1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RegAllocGreedy.h" 15 #include "AllocationOrder.h" 16 #include "InterferenceCache.h" 17 #include "LiveDebugVariables.h" 18 #include "RegAllocBase.h" 19 #include "RegAllocEvictionAdvisor.h" 20 #include "SpillPlacement.h" 21 #include "SplitKit.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/IndexedMap.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/Analysis/AliasAnalysis.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/CodeGen/CalcSpillWeights.h" 34 #include "llvm/CodeGen/EdgeBundles.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/LiveIntervalUnion.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveRangeEdit.h" 39 #include "llvm/CodeGen/LiveRegMatrix.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineLoopInfo.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RegAllocRegistry.h" 53 #include "llvm/CodeGen/RegisterClassInfo.h" 54 #include "llvm/CodeGen/SlotIndexes.h" 55 #include "llvm/CodeGen/Spiller.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/CodeGen/VirtRegMap.h" 60 #include "llvm/IR/DebugInfoMetadata.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/InitializePasses.h" 64 #include "llvm/MC/MCRegisterInfo.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/BlockFrequency.h" 67 #include "llvm/Support/BranchProbability.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/Timer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <utility> 77 78 using namespace llvm; 79 80 #define DEBUG_TYPE "regalloc" 81 82 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 83 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 84 STATISTIC(NumEvicted, "Number of interferences evicted"); 85 86 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 87 "split-spill-mode", cl::Hidden, 88 cl::desc("Spill mode for splitting live ranges"), 89 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 90 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 91 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 92 cl::init(SplitEditor::SM_Speed)); 93 94 static cl::opt<unsigned> 95 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 96 cl::desc("Last chance recoloring max depth"), 97 cl::init(5)); 98 99 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 100 "lcr-max-interf", cl::Hidden, 101 cl::desc("Last chance recoloring maximum number of considered" 102 " interference at a time"), 103 cl::init(8)); 104 105 static cl::opt<bool> ExhaustiveSearch( 106 "exhaustive-register-search", cl::NotHidden, 107 cl::desc("Exhaustive Search for registers bypassing the depth " 108 "and interference cutoffs of last chance recoloring"), 109 cl::Hidden); 110 111 static cl::opt<bool> EnableDeferredSpilling( 112 "enable-deferred-spilling", cl::Hidden, 113 cl::desc("Instead of spilling a variable right away, defer the actual " 114 "code insertion to the end of the allocation. That way the " 115 "allocator might still find a suitable coloring for this " 116 "variable because of other evicted variables."), 117 cl::init(false)); 118 119 // FIXME: Find a good default for this flag and remove the flag. 120 static cl::opt<unsigned> 121 CSRFirstTimeCost("regalloc-csr-first-time-cost", 122 cl::desc("Cost for first time use of callee-saved register."), 123 cl::init(0), cl::Hidden); 124 125 static cl::opt<unsigned long> GrowRegionComplexityBudget( 126 "grow-region-complexity-budget", 127 cl::desc("growRegion() does not scale with the number of BB edges, so " 128 "limit its budget and bail out once we reach the limit."), 129 cl::init(10000), cl::Hidden); 130 131 static cl::opt<bool> GreedyRegClassPriorityTrumpsGlobalness( 132 "greedy-regclass-priority-trumps-globalness", 133 cl::desc("Change the greedy register allocator's live range priority " 134 "calculation to make the AllocationPriority of the register class " 135 "more important then whether the range is global"), 136 cl::Hidden); 137 138 static cl::opt<bool> GreedyReverseLocalAssignment( 139 "greedy-reverse-local-assignment", 140 cl::desc("Reverse allocation order of local live ranges, such that " 141 "shorter local live ranges will tend to be allocated first"), 142 cl::Hidden); 143 144 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 145 createGreedyRegisterAllocator); 146 147 char RAGreedy::ID = 0; 148 char &llvm::RAGreedyID = RAGreedy::ID; 149 150 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 151 "Greedy Register Allocator", false, false) 152 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 153 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 154 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 155 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 156 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 157 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 158 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 159 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 160 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 161 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 162 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 163 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 164 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 165 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis) 166 INITIALIZE_PASS_END(RAGreedy, "greedy", 167 "Greedy Register Allocator", false, false) 168 169 #ifndef NDEBUG 170 const char *const RAGreedy::StageName[] = { 171 "RS_New", 172 "RS_Assign", 173 "RS_Split", 174 "RS_Split2", 175 "RS_Spill", 176 "RS_Memory", 177 "RS_Done" 178 }; 179 #endif 180 181 // Hysteresis to use when comparing floats. 182 // This helps stabilize decisions based on float comparisons. 183 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 184 185 FunctionPass* llvm::createGreedyRegisterAllocator() { 186 return new RAGreedy(); 187 } 188 189 FunctionPass *llvm::createGreedyRegisterAllocator(RegClassFilterFunc Ftor) { 190 return new RAGreedy(Ftor); 191 } 192 193 RAGreedy::RAGreedy(RegClassFilterFunc F): 194 MachineFunctionPass(ID), 195 RegAllocBase(F) { 196 } 197 198 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 199 AU.setPreservesCFG(); 200 AU.addRequired<MachineBlockFrequencyInfo>(); 201 AU.addPreserved<MachineBlockFrequencyInfo>(); 202 AU.addRequired<LiveIntervals>(); 203 AU.addPreserved<LiveIntervals>(); 204 AU.addRequired<SlotIndexes>(); 205 AU.addPreserved<SlotIndexes>(); 206 AU.addRequired<LiveDebugVariables>(); 207 AU.addPreserved<LiveDebugVariables>(); 208 AU.addRequired<LiveStacks>(); 209 AU.addPreserved<LiveStacks>(); 210 AU.addRequired<MachineDominatorTree>(); 211 AU.addPreserved<MachineDominatorTree>(); 212 AU.addRequired<MachineLoopInfo>(); 213 AU.addPreserved<MachineLoopInfo>(); 214 AU.addRequired<VirtRegMap>(); 215 AU.addPreserved<VirtRegMap>(); 216 AU.addRequired<LiveRegMatrix>(); 217 AU.addPreserved<LiveRegMatrix>(); 218 AU.addRequired<EdgeBundles>(); 219 AU.addRequired<SpillPlacement>(); 220 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 221 AU.addRequired<RegAllocEvictionAdvisorAnalysis>(); 222 MachineFunctionPass::getAnalysisUsage(AU); 223 } 224 225 //===----------------------------------------------------------------------===// 226 // LiveRangeEdit delegate methods 227 //===----------------------------------------------------------------------===// 228 229 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) { 230 LiveInterval &LI = LIS->getInterval(VirtReg); 231 if (VRM->hasPhys(VirtReg)) { 232 Matrix->unassign(LI); 233 aboutToRemoveInterval(LI); 234 return true; 235 } 236 // Unassigned virtreg is probably in the priority queue. 237 // RegAllocBase will erase it after dequeueing. 238 // Nonetheless, clear the live-range so that the debug 239 // dump will show the right state for that VirtReg. 240 LI.clear(); 241 return false; 242 } 243 244 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) { 245 if (!VRM->hasPhys(VirtReg)) 246 return; 247 248 // Register is assigned, put it back on the queue for reassignment. 249 LiveInterval &LI = LIS->getInterval(VirtReg); 250 Matrix->unassign(LI); 251 RegAllocBase::enqueue(&LI); 252 } 253 254 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) { 255 ExtraInfo->LRE_DidCloneVirtReg(New, Old); 256 } 257 258 void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) { 259 // Cloning a register we haven't even heard about yet? Just ignore it. 260 if (!Info.inBounds(Old)) 261 return; 262 263 // LRE may clone a virtual register because dead code elimination causes it to 264 // be split into connected components. The new components are much smaller 265 // than the original, so they should get a new chance at being assigned. 266 // same stage as the parent. 267 Info[Old].Stage = RS_Assign; 268 Info.grow(New.id()); 269 Info[New] = Info[Old]; 270 } 271 272 void RAGreedy::releaseMemory() { 273 SpillerInstance.reset(); 274 GlobalCand.clear(); 275 } 276 277 void RAGreedy::enqueueImpl(const LiveInterval *LI) { enqueue(Queue, LI); } 278 279 void RAGreedy::enqueue(PQueue &CurQueue, const LiveInterval *LI) { 280 // Prioritize live ranges by size, assigning larger ranges first. 281 // The queue holds (size, reg) pairs. 282 const unsigned Size = LI->getSize(); 283 const Register Reg = LI->reg(); 284 assert(Reg.isVirtual() && "Can only enqueue virtual registers"); 285 unsigned Prio; 286 287 auto Stage = ExtraInfo->getOrInitStage(Reg); 288 if (Stage == RS_New) { 289 Stage = RS_Assign; 290 ExtraInfo->setStage(Reg, Stage); 291 } 292 if (Stage == RS_Split) { 293 // Unsplit ranges that couldn't be allocated immediately are deferred until 294 // everything else has been allocated. 295 Prio = Size; 296 } else if (Stage == RS_Memory) { 297 // Memory operand should be considered last. 298 // Change the priority such that Memory operand are assigned in 299 // the reverse order that they came in. 300 // TODO: Make this a member variable and probably do something about hints. 301 static unsigned MemOp = 0; 302 Prio = MemOp++; 303 } else { 304 // Giant live ranges fall back to the global assignment heuristic, which 305 // prevents excessive spilling in pathological cases. 306 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 307 bool ForceGlobal = !ReverseLocalAssignment && 308 (Size / SlotIndex::InstrDist) > 309 (2 * RegClassInfo.getNumAllocatableRegs(&RC)); 310 unsigned GlobalBit = 0; 311 312 if (Stage == RS_Assign && !ForceGlobal && !LI->empty() && 313 LIS->intervalIsInOneMBB(*LI)) { 314 // Allocate original local ranges in linear instruction order. Since they 315 // are singly defined, this produces optimal coloring in the absence of 316 // global interference and other constraints. 317 if (!ReverseLocalAssignment) 318 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 319 else { 320 // Allocating bottom up may allow many short LRGs to be assigned first 321 // to one of the cheap registers. This could be much faster for very 322 // large blocks on targets with many physical registers. 323 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 324 } 325 } else { 326 // Allocate global and split ranges in long->short order. Long ranges that 327 // don't fit should be spilled (or split) ASAP so they don't create 328 // interference. Mark a bit to prioritize global above local ranges. 329 Prio = Size; 330 GlobalBit = 1; 331 } 332 if (RegClassPriorityTrumpsGlobalness) 333 Prio |= RC.AllocationPriority << 25 | GlobalBit << 24; 334 else 335 Prio |= GlobalBit << 29 | RC.AllocationPriority << 24; 336 337 // Mark a higher bit to prioritize global and local above RS_Split. 338 Prio |= (1u << 31); 339 340 // Boost ranges that have a physical register hint. 341 if (VRM->hasKnownPreference(Reg)) 342 Prio |= (1u << 30); 343 } 344 // The virtual register number is a tie breaker for same-sized ranges. 