xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/RegAllocGreedy.cpp (revision a90b9d0159070121c221b966469c3e36d912bf82)
1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RegAllocGreedy.h"
15 #include "AllocationOrder.h"
16 #include "InterferenceCache.h"
17 #include "LiveDebugVariables.h"
18 #include "RegAllocBase.h"
19 #include "RegAllocEvictionAdvisor.h"
20 #include "RegAllocPriorityAdvisor.h"
21 #include "SpillPlacement.h"
22 #include "SplitKit.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/BitVector.h"
25 #include "llvm/ADT/IndexedMap.h"
26 #include "llvm/ADT/SmallSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
32 #include "llvm/CodeGen/CalcSpillWeights.h"
33 #include "llvm/CodeGen/EdgeBundles.h"
34 #include "llvm/CodeGen/LiveInterval.h"
35 #include "llvm/CodeGen/LiveIntervalUnion.h"
36 #include "llvm/CodeGen/LiveIntervals.h"
37 #include "llvm/CodeGen/LiveRangeEdit.h"
38 #include "llvm/CodeGen/LiveRegMatrix.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
42 #include "llvm/CodeGen/MachineDominators.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineLoopInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/RegAllocRegistry.h"
52 #include "llvm/CodeGen/RegisterClassInfo.h"
53 #include "llvm/CodeGen/SlotIndexes.h"
54 #include "llvm/CodeGen/Spiller.h"
55 #include "llvm/CodeGen/TargetInstrInfo.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/TargetSubtargetInfo.h"
58 #include "llvm/CodeGen/VirtRegMap.h"
59 #include "llvm/IR/DebugInfoMetadata.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/InitializePasses.h"
63 #include "llvm/MC/MCRegisterInfo.h"
64 #include "llvm/Pass.h"
65 #include "llvm/Support/BlockFrequency.h"
66 #include "llvm/Support/BranchProbability.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/Timer.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <utility>
76 
77 using namespace llvm;
78 
79 #define DEBUG_TYPE "regalloc"
80 
81 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
82 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
83 STATISTIC(NumEvicted,      "Number of interferences evicted");
84 
85 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
86     "split-spill-mode", cl::Hidden,
87     cl::desc("Spill mode for splitting live ranges"),
88     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
89                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
90                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
91     cl::init(SplitEditor::SM_Speed));
92 
93 static cl::opt<unsigned>
94 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
95                              cl::desc("Last chance recoloring max depth"),
96                              cl::init(5));
97 
98 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
99     "lcr-max-interf", cl::Hidden,
100     cl::desc("Last chance recoloring maximum number of considered"
101              " interference at a time"),
102     cl::init(8));
103 
104 static cl::opt<bool> ExhaustiveSearch(
105     "exhaustive-register-search", cl::NotHidden,
106     cl::desc("Exhaustive Search for registers bypassing the depth "
107              "and interference cutoffs of last chance recoloring"),
108     cl::Hidden);
109 
110 static cl::opt<bool> EnableDeferredSpilling(
111     "enable-deferred-spilling", cl::Hidden,
112     cl::desc("Instead of spilling a variable right away, defer the actual "
113              "code insertion to the end of the allocation. That way the "
114              "allocator might still find a suitable coloring for this "
115              "variable because of other evicted variables."),
116     cl::init(false));
117 
118 // FIXME: Find a good default for this flag and remove the flag.
119 static cl::opt<unsigned>
120 CSRFirstTimeCost("regalloc-csr-first-time-cost",
121               cl::desc("Cost for first time use of callee-saved register."),
122               cl::init(0), cl::Hidden);
123 
124 static cl::opt<unsigned long> GrowRegionComplexityBudget(
125     "grow-region-complexity-budget",
126     cl::desc("growRegion() does not scale with the number of BB edges, so "
127              "limit its budget and bail out once we reach the limit."),
128     cl::init(10000), cl::Hidden);
129 
130 static cl::opt<bool> GreedyRegClassPriorityTrumpsGlobalness(
131     "greedy-regclass-priority-trumps-globalness",
132     cl::desc("Change the greedy register allocator's live range priority "
133              "calculation to make the AllocationPriority of the register class "
134              "more important then whether the range is global"),
135     cl::Hidden);
136 
137 static cl::opt<bool> GreedyReverseLocalAssignment(
138     "greedy-reverse-local-assignment",
139     cl::desc("Reverse allocation order of local live ranges, such that "
140              "shorter local live ranges will tend to be allocated first"),
141     cl::Hidden);
142 
143 static cl::opt<unsigned> SplitThresholdForRegWithHint(
144     "split-threshold-for-reg-with-hint",
145     cl::desc("The threshold for splitting a virtual register with a hint, in "
146              "percentate"),
147     cl::init(75), cl::Hidden);
148 
149 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
150                                        createGreedyRegisterAllocator);
151 
152 char RAGreedy::ID = 0;
153 char &llvm::RAGreedyID = RAGreedy::ID;
154 
155 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
156                 "Greedy Register Allocator", false, false)
157 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
158 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
159 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
160 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
161 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
162 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
163 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
164 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
165 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
166 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
167 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
168 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
169 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
170 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis)
171 INITIALIZE_PASS_DEPENDENCY(RegAllocPriorityAdvisorAnalysis)
172 INITIALIZE_PASS_END(RAGreedy, "greedy",
173                 "Greedy Register Allocator", false, false)
174 
175 #ifndef NDEBUG
176 const char *const RAGreedy::StageName[] = {
177     "RS_New",
178     "RS_Assign",
179     "RS_Split",
180     "RS_Split2",
181     "RS_Spill",
182     "RS_Memory",
183     "RS_Done"
184 };
185 #endif
186 
187 // Hysteresis to use when comparing floats.
188 // This helps stabilize decisions based on float comparisons.
189 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
190 
191 FunctionPass* llvm::createGreedyRegisterAllocator() {
192   return new RAGreedy();
193 }
194 
195 FunctionPass *llvm::createGreedyRegisterAllocator(RegClassFilterFunc Ftor) {
196   return new RAGreedy(Ftor);
197 }
198 
199 RAGreedy::RAGreedy(RegClassFilterFunc F):
200   MachineFunctionPass(ID),
201   RegAllocBase(F) {
202 }
203 
204 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
205   AU.setPreservesCFG();
206   AU.addRequired<MachineBlockFrequencyInfo>();
207   AU.addPreserved<MachineBlockFrequencyInfo>();
208   AU.addRequired<LiveIntervals>();
209   AU.addPreserved<LiveIntervals>();
210   AU.addRequired<SlotIndexes>();
211   AU.addPreserved<SlotIndexes>();
212   AU.addRequired<LiveDebugVariables>();
213   AU.addPreserved<LiveDebugVariables>();
214   AU.addRequired<LiveStacks>();
215   AU.addPreserved<LiveStacks>();
216   AU.addRequired<MachineDominatorTree>();
217   AU.addPreserved<MachineDominatorTree>();
218   AU.addRequired<MachineLoopInfo>();
219   AU.addPreserved<MachineLoopInfo>();
220   AU.addRequired<VirtRegMap>();
221   AU.addPreserved<VirtRegMap>();
222   AU.addRequired<LiveRegMatrix>();
223   AU.addPreserved<LiveRegMatrix>();
224   AU.addRequired<EdgeBundles>();
225   AU.addRequired<SpillPlacement>();
226   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
227   AU.addRequired<RegAllocEvictionAdvisorAnalysis>();
228   AU.addRequired<RegAllocPriorityAdvisorAnalysis>();
229   MachineFunctionPass::getAnalysisUsage(AU);
230 }
231 
232 //===----------------------------------------------------------------------===//
233 //                     LiveRangeEdit delegate methods
234 //===----------------------------------------------------------------------===//
235 
236 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
237   LiveInterval &LI = LIS->getInterval(VirtReg);
238   if (VRM->hasPhys(VirtReg)) {
239     Matrix->unassign(LI);
240     aboutToRemoveInterval(LI);
241     return true;
242   }
243   // Unassigned virtreg is probably in the priority queue.
244   // RegAllocBase will erase it after dequeueing.
245   // Nonetheless, clear the live-range so that the debug
246   // dump will show the right state for that VirtReg.
247   LI.clear();
248   return false;
249 }
250 
251 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
252   if (!VRM->hasPhys(VirtReg))
253     return;
254 
255   // Register is assigned, put it back on the queue for reassignment.
256   LiveInterval &LI = LIS->getInterval(VirtReg);
257   Matrix->unassign(LI);
258   RegAllocBase::enqueue(&LI);
259 }
260 
261 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
262   ExtraInfo->LRE_DidCloneVirtReg(New, Old);
263 }
264 
265 void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) {
266   // Cloning a register we haven't even heard about yet?  Just ignore it.
267   if (!Info.inBounds(Old))
268     return;
269 
270   // LRE may clone a virtual register because dead code elimination causes it to
271   // be split into connected components. The new components are much smaller
272   // than the original, so they should get a new chance at being assigned.
273   // same stage as the parent.
274   Info[Old].Stage = RS_Assign;
275   Info.grow(New.id());
276   Info[New] = Info[Old];
277 }
278 
279 void RAGreedy::releaseMemory() {
280   SpillerInstance.reset();
281   GlobalCand.clear();
282 }
283 
284 void RAGreedy::enqueueImpl(const LiveInterval *LI) { enqueue(Queue, LI); }
285 
286 void RAGreedy::enqueue(PQueue &CurQueue, const LiveInterval *LI) {
287   // Prioritize live ranges by size, assigning larger ranges first.
288   // The queue holds (size, reg) pairs.
289   const Register Reg = LI->reg();
290   assert(Reg.isVirtual() && "Can only enqueue virtual registers");
291 
292   auto Stage = ExtraInfo->getOrInitStage(Reg);
293   if (Stage == RS_New) {
294     Stage = RS_Assign;
295     ExtraInfo->setStage(Reg, Stage);
296   }
297 
298   unsigned Ret = PriorityAdvisor->getPriority(*LI);
299 
300   // The virtual register number is a tie breaker for same-sized ranges.
301   // Give lower vreg numbers higher priority to assign them first.
302   CurQueue.push(std::make_pair(Ret, ~Reg));
303 }
304 
305 unsigned DefaultPriorityAdvisor::getPriority(const LiveInterval &LI) const {
306   const unsigned Size = LI.getSize();
307   const Register Reg = LI.reg();
308   unsigned Prio;
309   LiveRangeStage Stage = RA.getExtraInfo().getStage(LI);
310 
311   if (Stage == RS_Split) {
312     // Unsplit ranges that couldn't be allocated immediately are deferred until
313     // everything else has been allocated.
