xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/RegAllocGreedy.cpp (revision bc5304a006238115291e7568583632889dffbab9)
1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AllocationOrder.h"
15 #include "InterferenceCache.h"
16 #include "LiveDebugVariables.h"
17 #include "RegAllocBase.h"
18 #include "SpillPlacement.h"
19 #include "SplitKit.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/IndexedMap.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/CodeGen/CalcSpillWeights.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LiveInterval.h"
36 #include "llvm/CodeGen/LiveIntervalUnion.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveRegMatrix.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RegAllocRegistry.h"
53 #include "llvm/CodeGen/RegisterClassInfo.h"
54 #include "llvm/CodeGen/SlotIndexes.h"
55 #include "llvm/CodeGen/Spiller.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/BlockFrequency.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/Timer.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <memory>
76 #include <queue>
77 #include <tuple>
78 #include <utility>
79 
80 using namespace llvm;
81 
82 #define DEBUG_TYPE "regalloc"
83 
84 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
85 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
86 STATISTIC(NumEvicted,      "Number of interferences evicted");
87 
88 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
89     "split-spill-mode", cl::Hidden,
90     cl::desc("Spill mode for splitting live ranges"),
91     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
92                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
93                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
94     cl::init(SplitEditor::SM_Speed));
95 
96 static cl::opt<unsigned>
97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
98                              cl::desc("Last chance recoloring max depth"),
99                              cl::init(5));
100 
101 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
102     "lcr-max-interf", cl::Hidden,
103     cl::desc("Last chance recoloring maximum number of considered"
104              " interference at a time"),
105     cl::init(8));
106 
107 static cl::opt<bool> ExhaustiveSearch(
108     "exhaustive-register-search", cl::NotHidden,
109     cl::desc("Exhaustive Search for registers bypassing the depth "
110              "and interference cutoffs of last chance recoloring"),
111     cl::Hidden);
112 
113 static cl::opt<bool> EnableLocalReassignment(
114     "enable-local-reassign", cl::Hidden,
115     cl::desc("Local reassignment can yield better allocation decisions, but "
116              "may be compile time intensive"),
117     cl::init(false));
118 
119 static cl::opt<bool> EnableDeferredSpilling(
120     "enable-deferred-spilling", cl::Hidden,
121     cl::desc("Instead of spilling a variable right away, defer the actual "
122              "code insertion to the end of the allocation. That way the "
123              "allocator might still find a suitable coloring for this "
124              "variable because of other evicted variables."),
125     cl::init(false));
126 
127 // FIXME: Find a good default for this flag and remove the flag.
128 static cl::opt<unsigned>
129 CSRFirstTimeCost("regalloc-csr-first-time-cost",
130               cl::desc("Cost for first time use of callee-saved register."),
131               cl::init(0), cl::Hidden);
132 
133 static cl::opt<bool> ConsiderLocalIntervalCost(
134     "consider-local-interval-cost", cl::Hidden,
135     cl::desc("Consider the cost of local intervals created by a split "
136              "candidate when choosing the best split candidate."),
137     cl::init(false));
138 
139 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
140                                        createGreedyRegisterAllocator);
141 
142 namespace {
143 
144 class RAGreedy : public MachineFunctionPass,
145                  public RegAllocBase,
146                  private LiveRangeEdit::Delegate {
147   // Convenient shortcuts.
148   using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
149   using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
150   using SmallVirtRegSet = SmallSet<Register, 16>;
151 
152   // context
153   MachineFunction *MF;
154 
155   // Shortcuts to some useful interface.
156   const TargetInstrInfo *TII;
157   const TargetRegisterInfo *TRI;
158   RegisterClassInfo RCI;
159 
160   // analyses
161   SlotIndexes *Indexes;
162   MachineBlockFrequencyInfo *MBFI;
163   MachineDominatorTree *DomTree;
164   MachineLoopInfo *Loops;
165   MachineOptimizationRemarkEmitter *ORE;
166   EdgeBundles *Bundles;
167   SpillPlacement *SpillPlacer;
168   LiveDebugVariables *DebugVars;
169   AliasAnalysis *AA;
170 
171   // state
172   std::unique_ptr<Spiller> SpillerInstance;
173   PQueue Queue;
174   unsigned NextCascade;
175   std::unique_ptr<VirtRegAuxInfo> VRAI;
176 
177   // Live ranges pass through a number of stages as we try to allocate them.
178   // Some of the stages may also create new live ranges:
179   //
180   // - Region splitting.
181   // - Per-block splitting.
182   // - Local splitting.
183   // - Spilling.
184   //
185   // Ranges produced by one of the stages skip the previous stages when they are
186   // dequeued. This improves performance because we can skip interference checks
187   // that are unlikely to give any results. It also guarantees that the live
188   // range splitting algorithm terminates, something that is otherwise hard to
189   // ensure.
190   enum LiveRangeStage {
191     /// Newly created live range that has never been queued.
192     RS_New,
193 
194     /// Only attempt assignment and eviction. Then requeue as RS_Split.
195     RS_Assign,
196 
197     /// Attempt live range splitting if assignment is impossible.
198     RS_Split,
199 
200     /// Attempt more aggressive live range splitting that is guaranteed to make
201     /// progress.  This is used for split products that may not be making
202     /// progress.
203     RS_Split2,
204 
205     /// Live range will be spilled.  No more splitting will be attempted.
206     RS_Spill,
207 
208 
209     /// Live range is in memory. Because of other evictions, it might get moved
210     /// in a register in the end.
211     RS_Memory,
212 
213     /// There is nothing more we can do to this live range.  Abort compilation
214     /// if it can't be assigned.
215     RS_Done
216   };
217 
218   // Enum CutOffStage to keep a track whether the register allocation failed
219   // because of the cutoffs encountered in last chance recoloring.
220   // Note: This is used as bitmask. New value should be next power of 2.
221   enum CutOffStage {
222     // No cutoffs encountered
223     CO_None = 0,
224 
225     // lcr-max-depth cutoff encountered
226     CO_Depth = 1,
227 
228     // lcr-max-interf cutoff encountered
229     CO_Interf = 2
230   };
231 
232   uint8_t CutOffInfo;
233 
234 #ifndef NDEBUG
235   static const char *const StageName[];
236 #endif
237 
238   // RegInfo - Keep additional information about each live range.
239   struct RegInfo {
240     LiveRangeStage Stage = RS_New;
241 
242     // Cascade - Eviction loop prevention. See canEvictInterference().
243     unsigned Cascade = 0;
244 
245     RegInfo() = default;
246   };
247 
248   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
249 
250   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
251     return ExtraRegInfo[VirtReg.reg()].Stage;
252   }
253 
254   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
255     ExtraRegInfo.resize(MRI->getNumVirtRegs());
256     ExtraRegInfo[VirtReg.reg()].Stage = Stage;
257   }
258 
259   template<typename Iterator>
260   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
261     ExtraRegInfo.resize(MRI->getNumVirtRegs());
262     for (;Begin != End; ++Begin) {
263       Register Reg = *Begin;
264       if (ExtraRegInfo[Reg].Stage == RS_New)
265         ExtraRegInfo[Reg].Stage = NewStage;
266     }
267   }
268 
269   /// Cost of evicting interference.
270   struct EvictionCost {
271     unsigned BrokenHints = 0; ///< Total number of broken hints.
272     float MaxWeight = 0;      ///< Maximum spill weight evicted.
273 
274     EvictionCost() = default;
275 
276     bool isMax() const { return BrokenHints == ~0u; }
277 
278     void setMax() { BrokenHints = ~0u; }
279 
280     void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
281 
282     bool operator<(const EvictionCost &O) const {
283       return std::tie(BrokenHints, MaxWeight) <
284              std::tie(O.BrokenHints, O.MaxWeight);
285     }
286   };
287 
288   /// EvictionTrack - Keeps track of past evictions in order to optimize region
289   /// split decision.
290   class EvictionTrack {
291 
292   public:
293     using EvictorInfo =
294         std::pair<Register /* evictor */, MCRegister /* physreg */>;
295     using EvicteeInfo = llvm::DenseMap<Register /* evictee */, EvictorInfo>;
296 
297   private:
298     /// Each Vreg that has been evicted in the last stage of selectOrSplit will
299     /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
300     EvicteeInfo Evictees;
301 
302   public:
303     /// Clear all eviction information.
304     void clear() { Evictees.clear(); }
305 
306     ///  Clear eviction information for the given evictee Vreg.
307     /// E.g. when Vreg get's a new allocation, the old eviction info is no
308     /// longer relevant.
309     /// \param Evictee The evictee Vreg for whom we want to clear collected
310     /// eviction info.
311     void clearEvicteeInfo(Register Evictee) { Evictees.erase(Evictee); }
312 
313     /// Track new eviction.
314     /// The Evictor vreg has evicted the Evictee vreg from Physreg.
315     /// \param PhysReg The physical register Evictee was evicted from.
316     /// \param Evictor The evictor Vreg that evicted Evictee.
317     /// \param Evictee The evictee Vreg.
318     void addEviction(MCRegister PhysReg, Register Evictor, Register Evictee) {
319       Evictees[Evictee].first = Evictor;
320       Evictees[Evictee].second = PhysReg;
321     }
322 
323     /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
324     /// \param Evictee The evictee vreg.
325     /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
326     /// nobody has evicted Evictee from PhysReg.
327     EvictorInfo getEvictor(Register Evictee) {
328       if (Evictees.count(Evictee)) {
329         return Evictees[Evictee];
330       }
331 
332       return EvictorInfo(0, 0);
333     }
334   };
335 
336   // Keeps track of past evictions in order to optimize region split decision.
337   EvictionTrack LastEvicted;
338 
339   // splitting state.
340   std::unique_ptr<SplitAnalysis> SA;
341   std::unique_ptr<SplitEditor> SE;
342 
343   /// Cached per-block interference maps
344   InterferenceCache IntfCache;
345 
346   /// All basic blocks where the current register has uses.
347   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
348 
349   /// Global live range splitting candidate info.
350   struct GlobalSplitCandidate {
351     // Register intended for assignment, or 0.
352     MCRegister PhysReg;
353 
354     // SplitKit interval index for this candidate.
355     unsigned IntvIdx;
356 
357     // Interference for PhysReg.
358     InterferenceCache::Cursor Intf;
359 
360     // Bundles where this candidate should be live.
361     BitVector LiveBundles;
362     SmallVector<unsigned, 8> ActiveBlocks;
363 
364     void reset(InterferenceCache &Cache, MCRegister Reg) {
365       PhysReg = Reg;
366       IntvIdx = 0;
367       Intf.setPhysReg(Cache, Reg);
368       LiveBundles.clear();
369       ActiveBlocks.clear();
370     }
371 
372     // Set B[I] = C for every live bundle where B[I] was NoCand.
373     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
374       unsigned Count = 0;
375       for (unsigned I : LiveBundles.set_bits())
376         if (B[I] == NoCand) {
377           B[I] = C;
378           Count++;
379         }
380       return Count;
381     }
382   };
383 
384   /// Candidate info for each PhysReg in AllocationOrder.
385   /// This vector never shrinks, but grows to the size of the largest register
386   /// class.
387   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
388 
389   enum : unsigned { NoCand = ~0u };
390 
391   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
392   /// NoCand which indicates the stack interval.
393   SmallVector<unsigned, 32> BundleCand;
394 
395   /// Callee-save register cost, calculated once per machine function.
396   BlockFrequency CSRCost;
397 
398   /// Run or not the local reassignment heuristic. This information is
399   /// obtained from the TargetSubtargetInfo.
400   bool EnableLocalReassign;
401 
402   /// Enable or not the consideration of the cost of local intervals created
403   /// by a split candidate when choosing the best split candidate.
404   bool EnableAdvancedRASplitCost;
405 
406   /// Set of broken hints that may be reconciled later because of eviction.
407   SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
408 
409 public:
410   RAGreedy();
411 
412   /// Return the pass name.
413   StringRef getPassName() const override { return "Greedy Register Allocator"; }
414 
415   /// RAGreedy analysis usage.
416   void getAnalysisUsage(AnalysisUsage &AU) const override;
417   void releaseMemory() override;
418   Spiller &spiller() override { return *SpillerInstance; }
419   void enqueue(LiveInterval *LI) override;
420   LiveInterval *dequeue() override;
421   MCRegister selectOrSplit(LiveInterval &,
422                            SmallVectorImpl<Register> &) override;
423   void aboutToRemoveInterval(LiveInterval &) override;
424 
425   /// Perform register allocation.