345 // Give lower vreg numbers higher priority to assign them first. 346 CurQueue.push(std::make_pair(Prio, ~Reg)); 347 } 348 349 const LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 350 351 const LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 352 if (CurQueue.empty()) 353 return nullptr; 354 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 355 CurQueue.pop(); 356 return LI; 357 } 358 359 //===----------------------------------------------------------------------===// 360 // Direct Assignment 361 //===----------------------------------------------------------------------===// 362 363 /// tryAssign - Try to assign VirtReg to an available register. 364 MCRegister RAGreedy::tryAssign(const LiveInterval &VirtReg, 365 AllocationOrder &Order, 366 SmallVectorImpl<Register> &NewVRegs, 367 const SmallVirtRegSet &FixedRegisters) { 368 MCRegister PhysReg; 369 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 370 assert(*I); 371 if (!Matrix->checkInterference(VirtReg, *I)) { 372 if (I.isHint()) 373 return *I; 374 else 375 PhysReg = *I; 376 } 377 } 378 if (!PhysReg.isValid()) 379 return PhysReg; 380 381 // PhysReg is available, but there may be a better choice. 382 383 // If we missed a simple hint, try to cheaply evict interference from the 384 // preferred register. 385 if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) 386 if (Order.isHint(Hint)) { 387 MCRegister PhysHint = Hint.asMCReg(); 388 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n'); 389 390 if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint, 391 FixedRegisters)) { 392 evictInterference(VirtReg, PhysHint, NewVRegs); 393 return PhysHint; 394 } 395 // Record the missed hint, we may be able to recover 396 // at the end if the surrounding allocation changed. 397 SetOfBrokenHints.insert(&VirtReg); 398 } 399 400 // Try to evict interference from a cheaper alternative. 401 uint8_t Cost = RegCosts[PhysReg]; 402 403 // Most registers have 0 additional cost. 404 if (!Cost) 405 return PhysReg; 406 407 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 408 << (unsigned)Cost << '\n'); 409 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 410 return CheapReg ? CheapReg : PhysReg; 411 } 412 413 //===----------------------------------------------------------------------===// 414 // Interference eviction 415 //===----------------------------------------------------------------------===// 416 417 Register RegAllocEvictionAdvisor::canReassign(const LiveInterval &VirtReg, 418 Register PrevReg) const { 419 auto Order = 420 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 421 MCRegister PhysReg; 422 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 423 if ((*I).id() == PrevReg.id()) 424 continue; 425 426 MCRegUnitIterator Units(*I, TRI); 427 for (; Units.isValid(); ++Units) { 428 // Instantiate a "subquery", not to be confused with the Queries array. 429 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 430 if (subQ.checkInterference()) 431 break; 432 } 433 // If no units have interference, break out with the current PhysReg. 434 if (!Units.isValid()) 435 PhysReg = *I; 436 } 437 if (PhysReg) 438 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 439 << printReg(PrevReg, TRI) << " to " 440 << printReg(PhysReg, TRI) << '\n'); 441 return PhysReg; 442 } 443 444 /// evictInterference - Evict any interferring registers that prevent VirtReg 445 /// from being assigned to Physreg. This assumes that canEvictInterference 446 /// returned true. 447 void RAGreedy::evictInterference(const LiveInterval &VirtReg, 448 MCRegister PhysReg, 449 SmallVectorImpl<Register> &NewVRegs) { 450 // Make sure that VirtReg has a cascade number, and assign that cascade 451 // number to every evicted register. These live ranges than then only be 452 // evicted by a newer cascade, preventing infinite loops. 453 unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg()); 454 455 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 456 << " interference: Cascade " << Cascade << '\n'); 457 458 // Collect all interfering virtregs first. 459 SmallVector<const LiveInterval *, 8> Intfs; 460 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 461 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 462 // We usually have the interfering VRegs cached so collectInterferingVRegs() 463 // should be fast, we may need to recalculate if when different physregs 464 // overlap the same register unit so we had different SubRanges queried 465 // against it. 466 ArrayRef<const LiveInterval *> IVR = Q.interferingVRegs(); 467 Intfs.append(IVR.begin(), IVR.end()); 468 } 469 470 // Evict them second. This will invalidate the queries. 471 for (const LiveInterval *Intf : Intfs) { 472 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 473 if (!VRM->hasPhys(Intf->reg())) 474 continue; 475 476 Matrix->unassign(*Intf); 477 assert((ExtraInfo->getCascade(Intf->reg()) < Cascade || 478 VirtReg.isSpillable() < Intf->isSpillable()) && 479 "Cannot decrease cascade number, illegal eviction"); 480 ExtraInfo->setCascade(Intf->reg(), Cascade); 481 ++NumEvicted; 482 NewVRegs.push_back(Intf->reg()); 483 } 484 } 485 486 /// Returns true if the given \p PhysReg is a callee saved register and has not 487 /// been used for allocation yet. 488 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 489 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 490 if (!CSR) 491 return false; 492 493 return !Matrix->isPhysRegUsed(PhysReg); 494 } 495 496 Optional<unsigned> 497 RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg, 498 const AllocationOrder &Order, 499 unsigned CostPerUseLimit) const { 500 unsigned OrderLimit = Order.getOrder().size(); 501 502 if (CostPerUseLimit < uint8_t(~0u)) { 503 // Check of any registers in RC are below CostPerUseLimit. 504 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); 505 uint8_t MinCost = RegClassInfo.getMinCost(RC); 506 if (MinCost >= CostPerUseLimit) { 507 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 508 << MinCost << ", no cheaper registers to be found.\n"); 509 return None; 510 } 511 512 // It is normal for register classes to have a long tail of registers with 513 // the same cost. We don't need to look at them if they're too expensive. 514 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) { 515 OrderLimit = RegClassInfo.getLastCostChange(RC); 516 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 517 << " regs.\n"); 518 } 519 } 520 return OrderLimit; 521 } 522 523 bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit, 524 MCRegister PhysReg) const { 525 if (RegCosts[PhysReg] >= CostPerUseLimit) 526 return false; 527 // The first use of a callee-saved register in a function has cost 1. 528 // Don't start using a CSR when the CostPerUseLimit is low. 529 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 530 LLVM_DEBUG( 531 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 532 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 533 << '\n'); 534 return false; 535 } 536 return true; 537 } 538 539 /// tryEvict - Try to evict all interferences for a physreg. 540 /// @param VirtReg Currently unassigned virtual register. 541 /// @param Order Physregs to try. 542 /// @return Physreg to assign VirtReg, or 0. 543 MCRegister RAGreedy::tryEvict(const LiveInterval &VirtReg, 544 AllocationOrder &Order, 545 SmallVectorImpl<Register> &NewVRegs, 546 uint8_t CostPerUseLimit, 547 const SmallVirtRegSet &FixedRegisters) { 548 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 549 TimePassesIsEnabled); 550 551 MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate( 552 VirtReg, Order, CostPerUseLimit, FixedRegisters); 553 if (BestPhys.isValid()) 554 evictInterference(VirtReg, BestPhys, NewVRegs); 555 return BestPhys; 556 } 557 558 //===----------------------------------------------------------------------===// 559 // Region Splitting 560 //===----------------------------------------------------------------------===// 561 562 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 563 /// interference pattern in Physreg and its aliases. Add the constraints to 564 /// SpillPlacement and return the static cost of this split in Cost, assuming 565 /// that all preferences in SplitConstraints are met. 566 /// Return false if there are no bundles with positive bias. 567 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 568 BlockFrequency &Cost) { 569 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 570 571 // Reset interference dependent info. 572 SplitConstraints.resize(UseBlocks.size()); 573 BlockFrequency StaticCost = 0; 574 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 575 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 576 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 577 578 BC.Number = BI.MBB->getNumber(); 579 Intf.moveToBlock(BC.Number); 580 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 581 BC.Exit = (BI.LiveOut && 582 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 583 ? SpillPlacement::PrefReg 584 : SpillPlacement::DontCare; 585 BC.ChangesValue = BI.FirstDef.isValid(); 586 587 if (!Intf.hasInterference()) 588 continue; 589 590 // Number of spill code instructions to insert. 591 unsigned Ins = 0; 592 593 // Interference for the live-in value. 594 if (BI.LiveIn) { 595 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 596 BC.Entry = SpillPlacement::MustSpill; 597 ++Ins; 598 } else if (Intf.first() < BI.FirstInstr) { 599 BC.Entry = SpillPlacement::PrefSpill; 600 ++Ins; 601 } else if (Intf.first() < BI.LastInstr) { 602 ++Ins; 603 } 604 605 // Abort if the spill cannot be inserted at the MBB' start 606 if (((BC.Entry == SpillPlacement::MustSpill) || 607 (BC.Entry == SpillPlacement::PrefSpill)) && 608 SlotIndex::isEarlierInstr(BI.FirstInstr, 609 SA->getFirstSplitPoint(BC.Number))) 610 return false; 611 } 612 613 // Interference for the live-out value. 614 if (BI.LiveOut) { 615 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 616 BC.Exit = SpillPlacement::MustSpill; 617 ++Ins; 618 } else if (Intf.last() > BI.LastInstr) { 619 BC.Exit = SpillPlacement::PrefSpill; 620 ++Ins; 621 } else if (Intf.last() > BI.FirstInstr) { 622 ++Ins; 623 } 624 } 625 626 // Accumulate the total frequency of inserted spill code. 627 while (Ins--) 628 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 629 } 630 Cost = StaticCost; 631 632 // Add constraints for use-blocks. Note that these are the only constraints 633 // that may add a positive bias, it is downhill from here. 634 SpillPlacer->addConstraints(SplitConstraints); 635 return SpillPlacer->scanActiveBundles(); 636 } 637 638 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 639 /// live-through blocks in Blocks. 640 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 641 ArrayRef<unsigned> Blocks) { 642 const unsigned GroupSize = 8; 643 SpillPlacement::BlockConstraint BCS[GroupSize]; 644 unsigned TBS[GroupSize]; 645 unsigned B = 0, T = 0; 646 647 for (unsigned Number : Blocks) { 648 Intf.moveToBlock(Number); 649 650 if (!Intf.hasInterference()) { 651 assert(T < GroupSize && "Array overflow"); 652 TBS[T] = Number; 653 if (++T == GroupSize) { 654 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 655 T = 0; 656 } 657 continue; 658 } 659 660 assert(B < GroupSize && "Array overflow"); 661 BCS[B].Number = Number; 662 663 // Abort if the spill cannot be inserted at the MBB' start 664 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 665 auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr(); 666 if (FirstNonDebugInstr != MBB->end() && 667 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr), 668 SA->getFirstSplitPoint(Number))) 669 return false; 670 // Interference for the live-in value. 