314     Prio = Size;
315   } else if (Stage == RS_Memory) {
316     // Memory operand should be considered last.
317     // Change the priority such that Memory operand are assigned in
318     // the reverse order that they came in.
319     // TODO: Make this a member variable and probably do something about hints.
320     static unsigned MemOp = 0;
321     Prio = MemOp++;
322   } else {
323     // Giant live ranges fall back to the global assignment heuristic, which
324     // prevents excessive spilling in pathological cases.
325     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
326     bool ForceGlobal = RC.GlobalPriority ||
327                        (!ReverseLocalAssignment &&
328                         (Size / SlotIndex::InstrDist) >
329                             (2 * RegClassInfo.getNumAllocatableRegs(&RC)));
330     unsigned GlobalBit = 0;
331 
332     if (Stage == RS_Assign && !ForceGlobal && !LI.empty() &&
333         LIS->intervalIsInOneMBB(LI)) {
334       // Allocate original local ranges in linear instruction order. Since they
335       // are singly defined, this produces optimal coloring in the absence of
336       // global interference and other constraints.
337       if (!ReverseLocalAssignment)
338         Prio = LI.beginIndex().getApproxInstrDistance(Indexes->getLastIndex());
339       else {
340         // Allocating bottom up may allow many short LRGs to be assigned first
341         // to one of the cheap registers. This could be much faster for very
342         // large blocks on targets with many physical registers.
343         Prio = Indexes->getZeroIndex().getApproxInstrDistance(LI.endIndex());
344       }
345     } else {
346       // Allocate global and split ranges in long->short order. Long ranges that
347       // don't fit should be spilled (or split) ASAP so they don't create
348       // interference.  Mark a bit to prioritize global above local ranges.
349       Prio = Size;
350       GlobalBit = 1;
351     }
352 
353     // Priority bit layout:
354     // 31 RS_Assign priority
355     // 30 Preference priority
356     // if (RegClassPriorityTrumpsGlobalness)
357     //   29-25 AllocPriority
358     //   24 GlobalBit
359     // else
360     //   29 Global bit
361     //   28-24 AllocPriority
362     // 0-23 Size/Instr distance
363 
364     // Clamp the size to fit with the priority masking scheme
365     Prio = std::min(Prio, (unsigned)maxUIntN(24));
366     assert(isUInt<5>(RC.AllocationPriority) && "allocation priority overflow");
367 
368     if (RegClassPriorityTrumpsGlobalness)
369       Prio |= RC.AllocationPriority << 25 | GlobalBit << 24;
370     else
371       Prio |= GlobalBit << 29 | RC.AllocationPriority << 24;
372 
373     // Mark a higher bit to prioritize global and local above RS_Split.
374     Prio |= (1u << 31);
375 
376     // Boost ranges that have a physical register hint.
377     if (VRM->hasKnownPreference(Reg))
378       Prio |= (1u << 30);
379   }
380 
381   return Prio;
382 }
383 
384 const LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
385 
386 const LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
387   if (CurQueue.empty())
388     return nullptr;
389   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
390   CurQueue.pop();
391   return LI;
392 }
393 
394 //===----------------------------------------------------------------------===//
395 //                            Direct Assignment
396 //===----------------------------------------------------------------------===//
397 
398 /// tryAssign - Try to assign VirtReg to an available register.
399 MCRegister RAGreedy::tryAssign(const LiveInterval &VirtReg,
400                                AllocationOrder &Order,
401                                SmallVectorImpl<Register> &NewVRegs,
402                                const SmallVirtRegSet &FixedRegisters) {
403   MCRegister PhysReg;
404   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
405     assert(*I);
406     if (!Matrix->checkInterference(VirtReg, *I)) {
407       if (I.isHint())
408         return *I;
409       else
410         PhysReg = *I;
411     }
412   }
413   if (!PhysReg.isValid())
414     return PhysReg;
415 
416   // PhysReg is available, but there may be a better choice.
417 
418   // If we missed a simple hint, try to cheaply evict interference from the
419   // preferred register.
420   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
421     if (Order.isHint(Hint)) {
422       MCRegister PhysHint = Hint.asMCReg();
423       LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
424 
425       if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint,
426                                                  FixedRegisters)) {
427         evictInterference(VirtReg, PhysHint, NewVRegs);
428         return PhysHint;
429       }
430 
431       // We can also split the virtual register in cold blocks.
432       if (trySplitAroundHintReg(PhysHint, VirtReg, NewVRegs, Order))
433         return 0;
434 
435       // Record the missed hint, we may be able to recover
436       // at the end if the surrounding allocation changed.
437       SetOfBrokenHints.insert(&VirtReg);
438     }
439 
440   // Try to evict interference from a cheaper alternative.
441   uint8_t Cost = RegCosts[PhysReg];
442 
443   // Most registers have 0 additional cost.
444   if (!Cost)
445     return PhysReg;
446 
447   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
448                     << (unsigned)Cost << '\n');
449   MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
450   return CheapReg ? CheapReg : PhysReg;
451 }
452 
453 //===----------------------------------------------------------------------===//
454 //                         Interference eviction
455 //===----------------------------------------------------------------------===//
456 
457 bool RegAllocEvictionAdvisor::canReassign(const LiveInterval &VirtReg,
458                                           MCRegister FromReg) const {
459   auto HasRegUnitInterference = [&](MCRegUnit Unit) {
460     // Instantiate a "subquery", not to be confused with the Queries array.
461     LiveIntervalUnion::Query SubQ(VirtReg, Matrix->getLiveUnions()[Unit]);
462     return SubQ.checkInterference();
463   };
464 
465   for (MCRegister Reg :
466        AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix)) {
467     if (Reg == FromReg)
468       continue;
469     // If no units have interference, reassignment is possible.
470     if (none_of(TRI->regunits(Reg), HasRegUnitInterference)) {
471       LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
472                         << printReg(FromReg, TRI) << " to "
473                         << printReg(Reg, TRI) << '\n');
474       return true;
475     }
476   }
477   return false;
478 }
479 
480 /// evictInterference - Evict any interferring registers that prevent VirtReg
481 /// from being assigned to Physreg. This assumes that canEvictInterference
482 /// returned true.
483 void RAGreedy::evictInterference(const LiveInterval &VirtReg,
484                                  MCRegister PhysReg,
485                                  SmallVectorImpl<Register> &NewVRegs) {
486   // Make sure that VirtReg has a cascade number, and assign that cascade
487   // number to every evicted register. These live ranges than then only be
488   // evicted by a newer cascade, preventing infinite loops.
489   unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg());
490 
491   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
492                     << " interference: Cascade " << Cascade << '\n');
493 
494   // Collect all interfering virtregs first.
495   SmallVector<const LiveInterval *, 8> Intfs;
496   for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
497     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, Unit);
498     // We usually have the interfering VRegs cached so collectInterferingVRegs()
499     // should be fast, we may need to recalculate if when different physregs
500     // overlap the same register unit so we had different SubRanges queried
501     // against it.
502     ArrayRef<const LiveInterval *> IVR = Q.interferingVRegs();
503     Intfs.append(IVR.begin(), IVR.end());
504   }
505 
506   // Evict them second. This will invalidate the queries.
507   for (const LiveInterval *Intf : Intfs) {
508     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
509     if (!VRM->hasPhys(Intf->reg()))
510       continue;
511 
512     Matrix->unassign(*Intf);
513     assert((ExtraInfo->getCascade(Intf->reg()) < Cascade ||
514             VirtReg.isSpillable() < Intf->isSpillable()) &&
515            "Cannot decrease cascade number, illegal eviction");
516     ExtraInfo->setCascade(Intf->reg(), Cascade);
517     ++NumEvicted;
518     NewVRegs.push_back(Intf->reg());
519   }
520 }
521 
522 /// Returns true if the given \p PhysReg is a callee saved register and has not
523 /// been used for allocation yet.
524 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
525   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
526   if (!CSR)
527     return false;
528 
529   return !Matrix->isPhysRegUsed(PhysReg);
530 }
531 
532 std::optional<unsigned>
533 RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg,
534                                        const AllocationOrder &Order,
535                                        unsigned CostPerUseLimit) const {
536   unsigned OrderLimit = Order.getOrder().size();
537 
538   if (CostPerUseLimit < uint8_t(~0u)) {
539     // Check of any registers in RC are below CostPerUseLimit.
540     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
541     uint8_t MinCost = RegClassInfo.getMinCost(RC);
542     if (MinCost >= CostPerUseLimit) {
543       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
544                         << MinCost << ", no cheaper registers to be found.\n");
545       return std::nullopt;
546     }
547 
548     // It is normal for register classes to have a long tail of registers with
549     // the same cost. We don't need to look at them if they're too expensive.
550     if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) {
551       OrderLimit = RegClassInfo.getLastCostChange(RC);
552       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
553                         << " regs.\n");
554     }
555   }
556   return OrderLimit;
557 }
558 
559 bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit,
560                                                  MCRegister PhysReg) const {
561   if (RegCosts[PhysReg] >= CostPerUseLimit)
562     return false;
563   // The first use of a callee-saved register in a function has cost 1.
564   // Don't start using a CSR when the CostPerUseLimit is low.
565   if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
566     LLVM_DEBUG(
567         dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
568                << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
569                << '\n');
570     return false;
571   }
572   return true;
573 }
574 
575 /// tryEvict - Try to evict all interferences for a physreg.
576 /// @param  VirtReg Currently unassigned virtual register.
577 /// @param  Order   Physregs to try.
578 /// @return         Physreg to assign VirtReg, or 0.
579 MCRegister RAGreedy::tryEvict(const LiveInterval &VirtReg,
580                               AllocationOrder &Order,
581                               SmallVectorImpl<Register> &NewVRegs,
582                               uint8_t CostPerUseLimit,
583                               const SmallVirtRegSet &FixedRegisters) {
584   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
585                      TimePassesIsEnabled);
586 
587   MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate(
588       VirtReg, Order, CostPerUseLimit, FixedRegisters);
589   if (BestPhys.isValid())
590     evictInterference(VirtReg, BestPhys, NewVRegs);
591   return BestPhys;
592 }
593 
594 //===----------------------------------------------------------------------===//
595 //                              Region Splitting
596 //===----------------------------------------------------------------------===//
597 
598 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
599 /// interference pattern in Physreg and its aliases. Add the constraints to
600 /// SpillPlacement and return the static cost of this split in Cost, assuming
601 /// that all preferences in SplitConstraints are met.
602 /// Return false if there are no bundles with positive bias.
603 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
604                                    BlockFrequency &Cost) {
605   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
606 
607   // Reset interference dependent info.