426   bool runOnMachineFunction(MachineFunction &mf) override;
427 
428   MachineFunctionProperties getRequiredProperties() const override {
429     return MachineFunctionProperties().set(
430         MachineFunctionProperties::Property::NoPHIs);
431   }
432 
433   MachineFunctionProperties getClearedProperties() const override {
434     return MachineFunctionProperties().set(
435       MachineFunctionProperties::Property::IsSSA);
436   }
437 
438   static char ID;
439 
440 private:
441   MCRegister selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &,
442                                SmallVirtRegSet &, unsigned = 0);
443 
444   bool LRE_CanEraseVirtReg(Register) override;
445   void LRE_WillShrinkVirtReg(Register) override;
446   void LRE_DidCloneVirtReg(Register, Register) override;
447   void enqueue(PQueue &CurQueue, LiveInterval *LI);
448   LiveInterval *dequeue(PQueue &CurQueue);
449 
450   BlockFrequency calcSpillCost();
451   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
452   bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
453   bool growRegion(GlobalSplitCandidate &Cand);
454   bool splitCanCauseEvictionChain(Register Evictee, GlobalSplitCandidate &Cand,
455                                   unsigned BBNumber,
456                                   const AllocationOrder &Order);
457   bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
458                                GlobalSplitCandidate &Cand, unsigned BBNumber,
459                                const AllocationOrder &Order);
460   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
461                                      const AllocationOrder &Order,
462                                      bool *CanCauseEvictionChain);
463   bool calcCompactRegion(GlobalSplitCandidate&);
464   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
465   void calcGapWeights(MCRegister, SmallVectorImpl<float> &);
466   Register canReassign(LiveInterval &VirtReg, Register PrevReg);
467   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
468   bool canEvictInterference(LiveInterval &, MCRegister, bool, EvictionCost &,
469                             const SmallVirtRegSet &);
470   bool canEvictInterferenceInRange(LiveInterval &VirtReg, MCRegister PhysReg,
471                                    SlotIndex Start, SlotIndex End,
472                                    EvictionCost &MaxCost);
473   MCRegister getCheapestEvicteeWeight(const AllocationOrder &Order,
474                                       LiveInterval &VirtReg, SlotIndex Start,
475                                       SlotIndex End, float *BestEvictWeight);
476   void evictInterference(LiveInterval &, MCRegister,
477                          SmallVectorImpl<Register> &);
478   bool mayRecolorAllInterferences(MCRegister PhysReg, LiveInterval &VirtReg,
479                                   SmallLISet &RecoloringCandidates,
480                                   const SmallVirtRegSet &FixedRegisters);
481 
482   Register tryAssign(LiveInterval&, AllocationOrder&,
483                      SmallVectorImpl<Register>&,
484                      const SmallVirtRegSet&);
485   unsigned tryEvict(LiveInterval&, AllocationOrder&,
486                     SmallVectorImpl<Register>&, unsigned,
487                     const SmallVirtRegSet&);
488   MCRegister tryRegionSplit(LiveInterval &, AllocationOrder &,
489                             SmallVectorImpl<Register> &);
490   /// Calculate cost of region splitting.
491   unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
492                                     AllocationOrder &Order,
493                                     BlockFrequency &BestCost,
494                                     unsigned &NumCands, bool IgnoreCSR,
495                                     bool *CanCauseEvictionChain = nullptr);
496   /// Perform region splitting.
497   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
498                          bool HasCompact,
499                          SmallVectorImpl<Register> &NewVRegs);
500   /// Check other options before using a callee-saved register for the first
501   /// time.
502   MCRegister tryAssignCSRFirstTime(LiveInterval &VirtReg,
503                                    AllocationOrder &Order, MCRegister PhysReg,
504                                    unsigned &CostPerUseLimit,
505                                    SmallVectorImpl<Register> &NewVRegs);
506   void initializeCSRCost();
507   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
508                          SmallVectorImpl<Register>&);
509   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
510                                SmallVectorImpl<Register>&);
511   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
512     SmallVectorImpl<Register>&);
513   unsigned trySplit(LiveInterval&, AllocationOrder&,
514                     SmallVectorImpl<Register>&,
515                     const SmallVirtRegSet&);
516   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
517                                    SmallVectorImpl<Register> &,
518                                    SmallVirtRegSet &, unsigned);
519   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &,
520                                SmallVirtRegSet &, unsigned);
521   void tryHintRecoloring(LiveInterval &);
522   void tryHintsRecoloring();
523 
524   /// Model the information carried by one end of a copy.
525   struct HintInfo {
526     /// The frequency of the copy.
527     BlockFrequency Freq;
528     /// The virtual register or physical register.
529     Register Reg;
530     /// Its currently assigned register.
531     /// In case of a physical register Reg == PhysReg.
532     MCRegister PhysReg;
533 
534     HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg)
535         : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
536   };
537   using HintsInfo = SmallVector<HintInfo, 4>;
538 
539   BlockFrequency getBrokenHintFreq(const HintsInfo &, MCRegister);
540   void collectHintInfo(Register, HintsInfo &);
541 
542   bool isUnusedCalleeSavedReg(MCRegister PhysReg) const;
543 
544   /// Compute and report the number of spills and reloads for a loop.
545   void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
546                                     unsigned &FoldedReloads, unsigned &Spills,
547                                     unsigned &FoldedSpills);
548 
549   /// Report the number of spills and reloads for each loop.
550   void reportNumberOfSplillsReloads() {
551     for (MachineLoop *L : *Loops) {
552       unsigned Reloads, FoldedReloads, Spills, FoldedSpills;
553       reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills,
554                                    FoldedSpills);
555     }
556   }
557 };
558 
559 } // end anonymous namespace
560 
561 char RAGreedy::ID = 0;
562 char &llvm::RAGreedyID = RAGreedy::ID;
563 
564 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
565                 "Greedy Register Allocator", false, false)
566 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
567 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
568 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
569 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
570 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
571 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
572 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
573 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
574 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
575 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
576 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
577 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
578 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
579 INITIALIZE_PASS_END(RAGreedy, "greedy",
580                 "Greedy Register Allocator", false, false)
581 
582 #ifndef NDEBUG
583 const char *const RAGreedy::StageName[] = {
584     "RS_New",
585     "RS_Assign",
586     "RS_Split",
587     "RS_Split2",
588     "RS_Spill",
589     "RS_Memory",
590     "RS_Done"
591 };
592 #endif
593 
594 // Hysteresis to use when comparing floats.
595 // This helps stabilize decisions based on float comparisons.
596 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
597 
598 FunctionPass* llvm::createGreedyRegisterAllocator() {
599   return new RAGreedy();
600 }
601 
602 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
603 }
604 
605 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
606   AU.setPreservesCFG();
607   AU.addRequired<MachineBlockFrequencyInfo>();
608   AU.addPreserved<MachineBlockFrequencyInfo>();
609   AU.addRequired<AAResultsWrapperPass>();
610   AU.addPreserved<AAResultsWrapperPass>();
611   AU.addRequired<LiveIntervals>();
612   AU.addPreserved<LiveIntervals>();
613   AU.addRequired<SlotIndexes>();
614   AU.addPreserved<SlotIndexes>();
615   AU.addRequired<LiveDebugVariables>();
616   AU.addPreserved<LiveDebugVariables>();
617   AU.addRequired<LiveStacks>();
618   AU.addPreserved<LiveStacks>();
619   AU.addRequired<MachineDominatorTree>();
620   AU.addPreserved<MachineDominatorTree>();
621   AU.addRequired<MachineLoopInfo>();
622   AU.addPreserved<MachineLoopInfo>();
623   AU.addRequired<VirtRegMap>();
624   AU.addPreserved<VirtRegMap>();
625   AU.addRequired<LiveRegMatrix>();
626   AU.addPreserved<LiveRegMatrix>();
627   AU.addRequired<EdgeBundles>();
628   AU.addRequired<SpillPlacement>();
629   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
630   MachineFunctionPass::getAnalysisUsage(AU);
631 }
632 
633 //===----------------------------------------------------------------------===//
634 //                     LiveRangeEdit delegate methods
635 //===----------------------------------------------------------------------===//
636 
637 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
638   LiveInterval &LI = LIS->getInterval(VirtReg);
639   if (VRM->hasPhys(VirtReg)) {
640     Matrix->unassign(LI);
641     aboutToRemoveInterval(LI);
642     return true;
643   }
644   // Unassigned virtreg is probably in the priority queue.
645   // RegAllocBase will erase it after dequeueing.
646   // Nonetheless, clear the live-range so that the debug
647   // dump will show the right state for that VirtReg.
648   LI.clear();
649   return false;
650 }
651 
652 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
653   if (!VRM->hasPhys(VirtReg))
654     return;
655 
656   // Register is assigned, put it back on the queue for reassignment.
657   LiveInterval &LI = LIS->getInterval(VirtReg);
658   Matrix->unassign(LI);
659   enqueue(&LI);
660 }
661 
662 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
663   // Cloning a register we haven't even heard about yet?  Just ignore it.
664   if (!ExtraRegInfo.inBounds(Old))
665     return;
666 
667   // LRE may clone a virtual register because dead code elimination causes it to
668   // be split into connected components. The new components are much smaller
669   // than the original, so they should get a new chance at being assigned.
670   // same stage as the parent.
671   ExtraRegInfo[Old].Stage = RS_Assign;
672   ExtraRegInfo.grow(New);
673   ExtraRegInfo[New] = ExtraRegInfo[Old];
674 }
675 
676 void RAGreedy::releaseMemory() {
677   SpillerInstance.reset();
678   ExtraRegInfo.clear();
679   GlobalCand.clear();
680 }
681 
682 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
683 
684 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
685   // Prioritize live ranges by size, assigning larger ranges first.
686   // The queue holds (size, reg) pairs.
687   const unsigned Size = LI->getSize();
688   const Register Reg = LI->reg();
689   assert(Reg.isVirtual() && "Can only enqueue virtual registers");
690   unsigned Prio;
691 
692   ExtraRegInfo.grow(Reg);
693   if (ExtraRegInfo[Reg].Stage == RS_New)
694     ExtraRegInfo[Reg].Stage = RS_Assign;
695 
696   if (ExtraRegInfo[Reg].Stage == RS_Split) {
697     // Unsplit ranges that couldn't be allocated immediately are deferred until
698     // everything else has been allocated.
699     Prio = Size;
700   } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
701     // Memory operand should be considered last.
702     // Change the priority such that Memory operand are assigned in
703     // the reverse order that they came in.
704     // TODO: Make this a member variable and probably do something about hints.
705     static unsigned MemOp = 0;
706     Prio = MemOp++;
707   } else {
708     // Giant live ranges fall back to the global assignment heuristic, which
709     // prevents excessive spilling in pathological cases.
710     bool ReverseLocal = TRI->reverseLocalAssignment();
711     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
712     bool ForceGlobal = !ReverseLocal &&
713       (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
714 
715     if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
716         LIS->intervalIsInOneMBB(*LI)) {
717       // Allocate original local ranges in linear instruction order. Since they
718       // are singly defined, this produces optimal coloring in the absence of
719       // global interference and other constraints.
720       if (!ReverseLocal)
721         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
722       else {
723         // Allocating bottom up may allow many short LRGs to be assigned first
724         // to one of the cheap registers. This could be much faster for very
725         // large blocks on targets with many physical registers.
726         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
727       }
728       Prio |= RC.AllocationPriority << 24;
729     } else {
730       // Allocate global and split ranges in long->short order. Long ranges that
731       // don't fit should be spilled (or split) ASAP so they don't create
732       // interference.  Mark a bit to prioritize global above local ranges.
733       Prio = (1u << 29) + Size;
734     }
735     // Mark a higher bit to prioritize global and local above RS_Split.
736     Prio |= (1u << 31);
737 
738     // Boost ranges that have a physical register hint.
739     if (VRM->hasKnownPreference(Reg))
740       Prio |= (1u << 30);
741   }
742   // The virtual register number is a tie breaker for same-sized ranges.
743   // Give lower vreg numbers higher priority to assign them first.
744   CurQueue.push(std::make_pair(Prio, ~Reg));
745 }
746 
747 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
748 
749 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
750   if (CurQueue.empty())
751     return nullptr;
752   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
753   CurQueue.pop();
754   return LI;
755 }
756 
757 //===----------------------------------------------------------------------===//
758 //                            Direct Assignment
759 //===----------------------------------------------------------------------===//
760 
761 /// tryAssign - Try to assign VirtReg to an available register.
762 Register RAGreedy::tryAssign(LiveInterval &VirtReg,
763                              AllocationOrder &Order,
764                              SmallVectorImpl<Register> &NewVRegs,
765                              const SmallVirtRegSet &FixedRegisters) {
766   Register PhysReg;
767   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
768     assert(*I);
769     if (!Matrix->checkInterference(VirtReg, *I)) {
770       if (I.isHint())
771         return *I;
772       else
773         PhysReg = *I;
774     }
775   }
776   if (!PhysReg.isValid())
777     return PhysReg;
778 
779   // PhysReg is available, but there may be a better choice.
780 
781   // If we missed a simple hint, try to cheaply evict interference from the
782   // preferred register.
783   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
784     if (Order.isHint(Hint)) {
785       MCRegister PhysHint = Hint.asMCReg();
786       LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
787       EvictionCost MaxCost;
788       MaxCost.setBrokenHints(1);
789       if (canEvictInterference(VirtReg, PhysHint, true, MaxCost,
790                                FixedRegisters)) {
791         evictInterference(VirtReg, PhysHint, NewVRegs);
792         return PhysHint;
793       }
794       // Record the missed hint, we may be able to recover
795       // at the end if the surrounding allocation changed.
796       SetOfBrokenHints.insert(&VirtReg);
797     }
798 
799   // Try to evict interference from a cheaper alternative.
800   unsigned Cost = TRI->getCostPerUse(PhysReg);
801 
802   // Most registers have 0 additional cost.
803   if (!Cost)
804     return PhysReg;
805 
806   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
807                     << Cost << '\n');
808   Register CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
809   return CheapReg ? CheapReg : PhysReg;
810 }
811 
812 //===----------------------------------------------------------------------===//
813 //                         Interference eviction
814 //===----------------------------------------------------------------------===//
815 
816 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) {
817   auto Order =
818       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
819   MCRegister PhysReg;
820   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
821     if ((*I).id() == PrevReg.id())
822       continue;
823 
824     MCRegUnitIterator Units(*I, TRI);
825     for (; Units.isValid(); ++Units) {
826       // Instantiate a "subquery", not to be confused with the Queries array.
827       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
828       if (subQ.checkInterference())
829         break;
830     }
831     // If no units have interference, break out with the current PhysReg.
832     if (!Units.isValid())
833       PhysReg = *I;
834   }
835   if (PhysReg)
836     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
837                       << printReg(PrevReg, TRI) << " to "
838                       << printReg(PhysReg, TRI) << '\n');
839   return PhysReg;
840 }
841 
842 /// shouldEvict - determine if A should evict the assigned live range B. The
843 /// eviction policy defined by this function together with the allocation order
844 /// defined by enqueue() decides which registers ultimately end up being split
845 /// and spilled.
846 ///
847 /// Cascade numbers are used to prevent infinite loops if this function is a
848 /// cyclic relation.
849 ///
850 /// @param A          The live range to be assigned.
851 /// @param IsHint     True when A is about to be assigned to its preferred
852 ///                   register.
853 /// @param B          The live range to be evicted.
854 /// @param BreaksHint True when B is already assigned to its preferred register.