671 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 672 BCS[B].Entry = SpillPlacement::MustSpill; 673 else 674 BCS[B].Entry = SpillPlacement::PrefSpill; 675 676 // Interference for the live-out value. 677 if (Intf.last() >= SA->getLastSplitPoint(Number)) 678 BCS[B].Exit = SpillPlacement::MustSpill; 679 else 680 BCS[B].Exit = SpillPlacement::PrefSpill; 681 682 if (++B == GroupSize) { 683 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 684 B = 0; 685 } 686 } 687 688 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 689 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 690 return true; 691 } 692 693 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 694 // Keep track of through blocks that have not been added to SpillPlacer. 695 BitVector Todo = SA->getThroughBlocks(); 696 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 697 unsigned AddedTo = 0; 698 #ifndef NDEBUG 699 unsigned Visited = 0; 700 #endif 701 702 unsigned long Budget = GrowRegionComplexityBudget; 703 while (true) { 704 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 705 // Find new through blocks in the periphery of PrefRegBundles. 706 for (unsigned Bundle : NewBundles) { 707 // Look at all blocks connected to Bundle in the full graph. 708 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 709 // Limit compilation time by bailing out after we use all our budget. 710 if (Blocks.size() >= Budget) 711 return false; 712 Budget -= Blocks.size(); 713 for (unsigned Block : Blocks) { 714 if (!Todo.test(Block)) 715 continue; 716 Todo.reset(Block); 717 // This is a new through block. Add it to SpillPlacer later. 718 ActiveBlocks.push_back(Block); 719 #ifndef NDEBUG 720 ++Visited; 721 #endif 722 } 723 } 724 // Any new blocks to add? 725 if (ActiveBlocks.size() == AddedTo) 726 break; 727 728 // Compute through constraints from the interference, or assume that all 729 // through blocks prefer spilling when forming compact regions. 730 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 731 if (Cand.PhysReg) { 732 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 733 return false; 734 } else 735 // Provide a strong negative bias on through blocks to prevent unwanted 736 // liveness on loop backedges. 737 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 738 AddedTo = ActiveBlocks.size(); 739 740 // Perhaps iterating can enable more bundles? 741 SpillPlacer->iterate(); 742 } 743 LLVM_DEBUG(dbgs() << ", v=" << Visited); 744 return true; 745 } 746 747 /// calcCompactRegion - Compute the set of edge bundles that should be live 748 /// when splitting the current live range into compact regions. Compact 749 /// regions can be computed without looking at interference. They are the 750 /// regions formed by removing all the live-through blocks from the live range. 751 /// 752 /// Returns false if the current live range is already compact, or if the 753 /// compact regions would form single block regions anyway. 754 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 755 // Without any through blocks, the live range is already compact. 756 if (!SA->getNumThroughBlocks()) 757 return false; 758 759 // Compact regions don't correspond to any physreg. 760 Cand.reset(IntfCache, MCRegister::NoRegister); 761 762 LLVM_DEBUG(dbgs() << "Compact region bundles"); 763 764 // Use the spill placer to determine the live bundles. GrowRegion pretends 765 // that all the through blocks have interference when PhysReg is unset. 766 SpillPlacer->prepare(Cand.LiveBundles); 767 768 // The static split cost will be zero since Cand.Intf reports no interference. 769 BlockFrequency Cost; 770 if (!addSplitConstraints(Cand.Intf, Cost)) { 771 LLVM_DEBUG(dbgs() << ", none.\n"); 772 return false; 773 } 774 775 if (!growRegion(Cand)) { 776 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 777 return false; 778 } 779 780 SpillPlacer->finish(); 781 782 if (!Cand.LiveBundles.any()) { 783 LLVM_DEBUG(dbgs() << ", none.\n"); 784 return false; 785 } 786 787 LLVM_DEBUG({ 788 for (int I : Cand.LiveBundles.set_bits()) 789 dbgs() << " EB#" << I; 790 dbgs() << ".\n"; 791 }); 792 return true; 793 } 794 795 /// calcSpillCost - Compute how expensive it would be to split the live range in 796 /// SA around all use blocks instead of forming bundle regions. 797 BlockFrequency RAGreedy::calcSpillCost() { 798 BlockFrequency Cost = 0; 799 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 800 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 801 unsigned Number = BI.MBB->getNumber(); 802 // We normally only need one spill instruction - a load or a store. 803 Cost += SpillPlacer->getBlockFrequency(Number); 804 805 // Unless the value is redefined in the block. 806 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 807 Cost += SpillPlacer->getBlockFrequency(Number); 808 } 809 return Cost; 810 } 811 812 /// calcGlobalSplitCost - Return the global split cost of following the split 813 /// pattern in LiveBundles. This cost should be added to the local cost of the 814 /// interference pattern in SplitConstraints. 815 /// 816 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 817 const AllocationOrder &Order) { 818 BlockFrequency GlobalCost = 0; 819 const BitVector &LiveBundles = Cand.LiveBundles; 820 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 821 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 822 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 823 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 824 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 825 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 826 unsigned Ins = 0; 827 828 Cand.Intf.moveToBlock(BC.Number); 829 830 if (BI.LiveIn) 831 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 832 if (BI.LiveOut) 833 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 834 while (Ins--) 835 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 836 } 837 838 for (unsigned Number : Cand.ActiveBlocks) { 839 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 840 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 841 if (!RegIn && !RegOut) 842 continue; 843 if (RegIn && RegOut) { 844 // We need double spill code if this block has interference. 845 Cand.Intf.moveToBlock(Number); 846 if (Cand.Intf.hasInterference()) { 847 GlobalCost += SpillPlacer->getBlockFrequency(Number); 848 GlobalCost += SpillPlacer->getBlockFrequency(Number); 849 } 850 continue; 851 } 852 // live-in / stack-out or stack-in live-out. 853 GlobalCost += SpillPlacer->getBlockFrequency(Number); 854 } 855 return GlobalCost; 856 } 857 858 /// splitAroundRegion - Split the current live range around the regions 859 /// determined by BundleCand and GlobalCand. 860 /// 861 /// Before calling this function, GlobalCand and BundleCand must be initialized 862 /// so each bundle is assigned to a valid candidate, or NoCand for the 863 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 864 /// objects must be initialized for the current live range, and intervals 865 /// created for the used candidates. 866 /// 867 /// @param LREdit The LiveRangeEdit object handling the current split. 868 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 869 /// must appear in this list. 870 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 871 ArrayRef<unsigned> UsedCands) { 872 // These are the intervals created for new global ranges. We may create more 873 // intervals for local ranges. 874 const unsigned NumGlobalIntvs = LREdit.size(); 875 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 876 << " globals.\n"); 877 assert(NumGlobalIntvs && "No global intervals configured"); 878 879 // Isolate even single instructions when dealing with a proper sub-class. 880 // That guarantees register class inflation for the stack interval because it 881 // is all copies. 882 Register Reg = SA->getParent().reg(); 883 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 884 885 // First handle all the blocks with uses. 886 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 887 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 888 unsigned Number = BI.MBB->getNumber(); 889 unsigned IntvIn = 0, IntvOut = 0; 890 SlotIndex IntfIn, IntfOut; 891 if (BI.LiveIn) { 892 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 893 if (CandIn != NoCand) { 894 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 895 IntvIn = Cand.IntvIdx; 896 Cand.Intf.moveToBlock(Number); 897 IntfIn = Cand.Intf.first(); 898 } 899 } 900 if (BI.LiveOut) { 901 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 902 if (CandOut != NoCand) { 903 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 904 IntvOut = Cand.IntvIdx; 905 Cand.Intf.moveToBlock(Number); 906 IntfOut = Cand.Intf.last(); 907 } 908 } 909 910 // Create separate intervals for isolated blocks with multiple uses. 911 if (!IntvIn && !IntvOut) { 912 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 913 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 914 SE->splitSingleBlock(BI); 915 continue; 916 } 917 918 if (IntvIn && IntvOut) 919 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 920 else if (IntvIn) 921 SE->splitRegInBlock(BI, IntvIn, IntfIn); 922 else 923 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 924 } 925 926 // Handle live-through blocks. The relevant live-through blocks are stored in 927 // the ActiveBlocks list with each candidate. We need to filter out 928 // duplicates. 929 BitVector Todo = SA->getThroughBlocks(); 930 for (unsigned UsedCand : UsedCands) { 931 ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks; 932 for (unsigned Number : Blocks) { 933 if (!Todo.test(Number)) 934 continue; 935 Todo.reset(Number); 936 937 unsigned IntvIn = 0, IntvOut = 0; 938 SlotIndex IntfIn, IntfOut; 939 940 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 941 if (CandIn != NoCand) { 942 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 943 IntvIn = Cand.IntvIdx; 944 Cand.Intf.moveToBlock(Number); 945 IntfIn = Cand.Intf.first(); 946 } 947 948 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 949 if (CandOut != NoCand) { 950 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 951 IntvOut = Cand.IntvIdx; 952 Cand.Intf.moveToBlock(Number); 953 IntfOut = Cand.Intf.last(); 954 } 955 if (!IntvIn && !IntvOut) 956 continue; 957 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 958 } 959 } 960 961 ++NumGlobalSplits; 962 963 SmallVector<unsigned, 8> IntvMap; 964 SE->finish(&IntvMap); 965 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 966 967 unsigned OrigBlocks = SA->getNumLiveBlocks(); 968 969 // Sort out the new intervals created by splitting. We get four kinds: 970 // - Remainder intervals should not be split again. 971 // - Candidate intervals can be assigned to Cand.PhysReg. 972 // - Block-local splits are candidates for local splitting. 973 // - DCE leftovers should go back on the queue. 974 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 975 const LiveInterval &Reg = LIS->getInterval(LREdit.get(I)); 976 977 // Ignore old intervals from DCE. 978 if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New) 979 continue; 980 981 // Remainder interval. Don't try splitting again, spill if it doesn't 982 // allocate. 983 if (IntvMap[I] == 0) { 984 ExtraInfo->setStage(Reg, RS_Spill); 985 continue; 986 } 987 988 // Global intervals. Allow repeated splitting as long as the number of live 989 // blocks is strictly decreasing. 990 if (IntvMap[I] < NumGlobalIntvs) { 991 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 992 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 993 << " blocks as original.\n"); 994 // Don't allow repeated splitting as a safe guard against looping. 