608   SplitConstraints.resize(UseBlocks.size());
609   BlockFrequency StaticCost = BlockFrequency(0);
610   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
611     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
612     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
613 
614     BC.Number = BI.MBB->getNumber();
615     Intf.moveToBlock(BC.Number);
616     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
617     BC.Exit = (BI.LiveOut &&
618                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
619                   ? SpillPlacement::PrefReg
620                   : SpillPlacement::DontCare;
621     BC.ChangesValue = BI.FirstDef.isValid();
622 
623     if (!Intf.hasInterference())
624       continue;
625 
626     // Number of spill code instructions to insert.
627     unsigned Ins = 0;
628 
629     // Interference for the live-in value.
630     if (BI.LiveIn) {
631       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
632         BC.Entry = SpillPlacement::MustSpill;
633         ++Ins;
634       } else if (Intf.first() < BI.FirstInstr) {
635         BC.Entry = SpillPlacement::PrefSpill;
636         ++Ins;
637       } else if (Intf.first() < BI.LastInstr) {
638         ++Ins;
639       }
640 
641       // Abort if the spill cannot be inserted at the MBB' start
642       if (((BC.Entry == SpillPlacement::MustSpill) ||
643            (BC.Entry == SpillPlacement::PrefSpill)) &&
644           SlotIndex::isEarlierInstr(BI.FirstInstr,
645                                     SA->getFirstSplitPoint(BC.Number)))
646         return false;
647     }
648 
649     // Interference for the live-out value.
650     if (BI.LiveOut) {
651       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
652         BC.Exit = SpillPlacement::MustSpill;
653         ++Ins;
654       } else if (Intf.last() > BI.LastInstr) {
655         BC.Exit = SpillPlacement::PrefSpill;
656         ++Ins;
657       } else if (Intf.last() > BI.FirstInstr) {
658         ++Ins;
659       }
660     }
661 
662     // Accumulate the total frequency of inserted spill code.
663     while (Ins--)
664       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
665   }
666   Cost = StaticCost;
667 
668   // Add constraints for use-blocks. Note that these are the only constraints
669   // that may add a positive bias, it is downhill from here.
670   SpillPlacer->addConstraints(SplitConstraints);
671   return SpillPlacer->scanActiveBundles();
672 }
673 
674 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
675 /// live-through blocks in Blocks.
676 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
677                                      ArrayRef<unsigned> Blocks) {
678   const unsigned GroupSize = 8;
679   SpillPlacement::BlockConstraint BCS[GroupSize];
680   unsigned TBS[GroupSize];
681   unsigned B = 0, T = 0;
682 
683   for (unsigned Number : Blocks) {
684     Intf.moveToBlock(Number);
685 
686     if (!Intf.hasInterference()) {
687       assert(T < GroupSize && "Array overflow");
688       TBS[T] = Number;
689       if (++T == GroupSize) {
690         SpillPlacer->addLinks(ArrayRef(TBS, T));
691         T = 0;
692       }
693       continue;
694     }
695 
696     assert(B < GroupSize && "Array overflow");
697     BCS[B].Number = Number;
698 
699     // Abort if the spill cannot be inserted at the MBB' start
700     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
701     auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr();
702     if (FirstNonDebugInstr != MBB->end() &&
703         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr),
704                                   SA->getFirstSplitPoint(Number)))
705       return false;
706     // Interference for the live-in value.
707     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
708       BCS[B].Entry = SpillPlacement::MustSpill;
709     else
710       BCS[B].Entry = SpillPlacement::PrefSpill;
711 
712     // Interference for the live-out value.
713     if (Intf.last() >= SA->getLastSplitPoint(Number))
714       BCS[B].Exit = SpillPlacement::MustSpill;
715     else
716       BCS[B].Exit = SpillPlacement::PrefSpill;
717 
718     if (++B == GroupSize) {
719       SpillPlacer->addConstraints(ArrayRef(BCS, B));
720       B = 0;
721     }
722   }
723 
724   SpillPlacer->addConstraints(ArrayRef(BCS, B));
725   SpillPlacer->addLinks(ArrayRef(TBS, T));
726   return true;
727 }
728 
729 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
730   // Keep track of through blocks that have not been added to SpillPlacer.
731   BitVector Todo = SA->getThroughBlocks();
732   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
733   unsigned AddedTo = 0;
734 #ifndef NDEBUG
735   unsigned Visited = 0;
736 #endif
737 
738   unsigned long Budget = GrowRegionComplexityBudget;
739   while (true) {
740     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
741     // Find new through blocks in the periphery of PrefRegBundles.
742     for (unsigned Bundle : NewBundles) {
743       // Look at all blocks connected to Bundle in the full graph.
744       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
745       // Limit compilation time by bailing out after we use all our budget.
746       if (Blocks.size() >= Budget)
747         return false;
748       Budget -= Blocks.size();
749       for (unsigned Block : Blocks) {
750         if (!Todo.test(Block))
751           continue;
752         Todo.reset(Block);
753         // This is a new through block. Add it to SpillPlacer later.
754         ActiveBlocks.push_back(Block);
755 #ifndef NDEBUG
756         ++Visited;
757 #endif
758       }
759     }
760     // Any new blocks to add?
761     if (ActiveBlocks.size() == AddedTo)
762       break;
763 
764     // Compute through constraints from the interference, or assume that all
765     // through blocks prefer spilling when forming compact regions.
766     auto NewBlocks = ArrayRef(ActiveBlocks).slice(AddedTo);
767     if (Cand.PhysReg) {
768       if (!addThroughConstraints(Cand.Intf, NewBlocks))
769         return false;
770     } else {
771       // Providing that the variable being spilled does not look like a loop
772       // induction variable, which is expensive to spill around and better
773       // pushed into a condition inside the loop if possible, provide a strong
774       // negative bias on through blocks to prevent unwanted liveness on loop
775       // backedges.
776       bool PrefSpill = true;
777       if (SA->looksLikeLoopIV() && NewBlocks.size() >= 2) {
778         // Check that the current bundle is adding a Header + start+end of
779         // loop-internal blocks. If the block is indeed a header, don't make
780         // the NewBlocks as PrefSpill to allow the variable to be live in
781         // Header<->Latch.
782         MachineLoop *L = Loops->getLoopFor(MF->getBlockNumbered(NewBlocks[0]));
783         if (L && L->getHeader()->getNumber() == (int)NewBlocks[0] &&
784             all_of(NewBlocks.drop_front(), [&](unsigned Block) {
785               return L == Loops->getLoopFor(MF->getBlockNumbered(Block));
786             }))
787           PrefSpill = false;
788       }
789       if (PrefSpill)
790         SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
791     }
792     AddedTo = ActiveBlocks.size();
793 
794     // Perhaps iterating can enable more bundles?
795     SpillPlacer->iterate();
796   }
797   LLVM_DEBUG(dbgs() << ", v=" << Visited);
798   return true;
799 }
800 
801 /// calcCompactRegion - Compute the set of edge bundles that should be live
802 /// when splitting the current live range into compact regions.  Compact
803 /// regions can be computed without looking at interference.  They are the
804 /// regions formed by removing all the live-through blocks from the live range.
805 ///
806 /// Returns false if the current live range is already compact, or if the
807 /// compact regions would form single block regions anyway.
808 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
809   // Without any through blocks, the live range is already compact.
810   if (!SA->getNumThroughBlocks())
811     return false;
812 
813   // Compact regions don't correspond to any physreg.
814   Cand.reset(IntfCache, MCRegister::NoRegister);
815 
816   LLVM_DEBUG(dbgs() << "Compact region bundles");
817 
818   // Use the spill placer to determine the live bundles. GrowRegion pretends
819   // that all the through blocks have interference when PhysReg is unset.
820   SpillPlacer->prepare(Cand.LiveBundles);
821 
822   // The static split cost will be zero since Cand.Intf reports no interference.
823   BlockFrequency Cost;
824   if (!addSplitConstraints(Cand.Intf, Cost)) {
825     LLVM_DEBUG(dbgs() << ", none.\n");
826     return false;
827   }
828 
829   if (!growRegion(Cand)) {
830     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
831     return false;
832   }
833 
834   SpillPlacer->finish();
835 
836   if (!Cand.LiveBundles.any()) {
837     LLVM_DEBUG(dbgs() << ", none.\n");
838     return false;
839   }
840 
841   LLVM_DEBUG({
842     for (int I : Cand.LiveBundles.set_bits())
843       dbgs() << " EB#" << I;
844     dbgs() << ".\n";
845   });
846   return true;
847 }
848 
849 /// calcSpillCost - Compute how expensive it would be to split the live range in
850 /// SA around all use blocks instead of forming bundle regions.
851 BlockFrequency RAGreedy::calcSpillCost() {
852   BlockFrequency Cost = BlockFrequency(0);
853   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
854   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
855     unsigned Number = BI.MBB->getNumber();
856     // We normally only need one spill instruction - a load or a store.
857     Cost += SpillPlacer->getBlockFrequency(Number);
858 
859     // Unless the value is redefined in the block.
860     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
861       Cost += SpillPlacer->getBlockFrequency(Number);
862   }
863   return Cost;
864 }
865 
866 /// calcGlobalSplitCost - Return the global split cost of following the split
867 /// pattern in LiveBundles. This cost should be added to the local cost of the
868 /// interference pattern in SplitConstraints.
869 ///
870 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
871                                              const AllocationOrder &Order) {
872   BlockFrequency GlobalCost = BlockFrequency(0);
873   const BitVector &LiveBundles = Cand.LiveBundles;
874   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
875   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
876     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
877     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
878     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
879     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
880     unsigned Ins = 0;
881 
882     Cand.Intf.moveToBlock(BC.Number);
883 
884     if (BI.LiveIn)
885       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
886     if (BI.LiveOut)
887       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
888     while (Ins--)
889       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
890   }
891 
892   for (unsigned Number : Cand.ActiveBlocks) {
893     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
894     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
895     if (!RegIn && !RegOut)
896       continue;
897     if (RegIn && RegOut) {
898       // We need double spill code if this block has interference.
899       Cand.Intf.moveToBlock(Number);
900       if (Cand.Intf.hasInterference()) {
901         GlobalCost += SpillPlacer->getBlockFrequency(Number);
902         GlobalCost += SpillPlacer->getBlockFrequency(Number);
903       }
904       continue;
905     }
906     // live-in / stack-out or stack-in live-out.
907     GlobalCost += SpillPlacer->getBlockFrequency(Number);
908   }
909   return GlobalCost;
910 }
911 
912 /// splitAroundRegion - Split the current live range around the regions
913 /// determined by BundleCand and GlobalCand.
914 ///
915 /// Before calling this function, GlobalCand and BundleCand must be initialized
916 /// so each bundle is assigned to a valid candidate, or NoCand for the
917 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
918 /// objects must be initialized for the current live range, and intervals
919 /// created for the used candidates.