855 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
856                            LiveInterval &B, bool BreaksHint) {
857   bool CanSplit = getStage(B) < RS_Spill;
858 
859   // Be fairly aggressive about following hints as long as the evictee can be
860   // split.
861   if (CanSplit && IsHint && !BreaksHint)
862     return true;
863 
864   if (A.weight() > B.weight()) {
865     LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n');
866     return true;
867   }
868   return false;
869 }
870 
871 /// canEvictInterference - Return true if all interferences between VirtReg and
872 /// PhysReg can be evicted.
873 ///
874 /// @param VirtReg Live range that is about to be assigned.
875 /// @param PhysReg Desired register for assignment.
876 /// @param IsHint  True when PhysReg is VirtReg's preferred register.
877 /// @param MaxCost Only look for cheaper candidates and update with new cost
878 ///                when returning true.
879 /// @returns True when interference can be evicted cheaper than MaxCost.
880 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, MCRegister PhysReg,
881                                     bool IsHint, EvictionCost &MaxCost,
882                                     const SmallVirtRegSet &FixedRegisters) {
883   // It is only possible to evict virtual register interference.
884   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
885     return false;
886 
887   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
888 
889   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
890   // involved in an eviction before. If a cascade number was assigned, deny
891   // evicting anything with the same or a newer cascade number. This prevents
892   // infinite eviction loops.
893   //
894   // This works out so a register without a cascade number is allowed to evict
895   // anything, and it can be evicted by anything.
896   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
897   if (!Cascade)
898     Cascade = NextCascade;
899 
900   EvictionCost Cost;
901   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
902     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
903     // If there is 10 or more interferences, chances are one is heavier.
904     if (Q.collectInterferingVRegs(10) >= 10)
905       return false;
906 
907     // Check if any interfering live range is heavier than MaxWeight.
908     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
909       assert(Register::isVirtualRegister(Intf->reg()) &&
910              "Only expecting virtual register interference from query");
911 
912       // Do not allow eviction of a virtual register if we are in the middle
913       // of last-chance recoloring and this virtual register is one that we
914       // have scavenged a physical register for.
915       if (FixedRegisters.count(Intf->reg()))
916         return false;
917 
918       // Never evict spill products. They cannot split or spill.
919       if (getStage(*Intf) == RS_Done)
920         return false;
921       // Once a live range becomes small enough, it is urgent that we find a
922       // register for it. This is indicated by an infinite spill weight. These
923       // urgent live ranges get to evict almost anything.
924       //
925       // Also allow urgent evictions of unspillable ranges from a strictly
926       // larger allocation order.
927       bool Urgent =
928           !VirtReg.isSpillable() &&
929           (Intf->isSpillable() ||
930            RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) <
931                RegClassInfo.getNumAllocatableRegs(
932                    MRI->getRegClass(Intf->reg())));
933       // Only evict older cascades or live ranges without a cascade.
934       unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade;
935       if (Cascade <= IntfCascade) {
936         if (!Urgent)
937           return false;
938         // We permit breaking cascades for urgent evictions. It should be the
939         // last resort, though, so make it really expensive.
940         Cost.BrokenHints += 10;
941       }
942       // Would this break a satisfied hint?
943       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
944       // Update eviction cost.
945       Cost.BrokenHints += BreaksHint;
946       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
947       // Abort if this would be too expensive.
948       if (!(Cost < MaxCost))
949         return false;
950       if (Urgent)
951         continue;
952       // Apply the eviction policy for non-urgent evictions.
953       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
954         return false;
955       // If !MaxCost.isMax(), then we're just looking for a cheap register.
956       // Evicting another local live range in this case could lead to suboptimal
957       // coloring.
958       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
959           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
960         return false;
961       }
962     }
963   }
964   MaxCost = Cost;
965   return true;
966 }
967 
968 /// Return true if all interferences between VirtReg and PhysReg between
969 /// Start and End can be evicted.
970 ///
971 /// \param VirtReg Live range that is about to be assigned.
972 /// \param PhysReg Desired register for assignment.
973 /// \param Start   Start of range to look for interferences.
974 /// \param End     End of range to look for interferences.
975 /// \param MaxCost Only look for cheaper candidates and update with new cost
976 ///                when returning true.
977 /// \return True when interference can be evicted cheaper than MaxCost.
978 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg,
979                                            MCRegister PhysReg, SlotIndex Start,
980                                            SlotIndex End,
981                                            EvictionCost &MaxCost) {
982   EvictionCost Cost;
983 
984   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
985     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
986 
987     // Check if any interfering live range is heavier than MaxWeight.
988     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
989       // Check if interference overlast the segment in interest.
990       if (!Intf->overlaps(Start, End))
991         continue;
992 
993       // Cannot evict non virtual reg interference.
994       if (!Register::isVirtualRegister(Intf->reg()))
995         return false;
996       // Never evict spill products. They cannot split or spill.
997       if (getStage(*Intf) == RS_Done)
998         return false;
999 
1000       // Would this break a satisfied hint?
1001       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
1002       // Update eviction cost.
1003       Cost.BrokenHints += BreaksHint;
1004       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
1005       // Abort if this would be too expensive.
1006       if (!(Cost < MaxCost))
1007         return false;
1008     }
1009   }
1010 
1011   if (Cost.MaxWeight == 0)
1012     return false;
1013 
1014   MaxCost = Cost;
1015   return true;
1016 }
1017 
1018 /// Return the physical register that will be best
1019 /// candidate for eviction by a local split interval that will be created
1020 /// between Start and End.
1021 ///
1022 /// \param Order            The allocation order
1023 /// \param VirtReg          Live range that is about to be assigned.
1024 /// \param Start            Start of range to look for interferences
1025 /// \param End              End of range to look for interferences
1026 /// \param BestEvictweight  The eviction cost of that eviction
1027 /// \return The PhysReg which is the best candidate for eviction and the
1028 /// eviction cost in BestEvictweight
1029 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
1030                                               LiveInterval &VirtReg,
1031                                               SlotIndex Start, SlotIndex End,
1032                                               float *BestEvictweight) {
1033   EvictionCost BestEvictCost;
1034   BestEvictCost.setMax();
1035   BestEvictCost.MaxWeight = VirtReg.weight();
1036   MCRegister BestEvicteePhys;
1037 
1038   // Go over all physical registers and find the best candidate for eviction
1039   for (MCRegister PhysReg : Order.getOrder()) {
1040 
1041     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
1042                                      BestEvictCost))
1043       continue;
1044 
1045     // Best so far.
1046     BestEvicteePhys = PhysReg;
1047   }
1048   *BestEvictweight = BestEvictCost.MaxWeight;
1049   return BestEvicteePhys;
1050 }
1051 
1052 /// evictInterference - Evict any interferring registers that prevent VirtReg
1053 /// from being assigned to Physreg. This assumes that canEvictInterference
1054 /// returned true.
1055 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg,
1056                                  SmallVectorImpl<Register> &NewVRegs) {
1057   // Make sure that VirtReg has a cascade number, and assign that cascade
1058   // number to every evicted register. These live ranges than then only be
1059   // evicted by a newer cascade, preventing infinite loops.
1060   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
1061   if (!Cascade)
1062     Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++;
1063 
1064   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
1065                     << " interference: Cascade " << Cascade << '\n');
1066 
1067   // Collect all interfering virtregs first.
1068   SmallVector<LiveInterval*, 8> Intfs;
1069   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1070     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1071     // We usually have the interfering VRegs cached so collectInterferingVRegs()
1072     // should be fast, we may need to recalculate if when different physregs
1073     // overlap the same register unit so we had different SubRanges queried
1074     // against it.
1075     Q.collectInterferingVRegs();
1076     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
1077     Intfs.append(IVR.begin(), IVR.end());
1078   }
1079 
1080   // Evict them second. This will invalidate the queries.
1081   for (LiveInterval *Intf : Intfs) {
1082     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1083     if (!VRM->hasPhys(Intf->reg()))
1084       continue;
1085 
1086     LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg());
1087 
1088     Matrix->unassign(*Intf);
1089     assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade ||
1090             VirtReg.isSpillable() < Intf->isSpillable()) &&
1091            "Cannot decrease cascade number, illegal eviction");
1092     ExtraRegInfo[Intf->reg()].Cascade = Cascade;
1093     ++NumEvicted;
1094     NewVRegs.push_back(Intf->reg());
1095   }
1096 }
1097 
1098 /// Returns true if the given \p PhysReg is a callee saved register and has not
1099 /// been used for allocation yet.
1100 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
1101   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
1102   if (!CSR)
1103     return false;
1104 
1105   return !Matrix->isPhysRegUsed(PhysReg);
1106 }
1107 
1108 /// tryEvict - Try to evict all interferences for a physreg.
1109 /// @param  VirtReg Currently unassigned virtual register.
1110 /// @param  Order   Physregs to try.
1111 /// @return         Physreg to assign VirtReg, or 0.
1112 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
1113                             AllocationOrder &Order,
1114                             SmallVectorImpl<Register> &NewVRegs,
1115                             unsigned CostPerUseLimit,
1116                             const SmallVirtRegSet &FixedRegisters) {
1117   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
1118                      TimePassesIsEnabled);
1119 
1120   // Keep track of the cheapest interference seen so far.
1121   EvictionCost BestCost;
1122   BestCost.setMax();
1123   MCRegister BestPhys;
1124   unsigned OrderLimit = Order.getOrder().size();
1125 
1126   // When we are just looking for a reduced cost per use, don't break any
1127   // hints, and only evict smaller spill weights.
1128   if (CostPerUseLimit < ~0u) {
1129     BestCost.BrokenHints = 0;
1130     BestCost.MaxWeight = VirtReg.weight();
1131 
1132     // Check of any registers in RC are below CostPerUseLimit.
1133     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
1134     unsigned MinCost = RegClassInfo.getMinCost(RC);
1135     if (MinCost >= CostPerUseLimit) {
1136       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
1137                         << MinCost << ", no cheaper registers to be found.\n");
1138       return 0;
1139     }
1140 
1141     // It is normal for register classes to have a long tail of registers with
1142     // the same cost. We don't need to look at them if they're too expensive.
1143     if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
1144       OrderLimit = RegClassInfo.getLastCostChange(RC);
1145       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1146                         << " regs.\n");
1147     }
1148   }
1149 
1150   for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E;
1151        ++I) {
1152     MCRegister PhysReg = *I;
1153     assert(PhysReg);
1154     if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
1155       continue;
1156     // The first use of a callee-saved register in a function has cost 1.
1157     // Don't start using a CSR when the CostPerUseLimit is low.
1158     if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
1159       LLVM_DEBUG(
1160           dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
1161                  << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
1162                  << '\n');
1163       continue;
1164     }
1165 
1166     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost,
1167                               FixedRegisters))
1168       continue;
1169 
1170     // Best so far.
1171     BestPhys = PhysReg;
1172 
1173     // Stop if the hint can be used.
1174     if (I.isHint())
1175       break;
1176   }
1177 
1178   if (!BestPhys)
1179     return 0;
1180 
1181   evictInterference(VirtReg, BestPhys, NewVRegs);
1182   return BestPhys;
1183 }
1184 
1185 //===----------------------------------------------------------------------===//
1186 //                              Region Splitting
1187 //===----------------------------------------------------------------------===//
1188 
1189 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1190 /// interference pattern in Physreg and its aliases. Add the constraints to
1191 /// SpillPlacement and return the static cost of this split in Cost, assuming
1192 /// that all preferences in SplitConstraints are met.
1193 /// Return false if there are no bundles with positive bias.
1194 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
1195                                    BlockFrequency &Cost) {
1196   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1197 
1198   // Reset interference dependent info.
1199   SplitConstraints.resize(UseBlocks.size());
1200   BlockFrequency StaticCost = 0;
1201   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1202     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1203     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1204 
1205     BC.Number = BI.MBB->getNumber();
1206     Intf.moveToBlock(BC.Number);
1207     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1208     BC.Exit = (BI.LiveOut &&
1209                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
1210                   ? SpillPlacement::PrefReg
1211                   : SpillPlacement::DontCare;
1212     BC.ChangesValue = BI.FirstDef.isValid();
1213 
1214     if (!Intf.hasInterference())
1215       continue;
1216 
1217     // Number of spill code instructions to insert.
1218     unsigned Ins = 0;
1219 
1220     // Interference for the live-in value.
1221     if (BI.LiveIn) {
1222       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
1223         BC.Entry = SpillPlacement::MustSpill;
1224         ++Ins;
1225       } else if (Intf.first() < BI.FirstInstr) {
1226         BC.Entry = SpillPlacement::PrefSpill;
1227         ++Ins;
1228       } else if (Intf.first() < BI.LastInstr) {
1229         ++Ins;
1230       }
1231 
1232       // Abort if the spill cannot be inserted at the MBB' start
1233       if (((BC.Entry == SpillPlacement::MustSpill) ||
1234            (BC.Entry == SpillPlacement::PrefSpill)) &&
1235           SlotIndex::isEarlierInstr(BI.FirstInstr,
1236                                     SA->getFirstSplitPoint(BC.Number)))
1237         return false;
1238     }
1239 
1240     // Interference for the live-out value.
1241     if (BI.LiveOut) {
1242       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1243         BC.Exit = SpillPlacement::MustSpill;
1244         ++Ins;
1245       } else if (Intf.last() > BI.LastInstr) {
1246         BC.Exit = SpillPlacement::PrefSpill;
1247         ++Ins;
1248       } else if (Intf.last() > BI.FirstInstr) {
1249         ++Ins;
1250       }
1251     }
1252 
1253     // Accumulate the total frequency of inserted spill code.
1254     while (Ins--)
1255       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1256   }
1257   Cost = StaticCost;
1258 
1259   // Add constraints for use-blocks. Note that these are the only constraints
1260   // that may add a positive bias, it is downhill from here.
1261   SpillPlacer->addConstraints(SplitConstraints);
1262   return SpillPlacer->scanActiveBundles();
1263 }
1264 
1265 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1266 /// live-through blocks in Blocks.