995 ExtraInfo->setStage(Reg, RS_Split2); 996 } 997 continue; 998 } 999 1000 // Other intervals are treated as new. This includes local intervals created 1001 // for blocks with multiple uses, and anything created by DCE. 1002 } 1003 1004 if (VerifyEnabled) 1005 MF->verify(this, "After splitting live range around region"); 1006 } 1007 1008 MCRegister RAGreedy::tryRegionSplit(const LiveInterval &VirtReg, 1009 AllocationOrder &Order, 1010 SmallVectorImpl<Register> &NewVRegs) { 1011 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1012 return MCRegister::NoRegister; 1013 unsigned NumCands = 0; 1014 BlockFrequency SpillCost = calcSpillCost(); 1015 BlockFrequency BestCost; 1016 1017 // Check if we can split this live range around a compact region. 1018 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1019 if (HasCompact) { 1020 // Yes, keep GlobalCand[0] as the compact region candidate. 1021 NumCands = 1; 1022 BestCost = BlockFrequency::getMaxFrequency(); 1023 } else { 1024 // No benefit from the compact region, our fallback will be per-block 1025 // splitting. Make sure we find a solution that is cheaper than spilling. 1026 BestCost = SpillCost; 1027 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1028 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1029 } 1030 1031 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 1032 NumCands, false /*IgnoreCSR*/); 1033 1034 // No solutions found, fall back to single block splitting. 1035 if (!HasCompact && BestCand == NoCand) 1036 return MCRegister::NoRegister; 1037 1038 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1039 } 1040 1041 unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval &VirtReg, 1042 AllocationOrder &Order, 1043 BlockFrequency &BestCost, 1044 unsigned &NumCands, 1045 bool IgnoreCSR) { 1046 unsigned BestCand = NoCand; 1047 for (MCPhysReg PhysReg : Order) { 1048 assert(PhysReg); 1049 if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg)) 1050 continue; 1051 1052 // Discard bad candidates before we run out of interference cache cursors. 1053 // This will only affect register classes with a lot of registers (>32). 1054 if (NumCands == IntfCache.getMaxCursors()) { 1055 unsigned WorstCount = ~0u; 1056 unsigned Worst = 0; 1057 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) { 1058 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg) 1059 continue; 1060 unsigned Count = GlobalCand[CandIndex].LiveBundles.count(); 1061 if (Count < WorstCount) { 1062 Worst = CandIndex; 1063 WorstCount = Count; 1064 } 1065 } 1066 --NumCands; 1067 GlobalCand[Worst] = GlobalCand[NumCands]; 1068 if (BestCand == NumCands) 1069 BestCand = Worst; 1070 } 1071 1072 if (GlobalCand.size() <= NumCands) 1073 GlobalCand.resize(NumCands+1); 1074 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1075 Cand.reset(IntfCache, PhysReg); 1076 1077 SpillPlacer->prepare(Cand.LiveBundles); 1078 BlockFrequency Cost; 1079 if (!addSplitConstraints(Cand.Intf, Cost)) { 1080 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1081 continue; 1082 } 1083 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1084 MBFI->printBlockFreq(dbgs(), Cost)); 1085 if (Cost >= BestCost) { 1086 LLVM_DEBUG({ 1087 if (BestCand == NoCand) 1088 dbgs() << " worse than no bundles\n"; 1089 else 1090 dbgs() << " worse than " 1091 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1092 }); 1093 continue; 1094 } 1095 if (!growRegion(Cand)) { 1096 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1097 continue; 1098 } 1099 1100 SpillPlacer->finish(); 1101 1102 // No live bundles, defer to splitSingleBlocks(). 1103 if (!Cand.LiveBundles.any()) { 1104 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1105 continue; 1106 } 1107 1108 Cost += calcGlobalSplitCost(Cand, Order); 1109 LLVM_DEBUG({ 1110 dbgs() << ", total = "; 1111 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1112 for (int I : Cand.LiveBundles.set_bits()) 1113 dbgs() << " EB#" << I; 1114 dbgs() << ".\n"; 1115 }); 1116 if (Cost < BestCost) { 1117 BestCand = NumCands; 1118 BestCost = Cost; 1119 } 1120 ++NumCands; 1121 } 1122 1123 return BestCand; 1124 } 1125 1126 unsigned RAGreedy::doRegionSplit(const LiveInterval &VirtReg, unsigned BestCand, 1127 bool HasCompact, 1128 SmallVectorImpl<Register> &NewVRegs) { 1129 SmallVector<unsigned, 8> UsedCands; 1130 // Prepare split editor. 1131 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1132 SE->reset(LREdit, SplitSpillMode); 1133 1134 // Assign all edge bundles to the preferred candidate, or NoCand. 1135 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1136 1137 // Assign bundles for the best candidate region. 1138 if (BestCand != NoCand) { 1139 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1140 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1141 UsedCands.push_back(BestCand); 1142 Cand.IntvIdx = SE->openIntv(); 1143 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1144 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1145 (void)B; 1146 } 1147 } 1148 1149 // Assign bundles for the compact region. 1150 if (HasCompact) { 1151 GlobalSplitCandidate &Cand = GlobalCand.front(); 1152 assert(!Cand.PhysReg && "Compact region has no physreg"); 1153 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1154 UsedCands.push_back(0); 1155 Cand.IntvIdx = SE->openIntv(); 1156 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 1157 << " bundles, intv " << Cand.IntvIdx << ".\n"); 1158 (void)B; 1159 } 1160 } 1161 1162 splitAroundRegion(LREdit, UsedCands); 1163 return 0; 1164 } 1165 1166 //===----------------------------------------------------------------------===// 1167 // Per-Block Splitting 1168 //===----------------------------------------------------------------------===// 1169 1170 /// tryBlockSplit - Split a global live range around every block with uses. This 1171 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1172 /// they don't allocate. 1173 unsigned RAGreedy::tryBlockSplit(const LiveInterval &VirtReg, 1174 AllocationOrder &Order, 1175 SmallVectorImpl<Register> &NewVRegs) { 1176 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1177 Register Reg = VirtReg.reg(); 1178 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1179 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1180 SE->reset(LREdit, SplitSpillMode); 1181 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1182 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1183 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1184 SE->splitSingleBlock(BI); 1185 } 1186 // No blocks were split. 1187 if (LREdit.empty()) 1188 return 0; 1189 1190 // We did split for some blocks. 1191 SmallVector<unsigned, 8> IntvMap; 1192 SE->finish(&IntvMap); 1193 1194 // Tell LiveDebugVariables about the new ranges. 1195 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1196 1197 // Sort out the new intervals created by splitting. The remainder interval 1198 // goes straight to spilling, the new local ranges get to stay RS_New. 1199 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1200 const LiveInterval &LI = LIS->getInterval(LREdit.get(I)); 1201 if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0) 1202 ExtraInfo->setStage(LI, RS_Spill); 1203 } 1204 1205 if (VerifyEnabled) 1206 MF->verify(this, "After splitting live range around basic blocks"); 1207 return 0; 1208 } 1209 1210 //===----------------------------------------------------------------------===// 1211 // Per-Instruction Splitting 1212 //===----------------------------------------------------------------------===// 1213 1214 /// Get the number of allocatable registers that match the constraints of \p Reg 1215 /// on \p MI and that are also in \p SuperRC. 1216 static unsigned getNumAllocatableRegsForConstraints( 1217 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, 1218 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1219 const RegisterClassInfo &RCI) { 1220 assert(SuperRC && "Invalid register class"); 1221 1222 const TargetRegisterClass *ConstrainedRC = 1223 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 1224 /* ExploreBundle */ true); 1225 if (!ConstrainedRC) 1226 return 0; 1227 return RCI.getNumAllocatableRegs(ConstrainedRC); 1228 } 1229 1230 /// tryInstructionSplit - Split a live range around individual instructions. 1231 /// This is normally not worthwhile since the spiller is doing essentially the 1232 /// same thing. However, when the live range is in a constrained register 1233 /// class, it may help to insert copies such that parts of the live range can 1234 /// be moved to a larger register class. 1235 /// 1236 /// This is similar to spilling to a larger register class. 1237 unsigned RAGreedy::tryInstructionSplit(const LiveInterval &VirtReg, 1238 AllocationOrder &Order, 1239 SmallVectorImpl<Register> &NewVRegs) { 1240 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 1241 // There is no point to this if there are no larger sub-classes. 1242 if (!RegClassInfo.isProperSubClass(CurRC)) 1243 return 0; 1244 1245 // Always enable split spill mode, since we're effectively spilling to a 1246 // register. 1247 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1248 SE->reset(LREdit, SplitEditor::SM_Size); 1249 1250 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1251 if (Uses.size() <= 1) 1252 return 0; 1253 1254 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 1255 << " individual instrs.\n"); 1256 1257 const TargetRegisterClass *SuperRC = 1258 TRI->getLargestLegalSuperClass(CurRC, *MF); 1259 unsigned SuperRCNumAllocatableRegs = 1260 RegClassInfo.getNumAllocatableRegs(SuperRC); 1261 // Split around every non-copy instruction if this split will relax 1262 // the constraints on the virtual register. 1263 // Otherwise, splitting just inserts uncoalescable copies that do not help 1264 // the allocation. 1265 for (const SlotIndex Use : Uses) { 1266 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) 1267 if (MI->isFullCopy() || 1268 SuperRCNumAllocatableRegs == 1269 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, 1270 TII, TRI, RegClassInfo)) { 1271 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI); 1272 continue; 1273 } 1274 SE->openIntv(); 1275 SlotIndex SegStart = SE->enterIntvBefore(Use); 1276 SlotIndex SegStop = SE->leaveIntvAfter(Use); 1277 SE->useIntv(SegStart, SegStop); 1278 } 1279 1280 if (LREdit.empty()) { 1281 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 1282 return 0; 1283 } 1284 1285 SmallVector<unsigned, 8> IntvMap; 1286 SE->finish(&IntvMap); 1287 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 1288 // Assign all new registers to RS_Spill. This was the last chance. 1289 ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill); 1290 return 0; 1291 } 1292 1293 //===----------------------------------------------------------------------===// 1294 // Local Splitting 1295 //===----------------------------------------------------------------------===// 1296 1297 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 1298 /// in order to use PhysReg between two entries in SA->UseSlots. 1299 /// 1300 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1]. 1301 /// 1302 void RAGreedy::calcGapWeights(MCRegister PhysReg, 1303 SmallVectorImpl<float> &GapWeight) { 1304 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1305 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1306 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1307 const unsigned NumGaps = Uses.size()-1; 1308 1309 // Start and end points for the interference check. 1310 SlotIndex StartIdx = 1311 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 1312 SlotIndex StopIdx = 1313 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 1314 1315 GapWeight.assign(NumGaps, 0.0f); 1316 1317 // Add interference from each overlapping register. 1318 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1319 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 1320 .checkInterference()) 1321 continue; 1322 1323 // We know that VirtReg is a continuous interval from FirstInstr to 1324 // LastInstr, so we don't need InterferenceQuery. 