920 ///
921 /// @param LREdit    The LiveRangeEdit object handling the current split.
922 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
923 ///                  must appear in this list.
924 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
925                                  ArrayRef<unsigned> UsedCands) {
926   // These are the intervals created for new global ranges. We may create more
927   // intervals for local ranges.
928   const unsigned NumGlobalIntvs = LREdit.size();
929   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
930                     << " globals.\n");
931   assert(NumGlobalIntvs && "No global intervals configured");
932 
933   // Isolate even single instructions when dealing with a proper sub-class.
934   // That guarantees register class inflation for the stack interval because it
935   // is all copies.
936   Register Reg = SA->getParent().reg();
937   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
938 
939   // First handle all the blocks with uses.
940   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
941   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
942     unsigned Number = BI.MBB->getNumber();
943     unsigned IntvIn = 0, IntvOut = 0;
944     SlotIndex IntfIn, IntfOut;
945     if (BI.LiveIn) {
946       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
947       if (CandIn != NoCand) {
948         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
949         IntvIn = Cand.IntvIdx;
950         Cand.Intf.moveToBlock(Number);
951         IntfIn = Cand.Intf.first();
952       }
953     }
954     if (BI.LiveOut) {
955       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
956       if (CandOut != NoCand) {
957         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
958         IntvOut = Cand.IntvIdx;
959         Cand.Intf.moveToBlock(Number);
960         IntfOut = Cand.Intf.last();
961       }
962     }
963 
964     // Create separate intervals for isolated blocks with multiple uses.
965     if (!IntvIn && !IntvOut) {
966       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
967       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
968         SE->splitSingleBlock(BI);
969       continue;
970     }
971 
972     if (IntvIn && IntvOut)
973       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
974     else if (IntvIn)
975       SE->splitRegInBlock(BI, IntvIn, IntfIn);
976     else
977       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
978   }
979 
980   // Handle live-through blocks. The relevant live-through blocks are stored in
981   // the ActiveBlocks list with each candidate. We need to filter out
982   // duplicates.
983   BitVector Todo = SA->getThroughBlocks();
984   for (unsigned UsedCand : UsedCands) {
985     ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks;
986     for (unsigned Number : Blocks) {
987       if (!Todo.test(Number))
988         continue;
989       Todo.reset(Number);
990 
991       unsigned IntvIn = 0, IntvOut = 0;
992       SlotIndex IntfIn, IntfOut;
993 
994       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
995       if (CandIn != NoCand) {
996         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
997         IntvIn = Cand.IntvIdx;
998         Cand.Intf.moveToBlock(Number);
999         IntfIn = Cand.Intf.first();
1000       }
1001 
1002       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1003       if (CandOut != NoCand) {
1004         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1005         IntvOut = Cand.IntvIdx;
1006         Cand.Intf.moveToBlock(Number);
1007         IntfOut = Cand.Intf.last();
1008       }
1009       if (!IntvIn && !IntvOut)
1010         continue;
1011       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1012     }
1013   }
1014 
1015   ++NumGlobalSplits;
1016 
1017   SmallVector<unsigned, 8> IntvMap;
1018   SE->finish(&IntvMap);
1019   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1020 
1021   unsigned OrigBlocks = SA->getNumLiveBlocks();
1022 
1023   // Sort out the new intervals created by splitting. We get four kinds:
1024   // - Remainder intervals should not be split again.
1025   // - Candidate intervals can be assigned to Cand.PhysReg.
1026   // - Block-local splits are candidates for local splitting.
1027   // - DCE leftovers should go back on the queue.
1028   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1029     const LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1030 
1031     // Ignore old intervals from DCE.
1032     if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New)
1033       continue;
1034 
1035     // Remainder interval. Don't try splitting again, spill if it doesn't
1036     // allocate.
1037     if (IntvMap[I] == 0) {
1038       ExtraInfo->setStage(Reg, RS_Spill);
1039       continue;
1040     }
1041 
1042     // Global intervals. Allow repeated splitting as long as the number of live
1043     // blocks is strictly decreasing.
1044     if (IntvMap[I] < NumGlobalIntvs) {
1045       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1046         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1047                           << " blocks as original.\n");
1048         // Don't allow repeated splitting as a safe guard against looping.
1049         ExtraInfo->setStage(Reg, RS_Split2);
1050       }
1051       continue;
1052     }
1053 
1054     // Other intervals are treated as new. This includes local intervals created
1055     // for blocks with multiple uses, and anything created by DCE.
1056   }
1057 
1058   if (VerifyEnabled)
1059     MF->verify(this, "After splitting live range around region");
1060 }
1061 
1062 MCRegister RAGreedy::tryRegionSplit(const LiveInterval &VirtReg,
1063                                     AllocationOrder &Order,
1064                                     SmallVectorImpl<Register> &NewVRegs) {
1065   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1066     return MCRegister::NoRegister;
1067   unsigned NumCands = 0;
1068   BlockFrequency SpillCost = calcSpillCost();
1069   BlockFrequency BestCost;
1070 
1071   // Check if we can split this live range around a compact region.
1072   bool HasCompact = calcCompactRegion(GlobalCand.front());
1073   if (HasCompact) {
1074     // Yes, keep GlobalCand[0] as the compact region candidate.
1075     NumCands = 1;
1076     BestCost = BlockFrequency::max();
1077   } else {
1078     // No benefit from the compact region, our fallback will be per-block
1079     // splitting. Make sure we find a solution that is cheaper than spilling.
1080     BestCost = SpillCost;
1081     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "
1082                       << printBlockFreq(*MBFI, BestCost) << '\n');
1083   }
1084 
1085   unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
1086                                                NumCands, false /*IgnoreCSR*/);
1087 
1088   // No solutions found, fall back to single block splitting.
1089   if (!HasCompact && BestCand == NoCand)
1090     return MCRegister::NoRegister;
1091 
1092   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1093 }
1094 
1095 unsigned
1096 RAGreedy::calculateRegionSplitCostAroundReg(MCPhysReg PhysReg,
1097                                             AllocationOrder &Order,
1098                                             BlockFrequency &BestCost,
1099                                             unsigned &NumCands,
1100                                             unsigned &BestCand) {
1101   // Discard bad candidates before we run out of interference cache cursors.
1102   // This will only affect register classes with a lot of registers (>32).
1103   if (NumCands == IntfCache.getMaxCursors()) {
1104     unsigned WorstCount = ~0u;
1105     unsigned Worst = 0;
1106     for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1107       if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1108         continue;
1109       unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1110       if (Count < WorstCount) {
1111         Worst = CandIndex;
1112         WorstCount = Count;
1113       }
1114     }
1115     --NumCands;
1116     GlobalCand[Worst] = GlobalCand[NumCands];
1117     if (BestCand == NumCands)
1118       BestCand = Worst;
1119   }
1120 
1121   if (GlobalCand.size() <= NumCands)
1122     GlobalCand.resize(NumCands+1);
1123   GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1124   Cand.reset(IntfCache, PhysReg);
1125 
1126   SpillPlacer->prepare(Cand.LiveBundles);
1127   BlockFrequency Cost;
1128   if (!addSplitConstraints(Cand.Intf, Cost)) {
1129     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1130     return BestCand;
1131   }
1132   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI)
1133                     << "\tstatic = " << printBlockFreq(*MBFI, Cost));
1134   if (Cost >= BestCost) {
1135     LLVM_DEBUG({
1136       if (BestCand == NoCand)
1137         dbgs() << " worse than no bundles\n";
1138       else
1139         dbgs() << " worse than "
1140                << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1141     });
1142     return BestCand;
1143   }
1144   if (!growRegion(Cand)) {
1145     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1146     return BestCand;
1147   }
1148 
1149   SpillPlacer->finish();
1150 
1151   // No live bundles, defer to splitSingleBlocks().
1152   if (!Cand.LiveBundles.any()) {
1153     LLVM_DEBUG(dbgs() << " no bundles.\n");
1154     return BestCand;
1155   }
1156 
1157   Cost += calcGlobalSplitCost(Cand, Order);
1158   LLVM_DEBUG({
1159     dbgs() << ", total = " << printBlockFreq(*MBFI, Cost) << " with bundles";
1160     for (int I : Cand.LiveBundles.set_bits())
1161       dbgs() << " EB#" << I;
1162     dbgs() << ".\n";
1163   });
1164   if (Cost < BestCost) {
1165     BestCand = NumCands;
1166     BestCost = Cost;
1167   }
1168   ++NumCands;
1169 
1170   return BestCand;
1171 }
1172 
1173 unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval &VirtReg,
1174                                             AllocationOrder &Order,
1175                                             BlockFrequency &BestCost,
1176                                             unsigned &NumCands,
1177                                             bool IgnoreCSR) {
1178   unsigned BestCand = NoCand;
1179   for (MCPhysReg PhysReg : Order) {
1180     assert(PhysReg);
1181     if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg))
1182       continue;
1183 
1184     calculateRegionSplitCostAroundReg(PhysReg, Order, BestCost, NumCands,
1185                                       BestCand);
1186   }
1187 
1188   return BestCand;
1189 }
1190 
1191 unsigned RAGreedy::doRegionSplit(const LiveInterval &VirtReg, unsigned BestCand,
1192                                  bool HasCompact,
1193                                  SmallVectorImpl<Register> &NewVRegs) {
1194   SmallVector<unsigned, 8> UsedCands;
1195   // Prepare split editor.
1196   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1197   SE->reset(LREdit, SplitSpillMode);
1198 
1199   // Assign all edge bundles to the preferred candidate, or NoCand.
1200   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1201 
1202   // Assign bundles for the best candidate region.
1203   if (BestCand != NoCand) {
1204     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1205     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1206       UsedCands.push_back(BestCand);
1207       Cand.IntvIdx = SE->openIntv();
1208       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1209                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1210       (void)B;
1211     }
1212   }
1213 
1214   // Assign bundles for the compact region.
1215   if (HasCompact) {
1216     GlobalSplitCandidate &Cand = GlobalCand.front();
1217     assert(!Cand.PhysReg && "Compact region has no physreg");
1218     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1219       UsedCands.push_back(0);
1220       Cand.IntvIdx = SE->openIntv();
1221       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1222                         << " bundles, intv " << Cand.IntvIdx << ".\n");
1223       (void)B;
1224     }
1225   }
1226 
1227   splitAroundRegion(LREdit, UsedCands);
1228   return 0;
1229 }
1230 
1231 // VirtReg has a physical Hint, this function tries to split VirtReg around
1232 // Hint if we can place new COPY instructions in cold blocks.