1267 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1268                                      ArrayRef<unsigned> Blocks) {
1269   const unsigned GroupSize = 8;
1270   SpillPlacement::BlockConstraint BCS[GroupSize];
1271   unsigned TBS[GroupSize];
1272   unsigned B = 0, T = 0;
1273 
1274   for (unsigned Number : Blocks) {
1275     Intf.moveToBlock(Number);
1276 
1277     if (!Intf.hasInterference()) {
1278       assert(T < GroupSize && "Array overflow");
1279       TBS[T] = Number;
1280       if (++T == GroupSize) {
1281         SpillPlacer->addLinks(makeArrayRef(TBS, T));
1282         T = 0;
1283       }
1284       continue;
1285     }
1286 
1287     assert(B < GroupSize && "Array overflow");
1288     BCS[B].Number = Number;
1289 
1290     // Abort if the spill cannot be inserted at the MBB' start
1291     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
1292     if (!MBB->empty() &&
1293         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()),
1294                                   SA->getFirstSplitPoint(Number)))
1295       return false;
1296     // Interference for the live-in value.
1297     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1298       BCS[B].Entry = SpillPlacement::MustSpill;
1299     else
1300       BCS[B].Entry = SpillPlacement::PrefSpill;
1301 
1302     // Interference for the live-out value.
1303     if (Intf.last() >= SA->getLastSplitPoint(Number))
1304       BCS[B].Exit = SpillPlacement::MustSpill;
1305     else
1306       BCS[B].Exit = SpillPlacement::PrefSpill;
1307 
1308     if (++B == GroupSize) {
1309       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1310       B = 0;
1311     }
1312   }
1313 
1314   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1315   SpillPlacer->addLinks(makeArrayRef(TBS, T));
1316   return true;
1317 }
1318 
1319 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1320   // Keep track of through blocks that have not been added to SpillPlacer.
1321   BitVector Todo = SA->getThroughBlocks();
1322   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1323   unsigned AddedTo = 0;
1324 #ifndef NDEBUG
1325   unsigned Visited = 0;
1326 #endif
1327 
1328   while (true) {
1329     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1330     // Find new through blocks in the periphery of PrefRegBundles.
1331     for (unsigned Bundle : NewBundles) {
1332       // Look at all blocks connected to Bundle in the full graph.
1333       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1334       for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
1335            I != E; ++I) {
1336         unsigned Block = *I;
1337         if (!Todo.test(Block))
1338           continue;
1339         Todo.reset(Block);
1340         // This is a new through block. Add it to SpillPlacer later.
1341         ActiveBlocks.push_back(Block);
1342 #ifndef NDEBUG
1343         ++Visited;
1344 #endif
1345       }
1346     }
1347     // Any new blocks to add?
1348     if (ActiveBlocks.size() == AddedTo)
1349       break;
1350 
1351     // Compute through constraints from the interference, or assume that all
1352     // through blocks prefer spilling when forming compact regions.
1353     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1354     if (Cand.PhysReg) {
1355       if (!addThroughConstraints(Cand.Intf, NewBlocks))
1356         return false;
1357     } else
1358       // Provide a strong negative bias on through blocks to prevent unwanted
1359       // liveness on loop backedges.
1360       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1361     AddedTo = ActiveBlocks.size();
1362 
1363     // Perhaps iterating can enable more bundles?
1364     SpillPlacer->iterate();
1365   }
1366   LLVM_DEBUG(dbgs() << ", v=" << Visited);
1367   return true;
1368 }
1369 
1370 /// calcCompactRegion - Compute the set of edge bundles that should be live
1371 /// when splitting the current live range into compact regions.  Compact
1372 /// regions can be computed without looking at interference.  They are the
1373 /// regions formed by removing all the live-through blocks from the live range.
1374 ///
1375 /// Returns false if the current live range is already compact, or if the
1376 /// compact regions would form single block regions anyway.
1377 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1378   // Without any through blocks, the live range is already compact.
1379   if (!SA->getNumThroughBlocks())
1380     return false;
1381 
1382   // Compact regions don't correspond to any physreg.
1383   Cand.reset(IntfCache, MCRegister::NoRegister);
1384 
1385   LLVM_DEBUG(dbgs() << "Compact region bundles");
1386 
1387   // Use the spill placer to determine the live bundles. GrowRegion pretends
1388   // that all the through blocks have interference when PhysReg is unset.
1389   SpillPlacer->prepare(Cand.LiveBundles);
1390 
1391   // The static split cost will be zero since Cand.Intf reports no interference.
1392   BlockFrequency Cost;
1393   if (!addSplitConstraints(Cand.Intf, Cost)) {
1394     LLVM_DEBUG(dbgs() << ", none.\n");
1395     return false;
1396   }
1397 
1398   if (!growRegion(Cand)) {
1399     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1400     return false;
1401   }
1402 
1403   SpillPlacer->finish();
1404 
1405   if (!Cand.LiveBundles.any()) {
1406     LLVM_DEBUG(dbgs() << ", none.\n");
1407     return false;
1408   }
1409 
1410   LLVM_DEBUG({
1411     for (int I : Cand.LiveBundles.set_bits())
1412       dbgs() << " EB#" << I;
1413     dbgs() << ".\n";
1414   });
1415   return true;
1416 }
1417 
1418 /// calcSpillCost - Compute how expensive it would be to split the live range in
1419 /// SA around all use blocks instead of forming bundle regions.
1420 BlockFrequency RAGreedy::calcSpillCost() {
1421   BlockFrequency Cost = 0;
1422   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1423   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1424     unsigned Number = BI.MBB->getNumber();
1425     // We normally only need one spill instruction - a load or a store.
1426     Cost += SpillPlacer->getBlockFrequency(Number);
1427 
1428     // Unless the value is redefined in the block.
1429     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1430       Cost += SpillPlacer->getBlockFrequency(Number);
1431   }
1432   return Cost;
1433 }
1434 
1435 /// Check if splitting Evictee will create a local split interval in
1436 /// basic block number BBNumber that may cause a bad eviction chain. This is
1437 /// intended to prevent bad eviction sequences like:
1438 /// movl	%ebp, 8(%esp)           # 4-byte Spill
1439 /// movl	%ecx, %ebp
1440 /// movl	%ebx, %ecx
1441 /// movl	%edi, %ebx
1442 /// movl	%edx, %edi
1443 /// cltd
1444 /// idivl	%esi
1445 /// movl	%edi, %edx
1446 /// movl	%ebx, %edi
1447 /// movl	%ecx, %ebx
1448 /// movl	%ebp, %ecx
1449 /// movl	16(%esp), %ebp          # 4 - byte Reload
1450 ///
1451 /// Such sequences are created in 2 scenarios:
1452 ///
1453 /// Scenario #1:
1454 /// %0 is evicted from physreg0 by %1.
1455 /// Evictee %0 is intended for region splitting with split candidate
1456 /// physreg0 (the reg %0 was evicted from).
1457 /// Region splitting creates a local interval because of interference with the
1458 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1459 /// and "by stack" intervals and local interval created when interference
1460 /// occurs).
1461 /// One of the split intervals ends up evicting %2 from physreg1.
1462 /// Evictee %2 is intended for region splitting with split candidate
1463 /// physreg1.
1464 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1465 ///
1466 /// Scenario #2
1467 /// %0 is evicted from physreg0 by %1.
1468 /// %2 is evicted from physreg2 by %3 etc.
1469 /// Evictee %0 is intended for region splitting with split candidate
1470 /// physreg1.
1471 /// Region splitting creates a local interval because of interference with the
1472 /// evictor %1.
1473 /// One of the split intervals ends up evicting back original evictor %1
1474 /// from physreg0 (the reg %0 was evicted from).
1475 /// Another evictee %2 is intended for region splitting with split candidate
1476 /// physreg1.
1477 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1478 ///
1479 /// \param Evictee  The register considered to be split.
1480 /// \param Cand     The split candidate that determines the physical register
1481 ///                 we are splitting for and the interferences.
1482 /// \param BBNumber The number of a BB for which the region split process will
1483 ///                 create a local split interval.
1484 /// \param Order    The physical registers that may get evicted by a split
1485 ///                 artifact of Evictee.
1486 /// \return True if splitting Evictee may cause a bad eviction chain, false
1487 /// otherwise.
1488 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee,
1489                                           GlobalSplitCandidate &Cand,
1490                                           unsigned BBNumber,
1491                                           const AllocationOrder &Order) {
1492   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
1493   unsigned Evictor = VregEvictorInfo.first;
1494   MCRegister PhysReg = VregEvictorInfo.second;
1495 
1496   // No actual evictor.
1497   if (!Evictor || !PhysReg)
1498     return false;
1499 
1500   float MaxWeight = 0;
1501   MCRegister FutureEvictedPhysReg =
1502       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
1503                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
1504 
1505   // The bad eviction chain occurs when either the split candidate is the
1506   // evicting reg or one of the split artifact will evict the evicting reg.
1507   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
1508     return false;
1509 
1510   Cand.Intf.moveToBlock(BBNumber);
1511 
1512   // Check to see if the Evictor contains interference (with Evictee) in the
1513   // given BB. If so, this interference caused the eviction of Evictee from
1514   // PhysReg. This suggest that we will create a local interval during the
1515   // region split to avoid this interference This local interval may cause a bad
1516   // eviction chain.
1517   if (!LIS->hasInterval(Evictor))
1518     return false;
1519   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
1520   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
1521     return false;
1522 
1523   // Now, check to see if the local interval we will create is going to be
1524   // expensive enough to evict somebody If so, this may cause a bad eviction
1525   // chain.
1526   float splitArtifactWeight =
1527       VRAI->futureWeight(LIS->getInterval(Evictee),
1528                          Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1529   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
1530     return false;
1531 
1532   return true;
1533 }
1534 
1535 /// Check if splitting VirtRegToSplit will create a local split interval
1536 /// in basic block number BBNumber that may cause a spill.
1537 ///
1538 /// \param VirtRegToSplit The register considered to be split.
1539 /// \param Cand           The split candidate that determines the physical
1540 ///                       register we are splitting for and the interferences.
1541 /// \param BBNumber       The number of a BB for which the region split process
1542 ///                       will create a local split interval.
1543 /// \param Order          The physical registers that may get evicted by a
1544 ///                       split artifact of VirtRegToSplit.
1545 /// \return True if splitting VirtRegToSplit may cause a spill, false
1546 /// otherwise.
1547 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1548                                        GlobalSplitCandidate &Cand,
1549                                        unsigned BBNumber,
1550                                        const AllocationOrder &Order) {
1551   Cand.Intf.moveToBlock(BBNumber);
1552 
1553   // Check if the local interval will find a non interfereing assignment.
1554   for (auto PhysReg : Order.getOrder()) {
1555     if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1556                                    Cand.Intf.last(), PhysReg))
1557       return false;
1558   }
1559 
1560   // Check if the local interval will evict a cheaper interval.
1561   float CheapestEvictWeight = 0;
1562   MCRegister FutureEvictedPhysReg = getCheapestEvicteeWeight(
1563       Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(),
1564       Cand.Intf.last(), &CheapestEvictWeight);
1565 
1566   // Have we found an interval that can be evicted?
1567   if (FutureEvictedPhysReg) {
1568     float splitArtifactWeight =
1569         VRAI->futureWeight(LIS->getInterval(VirtRegToSplit),
1570                            Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1571     // Will the weight of the local interval be higher than the cheapest evictee
1572     // weight? If so it will evict it and will not cause a spill.
1573     if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight)
1574       return false;
1575   }
1576 
1577   // The local interval is not able to find non interferencing assignment and
1578   // not able to evict a less worthy interval, therfore, it can cause a spill.
1579   return true;
1580 }
1581 
1582 /// calcGlobalSplitCost - Return the global split cost of following the split
1583 /// pattern in LiveBundles. This cost should be added to the local cost of the
1584 /// interference pattern in SplitConstraints.
1585 ///
1586 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1587                                              const AllocationOrder &Order,
1588                                              bool *CanCauseEvictionChain) {
1589   BlockFrequency GlobalCost = 0;
1590   const BitVector &LiveBundles = Cand.LiveBundles;
1591   Register VirtRegToSplit = SA->getParent().reg();
1592   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1593   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1594     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1595     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1596     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1597     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1598     unsigned Ins = 0;
1599 
1600     Cand.Intf.moveToBlock(BC.Number);
1601     // Check wheather a local interval is going to be created during the region
1602     // split. Calculate adavanced spilt cost (cost of local intervals) if option
1603     // is enabled.
1604     if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1605         BI.LiveOut && RegIn && RegOut) {
1606 
1607       if (CanCauseEvictionChain &&
1608           splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1609         // This interference causes our eviction from this assignment, we might
1610         // evict somebody else and eventually someone will spill, add that cost.
1611         // See splitCanCauseEvictionChain for detailed description of scenarios.
1612         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1613         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1614 
1615         *CanCauseEvictionChain = true;
1616 
1617       } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1618                                          Order)) {
1619         // This interference causes local interval to spill, add that cost.
1620         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1621         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1622       }
1623     }
1624 
1625     if (BI.LiveIn)
1626       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1627     if (BI.LiveOut)
1628       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1629     while (Ins--)
1630       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1631   }
1632 
1633   for (unsigned Number : Cand.ActiveBlocks) {
1634     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1635     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1636     if (!RegIn && !RegOut)
1637       continue;
1638     if (RegIn && RegOut) {
1639       // We need double spill code if this block has interference.
1640       Cand.Intf.moveToBlock(Number);
1641       if (Cand.Intf.hasInterference()) {
1642         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1643         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1644 
1645         // Check wheather a local interval is going to be created during the
1646         // region split.
1647         if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1648             splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1649           // This interference cause our eviction from this assignment, we might
1650           // evict somebody else, add that cost.
1651           // See splitCanCauseEvictionChain for detailed description of
1652           // scenarios.