1325 // 1326 // Interference that overlaps an instruction is counted in both gaps 1327 // surrounding the instruction. The exception is interference before 1328 // StartIdx and after StopIdx. 1329 // 1330 LiveIntervalUnion::SegmentIter IntI = 1331 Matrix->getLiveUnions()[*Units] .find(StartIdx); 1332 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 1333 // Skip the gaps before IntI. 1334 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 1335 if (++Gap == NumGaps) 1336 break; 1337 if (Gap == NumGaps) 1338 break; 1339 1340 // Update the gaps covered by IntI. 1341 const float weight = IntI.value()->weight(); 1342 for (; Gap != NumGaps; ++Gap) { 1343 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 1344 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 1345 break; 1346 } 1347 if (Gap == NumGaps) 1348 break; 1349 } 1350 } 1351 1352 // Add fixed interference. 1353 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1354 const LiveRange &LR = LIS->getRegUnit(*Units); 1355 LiveRange::const_iterator I = LR.find(StartIdx); 1356 LiveRange::const_iterator E = LR.end(); 1357 1358 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 1359 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 1360 while (Uses[Gap+1].getBoundaryIndex() < I->start) 1361 if (++Gap == NumGaps) 1362 break; 1363 if (Gap == NumGaps) 1364 break; 1365 1366 for (; Gap != NumGaps; ++Gap) { 1367 GapWeight[Gap] = huge_valf; 1368 if (Uses[Gap+1].getBaseIndex() >= I->end) 1369 break; 1370 } 1371 if (Gap == NumGaps) 1372 break; 1373 } 1374 } 1375 } 1376 1377 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 1378 /// basic block. 1379 /// 1380 unsigned RAGreedy::tryLocalSplit(const LiveInterval &VirtReg, 1381 AllocationOrder &Order, 1382 SmallVectorImpl<Register> &NewVRegs) { 1383 // TODO: the function currently only handles a single UseBlock; it should be 1384 // possible to generalize. 1385 if (SA->getUseBlocks().size() != 1) 1386 return 0; 1387 1388 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1389 1390 // Note that it is possible to have an interval that is live-in or live-out 1391 // while only covering a single block - A phi-def can use undef values from 1392 // predecessors, and the block could be a single-block loop. 1393 // We don't bother doing anything clever about such a case, we simply assume 1394 // that the interval is continuous from FirstInstr to LastInstr. We should 1395 // make sure that we don't do anything illegal to such an interval, though. 1396 1397 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1398 if (Uses.size() <= 2) 1399 return 0; 1400 const unsigned NumGaps = Uses.size()-1; 1401 1402 LLVM_DEBUG({ 1403 dbgs() << "tryLocalSplit: "; 1404 for (const auto &Use : Uses) 1405 dbgs() << ' ' << Use; 1406 dbgs() << '\n'; 1407 }); 1408 1409 // If VirtReg is live across any register mask operands, compute a list of 1410 // gaps with register masks. 1411 SmallVector<unsigned, 8> RegMaskGaps; 1412 if (Matrix->checkRegMaskInterference(VirtReg)) { 1413 // Get regmask slots for the whole block. 1414 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 1415 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 1416 // Constrain to VirtReg's live range. 1417 unsigned RI = 1418 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 1419 unsigned RE = RMS.size(); 1420 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) { 1421 // Look for Uses[I] <= RMS <= Uses[I + 1]. 1422 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I])); 1423 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI])) 1424 continue; 1425 // Skip a regmask on the same instruction as the last use. It doesn't 1426 // overlap the live range. 1427 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps) 1428 break; 1429 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-' 1430 << Uses[I + 1]); 1431 RegMaskGaps.push_back(I); 1432 // Advance ri to the next gap. A regmask on one of the uses counts in 1433 // both gaps. 1434 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1])) 1435 ++RI; 1436 } 1437 LLVM_DEBUG(dbgs() << '\n'); 1438 } 1439 1440 // Since we allow local split results to be split again, there is a risk of 1441 // creating infinite loops. It is tempting to require that the new live 1442 // ranges have less instructions than the original. That would guarantee 1443 // convergence, but it is too strict. A live range with 3 instructions can be 1444 // split 2+3 (including the COPY), and we want to allow that. 1445 // 1446 // Instead we use these rules: 1447 // 1448 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 1449 // noop split, of course). 1450 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 1451 // the new ranges must have fewer instructions than before the split. 1452 // 3. New ranges with the same number of instructions are marked RS_Split2, 1453 // smaller ranges are marked RS_New. 1454 // 1455 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 1456 // excessive splitting and infinite loops. 1457 // 1458 bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2; 1459 1460 // Best split candidate. 1461 unsigned BestBefore = NumGaps; 1462 unsigned BestAfter = 0; 1463 float BestDiff = 0; 1464 1465 const float blockFreq = 1466 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 1467 (1.0f / MBFI->getEntryFreq()); 1468 SmallVector<float, 8> GapWeight; 1469 1470 for (MCPhysReg PhysReg : Order) { 1471 assert(PhysReg); 1472 // Keep track of the largest spill weight that would need to be evicted in 1473 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1]. 1474 calcGapWeights(PhysReg, GapWeight); 1475 1476 // Remove any gaps with regmask clobbers. 1477 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 1478 for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I) 1479 GapWeight[RegMaskGaps[I]] = huge_valf; 1480 1481 // Try to find the best sequence of gaps to close. 1482 // The new spill weight must be larger than any gap interference. 1483 1484 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 1485 unsigned SplitBefore = 0, SplitAfter = 1; 1486 1487 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 1488 // It is the spill weight that needs to be evicted. 1489 float MaxGap = GapWeight[0]; 1490 1491 while (true) { 1492 // Live before/after split? 1493 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 1494 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 1495 1496 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 1497 << '-' << Uses[SplitAfter] << " I=" << MaxGap); 1498 1499 // Stop before the interval gets so big we wouldn't be making progress. 1500 if (!LiveBefore && !LiveAfter) { 1501 LLVM_DEBUG(dbgs() << " all\n"); 1502 break; 1503 } 1504 // Should the interval be extended or shrunk? 1505 bool Shrink = true; 1506 1507 // How many gaps would the new range have? 1508 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 1509 1510 // Legally, without causing looping? 1511 bool Legal = !ProgressRequired || NewGaps < NumGaps; 1512 1513 if (Legal && MaxGap < huge_valf) { 1514 // Estimate the new spill weight. Each instruction reads or writes the 1515 // register. Conservatively assume there are no read-modify-write 1516 // instructions. 1517 // 1518 // Try to guess the size of the new interval. 1519 const float EstWeight = normalizeSpillWeight( 1520 blockFreq * (NewGaps + 1), 1521 Uses[SplitBefore].distance(Uses[SplitAfter]) + 1522 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 1523 1); 1524 // Would this split be possible to allocate? 1525 // Never allocate all gaps, we wouldn't be making progress. 1526 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 1527 if (EstWeight * Hysteresis >= MaxGap) { 1528 Shrink = false; 1529 float Diff = EstWeight - MaxGap; 1530 if (Diff > BestDiff) { 1531 LLVM_DEBUG(dbgs() << " (best)"); 1532 BestDiff = Hysteresis * Diff; 1533 BestBefore = SplitBefore; 1534 BestAfter = SplitAfter; 1535 } 1536 } 1537 } 1538 1539 // Try to shrink. 1540 if (Shrink) { 1541 if (++SplitBefore < SplitAfter) { 1542 LLVM_DEBUG(dbgs() << " shrink\n"); 1543 // Recompute the max when necessary. 1544 if (GapWeight[SplitBefore - 1] >= MaxGap) { 1545 MaxGap = GapWeight[SplitBefore]; 1546 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I) 1547 MaxGap = std::max(MaxGap, GapWeight[I]); 1548 } 1549 continue; 1550 } 1551 MaxGap = 0; 1552 } 1553 1554 // Try to extend the interval. 1555 if (SplitAfter >= NumGaps) { 1556 LLVM_DEBUG(dbgs() << " end\n"); 1557 break; 1558 } 1559 1560 LLVM_DEBUG(dbgs() << " extend\n"); 1561 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 1562 } 1563 } 1564 1565 // Didn't find any candidates? 1566 if (BestBefore == NumGaps) 1567 return 0; 1568 1569 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 1570 << Uses[BestAfter] << ", " << BestDiff << ", " 1571 << (BestAfter - BestBefore + 1) << " instrs\n"); 1572 1573 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1574 SE->reset(LREdit); 1575 1576 SE->openIntv(); 1577 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 1578 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 1579 SE->useIntv(SegStart, SegStop); 1580 SmallVector<unsigned, 8> IntvMap; 1581 SE->finish(&IntvMap); 1582 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 1583 // If the new range has the same number of instructions as before, mark it as 1584 // RS_Split2 so the next split will be forced to make progress. Otherwise, 1585 // leave the new intervals as RS_New so they can compete. 1586 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 1587 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 1588 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 1589 if (NewGaps >= NumGaps) { 1590 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:"); 1591 assert(!ProgressRequired && "Didn't make progress when it was required."); 1592 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I) 1593 if (IntvMap[I] == 1) { 1594 ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2); 1595 LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I))); 1596 } 1597 LLVM_DEBUG(dbgs() << '\n'); 1598 } 1599 ++NumLocalSplits; 1600 1601 return 0; 1602 } 1603 1604 //===----------------------------------------------------------------------===// 1605 // Live Range Splitting 1606 //===----------------------------------------------------------------------===// 1607 1608 /// trySplit - Try to split VirtReg or one of its interferences, making it 1609 /// assignable. 1610 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 1611 unsigned RAGreedy::trySplit(const LiveInterval &VirtReg, AllocationOrder &Order, 1612 SmallVectorImpl<Register> &NewVRegs, 1613 const SmallVirtRegSet &FixedRegisters) { 1614 // Ranges must be Split2 or less. 1615 if (ExtraInfo->getStage(VirtReg) >= RS_Spill) 1616 return 0; 1617 1618 // Local intervals are handled separately. 1619 if (LIS->intervalIsInOneMBB(VirtReg)) { 1620 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 1621 TimerGroupDescription, TimePassesIsEnabled); 1622 SA->analyze(&VirtReg); 1623 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 1624 if (PhysReg || !NewVRegs.empty()) 1625 return PhysReg; 1626 return tryInstructionSplit(VirtReg, Order, NewVRegs); 1627 } 1628 1629 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 1630 TimerGroupDescription, TimePassesIsEnabled); 1631 1632 SA->analyze(&VirtReg); 1633 1634 // First try to split around a region spanning multiple blocks. RS_Split2 1635 // ranges already made dubious progress with region splitting, so they go 1636 // straight to single block splitting. 