1233 bool RAGreedy::trySplitAroundHintReg(MCPhysReg Hint,
1234                                      const LiveInterval &VirtReg,
1235                                      SmallVectorImpl<Register> &NewVRegs,
1236                                      AllocationOrder &Order) {
1237   // Split the VirtReg may generate COPY instructions in multiple cold basic
1238   // blocks, and increase code size. So we avoid it when the function is
1239   // optimized for size.
1240   if (MF->getFunction().hasOptSize())
1241     return false;
1242 
1243   // Don't allow repeated splitting as a safe guard against looping.
1244   if (ExtraInfo->getStage(VirtReg) >= RS_Split2)
1245     return false;
1246 
1247   BlockFrequency Cost = BlockFrequency(0);
1248   Register Reg = VirtReg.reg();
1249 
1250   // Compute the cost of assigning a non Hint physical register to VirtReg.
1251   // We define it as the total frequency of broken COPY instructions to/from
1252   // Hint register, and after split, they can be deleted.
1253   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
1254     if (!TII->isFullCopyInstr(Instr))
1255       continue;
1256     Register OtherReg = Instr.getOperand(1).getReg();
1257     if (OtherReg == Reg) {
1258       OtherReg = Instr.getOperand(0).getReg();
1259       if (OtherReg == Reg)
1260         continue;
1261       // Check if VirtReg interferes with OtherReg after this COPY instruction.
1262       if (VirtReg.liveAt(LIS->getInstructionIndex(Instr).getRegSlot()))
1263         continue;
1264     }
1265     MCRegister OtherPhysReg =
1266         OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
1267     if (OtherPhysReg == Hint)
1268       Cost += MBFI->getBlockFreq(Instr.getParent());
1269   }
1270 
1271   // Decrease the cost so it will be split in colder blocks.
1272   BranchProbability Threshold(SplitThresholdForRegWithHint, 100);
1273   Cost *= Threshold;
1274   if (Cost == BlockFrequency(0))
1275     return false;
1276 
1277   unsigned NumCands = 0;
1278   unsigned BestCand = NoCand;
1279   SA->analyze(&VirtReg);
1280   calculateRegionSplitCostAroundReg(Hint, Order, Cost, NumCands, BestCand);
1281   if (BestCand == NoCand)
1282     return false;
1283 
1284   doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
1285   return true;
1286 }
1287 
1288 //===----------------------------------------------------------------------===//
1289 //                            Per-Block Splitting
1290 //===----------------------------------------------------------------------===//
1291 
1292 /// tryBlockSplit - Split a global live range around every block with uses. This
1293 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1294 /// they don't allocate.
1295 unsigned RAGreedy::tryBlockSplit(const LiveInterval &VirtReg,
1296                                  AllocationOrder &Order,
1297                                  SmallVectorImpl<Register> &NewVRegs) {
1298   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1299   Register Reg = VirtReg.reg();
1300   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1301   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1302   SE->reset(LREdit, SplitSpillMode);
1303   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1304   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1305     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1306       SE->splitSingleBlock(BI);
1307   }
1308   // No blocks were split.
1309   if (LREdit.empty())
1310     return 0;
1311 
1312   // We did split for some blocks.
1313   SmallVector<unsigned, 8> IntvMap;
1314   SE->finish(&IntvMap);
1315 
1316   // Tell LiveDebugVariables about the new ranges.
1317   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1318 
1319   // Sort out the new intervals created by splitting. The remainder interval
1320   // goes straight to spilling, the new local ranges get to stay RS_New.
1321   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1322     const LiveInterval &LI = LIS->getInterval(LREdit.get(I));
1323     if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0)
1324       ExtraInfo->setStage(LI, RS_Spill);
1325   }
1326 
1327   if (VerifyEnabled)
1328     MF->verify(this, "After splitting live range around basic blocks");
1329   return 0;
1330 }
1331 
1332 //===----------------------------------------------------------------------===//
1333 //                         Per-Instruction Splitting
1334 //===----------------------------------------------------------------------===//
1335 
1336 /// Get the number of allocatable registers that match the constraints of \p Reg
1337 /// on \p MI and that are also in \p SuperRC.
1338 static unsigned getNumAllocatableRegsForConstraints(
1339     const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC,
1340     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1341     const RegisterClassInfo &RCI) {
1342   assert(SuperRC && "Invalid register class");
1343 
1344   const TargetRegisterClass *ConstrainedRC =
1345       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
1346                                              /* ExploreBundle */ true);
1347   if (!ConstrainedRC)
1348     return 0;
1349   return RCI.getNumAllocatableRegs(ConstrainedRC);
1350 }
1351 
1352 static LaneBitmask getInstReadLaneMask(const MachineRegisterInfo &MRI,
1353                                        const TargetRegisterInfo &TRI,
1354                                        const MachineInstr &FirstMI,
1355                                        Register Reg) {
1356   LaneBitmask Mask;
1357   SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
1358   (void)AnalyzeVirtRegInBundle(const_cast<MachineInstr &>(FirstMI), Reg, &Ops);
1359 
1360   for (auto [MI, OpIdx] : Ops) {
1361     const MachineOperand &MO = MI->getOperand(OpIdx);
1362     assert(MO.isReg() && MO.getReg() == Reg);
1363     unsigned SubReg = MO.getSubReg();
1364     if (SubReg == 0 && MO.isUse()) {
1365       if (MO.isUndef())
1366         continue;
1367       return MRI.getMaxLaneMaskForVReg(Reg);
1368     }
1369 
1370     LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(SubReg);
1371     if (MO.isDef()) {
1372       if (!MO.isUndef())
1373         Mask |= ~SubRegMask;
1374     } else
1375       Mask |= SubRegMask;
1376   }
1377 
1378   return Mask;
1379 }
1380 
1381 /// Return true if \p MI at \P Use reads a subset of the lanes live in \p
1382 /// VirtReg.
1383 static bool readsLaneSubset(const MachineRegisterInfo &MRI,
1384                             const MachineInstr *MI, const LiveInterval &VirtReg,
1385                             const TargetRegisterInfo *TRI, SlotIndex Use,
1386                             const TargetInstrInfo *TII) {
1387   // Early check the common case. Beware of the semi-formed bundles SplitKit
1388   // creates by setting the bundle flag on copies without a matching BUNDLE.
1389 
1390   auto DestSrc = TII->isCopyInstr(*MI);
1391   if (DestSrc && !MI->isBundled() &&
1392       DestSrc->Destination->getSubReg() == DestSrc->Source->getSubReg())
1393     return false;
1394 
1395   // FIXME: We're only considering uses, but should be consider defs too?
1396   LaneBitmask ReadMask = getInstReadLaneMask(MRI, *TRI, *MI, VirtReg.reg());
1397 
1398   LaneBitmask LiveAtMask;
1399   for (const LiveInterval::SubRange &S : VirtReg.subranges()) {
1400     if (S.liveAt(Use))
1401       LiveAtMask |= S.LaneMask;
1402   }
1403 
1404   // If the live lanes aren't different from the lanes used by the instruction,
1405   // this doesn't help.
1406   return (ReadMask & ~(LiveAtMask & TRI->getCoveringLanes())).any();
1407 }
1408 
1409 /// tryInstructionSplit - Split a live range around individual instructions.
1410 /// This is normally not worthwhile since the spiller is doing essentially the
1411 /// same thing. However, when the live range is in a constrained register
1412 /// class, it may help to insert copies such that parts of the live range can
1413 /// be moved to a larger register class.
1414 ///
1415 /// This is similar to spilling to a larger register class.
1416 unsigned RAGreedy::tryInstructionSplit(const LiveInterval &VirtReg,
1417                                        AllocationOrder &Order,
1418                                        SmallVectorImpl<Register> &NewVRegs) {
1419   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1420   // There is no point to this if there are no larger sub-classes.
1421 
1422   bool SplitSubClass = true;
1423   if (!RegClassInfo.isProperSubClass(CurRC)) {
1424     if (!VirtReg.hasSubRanges())
1425       return 0;
1426     SplitSubClass = false;
1427   }
1428 
1429   // Always enable split spill mode, since we're effectively spilling to a
1430   // register.
1431   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1432   SE->reset(LREdit, SplitEditor::SM_Size);
1433 
1434   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1435   if (Uses.size() <= 1)
1436     return 0;
1437 
1438   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
1439                     << " individual instrs.\n");
1440 
1441   const TargetRegisterClass *SuperRC =
1442       TRI->getLargestLegalSuperClass(CurRC, *MF);
1443   unsigned SuperRCNumAllocatableRegs =
1444       RegClassInfo.getNumAllocatableRegs(SuperRC);
1445   // Split around every non-copy instruction if this split will relax
1446   // the constraints on the virtual register.
1447   // Otherwise, splitting just inserts uncoalescable copies that do not help
1448   // the allocation.
1449   for (const SlotIndex Use : Uses) {
1450     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) {
1451       if (TII->isFullCopyInstr(*MI) ||
1452           (SplitSubClass &&
1453            SuperRCNumAllocatableRegs ==
1454                getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
1455                                                    TII, TRI, RegClassInfo)) ||
1456           // TODO: Handle split for subranges with subclass constraints?
1457           (!SplitSubClass && VirtReg.hasSubRanges() &&
1458            !readsLaneSubset(*MRI, MI, VirtReg, TRI, Use, TII))) {
1459         LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
1460         continue;
1461       }
1462     }
1463     SE->openIntv();
1464     SlotIndex SegStart = SE->enterIntvBefore(Use);
1465     SlotIndex SegStop = SE->leaveIntvAfter(Use);
1466     SE->useIntv(SegStart, SegStop);
1467   }
1468 
1469   if (LREdit.empty()) {
1470     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
1471     return 0;
1472   }
1473 
1474   SmallVector<unsigned, 8> IntvMap;
1475   SE->finish(&IntvMap);
1476   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1477   // Assign all new registers to RS_Spill. This was the last chance.
1478   ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1479   return 0;
1480 }
1481 
1482 //===----------------------------------------------------------------------===//
1483 //                             Local Splitting
1484 //===----------------------------------------------------------------------===//
1485 
1486 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1487 /// in order to use PhysReg between two entries in SA->UseSlots.
1488 ///
1489 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
1490 ///
1491 void RAGreedy::calcGapWeights(MCRegister PhysReg,
1492                               SmallVectorImpl<float> &GapWeight) {
1493   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1494   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1495   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1496   const unsigned NumGaps = Uses.size()-1;
1497 
1498   // Start and end points for the interference check.
1499   SlotIndex StartIdx =
1500     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1501   SlotIndex StopIdx =
1502     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1503 
1504   GapWeight.assign(NumGaps, 0.0f);
1505 
1506   // Add interference from each overlapping register.