1653           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1654           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1655 
1656           *CanCauseEvictionChain = true;
1657         }
1658       }
1659       continue;
1660     }
1661     // live-in / stack-out or stack-in live-out.
1662     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1663   }
1664   return GlobalCost;
1665 }
1666 
1667 /// splitAroundRegion - Split the current live range around the regions
1668 /// determined by BundleCand and GlobalCand.
1669 ///
1670 /// Before calling this function, GlobalCand and BundleCand must be initialized
1671 /// so each bundle is assigned to a valid candidate, or NoCand for the
1672 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1673 /// objects must be initialized for the current live range, and intervals
1674 /// created for the used candidates.
1675 ///
1676 /// @param LREdit    The LiveRangeEdit object handling the current split.
1677 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1678 ///                  must appear in this list.
1679 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1680                                  ArrayRef<unsigned> UsedCands) {
1681   // These are the intervals created for new global ranges. We may create more
1682   // intervals for local ranges.
1683   const unsigned NumGlobalIntvs = LREdit.size();
1684   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1685                     << " globals.\n");
1686   assert(NumGlobalIntvs && "No global intervals configured");
1687 
1688   // Isolate even single instructions when dealing with a proper sub-class.
1689   // That guarantees register class inflation for the stack interval because it
1690   // is all copies.
1691   Register Reg = SA->getParent().reg();
1692   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1693 
1694   // First handle all the blocks with uses.
1695   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1696   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1697     unsigned Number = BI.MBB->getNumber();
1698     unsigned IntvIn = 0, IntvOut = 0;
1699     SlotIndex IntfIn, IntfOut;
1700     if (BI.LiveIn) {
1701       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1702       if (CandIn != NoCand) {
1703         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1704         IntvIn = Cand.IntvIdx;
1705         Cand.Intf.moveToBlock(Number);
1706         IntfIn = Cand.Intf.first();
1707       }
1708     }
1709     if (BI.LiveOut) {
1710       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1711       if (CandOut != NoCand) {
1712         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1713         IntvOut = Cand.IntvIdx;
1714         Cand.Intf.moveToBlock(Number);
1715         IntfOut = Cand.Intf.last();
1716       }
1717     }
1718 
1719     // Create separate intervals for isolated blocks with multiple uses.
1720     if (!IntvIn && !IntvOut) {
1721       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1722       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1723         SE->splitSingleBlock(BI);
1724       continue;
1725     }
1726 
1727     if (IntvIn && IntvOut)
1728       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1729     else if (IntvIn)
1730       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1731     else
1732       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1733   }
1734 
1735   // Handle live-through blocks. The relevant live-through blocks are stored in
1736   // the ActiveBlocks list with each candidate. We need to filter out
1737   // duplicates.
1738   BitVector Todo = SA->getThroughBlocks();
1739   for (unsigned c = 0; c != UsedCands.size(); ++c) {
1740     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1741     for (unsigned Number : Blocks) {
1742       if (!Todo.test(Number))
1743         continue;
1744       Todo.reset(Number);
1745 
1746       unsigned IntvIn = 0, IntvOut = 0;
1747       SlotIndex IntfIn, IntfOut;
1748 
1749       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1750       if (CandIn != NoCand) {
1751         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1752         IntvIn = Cand.IntvIdx;
1753         Cand.Intf.moveToBlock(Number);
1754         IntfIn = Cand.Intf.first();
1755       }
1756 
1757       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1758       if (CandOut != NoCand) {
1759         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1760         IntvOut = Cand.IntvIdx;
1761         Cand.Intf.moveToBlock(Number);
1762         IntfOut = Cand.Intf.last();
1763       }
1764       if (!IntvIn && !IntvOut)
1765         continue;
1766       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1767     }
1768   }
1769 
1770   ++NumGlobalSplits;
1771 
1772   SmallVector<unsigned, 8> IntvMap;
1773   SE->finish(&IntvMap);
1774   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1775 
1776   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1777   unsigned OrigBlocks = SA->getNumLiveBlocks();
1778 
1779   // Sort out the new intervals created by splitting. We get four kinds:
1780   // - Remainder intervals should not be split again.
1781   // - Candidate intervals can be assigned to Cand.PhysReg.
1782   // - Block-local splits are candidates for local splitting.
1783   // - DCE leftovers should go back on the queue.
1784   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1785     LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1786 
1787     // Ignore old intervals from DCE.
1788     if (getStage(Reg) != RS_New)
1789       continue;
1790 
1791     // Remainder interval. Don't try splitting again, spill if it doesn't
1792     // allocate.
1793     if (IntvMap[I] == 0) {
1794       setStage(Reg, RS_Spill);
1795       continue;
1796     }
1797 
1798     // Global intervals. Allow repeated splitting as long as the number of live
1799     // blocks is strictly decreasing.
1800     if (IntvMap[I] < NumGlobalIntvs) {
1801       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1802         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1803                           << " blocks as original.\n");
1804         // Don't allow repeated splitting as a safe guard against looping.
1805         setStage(Reg, RS_Split2);
1806       }
1807       continue;
1808     }
1809 
1810     // Other intervals are treated as new. This includes local intervals created
1811     // for blocks with multiple uses, and anything created by DCE.
1812   }
1813 
1814   if (VerifyEnabled)
1815     MF->verify(this, "After splitting live range around region");
1816 }
1817 
1818 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg,
1819                                     AllocationOrder &Order,
1820                                     SmallVectorImpl<Register> &NewVRegs) {
1821   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1822     return MCRegister::NoRegister;
1823   unsigned NumCands = 0;
1824   BlockFrequency SpillCost = calcSpillCost();
1825   BlockFrequency BestCost;
1826 
1827   // Check if we can split this live range around a compact region.
1828   bool HasCompact = calcCompactRegion(GlobalCand.front());
1829   if (HasCompact) {
1830     // Yes, keep GlobalCand[0] as the compact region candidate.
1831     NumCands = 1;
1832     BestCost = BlockFrequency::getMaxFrequency();
1833   } else {
1834     // No benefit from the compact region, our fallback will be per-block
1835     // splitting. Make sure we find a solution that is cheaper than spilling.
1836     BestCost = SpillCost;
1837     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1838                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1839   }
1840 
1841   bool CanCauseEvictionChain = false;
1842   unsigned BestCand =
1843       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1844                                false /*IgnoreCSR*/, &CanCauseEvictionChain);
1845 
1846   // Split candidates with compact regions can cause a bad eviction sequence.
1847   // See splitCanCauseEvictionChain for detailed description of scenarios.
1848   // To avoid it, we need to comapre the cost with the spill cost and not the
1849   // current max frequency.
1850   if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1851     CanCauseEvictionChain) {
1852     return MCRegister::NoRegister;
1853   }
1854 
1855   // No solutions found, fall back to single block splitting.
1856   if (!HasCompact && BestCand == NoCand)
1857     return MCRegister::NoRegister;
1858 
1859   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1860 }
1861 
1862 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1863                                             AllocationOrder &Order,
1864                                             BlockFrequency &BestCost,
1865                                             unsigned &NumCands, bool IgnoreCSR,
1866                                             bool *CanCauseEvictionChain) {
1867   unsigned BestCand = NoCand;
1868   for (MCPhysReg PhysReg : Order) {
1869     assert(PhysReg);
1870     if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1871       continue;
1872 
1873     // Discard bad candidates before we run out of interference cache cursors.
1874     // This will only affect register classes with a lot of registers (>32).
1875     if (NumCands == IntfCache.getMaxCursors()) {
1876       unsigned WorstCount = ~0u;
1877       unsigned Worst = 0;
1878       for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1879         if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1880           continue;
1881         unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1882         if (Count < WorstCount) {
1883           Worst = CandIndex;
1884           WorstCount = Count;
1885         }
1886       }
1887       --NumCands;
1888       GlobalCand[Worst] = GlobalCand[NumCands];
1889       if (BestCand == NumCands)
1890         BestCand = Worst;
1891     }
1892 
1893     if (GlobalCand.size() <= NumCands)
1894       GlobalCand.resize(NumCands+1);
1895     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1896     Cand.reset(IntfCache, PhysReg);
1897 
1898     SpillPlacer->prepare(Cand.LiveBundles);
1899     BlockFrequency Cost;
1900     if (!addSplitConstraints(Cand.Intf, Cost)) {
1901       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1902       continue;
1903     }
1904     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1905                MBFI->printBlockFreq(dbgs(), Cost));
1906     if (Cost >= BestCost) {
1907       LLVM_DEBUG({
1908         if (BestCand == NoCand)
1909           dbgs() << " worse than no bundles\n";
1910         else
1911           dbgs() << " worse than "
1912                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1913       });
1914       continue;
1915     }
1916     if (!growRegion(Cand)) {
1917       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1918       continue;
1919     }
1920 
1921     SpillPlacer->finish();
1922 
1923     // No live bundles, defer to splitSingleBlocks().
1924     if (!Cand.LiveBundles.any()) {
1925       LLVM_DEBUG(dbgs() << " no bundles.\n");
1926       continue;
1927     }
1928 
1929     bool HasEvictionChain = false;
1930     Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1931     LLVM_DEBUG({
1932       dbgs() << ", total = ";
1933       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1934       for (int I : Cand.LiveBundles.set_bits())
1935         dbgs() << " EB#" << I;
1936       dbgs() << ".\n";
1937     });
1938     if (Cost < BestCost) {
1939       BestCand = NumCands;
1940       BestCost = Cost;
1941       // See splitCanCauseEvictionChain for detailed description of bad
1942       // eviction chain scenarios.
1943       if (CanCauseEvictionChain)
1944         *CanCauseEvictionChain = HasEvictionChain;
1945     }
1946     ++NumCands;
1947   }
1948 
1949   if (CanCauseEvictionChain && BestCand != NoCand) {
1950     // See splitCanCauseEvictionChain for detailed description of bad
1951     // eviction chain scenarios.
1952     LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1953                       << printReg(VirtReg.reg(), TRI) << "  may ");
1954     if (!(*CanCauseEvictionChain))
1955       LLVM_DEBUG(dbgs() << "not ");
1956     LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1957   }
1958 
1959   return BestCand;
1960 }
1961 
1962 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1963                                  bool HasCompact,
1964                                  SmallVectorImpl<Register> &NewVRegs) {
1965   SmallVector<unsigned, 8> UsedCands;
1966   // Prepare split editor.
1967   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1968   SE->reset(LREdit, SplitSpillMode);
1969 
1970   // Assign all edge bundles to the preferred candidate, or NoCand.
1971   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1972 
1973   // Assign bundles for the best candidate region.
1974   if (BestCand != NoCand) {
1975     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1976     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1977       UsedCands.push_back(BestCand);
1978       Cand.IntvIdx = SE->openIntv();
1979       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1980                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1981       (void)B;
1982     }
1983   }
1984 
1985   // Assign bundles for the compact region.
1986   if (HasCompact) {
1987     GlobalSplitCandidate &Cand = GlobalCand.front();
1988     assert(!Cand.PhysReg && "Compact region has no physreg");
1989     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1990       UsedCands.push_back(0);
1991       Cand.IntvIdx = SE->openIntv();
1992       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1993                         << " bundles, intv " << Cand.IntvIdx << ".\n");
1994       (void)B;
1995     }
1996   }
1997 
1998   splitAroundRegion(LREdit, UsedCands);
1999   return 0;
2000 }
2001 
2002 //===----------------------------------------------------------------------===//
2003 //                            Per-Block Splitting
2004 //===----------------------------------------------------------------------===//
2005 
2006 /// tryBlockSplit - Split a global live range around every block with uses. This
2007 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
2008 /// they don't allocate.
2009 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2010                                  SmallVectorImpl<Register> &NewVRegs) {
2011   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
2012   Register Reg = VirtReg.reg();
2013   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
2014   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2015   SE->reset(LREdit, SplitSpillMode);
2016   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
2017   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
2018     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
2019       SE->splitSingleBlock(BI);
2020   }
2021   // No blocks were split.
2022   if (LREdit.empty())
2023     return 0;
2024 
2025   // We did split for some blocks.
2026   SmallVector<unsigned, 8> IntvMap;
2027   SE->finish(&IntvMap);
2028 
2029   // Tell LiveDebugVariables about the new ranges.
2030   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
2031 
2032   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2033 
2034   // Sort out the new intervals created by splitting. The remainder interval
2035   // goes straight to spilling, the new local ranges get to stay RS_New.
2036   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
2037     LiveInterval &LI = LIS->getInterval(LREdit.get(I));
2038     if (getStage(LI) == RS_New && IntvMap[I] == 0)
2039       setStage(LI, RS_Spill);
2040   }
2041 
2042   if (VerifyEnabled)
2043     MF->verify(this, "After splitting live range around basic blocks");
2044   return 0;
2045 }
2046 
2047 //===----------------------------------------------------------------------===//
2048 //                         Per-Instruction Splitting
2049 //===----------------------------------------------------------------------===//
2050 
2051 /// Get the number of allocatable registers that match the constraints of \p Reg
2052 /// on \p MI and that are also in \p SuperRC.
2053 static unsigned getNumAllocatableRegsForConstraints(
2054     const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC,
2055     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
2056     const RegisterClassInfo &RCI) {
2057   assert(SuperRC && "Invalid register class");
2058 
2059   const TargetRegisterClass *ConstrainedRC =
2060       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
2061                                              /* ExploreBundle */ true);
2062   if (!ConstrainedRC)
2063     return 0;
2064   return RCI.getNumAllocatableRegs(ConstrainedRC);
2065 }
2066 
2067 /// tryInstructionSplit - Split a live range around individual instructions.
2068 /// This is normally not worthwhile since the spiller is doing essentially the
2069 /// same thing. However, when the live range is in a constrained register
2070 /// class, it may help to insert copies such that parts of the live range can
2071 /// be moved to a larger register class.
2072 ///
2073 /// This is similar to spilling to a larger register class.
2074 unsigned
2075 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2076                               SmallVectorImpl<Register> &NewVRegs) {
2077   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2078   // There is no point to this if there are no larger sub-classes.