1637 if (ExtraInfo->getStage(VirtReg) < RS_Split2) { 1638 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 1639 if (PhysReg || !NewVRegs.empty()) 1640 return PhysReg; 1641 } 1642 1643 // Then isolate blocks. 1644 return tryBlockSplit(VirtReg, Order, NewVRegs); 1645 } 1646 1647 //===----------------------------------------------------------------------===// 1648 // Last Chance Recoloring 1649 //===----------------------------------------------------------------------===// 1650 1651 /// Return true if \p reg has any tied def operand. 1652 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 1653 for (const MachineOperand &MO : MRI->def_operands(reg)) 1654 if (MO.isTied()) 1655 return true; 1656 1657 return false; 1658 } 1659 1660 /// Return true if the existing assignment of \p Intf overlaps, but is not the 1661 /// same, as \p PhysReg. 1662 static bool assignedRegPartiallyOverlaps(const TargetRegisterInfo &TRI, 1663 const VirtRegMap &VRM, 1664 MCRegister PhysReg, 1665 const LiveInterval &Intf) { 1666 MCRegister AssignedReg = VRM.getPhys(Intf.reg()); 1667 if (PhysReg == AssignedReg) 1668 return false; 1669 return TRI.regsOverlap(PhysReg, AssignedReg); 1670 } 1671 1672 /// mayRecolorAllInterferences - Check if the virtual registers that 1673 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 1674 /// recolored to free \p PhysReg. 1675 /// When true is returned, \p RecoloringCandidates has been augmented with all 1676 /// the live intervals that need to be recolored in order to free \p PhysReg 1677 /// for \p VirtReg. 1678 /// \p FixedRegisters contains all the virtual registers that cannot be 1679 /// recolored. 1680 bool RAGreedy::mayRecolorAllInterferences( 1681 MCRegister PhysReg, const LiveInterval &VirtReg, 1682 SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters) { 1683 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 1684 1685 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1686 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1687 // If there is LastChanceRecoloringMaxInterference or more interferences, 1688 // chances are one would not be recolorable. 1689 if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >= 1690 LastChanceRecoloringMaxInterference && 1691 !ExhaustiveSearch) { 1692 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 1693 CutOffInfo |= CO_Interf; 1694 return false; 1695 } 1696 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 1697 // If Intf is done and sits on the same register class as VirtReg, it 1698 // would not be recolorable as it is in the same state as 1699 // VirtReg. However there are at least two exceptions. 1700 // 1701 // If VirtReg has tied defs and Intf doesn't, then 1702 // there is still a point in examining if it can be recolorable. 1703 // 1704 // Additionally, if the register class has overlapping tuple members, it 1705 // may still be recolorable using a different tuple. This is more likely 1706 // if the existing assignment aliases with the candidate. 1707 // 1708 if (((ExtraInfo->getStage(*Intf) == RS_Done && 1709 MRI->getRegClass(Intf->reg()) == CurRC && 1710 !assignedRegPartiallyOverlaps(*TRI, *VRM, PhysReg, *Intf)) && 1711 !(hasTiedDef(MRI, VirtReg.reg()) && 1712 !hasTiedDef(MRI, Intf->reg()))) || 1713 FixedRegisters.count(Intf->reg())) { 1714 LLVM_DEBUG( 1715 dbgs() << "Early abort: the interference is not recolorable.\n"); 1716 return false; 1717 } 1718 RecoloringCandidates.insert(Intf); 1719 } 1720 } 1721 return true; 1722 } 1723 1724 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 1725 /// its interferences. 1726 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 1727 /// virtual register that was using it. The recoloring process may recursively 1728 /// use the last chance recoloring. Therefore, when a virtual register has been 1729 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 1730 /// be last-chance-recolored again during this recoloring "session". 1731 /// E.g., 1732 /// Let 1733 /// vA can use {R1, R2 } 1734 /// vB can use { R2, R3} 1735 /// vC can use {R1 } 1736 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 1737 /// instance) and they all interfere. 1738 /// 1739 /// vA is assigned R1 1740 /// vB is assigned R2 1741 /// vC tries to evict vA but vA is already done. 1742 /// Regular register allocation fails. 1743 /// 1744 /// Last chance recoloring kicks in: 1745 /// vC does as if vA was evicted => vC uses R1. 1746 /// vC is marked as fixed. 1747 /// vA needs to find a color. 1748 /// None are available. 1749 /// vA cannot evict vC: vC is a fixed virtual register now. 1750 /// vA does as if vB was evicted => vA uses R2. 1751 /// vB needs to find a color. 1752 /// R3 is available. 1753 /// Recoloring => vC = R1, vA = R2, vB = R3 1754 /// 1755 /// \p Order defines the preferred allocation order for \p VirtReg. 1756 /// \p NewRegs will contain any new virtual register that have been created 1757 /// (split, spill) during the process and that must be assigned. 1758 /// \p FixedRegisters contains all the virtual registers that cannot be 1759 /// recolored. 1760 /// 1761 /// \p RecolorStack tracks the original assignments of successfully recolored 1762 /// registers. 1763 /// 1764 /// \p Depth gives the current depth of the last chance recoloring. 1765 /// \return a physical register that can be used for VirtReg or ~0u if none 1766 /// exists. 1767 unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval &VirtReg, 1768 AllocationOrder &Order, 1769 SmallVectorImpl<Register> &NewVRegs, 1770 SmallVirtRegSet &FixedRegisters, 1771 RecoloringStack &RecolorStack, 1772 unsigned Depth) { 1773 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) 1774 return ~0u; 1775 1776 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 1777 1778 const ssize_t EntryStackSize = RecolorStack.size(); 1779 1780 // Ranges must be Done. 1781 assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 1782 "Last chance recoloring should really be last chance"); 1783 // Set the max depth to LastChanceRecoloringMaxDepth. 1784 // We may want to reconsider that if we end up with a too large search space 1785 // for target with hundreds of registers. 1786 // Indeed, in that case we may want to cut the search space earlier. 1787 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 1788 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 1789 CutOffInfo |= CO_Depth; 1790 return ~0u; 1791 } 1792 1793 // Set of Live intervals that will need to be recolored. 1794 SmallLISet RecoloringCandidates; 1795 1796 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 1797 // this recoloring "session". 1798 assert(!FixedRegisters.count(VirtReg.reg())); 1799 FixedRegisters.insert(VirtReg.reg()); 1800 SmallVector<Register, 4> CurrentNewVRegs; 1801 1802 for (MCRegister PhysReg : Order) { 1803 assert(PhysReg.isValid()); 1804 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 1805 << printReg(PhysReg, TRI) << '\n'); 1806 RecoloringCandidates.clear(); 1807 CurrentNewVRegs.clear(); 1808 1809 // It is only possible to recolor virtual register interference. 1810 if (Matrix->checkInterference(VirtReg, PhysReg) > 1811 LiveRegMatrix::IK_VirtReg) { 1812 LLVM_DEBUG( 1813 dbgs() << "Some interferences are not with virtual registers.\n"); 1814 1815 continue; 1816 } 1817 1818 // Early give up on this PhysReg if it is obvious we cannot recolor all 1819 // the interferences. 1820 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 1821 FixedRegisters)) { 1822 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 1823 continue; 1824 } 1825 1826 // RecoloringCandidates contains all the virtual registers that interfere 1827 // with VirtReg on PhysReg (or one of its aliases). Enqueue them for 1828 // recoloring and perform the actual recoloring. 1829 PQueue RecoloringQueue; 1830 for (const LiveInterval *RC : RecoloringCandidates) { 1831 Register ItVirtReg = RC->reg(); 1832 enqueue(RecoloringQueue, RC); 1833 assert(VRM->hasPhys(ItVirtReg) && 1834 "Interferences are supposed to be with allocated variables"); 1835 1836 // Record the current allocation. 1837 RecolorStack.push_back(std::make_pair(RC, VRM->getPhys(ItVirtReg))); 1838 1839 // unset the related struct. 1840 Matrix->unassign(*RC); 1841 } 1842 1843 // Do as if VirtReg was assigned to PhysReg so that the underlying 1844 // recoloring has the right information about the interferes and 1845 // available colors. 1846 Matrix->assign(VirtReg, PhysReg); 1847 1848 // Save the current recoloring state. 1849 // If we cannot recolor all the interferences, we will have to start again 1850 // at this point for the next physical register. 1851 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 1852 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 1853 FixedRegisters, RecolorStack, Depth)) { 1854 // Push the queued vregs into the main queue. 1855 for (Register NewVReg : CurrentNewVRegs) 1856 NewVRegs.push_back(NewVReg); 1857 // Do not mess up with the global assignment process. 1858 // I.e., VirtReg must be unassigned. 1859 Matrix->unassign(VirtReg); 1860 return PhysReg; 1861 } 1862 1863 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 1864 << printReg(PhysReg, TRI) << '\n'); 1865 1866 // The recoloring attempt failed, undo the changes. 1867 FixedRegisters = SaveFixedRegisters; 1868 Matrix->unassign(VirtReg); 1869 1870 // For a newly created vreg which is also in RecoloringCandidates, 1871 // don't add it to NewVRegs because its physical register will be restored 1872 // below. Other vregs in CurrentNewVRegs are created by calling 1873 // selectOrSplit and should be added into NewVRegs. 1874 for (Register &R : CurrentNewVRegs) { 1875 if (RecoloringCandidates.count(&LIS->getInterval(R))) 1876 continue; 1877 NewVRegs.push_back(R); 1878 } 1879 1880 // Roll back our unsuccessful recoloring. Also roll back any successful 1881 // recolorings in any recursive recoloring attempts, since it's possible 1882 // they would have introduced conflicts with assignments we will be 1883 // restoring further up the stack. Perform all unassignments prior to 1884 // reassigning, since sub-recolorings may have conflicted with the registers 1885 // we are going to restore to their original assignments. 1886 for (ssize_t I = RecolorStack.size() - 1; I >= EntryStackSize; --I) { 1887 const LiveInterval *LI; 1888 MCRegister PhysReg; 1889 std::tie(LI, PhysReg) = RecolorStack[I]; 1890 1891 if (VRM->hasPhys(LI->reg())) 1892 Matrix->unassign(*LI); 1893 } 1894 1895 for (size_t I = EntryStackSize; I != RecolorStack.size(); ++I) { 1896 const LiveInterval *LI; 1897 MCRegister PhysReg; 1898 std::tie(LI, PhysReg) = RecolorStack[I]; 1899 if (!LI->empty() && !MRI->reg_nodbg_empty(LI->reg())) 1900 Matrix->assign(*LI, PhysReg); 1901 } 1902 1903 // Pop the stack of recoloring attempts. 1904 RecolorStack.resize(EntryStackSize); 1905 } 1906 1907 // Last chance recoloring did not worked either, give up. 1908 return ~0u; 1909 } 1910 1911 /// tryRecoloringCandidates - Try to assign a new color to every register 1912 /// in \RecoloringQueue. 1913 /// \p NewRegs will contain any new virtual register created during the 1914 /// recoloring process. 1915 /// \p FixedRegisters[in/out] contains all the registers that have been 1916 /// recolored. 1917 /// \return true if all virtual registers in RecoloringQueue were successfully 1918 /// recolored, false otherwise. 1919 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 1920 SmallVectorImpl<Register> &NewVRegs, 1921 SmallVirtRegSet &FixedRegisters, 1922 RecoloringStack &RecolorStack, 1923 unsigned Depth) { 1924 while (!RecoloringQueue.empty()) { 1925 const LiveInterval *LI = dequeue(RecoloringQueue); 1926 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 1927 MCRegister PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, 1928 RecolorStack, Depth + 1); 1929 // When splitting happens, the live-range may actually be empty. 