1507   for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
1508     if (!Matrix->query(const_cast<LiveInterval &>(SA->getParent()), Unit)
1509              .checkInterference())
1510       continue;
1511 
1512     // We know that VirtReg is a continuous interval from FirstInstr to
1513     // LastInstr, so we don't need InterferenceQuery.
1514     //
1515     // Interference that overlaps an instruction is counted in both gaps
1516     // surrounding the instruction. The exception is interference before
1517     // StartIdx and after StopIdx.
1518     //
1519     LiveIntervalUnion::SegmentIter IntI =
1520         Matrix->getLiveUnions()[Unit].find(StartIdx);
1521     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1522       // Skip the gaps before IntI.
1523       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1524         if (++Gap == NumGaps)
1525           break;
1526       if (Gap == NumGaps)
1527         break;
1528 
1529       // Update the gaps covered by IntI.
1530       const float weight = IntI.value()->weight();
1531       for (; Gap != NumGaps; ++Gap) {
1532         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1533         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1534           break;
1535       }
1536       if (Gap == NumGaps)
1537         break;
1538     }
1539   }
1540 
1541   // Add fixed interference.
1542   for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
1543     const LiveRange &LR = LIS->getRegUnit(Unit);
1544     LiveRange::const_iterator I = LR.find(StartIdx);
1545     LiveRange::const_iterator E = LR.end();
1546 
1547     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1548     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1549       while (Uses[Gap+1].getBoundaryIndex() < I->start)
1550         if (++Gap == NumGaps)
1551           break;
1552       if (Gap == NumGaps)
1553         break;
1554 
1555       for (; Gap != NumGaps; ++Gap) {
1556         GapWeight[Gap] = huge_valf;
1557         if (Uses[Gap+1].getBaseIndex() >= I->end)
1558           break;
1559       }
1560       if (Gap == NumGaps)
1561         break;
1562     }
1563   }
1564 }
1565 
1566 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1567 /// basic block.
1568 ///
1569 unsigned RAGreedy::tryLocalSplit(const LiveInterval &VirtReg,
1570                                  AllocationOrder &Order,
1571                                  SmallVectorImpl<Register> &NewVRegs) {
1572   // TODO: the function currently only handles a single UseBlock; it should be
1573   // possible to generalize.
1574   if (SA->getUseBlocks().size() != 1)
1575     return 0;
1576 
1577   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1578 
1579   // Note that it is possible to have an interval that is live-in or live-out
1580   // while only covering a single block - A phi-def can use undef values from
1581   // predecessors, and the block could be a single-block loop.
1582   // We don't bother doing anything clever about such a case, we simply assume
1583   // that the interval is continuous from FirstInstr to LastInstr. We should
1584   // make sure that we don't do anything illegal to such an interval, though.
1585 
1586   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1587   if (Uses.size() <= 2)
1588     return 0;
1589   const unsigned NumGaps = Uses.size()-1;
1590 
1591   LLVM_DEBUG({
1592     dbgs() << "tryLocalSplit: ";
1593     for (const auto &Use : Uses)
1594       dbgs() << ' ' << Use;
1595     dbgs() << '\n';
1596   });
1597 
1598   // If VirtReg is live across any register mask operands, compute a list of
1599   // gaps with register masks.
1600   SmallVector<unsigned, 8> RegMaskGaps;
1601   if (Matrix->checkRegMaskInterference(VirtReg)) {
1602     // Get regmask slots for the whole block.
1603     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1604     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1605     // Constrain to VirtReg's live range.
1606     unsigned RI =
1607         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
1608     unsigned RE = RMS.size();
1609     for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
1610       // Look for Uses[I] <= RMS <= Uses[I + 1].
1611       assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
1612       if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
1613         continue;
1614       // Skip a regmask on the same instruction as the last use. It doesn't
1615       // overlap the live range.
1616       if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
1617         break;
1618       LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
1619                         << Uses[I + 1]);
1620       RegMaskGaps.push_back(I);
1621       // Advance ri to the next gap. A regmask on one of the uses counts in
1622       // both gaps.
1623       while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
1624         ++RI;
1625     }
1626     LLVM_DEBUG(dbgs() << '\n');
1627   }
1628 
1629   // Since we allow local split results to be split again, there is a risk of
1630   // creating infinite loops. It is tempting to require that the new live
1631   // ranges have less instructions than the original. That would guarantee
1632   // convergence, but it is too strict. A live range with 3 instructions can be
1633   // split 2+3 (including the COPY), and we want to allow that.
1634   //
1635   // Instead we use these rules:
1636   //
1637   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1638   //    noop split, of course).
1639   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1640   //    the new ranges must have fewer instructions than before the split.
1641   // 3. New ranges with the same number of instructions are marked RS_Split2,
1642   //    smaller ranges are marked RS_New.
1643   //
1644   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1645   // excessive splitting and infinite loops.
1646   //
1647   bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2;
1648 
1649   // Best split candidate.
1650   unsigned BestBefore = NumGaps;
1651   unsigned BestAfter = 0;
1652   float BestDiff = 0;
1653 
1654   const float blockFreq =
1655       SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1656       (1.0f / MBFI->getEntryFreq().getFrequency());
1657   SmallVector<float, 8> GapWeight;
1658 
1659   for (MCPhysReg PhysReg : Order) {
1660     assert(PhysReg);
1661     // Keep track of the largest spill weight that would need to be evicted in
1662     // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
1663     calcGapWeights(PhysReg, GapWeight);
1664 
1665     // Remove any gaps with regmask clobbers.
1666     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1667       for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
1668         GapWeight[RegMaskGaps[I]] = huge_valf;
1669 
1670     // Try to find the best sequence of gaps to close.
1671     // The new spill weight must be larger than any gap interference.
1672 
1673     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1674     unsigned SplitBefore = 0, SplitAfter = 1;
1675 
1676     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1677     // It is the spill weight that needs to be evicted.
1678     float MaxGap = GapWeight[0];
1679 
1680     while (true) {
1681       // Live before/after split?
1682       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1683       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1684 
1685       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
1686                         << '-' << Uses[SplitAfter] << " I=" << MaxGap);
1687 
1688       // Stop before the interval gets so big we wouldn't be making progress.
1689       if (!LiveBefore && !LiveAfter) {
1690         LLVM_DEBUG(dbgs() << " all\n");
1691         break;
1692       }
1693       // Should the interval be extended or shrunk?
1694       bool Shrink = true;
1695 
1696       // How many gaps would the new range have?
1697       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1698 
1699       // Legally, without causing looping?
1700       bool Legal = !ProgressRequired || NewGaps < NumGaps;
1701 
1702       if (Legal && MaxGap < huge_valf) {
1703         // Estimate the new spill weight. Each instruction reads or writes the
1704         // register. Conservatively assume there are no read-modify-write
1705         // instructions.
1706         //
1707         // Try to guess the size of the new interval.
1708         const float EstWeight = normalizeSpillWeight(
1709             blockFreq * (NewGaps + 1),
1710             Uses[SplitBefore].distance(Uses[SplitAfter]) +
1711                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
1712             1);
1713         // Would this split be possible to allocate?
1714         // Never allocate all gaps, we wouldn't be making progress.
1715         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
1716         if (EstWeight * Hysteresis >= MaxGap) {
1717           Shrink = false;
1718           float Diff = EstWeight - MaxGap;
1719           if (Diff > BestDiff) {
1720             LLVM_DEBUG(dbgs() << " (best)");
1721             BestDiff = Hysteresis * Diff;
1722             BestBefore = SplitBefore;
1723             BestAfter = SplitAfter;
1724           }
1725         }
1726       }
1727 
1728       // Try to shrink.
1729       if (Shrink) {
1730         if (++SplitBefore < SplitAfter) {
1731           LLVM_DEBUG(dbgs() << " shrink\n");
1732           // Recompute the max when necessary.
1733           if (GapWeight[SplitBefore - 1] >= MaxGap) {
1734             MaxGap = GapWeight[SplitBefore];
1735             for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
1736               MaxGap = std::max(MaxGap, GapWeight[I]);
1737           }
1738           continue;
1739         }
1740         MaxGap = 0;
1741       }
1742 
1743       // Try to extend the interval.
1744       if (SplitAfter >= NumGaps) {
1745         LLVM_DEBUG(dbgs() << " end\n");
1746         break;
1747       }
1748 
1749       LLVM_DEBUG(dbgs() << " extend\n");
1750       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1751     }
1752   }
1753 
1754   // Didn't find any candidates?
1755   if (BestBefore == NumGaps)
1756     return 0;
1757 
1758   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
1759                     << Uses[BestAfter] << ", " << BestDiff << ", "
1760                     << (BestAfter - BestBefore + 1) << " instrs\n");
1761 
1762   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1763   SE->reset(LREdit);
1764 
1765   SE->openIntv();
1766   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1767   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1768   SE->useIntv(SegStart, SegStop);
1769   SmallVector<unsigned, 8> IntvMap;
1770   SE->finish(&IntvMap);
1771   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1772   // If the new range has the same number of instructions as before, mark it as
1773   // RS_Split2 so the next split will be forced to make progress. Otherwise,
1774   // leave the new intervals as RS_New so they can compete.
1775   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1776   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1777   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1778   if (NewGaps >= NumGaps) {
1779     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:");
1780     assert(!ProgressRequired && "Didn't make progress when it was required.");
1781     for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
1782       if (IntvMap[I] == 1) {
1783         ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
1784         LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I)));
1785       }
1786     LLVM_DEBUG(dbgs() << '\n');
1787   }
1788   ++NumLocalSplits;
1789 
1790   return 0;
1791 }
1792 
1793 //===----------------------------------------------------------------------===//
1794 //                          Live Range Splitting
1795 //===----------------------------------------------------------------------===//
1796 
1797 /// trySplit - Try to split VirtReg or one of its interferences, making it
1798 /// assignable.
1799 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1800 unsigned RAGreedy::trySplit(const LiveInterval &VirtReg, AllocationOrder &Order,
1801                             SmallVectorImpl<Register> &NewVRegs,
1802                             const SmallVirtRegSet &FixedRegisters) {
1803   // Ranges must be Split2 or less.
1804   if (ExtraInfo->getStage(VirtReg) >= RS_Spill)
1805     return 0;
1806 
1807   // Local intervals are handled separately.
1808   if (LIS->intervalIsInOneMBB(VirtReg)) {
1809     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
1810                        TimerGroupDescription, TimePassesIsEnabled);
1811     SA->analyze(&VirtReg);
1812     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1813     if (PhysReg || !NewVRegs.empty())
1814       return PhysReg;
1815     return tryInstructionSplit(VirtReg, Order, NewVRegs);
1816   }
1817 
1818   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
1819                      TimerGroupDescription, TimePassesIsEnabled);
1820 
1821   SA->analyze(&VirtReg);
1822 
1823   // First try to split around a region spanning multiple blocks. RS_Split2
1824   // ranges already made dubious progress with region splitting, so they go
1825   // straight to single block splitting.