2079   if (!RegClassInfo.isProperSubClass(CurRC))
2080     return 0;
2081 
2082   // Always enable split spill mode, since we're effectively spilling to a
2083   // register.
2084   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2085   SE->reset(LREdit, SplitEditor::SM_Size);
2086 
2087   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2088   if (Uses.size() <= 1)
2089     return 0;
2090 
2091   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
2092                     << " individual instrs.\n");
2093 
2094   const TargetRegisterClass *SuperRC =
2095       TRI->getLargestLegalSuperClass(CurRC, *MF);
2096   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
2097   // Split around every non-copy instruction if this split will relax
2098   // the constraints on the virtual register.
2099   // Otherwise, splitting just inserts uncoalescable copies that do not help
2100   // the allocation.
2101   for (const auto &Use : Uses) {
2102     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use))
2103       if (MI->isFullCopy() ||
2104           SuperRCNumAllocatableRegs ==
2105               getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
2106                                                   TII, TRI, RCI)) {
2107         LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
2108         continue;
2109       }
2110     SE->openIntv();
2111     SlotIndex SegStart = SE->enterIntvBefore(Use);
2112     SlotIndex SegStop = SE->leaveIntvAfter(Use);
2113     SE->useIntv(SegStart, SegStop);
2114   }
2115 
2116   if (LREdit.empty()) {
2117     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2118     return 0;
2119   }
2120 
2121   SmallVector<unsigned, 8> IntvMap;
2122   SE->finish(&IntvMap);
2123   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2124   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2125 
2126   // Assign all new registers to RS_Spill. This was the last chance.
2127   setStage(LREdit.begin(), LREdit.end(), RS_Spill);
2128   return 0;
2129 }
2130 
2131 //===----------------------------------------------------------------------===//
2132 //                             Local Splitting
2133 //===----------------------------------------------------------------------===//
2134 
2135 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2136 /// in order to use PhysReg between two entries in SA->UseSlots.
2137 ///
2138 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
2139 ///
2140 void RAGreedy::calcGapWeights(MCRegister PhysReg,
2141                               SmallVectorImpl<float> &GapWeight) {
2142   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
2143   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2144   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2145   const unsigned NumGaps = Uses.size()-1;
2146 
2147   // Start and end points for the interference check.
2148   SlotIndex StartIdx =
2149     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
2150   SlotIndex StopIdx =
2151     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
2152 
2153   GapWeight.assign(NumGaps, 0.0f);
2154 
2155   // Add interference from each overlapping register.
2156   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2157     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
2158           .checkInterference())
2159       continue;
2160 
2161     // We know that VirtReg is a continuous interval from FirstInstr to
2162     // LastInstr, so we don't need InterferenceQuery.
2163     //
2164     // Interference that overlaps an instruction is counted in both gaps
2165     // surrounding the instruction. The exception is interference before
2166     // StartIdx and after StopIdx.
2167     //
2168     LiveIntervalUnion::SegmentIter IntI =
2169       Matrix->getLiveUnions()[*Units] .find(StartIdx);
2170     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
2171       // Skip the gaps before IntI.
2172       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
2173         if (++Gap == NumGaps)
2174           break;
2175       if (Gap == NumGaps)
2176         break;
2177 
2178       // Update the gaps covered by IntI.
2179       const float weight = IntI.value()->weight();
2180       for (; Gap != NumGaps; ++Gap) {
2181         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
2182         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
2183           break;
2184       }
2185       if (Gap == NumGaps)
2186         break;
2187     }
2188   }
2189 
2190   // Add fixed interference.
2191   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2192     const LiveRange &LR = LIS->getRegUnit(*Units);
2193     LiveRange::const_iterator I = LR.find(StartIdx);
2194     LiveRange::const_iterator E = LR.end();
2195 
2196     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2197     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
2198       while (Uses[Gap+1].getBoundaryIndex() < I->start)
2199         if (++Gap == NumGaps)
2200           break;
2201       if (Gap == NumGaps)
2202         break;
2203 
2204       for (; Gap != NumGaps; ++Gap) {
2205         GapWeight[Gap] = huge_valf;
2206         if (Uses[Gap+1].getBaseIndex() >= I->end)
2207           break;
2208       }
2209       if (Gap == NumGaps)
2210         break;
2211     }
2212   }
2213 }
2214 
2215 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2216 /// basic block.
2217 ///
2218 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2219                                  SmallVectorImpl<Register> &NewVRegs) {
2220   // TODO: the function currently only handles a single UseBlock; it should be
2221   // possible to generalize.
2222   if (SA->getUseBlocks().size() != 1)
2223     return 0;
2224 
2225   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2226 
2227   // Note that it is possible to have an interval that is live-in or live-out
2228   // while only covering a single block - A phi-def can use undef values from
2229   // predecessors, and the block could be a single-block loop.
2230   // We don't bother doing anything clever about such a case, we simply assume
2231   // that the interval is continuous from FirstInstr to LastInstr. We should
2232   // make sure that we don't do anything illegal to such an interval, though.
2233 
2234   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2235   if (Uses.size() <= 2)
2236     return 0;
2237   const unsigned NumGaps = Uses.size()-1;
2238 
2239   LLVM_DEBUG({
2240     dbgs() << "tryLocalSplit: ";
2241     for (const auto &Use : Uses)
2242       dbgs() << ' ' << Use;
2243     dbgs() << '\n';
2244   });
2245 
2246   // If VirtReg is live across any register mask operands, compute a list of
2247   // gaps with register masks.
2248   SmallVector<unsigned, 8> RegMaskGaps;
2249   if (Matrix->checkRegMaskInterference(VirtReg)) {
2250     // Get regmask slots for the whole block.
2251     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
2252     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
2253     // Constrain to VirtReg's live range.
2254     unsigned RI =
2255         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
2256     unsigned RE = RMS.size();
2257     for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
2258       // Look for Uses[I] <= RMS <= Uses[I + 1].
2259       assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
2260       if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
2261         continue;
2262       // Skip a regmask on the same instruction as the last use. It doesn't
2263       // overlap the live range.
2264       if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
2265         break;
2266       LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
2267                         << Uses[I + 1]);
2268       RegMaskGaps.push_back(I);
2269       // Advance ri to the next gap. A regmask on one of the uses counts in
2270       // both gaps.
2271       while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
2272         ++RI;
2273     }
2274     LLVM_DEBUG(dbgs() << '\n');
2275   }
2276 
2277   // Since we allow local split results to be split again, there is a risk of
2278   // creating infinite loops. It is tempting to require that the new live
2279   // ranges have less instructions than the original. That would guarantee
2280   // convergence, but it is too strict. A live range with 3 instructions can be
2281   // split 2+3 (including the COPY), and we want to allow that.
2282   //
2283   // Instead we use these rules:
2284   //
2285   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2286   //    noop split, of course).
2287   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2288   //    the new ranges must have fewer instructions than before the split.
2289   // 3. New ranges with the same number of instructions are marked RS_Split2,
2290   //    smaller ranges are marked RS_New.
2291   //
2292   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2293   // excessive splitting and infinite loops.
2294   //
2295   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
2296 
2297   // Best split candidate.
2298   unsigned BestBefore = NumGaps;
2299   unsigned BestAfter = 0;
2300   float BestDiff = 0;
2301 
2302   const float blockFreq =
2303     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
2304     (1.0f / MBFI->getEntryFreq());
2305   SmallVector<float, 8> GapWeight;
2306 
2307   for (MCPhysReg PhysReg : Order) {
2308     assert(PhysReg);
2309     // Keep track of the largest spill weight that would need to be evicted in
2310     // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
2311     calcGapWeights(PhysReg, GapWeight);
2312 
2313     // Remove any gaps with regmask clobbers.
2314     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
2315       for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
2316         GapWeight[RegMaskGaps[I]] = huge_valf;
2317 
2318     // Try to find the best sequence of gaps to close.
2319     // The new spill weight must be larger than any gap interference.
2320 
2321     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2322     unsigned SplitBefore = 0, SplitAfter = 1;
2323 
2324     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2325     // It is the spill weight that needs to be evicted.
2326     float MaxGap = GapWeight[0];
2327 
2328     while (true) {
2329       // Live before/after split?
2330       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
2331       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
2332 
2333       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
2334                         << '-' << Uses[SplitAfter] << " I=" << MaxGap);
2335 
2336       // Stop before the interval gets so big we wouldn't be making progress.
2337       if (!LiveBefore && !LiveAfter) {
2338         LLVM_DEBUG(dbgs() << " all\n");
2339         break;
2340       }
2341       // Should the interval be extended or shrunk?
2342       bool Shrink = true;
2343 
2344       // How many gaps would the new range have?
2345       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
2346 
2347       // Legally, without causing looping?
2348       bool Legal = !ProgressRequired || NewGaps < NumGaps;
2349 
2350       if (Legal && MaxGap < huge_valf) {
2351         // Estimate the new spill weight. Each instruction reads or writes the
2352         // register. Conservatively assume there are no read-modify-write
2353         // instructions.
2354         //
2355         // Try to guess the size of the new interval.
2356         const float EstWeight = normalizeSpillWeight(
2357             blockFreq * (NewGaps + 1),
2358             Uses[SplitBefore].distance(Uses[SplitAfter]) +
2359                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
2360             1);
2361         // Would this split be possible to allocate?
2362         // Never allocate all gaps, we wouldn't be making progress.
2363         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
2364         if (EstWeight * Hysteresis >= MaxGap) {
2365           Shrink = false;
2366           float Diff = EstWeight - MaxGap;
2367           if (Diff > BestDiff) {
2368             LLVM_DEBUG(dbgs() << " (best)");
2369             BestDiff = Hysteresis * Diff;
2370             BestBefore = SplitBefore;
2371             BestAfter = SplitAfter;
2372           }
2373         }
2374       }
2375 
2376       // Try to shrink.
2377       if (Shrink) {
2378         if (++SplitBefore < SplitAfter) {
2379           LLVM_DEBUG(dbgs() << " shrink\n");
2380           // Recompute the max when necessary.
2381           if (GapWeight[SplitBefore - 1] >= MaxGap) {
2382             MaxGap = GapWeight[SplitBefore];
2383             for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
2384               MaxGap = std::max(MaxGap, GapWeight[I]);
2385           }
2386           continue;
2387         }
2388         MaxGap = 0;
2389       }
2390 
2391       // Try to extend the interval.
2392       if (SplitAfter >= NumGaps) {
2393         LLVM_DEBUG(dbgs() << " end\n");
2394         break;
2395       }
2396 
2397       LLVM_DEBUG(dbgs() << " extend\n");
2398       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
2399     }
2400   }
2401 
2402   // Didn't find any candidates?
2403   if (BestBefore == NumGaps)
2404     return 0;
2405 
2406   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
2407                     << Uses[BestAfter] << ", " << BestDiff << ", "
2408                     << (BestAfter - BestBefore + 1) << " instrs\n");
2409 
2410   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2411   SE->reset(LREdit);
2412 
2413   SE->openIntv();
2414   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
2415   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
2416   SE->useIntv(SegStart, SegStop);
2417   SmallVector<unsigned, 8> IntvMap;
2418   SE->finish(&IntvMap);
2419   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2420 
2421   // If the new range has the same number of instructions as before, mark it as
2422   // RS_Split2 so the next split will be forced to make progress. Otherwise,
2423   // leave the new intervals as RS_New so they can compete.
2424   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
2425   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
2426   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
2427   if (NewGaps >= NumGaps) {
2428     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: ");
2429     assert(!ProgressRequired && "Didn't make progress when it was required.");
2430     for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
2431       if (IntvMap[I] == 1) {
2432         setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
2433         LLVM_DEBUG(dbgs() << printReg(LREdit.get(I)));
2434       }
2435     LLVM_DEBUG(dbgs() << '\n');
2436   }
2437   ++NumLocalSplits;
2438 
2439   return 0;
2440 }
2441 
2442 //===----------------------------------------------------------------------===//
2443 //                          Live Range Splitting
2444 //===----------------------------------------------------------------------===//
2445 
2446 /// trySplit - Try to split VirtReg or one of its interferences, making it
2447 /// assignable.
2448 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2449 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
2450                             SmallVectorImpl<Register> &NewVRegs,
2451                             const SmallVirtRegSet &FixedRegisters) {
2452   // Ranges must be Split2 or less.
2453   if (getStage(VirtReg) >= RS_Spill)
2454     return 0;
2455 
2456   // Local intervals are handled separately.
2457   if (LIS->intervalIsInOneMBB(VirtReg)) {
2458     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
2459                        TimerGroupDescription, TimePassesIsEnabled);
2460     SA->analyze(&VirtReg);
2461     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
2462     if (PhysReg || !NewVRegs.empty())
2463       return PhysReg;
2464     return tryInstructionSplit(VirtReg, Order, NewVRegs);
2465   }
2466 
2467   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2468                      TimerGroupDescription, TimePassesIsEnabled);
2469 
2470   SA->analyze(&VirtReg);
2471 
2472   // FIXME: SplitAnalysis may repair broken live ranges coming from the
2473   // coalescer. That may cause the range to become allocatable which means that
2474   // tryRegionSplit won't be making progress. This check should be replaced with
2475   // an assertion when the coalescer is fixed.
2476   if (SA->didRepairRange()) {
2477     // VirtReg has changed, so all cached queries are invalid.
2478     Matrix->invalidateVirtRegs();
2479     if (Register PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters))
2480       return PhysReg;
2481   }
2482 
2483   // First try to split around a region spanning multiple blocks. RS_Split2
2484   // ranges already made dubious progress with region splitting, so they go
2485   // straight to single block splitting.
2486   if (getStage(VirtReg) < RS_Split2) {
2487     MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2488     if (PhysReg || !NewVRegs.empty())
2489       return PhysReg;
2490   }
2491 
2492   // Then isolate blocks.
2493   return tryBlockSplit(VirtReg, Order, NewVRegs);
2494 }
2495 
2496 //===----------------------------------------------------------------------===//
2497 //                          Last Chance Recoloring
2498 //===----------------------------------------------------------------------===//
2499 
2500 /// Return true if \p reg has any tied def operand.