1930 // In that case, this is okay to continue the recoloring even 1931 // if we did not find an alternative color for it. Indeed, 1932 // there will not be anything to color for LI in the end. 1933 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 1934 return false; 1935 1936 if (!PhysReg) { 1937 assert(LI->empty() && "Only empty live-range do not require a register"); 1938 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 1939 << " succeeded. Empty LI.\n"); 1940 continue; 1941 } 1942 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 1943 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 1944 1945 Matrix->assign(*LI, PhysReg); 1946 FixedRegisters.insert(LI->reg()); 1947 } 1948 return true; 1949 } 1950 1951 //===----------------------------------------------------------------------===// 1952 // Main Entry Point 1953 //===----------------------------------------------------------------------===// 1954 1955 MCRegister RAGreedy::selectOrSplit(const LiveInterval &VirtReg, 1956 SmallVectorImpl<Register> &NewVRegs) { 1957 CutOffInfo = CO_None; 1958 LLVMContext &Ctx = MF->getFunction().getContext(); 1959 SmallVirtRegSet FixedRegisters; 1960 RecoloringStack RecolorStack; 1961 MCRegister Reg = 1962 selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters, RecolorStack); 1963 if (Reg == ~0U && (CutOffInfo != CO_None)) { 1964 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 1965 if (CutOffEncountered == CO_Depth) 1966 Ctx.emitError("register allocation failed: maximum depth for recoloring " 1967 "reached. Use -fexhaustive-register-search to skip " 1968 "cutoffs"); 1969 else if (CutOffEncountered == CO_Interf) 1970 Ctx.emitError("register allocation failed: maximum interference for " 1971 "recoloring reached. Use -fexhaustive-register-search " 1972 "to skip cutoffs"); 1973 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 1974 Ctx.emitError("register allocation failed: maximum interference and " 1975 "depth for recoloring reached. Use " 1976 "-fexhaustive-register-search to skip cutoffs"); 1977 } 1978 return Reg; 1979 } 1980 1981 /// Using a CSR for the first time has a cost because it causes push|pop 1982 /// to be added to prologue|epilogue. Splitting a cold section of the live 1983 /// range can have lower cost than using the CSR for the first time; 1984 /// Spilling a live range in the cold path can have lower cost than using 1985 /// the CSR for the first time. Returns the physical register if we decide 1986 /// to use the CSR; otherwise return 0. 1987 MCRegister RAGreedy::tryAssignCSRFirstTime( 1988 const LiveInterval &VirtReg, AllocationOrder &Order, MCRegister PhysReg, 1989 uint8_t &CostPerUseLimit, SmallVectorImpl<Register> &NewVRegs) { 1990 if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 1991 // We choose spill over using the CSR for the first time if the spill cost 1992 // is lower than CSRCost. 1993 SA->analyze(&VirtReg); 1994 if (calcSpillCost() >= CSRCost) 1995 return PhysReg; 1996 1997 // We are going to spill, set CostPerUseLimit to 1 to make sure that 1998 // we will not use a callee-saved register in tryEvict. 1999 CostPerUseLimit = 1; 2000 return 0; 2001 } 2002 if (ExtraInfo->getStage(VirtReg) < RS_Split) { 2003 // We choose pre-splitting over using the CSR for the first time if 2004 // the cost of splitting is lower than CSRCost. 2005 SA->analyze(&VirtReg); 2006 unsigned NumCands = 0; 2007 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2008 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2009 NumCands, true /*IgnoreCSR*/); 2010 if (BestCand == NoCand) 2011 // Use the CSR if we can't find a region split below CSRCost. 2012 return PhysReg; 2013 2014 // Perform the actual pre-splitting. 2015 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2016 return 0; 2017 } 2018 return PhysReg; 2019 } 2020 2021 void RAGreedy::aboutToRemoveInterval(const LiveInterval &LI) { 2022 // Do not keep invalid information around. 2023 SetOfBrokenHints.remove(&LI); 2024 } 2025 2026 void RAGreedy::initializeCSRCost() { 2027 // We use the larger one out of the command-line option and the value report 2028 // by TRI. 2029 CSRCost = BlockFrequency( 2030 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2031 if (!CSRCost.getFrequency()) 2032 return; 2033 2034 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2035 uint64_t ActualEntry = MBFI->getEntryFreq(); 2036 if (!ActualEntry) { 2037 CSRCost = 0; 2038 return; 2039 } 2040 uint64_t FixedEntry = 1 << 14; 2041 if (ActualEntry < FixedEntry) 2042 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2043 else if (ActualEntry <= UINT32_MAX) 2044 // Invert the fraction and divide. 2045 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2046 else 2047 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2048 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2049 } 2050 2051 /// Collect the hint info for \p Reg. 2052 /// The results are stored into \p Out. 2053 /// \p Out is not cleared before being populated. 2054 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) { 2055 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2056 if (!Instr.isFullCopy()) 2057 continue; 2058 // Look for the other end of the copy. 2059 Register OtherReg = Instr.getOperand(0).getReg(); 2060 if (OtherReg == Reg) { 2061 OtherReg = Instr.getOperand(1).getReg(); 2062 if (OtherReg == Reg) 2063 continue; 2064 } 2065 // Get the current assignment. 2066 MCRegister OtherPhysReg = 2067 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 2068 // Push the collected information. 2069 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2070 OtherPhysReg)); 2071 } 2072 } 2073 2074 /// Using the given \p List, compute the cost of the broken hints if 2075 /// \p PhysReg was used. 2076 /// \return The cost of \p List for \p PhysReg. 2077 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2078 MCRegister PhysReg) { 2079 BlockFrequency Cost = 0; 2080 for (const HintInfo &Info : List) { 2081 if (Info.PhysReg != PhysReg) 2082 Cost += Info.Freq; 2083 } 2084 return Cost; 2085 } 2086 2087 /// Using the register assigned to \p VirtReg, try to recolor 2088 /// all the live ranges that are copy-related with \p VirtReg. 2089 /// The recoloring is then propagated to all the live-ranges that have 2090 /// been recolored and so on, until no more copies can be coalesced or 2091 /// it is not profitable. 2092 /// For a given live range, profitability is determined by the sum of the 2093 /// frequencies of the non-identity copies it would introduce with the old 2094 /// and new register. 2095 void RAGreedy::tryHintRecoloring(const LiveInterval &VirtReg) { 2096 // We have a broken hint, check if it is possible to fix it by 2097 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2098 // some register and PhysReg may be available for the other live-ranges. 2099 SmallSet<Register, 4> Visited; 2100 SmallVector<unsigned, 2> RecoloringCandidates; 2101 HintsInfo Info; 2102 Register Reg = VirtReg.reg(); 2103 MCRegister PhysReg = VRM->getPhys(Reg); 2104 // Start the recoloring algorithm from the input live-interval, then 2105 // it will propagate to the ones that are copy-related with it. 2106 Visited.insert(Reg); 2107 RecoloringCandidates.push_back(Reg); 2108 2109 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2110 << '(' << printReg(PhysReg, TRI) << ")\n"); 2111 2112 do { 2113 Reg = RecoloringCandidates.pop_back_val(); 2114 2115 // We cannot recolor physical register. 2116 if (Register::isPhysicalRegister(Reg)) 2117 continue; 2118 2119 // This may be a skipped class 2120 if (!VRM->hasPhys(Reg)) { 2121 assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) && 2122 "We have an unallocated variable which should have been handled"); 2123 continue; 2124 } 2125 2126 // Get the live interval mapped with this virtual register to be able 2127 // to check for the interference with the new color. 2128 LiveInterval &LI = LIS->getInterval(Reg); 2129 MCRegister CurrPhys = VRM->getPhys(Reg); 2130 // Check that the new color matches the register class constraints and 2131 // that it is free for this live range. 2132 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2133 Matrix->checkInterference(LI, PhysReg))) 2134 continue; 2135 2136 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2137 << ") is recolorable.\n"); 2138 2139 // Gather the hint info. 2140 Info.clear(); 2141 collectHintInfo(Reg, Info); 2142 // Check if recoloring the live-range will increase the cost of the 2143 // non-identity copies. 2144 if (CurrPhys != PhysReg) { 2145 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2146 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2147 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2148 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2149 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2150 << '\n'); 2151 if (OldCopiesCost < NewCopiesCost) { 2152 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2153 continue; 2154 } 2155 // At this point, the cost is either cheaper or equal. If it is 2156 // equal, we consider this is profitable because it may expose 2157 // more recoloring opportunities. 2158 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2159 // Recolor the live-range. 2160 Matrix->unassign(LI); 2161 Matrix->assign(LI, PhysReg); 2162 } 2163 // Push all copy-related live-ranges to keep reconciling the broken 2164 // hints. 2165 for (const HintInfo &HI : Info) { 2166 if (Visited.insert(HI.Reg).second) 2167 RecoloringCandidates.push_back(HI.Reg); 2168 } 2169 } while (!RecoloringCandidates.empty()); 2170 } 2171 2172 /// Try to recolor broken hints. 2173 /// Broken hints may be repaired by recoloring when an evicted variable 2174 /// freed up a register for a larger live-range. 2175 /// Consider the following example: 2176 /// BB1: 2177 /// a = 2178 /// b = 2179 /// BB2: 2180 /// ... 2181 /// = b 2182 /// = a 2183 /// Let us assume b gets split: 2184 /// BB1: 2185 /// a = 2186 /// b = 2187 /// BB2: 2188 /// c = b 2189 /// ... 2190 /// d = c 2191 /// = d 2192 /// = a 2193 /// Because of how the allocation work, b, c, and d may be assigned different 2194 /// colors. Now, if a gets evicted later: 2195 /// BB1: 2196 /// a = 2197 /// st a, SpillSlot 2198 /// b = 2199 /// BB2: 2200 /// c = b 2201 /// ... 2202 /// d = c 2203 /// = d 2204 /// e = ld SpillSlot 2205 /// = e 2206 /// This is likely that we can assign the same register for b, c, and d, 2207 /// getting rid of 2 copies. 2208 void RAGreedy::tryHintsRecoloring() { 2209 for (const LiveInterval *LI : SetOfBrokenHints) { 2210 assert(Register::isVirtualRegister(LI->reg()) && 2211 "Recoloring is possible only for virtual registers"); 2212 // Some dead defs may be around (e.g., because of debug uses). 2213 // Ignore those. 2214 if (!VRM->hasPhys(LI->reg())) 2215 continue; 2216 tryHintRecoloring(*LI); 2217 } 2218 } 2219 2220 MCRegister RAGreedy::selectOrSplitImpl(const LiveInterval &VirtReg, 2221 SmallVectorImpl<Register> &NewVRegs, 2222 SmallVirtRegSet &FixedRegisters, 2223 RecoloringStack &RecolorStack, 2224 unsigned Depth) { 2225 uint8_t CostPerUseLimit = uint8_t(~0u); 2226 // First try assigning a free register. 2227 auto Order = 2228 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 2229 if (MCRegister PhysReg = 2230 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 2231 // When NewVRegs is not empty, we may have made decisions such as evicting 2232 // a virtual register, go with the earlier decisions and use the physical 2233 // register. 2234 if (CSRCost.getFrequency() && 2235 EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) { 2236 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 2237 CostPerUseLimit, NewVRegs); 2238 if (CSRReg || !NewVRegs.empty()) 2239 // Return now if we decide to use a CSR or create new vregs due to 2240 // pre-splitting. 