1826   if (ExtraInfo->getStage(VirtReg) < RS_Split2) {
1827     MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1828     if (PhysReg || !NewVRegs.empty())
1829       return PhysReg;
1830   }
1831 
1832   // Then isolate blocks.
1833   return tryBlockSplit(VirtReg, Order, NewVRegs);
1834 }
1835 
1836 //===----------------------------------------------------------------------===//
1837 //                          Last Chance Recoloring
1838 //===----------------------------------------------------------------------===//
1839 
1840 /// Return true if \p reg has any tied def operand.
1841 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
1842   for (const MachineOperand &MO : MRI->def_operands(reg))
1843     if (MO.isTied())
1844       return true;
1845 
1846   return false;
1847 }
1848 
1849 /// Return true if the existing assignment of \p Intf overlaps, but is not the
1850 /// same, as \p PhysReg.
1851 static bool assignedRegPartiallyOverlaps(const TargetRegisterInfo &TRI,
1852                                          const VirtRegMap &VRM,
1853                                          MCRegister PhysReg,
1854                                          const LiveInterval &Intf) {
1855   MCRegister AssignedReg = VRM.getPhys(Intf.reg());
1856   if (PhysReg == AssignedReg)
1857     return false;
1858   return TRI.regsOverlap(PhysReg, AssignedReg);
1859 }
1860 
1861 /// mayRecolorAllInterferences - Check if the virtual registers that
1862 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
1863 /// recolored to free \p PhysReg.
1864 /// When true is returned, \p RecoloringCandidates has been augmented with all
1865 /// the live intervals that need to be recolored in order to free \p PhysReg
1866 /// for \p VirtReg.
1867 /// \p FixedRegisters contains all the virtual registers that cannot be
1868 /// recolored.
1869 bool RAGreedy::mayRecolorAllInterferences(
1870     MCRegister PhysReg, const LiveInterval &VirtReg,
1871     SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters) {
1872   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1873 
1874   for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
1875     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, Unit);
1876     // If there is LastChanceRecoloringMaxInterference or more interferences,
1877     // chances are one would not be recolorable.
1878     if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >=
1879             LastChanceRecoloringMaxInterference &&
1880         !ExhaustiveSearch) {
1881       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
1882       CutOffInfo |= CO_Interf;
1883       return false;
1884     }
1885     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
1886       // If Intf is done and sits on the same register class as VirtReg, it
1887       // would not be recolorable as it is in the same state as
1888       // VirtReg. However there are at least two exceptions.
1889       //
1890       // If VirtReg has tied defs and Intf doesn't, then
1891       // there is still a point in examining if it can be recolorable.
1892       //
1893       // Additionally, if the register class has overlapping tuple members, it
1894       // may still be recolorable using a different tuple. This is more likely
1895       // if the existing assignment aliases with the candidate.
1896       //
1897       if (((ExtraInfo->getStage(*Intf) == RS_Done &&
1898             MRI->getRegClass(Intf->reg()) == CurRC &&
1899             !assignedRegPartiallyOverlaps(*TRI, *VRM, PhysReg, *Intf)) &&
1900            !(hasTiedDef(MRI, VirtReg.reg()) &&
1901              !hasTiedDef(MRI, Intf->reg()))) ||
1902           FixedRegisters.count(Intf->reg())) {
1903         LLVM_DEBUG(
1904             dbgs() << "Early abort: the interference is not recolorable.\n");
1905         return false;
1906       }
1907       RecoloringCandidates.insert(Intf);
1908     }
1909   }
1910   return true;
1911 }
1912 
1913 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
1914 /// its interferences.
1915 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
1916 /// virtual register that was using it. The recoloring process may recursively
1917 /// use the last chance recoloring. Therefore, when a virtual register has been
1918 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
1919 /// be last-chance-recolored again during this recoloring "session".
1920 /// E.g.,
1921 /// Let
1922 /// vA can use {R1, R2    }
1923 /// vB can use {    R2, R3}
1924 /// vC can use {R1        }
1925 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
1926 /// instance) and they all interfere.
1927 ///
1928 /// vA is assigned R1
1929 /// vB is assigned R2
1930 /// vC tries to evict vA but vA is already done.
1931 /// Regular register allocation fails.
1932 ///
1933 /// Last chance recoloring kicks in:
1934 /// vC does as if vA was evicted => vC uses R1.
1935 /// vC is marked as fixed.
1936 /// vA needs to find a color.
1937 /// None are available.
1938 /// vA cannot evict vC: vC is a fixed virtual register now.
1939 /// vA does as if vB was evicted => vA uses R2.
1940 /// vB needs to find a color.
1941 /// R3 is available.
1942 /// Recoloring => vC = R1, vA = R2, vB = R3
1943 ///
1944 /// \p Order defines the preferred allocation order for \p VirtReg.
1945 /// \p NewRegs will contain any new virtual register that have been created
1946 /// (split, spill) during the process and that must be assigned.
1947 /// \p FixedRegisters contains all the virtual registers that cannot be
1948 /// recolored.
1949 ///
1950 /// \p RecolorStack tracks the original assignments of successfully recolored
1951 /// registers.
1952 ///
1953 /// \p Depth gives the current depth of the last chance recoloring.
1954 /// \return a physical register that can be used for VirtReg or ~0u if none
1955 /// exists.
1956 unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval &VirtReg,
1957                                            AllocationOrder &Order,
1958                                            SmallVectorImpl<Register> &NewVRegs,
1959                                            SmallVirtRegSet &FixedRegisters,
1960                                            RecoloringStack &RecolorStack,
1961                                            unsigned Depth) {
1962   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
1963     return ~0u;
1964 
1965   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
1966 
1967   const ssize_t EntryStackSize = RecolorStack.size();
1968 
1969   // Ranges must be Done.
1970   assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
1971          "Last chance recoloring should really be last chance");
1972   // Set the max depth to LastChanceRecoloringMaxDepth.
1973   // We may want to reconsider that if we end up with a too large search space
1974   // for target with hundreds of registers.
1975   // Indeed, in that case we may want to cut the search space earlier.
1976   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
1977     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
1978     CutOffInfo |= CO_Depth;
1979     return ~0u;
1980   }
1981 
1982   // Set of Live intervals that will need to be recolored.
1983   SmallLISet RecoloringCandidates;
1984 
1985   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
1986   // this recoloring "session".
1987   assert(!FixedRegisters.count(VirtReg.reg()));
1988   FixedRegisters.insert(VirtReg.reg());
1989   SmallVector<Register, 4> CurrentNewVRegs;
1990 
1991   for (MCRegister PhysReg : Order) {
1992     assert(PhysReg.isValid());
1993     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
1994                       << printReg(PhysReg, TRI) << '\n');
1995     RecoloringCandidates.clear();
1996     CurrentNewVRegs.clear();
1997 
1998     // It is only possible to recolor virtual register interference.
1999     if (Matrix->checkInterference(VirtReg, PhysReg) >
2000         LiveRegMatrix::IK_VirtReg) {
2001       LLVM_DEBUG(
2002           dbgs() << "Some interferences are not with virtual registers.\n");
2003 
2004       continue;
2005     }
2006 
2007     // Early give up on this PhysReg if it is obvious we cannot recolor all
2008     // the interferences.
2009     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2010                                     FixedRegisters)) {
2011       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2012       continue;
2013     }
2014 
2015     // RecoloringCandidates contains all the virtual registers that interfere
2016     // with VirtReg on PhysReg (or one of its aliases). Enqueue them for
2017     // recoloring and perform the actual recoloring.
2018     PQueue RecoloringQueue;
2019     for (const LiveInterval *RC : RecoloringCandidates) {
2020       Register ItVirtReg = RC->reg();
2021       enqueue(RecoloringQueue, RC);
2022       assert(VRM->hasPhys(ItVirtReg) &&
2023              "Interferences are supposed to be with allocated variables");
2024 
2025       // Record the current allocation.
2026       RecolorStack.push_back(std::make_pair(RC, VRM->getPhys(ItVirtReg)));
2027 
2028       // unset the related struct.
2029       Matrix->unassign(*RC);
2030     }
2031 
2032     // Do as if VirtReg was assigned to PhysReg so that the underlying
2033     // recoloring has the right information about the interferes and
2034     // available colors.
2035     Matrix->assign(VirtReg, PhysReg);
2036 
2037     // Save the current recoloring state.
2038     // If we cannot recolor all the interferences, we will have to start again
2039     // at this point for the next physical register.
2040     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2041     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2042                                 FixedRegisters, RecolorStack, Depth)) {
2043       // Push the queued vregs into the main queue.
2044       for (Register NewVReg : CurrentNewVRegs)
2045         NewVRegs.push_back(NewVReg);
2046       // Do not mess up with the global assignment process.
2047       // I.e., VirtReg must be unassigned.
2048       Matrix->unassign(VirtReg);
2049       return PhysReg;
2050     }
2051 
2052     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2053                       << printReg(PhysReg, TRI) << '\n');
2054 
2055     // The recoloring attempt failed, undo the changes.
2056     FixedRegisters = SaveFixedRegisters;
2057     Matrix->unassign(VirtReg);
2058 
2059     // For a newly created vreg which is also in RecoloringCandidates,
2060     // don't add it to NewVRegs because its physical register will be restored
2061     // below. Other vregs in CurrentNewVRegs are created by calling
2062     // selectOrSplit and should be added into NewVRegs.
2063     for (Register R : CurrentNewVRegs) {
2064       if (RecoloringCandidates.count(&LIS->getInterval(R)))
2065         continue;
2066       NewVRegs.push_back(R);
2067     }
2068 
2069     // Roll back our unsuccessful recoloring. Also roll back any successful
2070     // recolorings in any recursive recoloring attempts, since it's possible
2071     // they would have introduced conflicts with assignments we will be
2072     // restoring further up the stack. Perform all unassignments prior to
2073     // reassigning, since sub-recolorings may have conflicted with the registers
2074     // we are going to restore to their original assignments.
2075     for (ssize_t I = RecolorStack.size() - 1; I >= EntryStackSize; --I) {
2076       const LiveInterval *LI;
2077       MCRegister PhysReg;
2078       std::tie(LI, PhysReg) = RecolorStack[I];
2079 
2080       if (VRM->hasPhys(LI->reg()))
2081         Matrix->unassign(*LI);
2082     }
2083 
2084     for (size_t I = EntryStackSize; I != RecolorStack.size(); ++I) {
2085       const LiveInterval *LI;
2086       MCRegister PhysReg;
2087       std::tie(LI, PhysReg) = RecolorStack[I];
2088       if (!LI->empty() && !MRI->reg_nodbg_empty(LI->reg()))
2089         Matrix->assign(*LI, PhysReg);
2090     }
2091 
2092     // Pop the stack of recoloring attempts.