2501 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
2502   for (const MachineOperand &MO : MRI->def_operands(reg))
2503     if (MO.isTied())
2504       return true;
2505 
2506   return false;
2507 }
2508 
2509 /// mayRecolorAllInterferences - Check if the virtual registers that
2510 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2511 /// recolored to free \p PhysReg.
2512 /// When true is returned, \p RecoloringCandidates has been augmented with all
2513 /// the live intervals that need to be recolored in order to free \p PhysReg
2514 /// for \p VirtReg.
2515 /// \p FixedRegisters contains all the virtual registers that cannot be
2516 /// recolored.
2517 bool RAGreedy::mayRecolorAllInterferences(
2518     MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates,
2519     const SmallVirtRegSet &FixedRegisters) {
2520   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2521 
2522   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2523     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2524     // If there is LastChanceRecoloringMaxInterference or more interferences,
2525     // chances are one would not be recolorable.
2526     if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2527         LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2528       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2529       CutOffInfo |= CO_Interf;
2530       return false;
2531     }
2532     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
2533       // If Intf is done and sit on the same register class as VirtReg,
2534       // it would not be recolorable as it is in the same state as VirtReg.
2535       // However, if VirtReg has tied defs and Intf doesn't, then
2536       // there is still a point in examining if it can be recolorable.
2537       if (((getStage(*Intf) == RS_Done &&
2538             MRI->getRegClass(Intf->reg()) == CurRC) &&
2539            !(hasTiedDef(MRI, VirtReg.reg()) &&
2540              !hasTiedDef(MRI, Intf->reg()))) ||
2541           FixedRegisters.count(Intf->reg())) {
2542         LLVM_DEBUG(
2543             dbgs() << "Early abort: the interference is not recolorable.\n");
2544         return false;
2545       }
2546       RecoloringCandidates.insert(Intf);
2547     }
2548   }
2549   return true;
2550 }
2551 
2552 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2553 /// its interferences.
2554 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2555 /// virtual register that was using it. The recoloring process may recursively
2556 /// use the last chance recoloring. Therefore, when a virtual register has been
2557 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2558 /// be last-chance-recolored again during this recoloring "session".
2559 /// E.g.,
2560 /// Let
2561 /// vA can use {R1, R2    }
2562 /// vB can use {    R2, R3}
2563 /// vC can use {R1        }
2564 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2565 /// instance) and they all interfere.
2566 ///
2567 /// vA is assigned R1
2568 /// vB is assigned R2
2569 /// vC tries to evict vA but vA is already done.
2570 /// Regular register allocation fails.
2571 ///
2572 /// Last chance recoloring kicks in:
2573 /// vC does as if vA was evicted => vC uses R1.
2574 /// vC is marked as fixed.
2575 /// vA needs to find a color.
2576 /// None are available.
2577 /// vA cannot evict vC: vC is a fixed virtual register now.
2578 /// vA does as if vB was evicted => vA uses R2.
2579 /// vB needs to find a color.
2580 /// R3 is available.
2581 /// Recoloring => vC = R1, vA = R2, vB = R3
2582 ///
2583 /// \p Order defines the preferred allocation order for \p VirtReg.
2584 /// \p NewRegs will contain any new virtual register that have been created
2585 /// (split, spill) during the process and that must be assigned.
2586 /// \p FixedRegisters contains all the virtual registers that cannot be
2587 /// recolored.
2588 /// \p Depth gives the current depth of the last chance recoloring.
2589 /// \return a physical register that can be used for VirtReg or ~0u if none
2590 /// exists.
2591 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2592                                            AllocationOrder &Order,
2593                                            SmallVectorImpl<Register> &NewVRegs,
2594                                            SmallVirtRegSet &FixedRegisters,
2595                                            unsigned Depth) {
2596   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
2597     return ~0u;
2598 
2599   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2600   // Ranges must be Done.
2601   assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2602          "Last chance recoloring should really be last chance");
2603   // Set the max depth to LastChanceRecoloringMaxDepth.
2604   // We may want to reconsider that if we end up with a too large search space
2605   // for target with hundreds of registers.
2606   // Indeed, in that case we may want to cut the search space earlier.
2607   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2608     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2609     CutOffInfo |= CO_Depth;
2610     return ~0u;
2611   }
2612 
2613   // Set of Live intervals that will need to be recolored.
2614   SmallLISet RecoloringCandidates;
2615   // Record the original mapping virtual register to physical register in case
2616   // the recoloring fails.
2617   DenseMap<Register, MCRegister> VirtRegToPhysReg;
2618   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2619   // this recoloring "session".
2620   assert(!FixedRegisters.count(VirtReg.reg()));
2621   FixedRegisters.insert(VirtReg.reg());
2622   SmallVector<Register, 4> CurrentNewVRegs;
2623 
2624   for (MCRegister PhysReg : Order) {
2625     assert(PhysReg.isValid());
2626     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2627                       << printReg(PhysReg, TRI) << '\n');
2628     RecoloringCandidates.clear();
2629     VirtRegToPhysReg.clear();
2630     CurrentNewVRegs.clear();
2631 
2632     // It is only possible to recolor virtual register interference.
2633     if (Matrix->checkInterference(VirtReg, PhysReg) >
2634         LiveRegMatrix::IK_VirtReg) {
2635       LLVM_DEBUG(
2636           dbgs() << "Some interferences are not with virtual registers.\n");
2637 
2638       continue;
2639     }
2640 
2641     // Early give up on this PhysReg if it is obvious we cannot recolor all
2642     // the interferences.
2643     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2644                                     FixedRegisters)) {
2645       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2646       continue;
2647     }
2648 
2649     // RecoloringCandidates contains all the virtual registers that interfer
2650     // with VirtReg on PhysReg (or one of its aliases).
2651     // Enqueue them for recoloring and perform the actual recoloring.
2652     PQueue RecoloringQueue;
2653     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2654                               EndIt = RecoloringCandidates.end();
2655          It != EndIt; ++It) {
2656       Register ItVirtReg = (*It)->reg();
2657       enqueue(RecoloringQueue, *It);
2658       assert(VRM->hasPhys(ItVirtReg) &&
2659              "Interferences are supposed to be with allocated variables");
2660 
2661       // Record the current allocation.
2662       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2663       // unset the related struct.
2664       Matrix->unassign(**It);
2665     }
2666 
2667     // Do as if VirtReg was assigned to PhysReg so that the underlying
2668     // recoloring has the right information about the interferes and
2669     // available colors.
2670     Matrix->assign(VirtReg, PhysReg);
2671 
2672     // Save the current recoloring state.
2673     // If we cannot recolor all the interferences, we will have to start again
2674     // at this point for the next physical register.
2675     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2676     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2677                                 FixedRegisters, Depth)) {
2678       // Push the queued vregs into the main queue.
2679       for (Register NewVReg : CurrentNewVRegs)
2680         NewVRegs.push_back(NewVReg);
2681       // Do not mess up with the global assignment process.
2682       // I.e., VirtReg must be unassigned.
2683       Matrix->unassign(VirtReg);
2684       return PhysReg;
2685     }
2686 
2687     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2688                       << printReg(PhysReg, TRI) << '\n');
2689 
2690     // The recoloring attempt failed, undo the changes.
2691     FixedRegisters = SaveFixedRegisters;
2692     Matrix->unassign(VirtReg);
2693 
2694     // For a newly created vreg which is also in RecoloringCandidates,
2695     // don't add it to NewVRegs because its physical register will be restored
2696     // below. Other vregs in CurrentNewVRegs are created by calling
2697     // selectOrSplit and should be added into NewVRegs.
2698     for (SmallVectorImpl<Register>::iterator Next = CurrentNewVRegs.begin(),
2699                                              End = CurrentNewVRegs.end();
2700          Next != End; ++Next) {
2701       if (RecoloringCandidates.count(&LIS->getInterval(*Next)))
2702         continue;
2703       NewVRegs.push_back(*Next);
2704     }
2705 
2706     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2707                               EndIt = RecoloringCandidates.end();
2708          It != EndIt; ++It) {
2709       Register ItVirtReg = (*It)->reg();
2710       if (VRM->hasPhys(ItVirtReg))
2711         Matrix->unassign(**It);
2712       MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2713       Matrix->assign(**It, ItPhysReg);
2714     }
2715   }
2716 
2717   // Last chance recoloring did not worked either, give up.
2718   return ~0u;
2719 }
2720 
2721 /// tryRecoloringCandidates - Try to assign a new color to every register
2722 /// in \RecoloringQueue.
2723 /// \p NewRegs will contain any new virtual register created during the
2724 /// recoloring process.
2725 /// \p FixedRegisters[in/out] contains all the registers that have been
2726 /// recolored.
2727 /// \return true if all virtual registers in RecoloringQueue were successfully
2728 /// recolored, false otherwise.
2729 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2730                                        SmallVectorImpl<Register> &NewVRegs,
2731                                        SmallVirtRegSet &FixedRegisters,
2732                                        unsigned Depth) {
2733   while (!RecoloringQueue.empty()) {
2734     LiveInterval *LI = dequeue(RecoloringQueue);
2735     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2736     MCRegister PhysReg =
2737         selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2738     // When splitting happens, the live-range may actually be empty.
2739     // In that case, this is okay to continue the recoloring even
2740     // if we did not find an alternative color for it. Indeed,
2741     // there will not be anything to color for LI in the end.
2742     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2743       return false;
2744 
2745     if (!PhysReg) {
2746       assert(LI->empty() && "Only empty live-range do not require a register");
2747       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2748                         << " succeeded. Empty LI.\n");
2749       continue;
2750     }
2751     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2752                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2753 
2754     Matrix->assign(*LI, PhysReg);
2755     FixedRegisters.insert(LI->reg());
2756   }
2757   return true;
2758 }
2759 
2760 //===----------------------------------------------------------------------===//
2761 //                            Main Entry Point
2762 //===----------------------------------------------------------------------===//
2763 
2764 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2765                                    SmallVectorImpl<Register> &NewVRegs) {
2766   CutOffInfo = CO_None;
2767   LLVMContext &Ctx = MF->getFunction().getContext();
2768   SmallVirtRegSet FixedRegisters;
2769   MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2770   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2771     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2772     if (CutOffEncountered == CO_Depth)
2773       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2774                     "reached. Use -fexhaustive-register-search to skip "
2775                     "cutoffs");
2776     else if (CutOffEncountered == CO_Interf)
2777       Ctx.emitError("register allocation failed: maximum interference for "
2778                     "recoloring reached. Use -fexhaustive-register-search "
2779                     "to skip cutoffs");
2780     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2781       Ctx.emitError("register allocation failed: maximum interference and "
2782                     "depth for recoloring reached. Use "
2783                     "-fexhaustive-register-search to skip cutoffs");
2784   }
2785   return Reg;
2786 }
2787 
2788 /// Using a CSR for the first time has a cost because it causes push|pop
2789 /// to be added to prologue|epilogue. Splitting a cold section of the live
2790 /// range can have lower cost than using the CSR for the first time;
2791 /// Spilling a live range in the cold path can have lower cost than using
2792 /// the CSR for the first time. Returns the physical register if we decide
2793 /// to use the CSR; otherwise return 0.
2794 MCRegister
2795 RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
2796                                 MCRegister PhysReg, unsigned &CostPerUseLimit,
2797                                 SmallVectorImpl<Register> &NewVRegs) {
2798   if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2799     // We choose spill over using the CSR for the first time if the spill cost
2800     // is lower than CSRCost.
2801     SA->analyze(&VirtReg);
2802     if (calcSpillCost() >= CSRCost)
2803       return PhysReg;
2804 
2805     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2806     // we will not use a callee-saved register in tryEvict.
2807     CostPerUseLimit = 1;
2808     return 0;
2809   }
2810   if (getStage(VirtReg) < RS_Split) {
2811     // We choose pre-splitting over using the CSR for the first time if
2812     // the cost of splitting is lower than CSRCost.
2813     SA->analyze(&VirtReg);
2814     unsigned NumCands = 0;
2815     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2816     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2817                                                  NumCands, true /*IgnoreCSR*/);
2818     if (BestCand == NoCand)
2819       // Use the CSR if we can't find a region split below CSRCost.
2820       return PhysReg;
2821 
2822     // Perform the actual pre-splitting.
2823     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2824     return 0;
2825   }
2826   return PhysReg;
2827 }
2828 
2829 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2830   // Do not keep invalid information around.
2831   SetOfBrokenHints.remove(&LI);
2832 }
2833 
2834 void RAGreedy::initializeCSRCost() {
2835   // We use the larger one out of the command-line option and the value report
2836   // by TRI.
2837   CSRCost = BlockFrequency(
2838       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2839   if (!CSRCost.getFrequency())
2840     return;
2841 
2842   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2843   uint64_t ActualEntry = MBFI->getEntryFreq();
2844   if (!ActualEntry) {
2845     CSRCost = 0;
2846     return;
2847   }
2848   uint64_t FixedEntry = 1 << 14;
2849   if (ActualEntry < FixedEntry)
2850     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2851   else if (ActualEntry <= UINT32_MAX)
2852     // Invert the fraction and divide.
2853     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2854   else
2855     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2856     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2857 }
2858 
2859 /// Collect the hint info for \p Reg.
2860 /// The results are stored into \p Out.
2861 /// \p Out is not cleared before being populated.
2862 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
2863   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2864     if (!Instr.isFullCopy())
2865       continue;
2866     // Look for the other end of the copy.
2867     Register OtherReg = Instr.getOperand(0).getReg();
2868     if (OtherReg == Reg) {
2869       OtherReg = Instr.getOperand(1).getReg();
2870       if (OtherReg == Reg)
2871         continue;
2872     }
2873     // Get the current assignment.
2874     MCRegister OtherPhysReg =
2875         OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
2876     // Push the collected information.
2877     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2878                            OtherPhysReg));
2879   }
2880 }
2881 
2882 /// Using the given \p List, compute the cost of the broken hints if
2883 /// \p PhysReg was used.