2241 return CSRReg; 2242 } else 2243 return PhysReg; 2244 } 2245 2246 LiveRangeStage Stage = ExtraInfo->getStage(VirtReg); 2247 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 2248 << ExtraInfo->getCascade(VirtReg.reg()) << '\n'); 2249 2250 // Try to evict a less worthy live range, but only for ranges from the primary 2251 // queue. The RS_Split ranges already failed to do this, and they should not 2252 // get a second chance until they have been split. 2253 if (Stage != RS_Split) 2254 if (Register PhysReg = 2255 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 2256 FixedRegisters)) { 2257 Register Hint = MRI->getSimpleHint(VirtReg.reg()); 2258 // If VirtReg has a hint and that hint is broken record this 2259 // virtual register as a recoloring candidate for broken hint. 2260 // Indeed, since we evicted a variable in its neighborhood it is 2261 // likely we can at least partially recolor some of the 2262 // copy-related live-ranges. 2263 if (Hint && Hint != PhysReg) 2264 SetOfBrokenHints.insert(&VirtReg); 2265 return PhysReg; 2266 } 2267 2268 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 2269 2270 // The first time we see a live range, don't try to split or spill. 2271 // Wait until the second time, when all smaller ranges have been allocated. 2272 // This gives a better picture of the interference to split around. 2273 if (Stage < RS_Split) { 2274 ExtraInfo->setStage(VirtReg, RS_Split); 2275 LLVM_DEBUG(dbgs() << "wait for second round\n"); 2276 NewVRegs.push_back(VirtReg.reg()); 2277 return 0; 2278 } 2279 2280 if (Stage < RS_Spill) { 2281 // Try splitting VirtReg or interferences. 2282 unsigned NewVRegSizeBefore = NewVRegs.size(); 2283 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 2284 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) 2285 return PhysReg; 2286 } 2287 2288 // If we couldn't allocate a register from spilling, there is probably some 2289 // invalid inline assembly. The base class will report it. 2290 if (Stage >= RS_Done || !VirtReg.isSpillable()) { 2291 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 2292 RecolorStack, Depth); 2293 } 2294 2295 // Finally spill VirtReg itself. 2296 if ((EnableDeferredSpilling || 2297 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) && 2298 ExtraInfo->getStage(VirtReg) < RS_Memory) { 2299 // TODO: This is experimental and in particular, we do not model 2300 // the live range splitting done by spilling correctly. 2301 // We would need a deep integration with the spiller to do the 2302 // right thing here. Anyway, that is still good for early testing. 2303 ExtraInfo->setStage(VirtReg, RS_Memory); 2304 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 2305 NewVRegs.push_back(VirtReg.reg()); 2306 } else { 2307 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 2308 TimerGroupDescription, TimePassesIsEnabled); 2309 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2310 spiller().spill(LRE); 2311 ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 2312 2313 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 2314 // the new regs are kept in LDV (still mapping to the old register), until 2315 // we rewrite spilled locations in LDV at a later stage. 2316 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS); 2317 2318 if (VerifyEnabled) 2319 MF->verify(this, "After spilling"); 2320 } 2321 2322 // The live virtual register requesting allocation was spilled, so tell 2323 // the caller not to allocate anything during this round. 2324 return 0; 2325 } 2326 2327 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) { 2328 using namespace ore; 2329 if (Spills) { 2330 R << NV("NumSpills", Spills) << " spills "; 2331 R << NV("TotalSpillsCost", SpillsCost) << " total spills cost "; 2332 } 2333 if (FoldedSpills) { 2334 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 2335 R << NV("TotalFoldedSpillsCost", FoldedSpillsCost) 2336 << " total folded spills cost "; 2337 } 2338 if (Reloads) { 2339 R << NV("NumReloads", Reloads) << " reloads "; 2340 R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost "; 2341 } 2342 if (FoldedReloads) { 2343 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 2344 R << NV("TotalFoldedReloadsCost", FoldedReloadsCost) 2345 << " total folded reloads cost "; 2346 } 2347 if (ZeroCostFoldedReloads) 2348 R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads) 2349 << " zero cost folded reloads "; 2350 if (Copies) { 2351 R << NV("NumVRCopies", Copies) << " virtual registers copies "; 2352 R << NV("TotalCopiesCost", CopiesCost) << " total copies cost "; 2353 } 2354 } 2355 2356 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) { 2357 RAGreedyStats Stats; 2358 const MachineFrameInfo &MFI = MF->getFrameInfo(); 2359 int FI; 2360 2361 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 2362 return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>( 2363 A->getPseudoValue())->getFrameIndex()); 2364 }; 2365 auto isPatchpointInstr = [](const MachineInstr &MI) { 2366 return MI.getOpcode() == TargetOpcode::PATCHPOINT || 2367 MI.getOpcode() == TargetOpcode::STACKMAP || 2368 MI.getOpcode() == TargetOpcode::STATEPOINT; 2369 }; 2370 for (MachineInstr &MI : MBB) { 2371 if (MI.isCopy()) { 2372 MachineOperand &Dest = MI.getOperand(0); 2373 MachineOperand &Src = MI.getOperand(1); 2374 if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() && 2375 Src.getReg().isVirtual()) 2376 ++Stats.Copies; 2377 continue; 2378 } 2379 2380 SmallVector<const MachineMemOperand *, 2> Accesses; 2381 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 2382 ++Stats.Reloads; 2383 continue; 2384 } 2385 if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 2386 ++Stats.Spills; 2387 continue; 2388 } 2389 if (TII->hasLoadFromStackSlot(MI, Accesses) && 2390 llvm::any_of(Accesses, isSpillSlotAccess)) { 2391 if (!isPatchpointInstr(MI)) { 2392 Stats.FoldedReloads += Accesses.size(); 2393 continue; 2394 } 2395 // For statepoint there may be folded and zero cost folded stack reloads. 2396 std::pair<unsigned, unsigned> NonZeroCostRange = 2397 TII->getPatchpointUnfoldableRange(MI); 2398 SmallSet<unsigned, 16> FoldedReloads; 2399 SmallSet<unsigned, 16> ZeroCostFoldedReloads; 2400 for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) { 2401 MachineOperand &MO = MI.getOperand(Idx); 2402 if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex())) 2403 continue; 2404 if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second) 2405 FoldedReloads.insert(MO.getIndex()); 2406 else 2407 ZeroCostFoldedReloads.insert(MO.getIndex()); 2408 } 2409 // If stack slot is used in folded reload it is not zero cost then. 2410 for (unsigned Slot : FoldedReloads) 2411 ZeroCostFoldedReloads.erase(Slot); 2412 Stats.FoldedReloads += FoldedReloads.size(); 2413 Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size(); 2414 continue; 2415 } 2416 Accesses.clear(); 2417 if (TII->hasStoreToStackSlot(MI, Accesses) && 2418 llvm::any_of(Accesses, isSpillSlotAccess)) { 2419 Stats.FoldedSpills += Accesses.size(); 2420 } 2421 } 2422 // Set cost of collected statistic by multiplication to relative frequency of 2423 // this basic block. 2424 float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB); 2425 Stats.ReloadsCost = RelFreq * Stats.Reloads; 2426 Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads; 2427 Stats.SpillsCost = RelFreq * Stats.Spills; 2428 Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills; 2429 Stats.CopiesCost = RelFreq * Stats.Copies; 2430 return Stats; 2431 } 2432 2433 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) { 2434 RAGreedyStats Stats; 2435 2436 // Sum up the spill and reloads in subloops. 2437 for (MachineLoop *SubLoop : *L) 2438 Stats.add(reportStats(SubLoop)); 2439 2440 for (MachineBasicBlock *MBB : L->getBlocks()) 2441 // Handle blocks that were not included in subloops. 2442 if (Loops->getLoopFor(MBB) == L) 2443 Stats.add(computeStats(*MBB)); 2444 2445 if (!Stats.isEmpty()) { 2446 using namespace ore; 2447 2448 ORE->emit([&]() { 2449 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies", 2450 L->getStartLoc(), L->getHeader()); 2451 Stats.report(R); 2452 R << "generated in loop"; 2453 return R; 2454 }); 2455 } 2456 return Stats; 2457 } 2458 2459 void RAGreedy::reportStats() { 2460 if (!ORE->allowExtraAnalysis(DEBUG_TYPE)) 2461 return; 2462 RAGreedyStats Stats; 2463 for (MachineLoop *L : *Loops) 2464 Stats.add(reportStats(L)); 2465 // Process non-loop blocks. 2466 for (MachineBasicBlock &MBB : *MF) 2467 if (!Loops->getLoopFor(&MBB)) 2468 Stats.add(computeStats(MBB)); 2469 if (!Stats.isEmpty()) { 2470 using namespace ore; 2471 2472 ORE->emit([&]() { 2473 DebugLoc Loc; 2474 if (auto *SP = MF->getFunction().getSubprogram()) 2475 Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 2476 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc, 2477 &MF->front()); 2478 Stats.report(R); 2479 R << "generated in function"; 2480 return R; 2481 }); 2482 } 2483 } 2484 2485 bool RAGreedy::hasVirtRegAlloc() { 2486 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2487 Register Reg = Register::index2VirtReg(I); 2488 if (MRI->reg_nodbg_empty(Reg)) 2489 continue; 2490 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 2491 if (!RC) 2492 continue; 2493 if (ShouldAllocateClass(*TRI, *RC)) 2494 return true; 2495 } 2496 2497 return false; 2498 } 2499 2500 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 2501 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 2502 << "********** Function: " << mf.getName() << '\n'); 2503 2504 MF = &mf; 2505 TII = MF->getSubtarget().getInstrInfo(); 2506 2507 if (VerifyEnabled) 2508 MF->verify(this, "Before greedy register allocator"); 2509 2510 RegAllocBase::init(getAnalysis<VirtRegMap>(), 2511 getAnalysis<LiveIntervals>(), 2512 getAnalysis<LiveRegMatrix>()); 2513 2514 // Early return if there is no virtual register to be allocated to a 2515 // physical register. 2516 if (!hasVirtRegAlloc()) 2517 return false; 2518 2519 Indexes = &getAnalysis<SlotIndexes>(); 2520 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2521 DomTree = &getAnalysis<MachineDominatorTree>(); 2522 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 2523 Loops = &getAnalysis<MachineLoopInfo>(); 2524 Bundles = &getAnalysis<EdgeBundles>(); 2525 SpillPlacer = &getAnalysis<SpillPlacement>(); 2526 DebugVars = &getAnalysis<LiveDebugVariables>(); 2527 2528 initializeCSRCost(); 2529 2530 RegCosts = TRI->getRegisterCosts(*MF); 2531 RegClassPriorityTrumpsGlobalness = 2532 GreedyRegClassPriorityTrumpsGlobalness.getNumOccurrences() 2533 ? GreedyRegClassPriorityTrumpsGlobalness 2534 : TRI->regClassPriorityTrumpsGlobalness(*MF); 2535 2536 ReverseLocalAssignment = GreedyReverseLocalAssignment.getNumOccurrences() 2537 ? GreedyReverseLocalAssignment 2538 : TRI->reverseLocalAssignment(); 2539 2540 ExtraInfo.emplace(); 2541 EvictAdvisor = 2542 getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this); 2543 2544 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI); 2545 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI)); 2546 2547 VRAI->calculateSpillWeightsAndHints(); 2548 2549 LLVM_DEBUG(LIS->dump()); 2550 2551 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 2552 SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI, *VRAI)); 2553 2554 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 2555 GlobalCand.resize(32); // This will grow as needed. 2556 SetOfBrokenHints.clear(); 2557 2558 allocatePhysRegs(); 2559 tryHintsRecoloring(); 2560 2561 if (VerifyEnabled) 2562 MF->verify(this, "Before post optimization"); 2563 postOptimization(); 2564 reportStats(); 2565 2566 releaseMemory(); 2567 return true; 2568 } 2569