRI->getSimpleHint(VirtReg.reg()); 3062 // If VirtReg has a hint and that hint is broken record this 3063 // virtual register as a recoloring candidate for broken hint. 3064 // Indeed, since we evicted a variable in its neighborhood it is 3065 // likely we can at least partially recolor some of the 3066 // copy-related live-ranges. 3067 if (Hint && Hint != PhysReg) 3068 SetOfBrokenHints.insert(&VirtReg); 3069 // If VirtReg eviction someone, the eviction info for it as an evictee is 3070 // no longre relevant. 3071 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3072 return PhysReg; 3073 } 3074 3075 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 3076 3077 // The first time we see a live range, don't try to split or spill. 3078 // Wait until the second time, when all smaller ranges have been allocated. 3079 // This gives a better picture of the interference to split around. 3080 if (Stage < RS_Split) { 3081 setStage(VirtReg, RS_Split); 3082 LLVM_DEBUG(dbgs() << "wait for second round\n"); 3083 NewVRegs.push_back(VirtReg.reg()); 3084 return 0; 3085 } 3086 3087 if (Stage < RS_Spill) { 3088 // Try splitting VirtReg or interferences. 3089 unsigned NewVRegSizeBefore = NewVRegs.size(); 3090 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 3091 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 3092 // If VirtReg got split, the eviction info is no longer relevant. 3093 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3094 return PhysReg; 3095 } 3096 } 3097 3098 // If we couldn't allocate a register from spilling, there is probably some 3099 // invalid inline assembly. The base class will report it. 3100 if (Stage >= RS_Done || !VirtReg.isSpillable()) 3101 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 3102 Depth); 3103 3104 // Finally spill VirtReg itself. 3105 if ((EnableDeferredSpilling || 3106 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) && 3107 getStage(VirtReg) < RS_Memory) { 3108 // TODO: This is experimental and in particular, we do not model 3109 // the live range splitting done by spilling correctly. 3110 // We would need a deep integration with the spiller to do the 3111 // right thing here. Anyway, that is still good for early testing. 3112 setStage(VirtReg, RS_Memory); 3113 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 3114 NewVRegs.push_back(VirtReg.reg()); 3115 } else { 3116 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 3117 TimerGroupDescription, TimePassesIsEnabled); 3118 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 3119 spiller().spill(LRE); 3120 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 3121 3122 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 3123 // the new regs are kept in LDV (still mapping to the old register), until 3124 // we rewrite spilled locations in LDV at a later stage. 3125 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS); 3126 3127 if (VerifyEnabled) 3128 MF->verify(this, "After spilling"); 3129 } 3130 3131 // The live virtual register requesting allocation was spilled, so tell 3132 // the caller not to allocate anything during this round. 3133 return 0; 3134 } 3135 3136 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 3137 unsigned &FoldedReloads, 3138 unsigned &Spills, 3139 unsigned &FoldedSpills) { 3140 Reloads = 0; 3141 FoldedReloads = 0; 3142 Spills = 0; 3143 FoldedSpills = 0; 3144 3145 // Sum up the spill and reloads in subloops. 3146 for (MachineLoop *SubLoop : *L) { 3147 unsigned SubReloads; 3148 unsigned SubFoldedReloads; 3149 unsigned SubSpills; 3150 unsigned SubFoldedSpills; 3151 3152 reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads, 3153 SubSpills, SubFoldedSpills); 3154 Reloads += SubReloads; 3155 FoldedReloads += SubFoldedReloads; 3156 Spills += SubSpills; 3157 FoldedSpills += SubFoldedSpills; 3158 } 3159 3160 const MachineFrameInfo &MFI = MF->getFrameInfo(); 3161 int FI; 3162 3163 for (MachineBasicBlock *MBB : L->getBlocks()) 3164 // Handle blocks that were not included in subloops. 3165 if (Loops->getLoopFor(MBB) == L) 3166 for (MachineInstr &MI : *MBB) { 3167 SmallVector<const MachineMemOperand *, 2> Accesses; 3168 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 3169 return MFI.isSpillSlotObjectIndex( 3170 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 3171 ->getFrameIndex()); 3172 }; 3173 3174 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) 3175 ++Reloads; 3176 else if (TII->hasLoadFromStackSlot(MI, Accesses) && 3177 llvm::any_of(Accesses, isSpillSlotAccess)) 3178 ++FoldedReloads; 3179 else if (TII->isStoreToStackSlot(MI, FI) && 3180 MFI.isSpillSlotObjectIndex(FI)) 3181 ++Spills; 3182 else if (TII->hasStoreToStackSlot(MI, Accesses) && 3183 llvm::any_of(Accesses, isSpillSlotAccess)) 3184 ++FoldedSpills; 3185 } 3186 3187 if (Reloads || FoldedReloads || Spills || FoldedSpills) { 3188 using namespace ore; 3189 3190 ORE->emit([&]() { 3191 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload", 3192 L->getStartLoc(), L->getHeader()); 3193 if (Spills) 3194 R << NV("NumSpills", Spills) << " spills "; 3195 if (FoldedSpills) 3196 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 3197 if (Reloads) 3198 R << NV("NumReloads", Reloads) << " reloads "; 3199 if (FoldedReloads) 3200 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 3201 R << "generated in loop"; 3202 return R; 3203 }); 3204 } 3205 } 3206 3207 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 3208 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 3209 << "********** Function: " << mf.getName() << '\n'); 3210 3211 MF = &mf; 3212 TRI = MF->getSubtarget().getRegisterInfo(); 3213 TII = MF->getSubtarget().getInstrInfo(); 3214 RCI.runOnMachineFunction(mf); 3215 3216 EnableLocalReassign = EnableLocalReassignment || 3217 MF->getSubtarget().enableRALocalReassignment( 3218 MF->getTarget().getOptLevel()); 3219 3220 EnableAdvancedRASplitCost = 3221 ConsiderLocalIntervalCost.getNumOccurrences() 3222 ? ConsiderLocalIntervalCost 3223 : MF->getSubtarget().enableAdvancedRASplitCost(); 3224 3225 if (VerifyEnabled) 3226 MF->verify(this, "Before greedy register allocator"); 3227 3228 RegAllocBase::init(getAnalysis<VirtRegMap>(), 3229 getAnalysis<LiveIntervals>(), 3230 getAnalysis<LiveRegMatrix>()); 3231 Indexes = &getAnalysis<SlotIndexes>(); 3232 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3233 DomTree = &getAnalysis<MachineDominatorTree>(); 3234 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 3235 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 3236 Loops = &getAnalysis<MachineLoopInfo>(); 3237 Bundles = &getAnalysis<EdgeBundles>(); 3238 SpillPlacer = &getAnalysis<SpillPlacement>(); 3239 DebugVars = &getAnalysis<LiveDebugVariables>(); 3240 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3241 3242 initializeCSRCost(); 3243 3244 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI); 3245 3246 VRAI->calculateSpillWeightsAndHints(); 3247 3248 LLVM_DEBUG(LIS->dump()); 3249 3250 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 3251 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI)); 3252 ExtraRegInfo.clear(); 3253 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 3254 NextCascade = 1; 3255 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 3256 GlobalCand.resize(32); // This will grow as needed. 3257 SetOfBrokenHints.clear(); 3258 LastEvicted.clear(); 3259 3260 allocatePhysRegs(); 3261 tryHintsRecoloring(); 3262 postOptimization(); 3263 reportNumberOfSplillsReloads(); 3264 3265 releaseMemory(); 3266 return true; 3267 } 3268