2884 /// \return The cost of \p List for \p PhysReg.
2885 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2886                                            MCRegister PhysReg) {
2887   BlockFrequency Cost = 0;
2888   for (const HintInfo &Info : List) {
2889     if (Info.PhysReg != PhysReg)
2890       Cost += Info.Freq;
2891   }
2892   return Cost;
2893 }
2894 
2895 /// Using the register assigned to \p VirtReg, try to recolor
2896 /// all the live ranges that are copy-related with \p VirtReg.
2897 /// The recoloring is then propagated to all the live-ranges that have
2898 /// been recolored and so on, until no more copies can be coalesced or
2899 /// it is not profitable.
2900 /// For a given live range, profitability is determined by the sum of the
2901 /// frequencies of the non-identity copies it would introduce with the old
2902 /// and new register.
2903 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2904   // We have a broken hint, check if it is possible to fix it by
2905   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2906   // some register and PhysReg may be available for the other live-ranges.
2907   SmallSet<Register, 4> Visited;
2908   SmallVector<unsigned, 2> RecoloringCandidates;
2909   HintsInfo Info;
2910   Register Reg = VirtReg.reg();
2911   MCRegister PhysReg = VRM->getPhys(Reg);
2912   // Start the recoloring algorithm from the input live-interval, then
2913   // it will propagate to the ones that are copy-related with it.
2914   Visited.insert(Reg);
2915   RecoloringCandidates.push_back(Reg);
2916 
2917   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2918                     << '(' << printReg(PhysReg, TRI) << ")\n");
2919 
2920   do {
2921     Reg = RecoloringCandidates.pop_back_val();
2922 
2923     // We cannot recolor physical register.
2924     if (Register::isPhysicalRegister(Reg))
2925       continue;
2926 
2927     assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2928 
2929     // Get the live interval mapped with this virtual register to be able
2930     // to check for the interference with the new color.
2931     LiveInterval &LI = LIS->getInterval(Reg);
2932     MCRegister CurrPhys = VRM->getPhys(Reg);
2933     // Check that the new color matches the register class constraints and
2934     // that it is free for this live range.
2935     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2936                                 Matrix->checkInterference(LI, PhysReg)))
2937       continue;
2938 
2939     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2940                       << ") is recolorable.\n");
2941 
2942     // Gather the hint info.
2943     Info.clear();
2944     collectHintInfo(Reg, Info);
2945     // Check if recoloring the live-range will increase the cost of the
2946     // non-identity copies.
2947     if (CurrPhys != PhysReg) {
2948       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2949       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2950       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2951       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2952                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2953                         << '\n');
2954       if (OldCopiesCost < NewCopiesCost) {
2955         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2956         continue;
2957       }
2958       // At this point, the cost is either cheaper or equal. If it is
2959       // equal, we consider this is profitable because it may expose
2960       // more recoloring opportunities.
2961       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2962       // Recolor the live-range.
2963       Matrix->unassign(LI);
2964       Matrix->assign(LI, PhysReg);
2965     }
2966     // Push all copy-related live-ranges to keep reconciling the broken
2967     // hints.
2968     for (const HintInfo &HI : Info) {
2969       if (Visited.insert(HI.Reg).second)
2970         RecoloringCandidates.push_back(HI.Reg);
2971     }
2972   } while (!RecoloringCandidates.empty());
2973 }
2974 
2975 /// Try to recolor broken hints.
2976 /// Broken hints may be repaired by recoloring when an evicted variable
2977 /// freed up a register for a larger live-range.
2978 /// Consider the following example:
2979 /// BB1:
2980 ///   a =
2981 ///   b =
2982 /// BB2:
2983 ///   ...
2984 ///   = b
2985 ///   = a
2986 /// Let us assume b gets split:
2987 /// BB1:
2988 ///   a =
2989 ///   b =
2990 /// BB2:
2991 ///   c = b
2992 ///   ...
2993 ///   d = c
2994 ///   = d
2995 ///   = a
2996 /// Because of how the allocation work, b, c, and d may be assigned different
2997 /// colors. Now, if a gets evicted later:
2998 /// BB1:
2999 ///   a =
3000 ///   st a, SpillSlot
3001 ///   b =
3002 /// BB2:
3003 ///   c = b
3004 ///   ...
3005 ///   d = c
3006 ///   = d
3007 ///   e = ld SpillSlot
3008 ///   = e
3009 /// This is likely that we can assign the same register for b, c, and d,
3010 /// getting rid of 2 copies.
3011 void RAGreedy::tryHintsRecoloring() {
3012   for (LiveInterval *LI : SetOfBrokenHints) {
3013     assert(Register::isVirtualRegister(LI->reg()) &&
3014            "Recoloring is possible only for virtual registers");
3015     // Some dead defs may be around (e.g., because of debug uses).
3016     // Ignore those.
3017     if (!VRM->hasPhys(LI->reg()))
3018       continue;
3019     tryHintRecoloring(*LI);
3020   }
3021 }
3022 
3023 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
3024                                        SmallVectorImpl<Register> &NewVRegs,
3025                                        SmallVirtRegSet &FixedRegisters,
3026                                        unsigned Depth) {
3027   unsigned CostPerUseLimit = ~0u;
3028   // First try assigning a free register.
3029   auto Order =
3030       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
3031   if (MCRegister PhysReg =
3032           tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
3033     // If VirtReg got an assignment, the eviction info is no longre relevant.
3034     LastEvicted.clearEvicteeInfo(VirtReg.reg());
3035     // When NewVRegs is not empty, we may have made decisions such as evicting
3036     // a virtual register, go with the earlier decisions and use the physical
3037     // register.
3038     if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
3039         NewVRegs.empty()) {
3040       MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
3041                                                 CostPerUseLimit, NewVRegs);
3042       if (CSRReg || !NewVRegs.empty())
3043         // Return now if we decide to use a CSR or create new vregs due to
3044         // pre-splitting.
3045         return CSRReg;
3046     } else
3047       return PhysReg;
3048   }
3049 
3050   LiveRangeStage Stage = getStage(VirtReg);
3051   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
3052                     << ExtraRegInfo[VirtReg.reg()].Cascade << '\n');
3053 
3054   // Try to evict a less worthy live range, but only for ranges from the primary
3055   // queue. The RS_Split ranges already failed to do this, and they should not
3056   // get a second chance until they have been split.
3057   if (Stage != RS_Split)
3058     if (Register PhysReg =
3059             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
3060                      FixedRegisters)) {
3061       Register Hint = MRI->getSimpleHint(VirtReg.reg());
3062       // If VirtReg has a hint and that hint is broken record this
3063       // virtual register as a recoloring candidate for broken hint.
3064       // Indeed, since we evicted a variable in its neighborhood it is
3065       // likely we can at least partially recolor some of the
3066       // copy-related live-ranges.
3067       if (Hint && Hint != PhysReg)
3068         SetOfBrokenHints.insert(&VirtReg);
3069       // If VirtReg eviction someone, the eviction info for it as an evictee is
3070       // no longre relevant.
3071       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3072       return PhysReg;
3073     }
3074 
3075   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
3076 
3077   // The first time we see a live range, don't try to split or spill.
3078   // Wait until the second time, when all smaller ranges have been allocated.
3079   // This gives a better picture of the interference to split around.
3080   if (Stage < RS_Split) {
3081     setStage(VirtReg, RS_Split);
3082     LLVM_DEBUG(dbgs() << "wait for second round\n");
3083     NewVRegs.push_back(VirtReg.reg());
3084     return 0;
3085   }
3086 
3087   if (Stage < RS_Spill) {
3088     // Try splitting VirtReg or interferences.
3089     unsigned NewVRegSizeBefore = NewVRegs.size();
3090     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
3091     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
3092       // If VirtReg got split, the eviction info is no longer relevant.
3093       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3094       return PhysReg;
3095     }
3096   }
3097 
3098   // If we couldn't allocate a register from spilling, there is probably some
3099   // invalid inline assembly. The base class will report it.
3100   if (Stage >= RS_Done || !VirtReg.isSpillable())
3101     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
3102                                    Depth);
3103 
3104   // Finally spill VirtReg itself.
3105   if ((EnableDeferredSpilling ||
3106        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
3107       getStage(VirtReg) < RS_Memory) {
3108     // TODO: This is experimental and in particular, we do not model
3109     // the live range splitting done by spilling correctly.
3110     // We would need a deep integration with the spiller to do the
3111     // right thing here. Anyway, that is still good for early testing.
3112     setStage(VirtReg, RS_Memory);
3113     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3114     NewVRegs.push_back(VirtReg.reg());
3115   } else {
3116     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
3117                        TimerGroupDescription, TimePassesIsEnabled);
3118     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
3119     spiller().spill(LRE);
3120     setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
3121 
3122     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
3123     // the new regs are kept in LDV (still mapping to the old register), until
3124     // we rewrite spilled locations in LDV at a later stage.
3125     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
3126 
3127     if (VerifyEnabled)
3128       MF->verify(this, "After spilling");
3129   }
3130 
3131   // The live virtual register requesting allocation was spilled, so tell
3132   // the caller not to allocate anything during this round.
3133   return 0;
3134 }
3135 
3136 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
3137                                             unsigned &FoldedReloads,
3138                                             unsigned &Spills,
3139                                             unsigned &FoldedSpills) {
3140   Reloads = 0;
3141   FoldedReloads = 0;
3142   Spills = 0;
3143   FoldedSpills = 0;
3144 
3145   // Sum up the spill and reloads in subloops.
3146   for (MachineLoop *SubLoop : *L) {
3147     unsigned SubReloads;
3148     unsigned SubFoldedReloads;
3149     unsigned SubSpills;
3150     unsigned SubFoldedSpills;
3151 
3152     reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads,
3153                                  SubSpills, SubFoldedSpills);
3154     Reloads += SubReloads;
3155     FoldedReloads += SubFoldedReloads;
3156     Spills += SubSpills;
3157     FoldedSpills += SubFoldedSpills;
3158   }
3159 
3160   const MachineFrameInfo &MFI = MF->getFrameInfo();
3161   int FI;
3162 
3163   for (MachineBasicBlock *MBB : L->getBlocks())
3164     // Handle blocks that were not included in subloops.
3165     if (Loops->getLoopFor(MBB) == L)
3166       for (MachineInstr &MI : *MBB) {
3167         SmallVector<const MachineMemOperand *, 2> Accesses;
3168         auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
3169           return MFI.isSpillSlotObjectIndex(
3170               cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
3171                   ->getFrameIndex());
3172         };
3173 
3174         if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI))
3175           ++Reloads;
3176         else if (TII->hasLoadFromStackSlot(MI, Accesses) &&
3177                  llvm::any_of(Accesses, isSpillSlotAccess))
3178           ++FoldedReloads;
3179         else if (TII->isStoreToStackSlot(MI, FI) &&
3180                  MFI.isSpillSlotObjectIndex(FI))
3181           ++Spills;
3182         else if (TII->hasStoreToStackSlot(MI, Accesses) &&
3183                  llvm::any_of(Accesses, isSpillSlotAccess))
3184           ++FoldedSpills;
3185       }
3186 
3187   if (Reloads || FoldedReloads || Spills || FoldedSpills) {
3188     using namespace ore;
3189 
3190     ORE->emit([&]() {
3191       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload",
3192                                         L->getStartLoc(), L->getHeader());
3193       if (Spills)
3194         R << NV("NumSpills", Spills) << " spills ";
3195       if (FoldedSpills)
3196         R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
3197       if (Reloads)
3198         R << NV("NumReloads", Reloads) << " reloads ";
3199       if (FoldedReloads)
3200         R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
3201       R << "generated in loop";
3202       return R;
3203     });
3204   }
3205 }
3206 
3207 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
3208   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3209                     << "********** Function: " << mf.getName() << '\n');
3210 
3211   MF = &mf;
3212   TRI = MF->getSubtarget().getRegisterInfo();
3213   TII = MF->getSubtarget().getInstrInfo();
3214   RCI.runOnMachineFunction(mf);
3215 
3216   EnableLocalReassign = EnableLocalReassignment ||
3217                         MF->getSubtarget().enableRALocalReassignment(
3218                             MF->getTarget().getOptLevel());
3219 
3220   EnableAdvancedRASplitCost =
3221       ConsiderLocalIntervalCost.getNumOccurrences()
3222           ? ConsiderLocalIntervalCost
3223           : MF->getSubtarget().enableAdvancedRASplitCost();
3224 
3225   if (VerifyEnabled)
3226     MF->verify(this, "Before greedy register allocator");
3227 
3228   RegAllocBase::init(getAnalysis<VirtRegMap>(),
3229                      getAnalysis<LiveIntervals>(),
3230                      getAnalysis<LiveRegMatrix>());
3231   Indexes = &getAnalysis<SlotIndexes>();
3232   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3233   DomTree = &getAnalysis<MachineDominatorTree>();
3234   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
3235   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
3236   Loops = &getAnalysis<MachineLoopInfo>();
3237   Bundles = &getAnalysis<EdgeBundles>();
3238   SpillPlacer = &getAnalysis<SpillPlacement>();
3239   DebugVars = &getAnalysis<LiveDebugVariables>();
3240   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3241 
3242   initializeCSRCost();
3243 
3244   VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
3245 
3246   VRAI->calculateSpillWeightsAndHints();
3247 
3248   LLVM_DEBUG(LIS->dump());
3249 
3250   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
3251   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI));
3252   ExtraRegInfo.clear();
3253   ExtraRegInfo.resize(MRI->getNumVirtRegs());
3254   NextCascade = 1;
3255   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
3256   GlobalCand.resize(32);  // This will grow as needed.
3257   SetOfBrokenHints.clear();
3258   LastEvicted.clear();
3259 
3260   allocatePhysRegs();
3261   tryHintsRecoloring();
3262   postOptimization();
3263   reportNumberOfSplillsReloads();
3264 
3265   releaseMemory();
3266   return true;
3267 }
3268