2093     RecolorStack.resize(EntryStackSize);
2094   }
2095 
2096   // Last chance recoloring did not worked either, give up.
2097   return ~0u;
2098 }
2099 
2100 /// tryRecoloringCandidates - Try to assign a new color to every register
2101 /// in \RecoloringQueue.
2102 /// \p NewRegs will contain any new virtual register created during the
2103 /// recoloring process.
2104 /// \p FixedRegisters[in/out] contains all the registers that have been
2105 /// recolored.
2106 /// \return true if all virtual registers in RecoloringQueue were successfully
2107 /// recolored, false otherwise.
2108 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2109                                        SmallVectorImpl<Register> &NewVRegs,
2110                                        SmallVirtRegSet &FixedRegisters,
2111                                        RecoloringStack &RecolorStack,
2112                                        unsigned Depth) {
2113   while (!RecoloringQueue.empty()) {
2114     const LiveInterval *LI = dequeue(RecoloringQueue);
2115     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2116     MCRegister PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters,
2117                                            RecolorStack, Depth + 1);
2118     // When splitting happens, the live-range may actually be empty.
2119     // In that case, this is okay to continue the recoloring even
2120     // if we did not find an alternative color for it. Indeed,
2121     // there will not be anything to color for LI in the end.
2122     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2123       return false;
2124 
2125     if (!PhysReg) {
2126       assert(LI->empty() && "Only empty live-range do not require a register");
2127       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2128                         << " succeeded. Empty LI.\n");
2129       continue;
2130     }
2131     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2132                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2133 
2134     Matrix->assign(*LI, PhysReg);
2135     FixedRegisters.insert(LI->reg());
2136   }
2137   return true;
2138 }
2139 
2140 //===----------------------------------------------------------------------===//
2141 //                            Main Entry Point
2142 //===----------------------------------------------------------------------===//
2143 
2144 MCRegister RAGreedy::selectOrSplit(const LiveInterval &VirtReg,
2145                                    SmallVectorImpl<Register> &NewVRegs) {
2146   CutOffInfo = CO_None;
2147   LLVMContext &Ctx = MF->getFunction().getContext();
2148   SmallVirtRegSet FixedRegisters;
2149   RecoloringStack RecolorStack;
2150   MCRegister Reg =
2151       selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters, RecolorStack);
2152   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2153     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2154     if (CutOffEncountered == CO_Depth)
2155       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2156                     "reached. Use -fexhaustive-register-search to skip "
2157                     "cutoffs");
2158     else if (CutOffEncountered == CO_Interf)
2159       Ctx.emitError("register allocation failed: maximum interference for "
2160                     "recoloring reached. Use -fexhaustive-register-search "
2161                     "to skip cutoffs");
2162     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2163       Ctx.emitError("register allocation failed: maximum interference and "
2164                     "depth for recoloring reached. Use "
2165                     "-fexhaustive-register-search to skip cutoffs");
2166   }
2167   return Reg;
2168 }
2169 
2170 /// Using a CSR for the first time has a cost because it causes push|pop
2171 /// to be added to prologue|epilogue. Splitting a cold section of the live
2172 /// range can have lower cost than using the CSR for the first time;
2173 /// Spilling a live range in the cold path can have lower cost than using
2174 /// the CSR for the first time. Returns the physical register if we decide
2175 /// to use the CSR; otherwise return 0.
2176 MCRegister RAGreedy::tryAssignCSRFirstTime(
2177     const LiveInterval &VirtReg, AllocationOrder &Order, MCRegister PhysReg,
2178     uint8_t &CostPerUseLimit, SmallVectorImpl<Register> &NewVRegs) {
2179   if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2180     // We choose spill over using the CSR for the first time if the spill cost
2181     // is lower than CSRCost.
2182     SA->analyze(&VirtReg);
2183     if (calcSpillCost() >= CSRCost)
2184       return PhysReg;
2185 
2186     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2187     // we will not use a callee-saved register in tryEvict.
2188     CostPerUseLimit = 1;
2189     return 0;
2190   }
2191   if (ExtraInfo->getStage(VirtReg) < RS_Split) {
2192     // We choose pre-splitting over using the CSR for the first time if
2193     // the cost of splitting is lower than CSRCost.
2194     SA->analyze(&VirtReg);
2195     unsigned NumCands = 0;
2196     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2197     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2198                                                  NumCands, true /*IgnoreCSR*/);
2199     if (BestCand == NoCand)
2200       // Use the CSR if we can't find a region split below CSRCost.
2201       return PhysReg;
2202 
2203     // Perform the actual pre-splitting.
2204     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2205     return 0;
2206   }
2207   return PhysReg;
2208 }
2209 
2210 void RAGreedy::aboutToRemoveInterval(const LiveInterval &LI) {
2211   // Do not keep invalid information around.
2212   SetOfBrokenHints.remove(&LI);
2213 }
2214 
2215 void RAGreedy::initializeCSRCost() {
2216   // We use the larger one out of the command-line option and the value report
2217   // by TRI.
2218   CSRCost = BlockFrequency(
2219       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2220   if (!CSRCost.getFrequency())
2221     return;
2222 
2223   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2224   uint64_t ActualEntry = MBFI->getEntryFreq().getFrequency();
2225   if (!ActualEntry) {
2226     CSRCost = BlockFrequency(0);
2227     return;
2228   }
2229   uint64_t FixedEntry = 1 << 14;
2230   if (ActualEntry < FixedEntry)
2231     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2232   else if (ActualEntry <= UINT32_MAX)
2233     // Invert the fraction and divide.
2234     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2235   else
2236     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2237     CSRCost =
2238         BlockFrequency(CSRCost.getFrequency() * (ActualEntry / FixedEntry));
2239 }
2240 
2241 /// Collect the hint info for \p Reg.
2242 /// The results are stored into \p Out.
2243 /// \p Out is not cleared before being populated.
2244 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
2245   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2246     if (!TII->isFullCopyInstr(Instr))
2247       continue;
2248     // Look for the other end of the copy.
2249     Register OtherReg = Instr.getOperand(0).getReg();
2250     if (OtherReg == Reg) {
2251       OtherReg = Instr.getOperand(1).getReg();
2252       if (OtherReg == Reg)
2253         continue;
2254     }
2255     // Get the current assignment.
2256     MCRegister OtherPhysReg =
2257         OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
2258     // Push the collected information.
2259     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2260                            OtherPhysReg));
2261   }
2262 }
2263 
2264 /// Using the given \p List, compute the cost of the broken hints if
2265 /// \p PhysReg was used.
2266 /// \return The cost of \p List for \p PhysReg.
2267 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2268                                            MCRegister PhysReg) {
2269   BlockFrequency Cost = BlockFrequency(0);
2270   for (const HintInfo &Info : List) {
2271     if (Info.PhysReg != PhysReg)
2272       Cost += Info.Freq;
2273   }
2274   return Cost;
2275 }
2276 
2277 /// Using the register assigned to \p VirtReg, try to recolor
2278 /// all the live ranges that are copy-related with \p VirtReg.
2279 /// The recoloring is then propagated to all the live-ranges that have
2280 /// been recolored and so on, until no more copies can be coalesced or
2281 /// it is not profitable.
2282 /// For a given live range, profitability is determined by the sum of the
2283 /// frequencies of the non-identity copies it would introduce with the old
2284 /// and new register.
2285 void RAGreedy::tryHintRecoloring(const LiveInterval &VirtReg) {
2286   // We have a broken hint, check if it is possible to fix it by
2287   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2288   // some register and PhysReg may be available for the other live-ranges.
2289   SmallSet<Register, 4> Visited;
2290   SmallVector<unsigned, 2> RecoloringCandidates;
2291   HintsInfo Info;
2292   Register Reg = VirtReg.reg();
2293   MCRegister PhysReg = VRM->getPhys(Reg);
2294   // Start the recoloring algorithm from the input live-interval, then
2295   // it will propagate to the ones that are copy-related with it.
2296   Visited.insert(Reg);
2297   RecoloringCandidates.push_back(Reg);
2298 
2299   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2300                     << '(' << printReg(PhysReg, TRI) << ")\n");
2301 
2302   do {
2303     Reg = RecoloringCandidates.pop_back_val();
2304 
2305     // We cannot recolor physical register.
2306     if (Reg.isPhysical())
2307       continue;
2308 
2309     // This may be a skipped class
2310     if (!VRM->hasPhys(Reg)) {
2311       assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) &&
2312              "We have an unallocated variable which should have been handled");
2313       continue;
2314     }
2315 
2316     // Get the live interval mapped with this virtual register to be able
2317     // to check for the interference with the new color.
2318     LiveInterval &LI = LIS->getInterval(Reg);
2319     MCRegister CurrPhys = VRM->getPhys(Reg);
2320     // Check that the new color matches the register class constraints and
2321     // that it is free for this live range.
2322     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2323                                 Matrix->checkInterference(LI, PhysReg)))
2324       continue;
2325 
2326     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2327                       << ") is recolorable.\n");
2328 
2329     // Gather the hint info.
2330     Info.clear();
2331     collectHintInfo(Reg, Info);
2332     // Check if recoloring the live-range will increase the cost of the
2333     // non-identity copies.
2334     if (CurrPhys != PhysReg) {
2335       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2336       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2337       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2338       LLVM_DEBUG(dbgs() << "Old Cost: " << printBlockFreq(*MBFI, OldCopiesCost)
2339                         << "\nNew Cost: "
2340                         << printBlockFreq(*MBFI, NewCopiesCost) << '\n');
2341       if (OldCopiesCost < NewCopiesCost) {
2342         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2343         continue;
2344       }
2345       // At this point, the cost is either cheaper or equal. If it is
2346       // equal, we consider this is profitable because it may expose
2347       // more recoloring opportunities.
2348       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2349       // Recolor the live-range.
2350       Matrix->unassign(LI);
2351       Matrix->assign(LI, PhysReg);
2352     }
2353     // Push all copy-related live-ranges to keep reconciling the broken
2354     // hints.
2355     for (const HintInfo &HI : Info) {
2356       if (Visited.insert(HI.Reg).second)
2357         RecoloringCandidates.push_back(HI.Reg);
2358     }
2359   } while (!RecoloringCandidates.empty());
2360 }
2361 
2362 /// Try to recolor broken hints.
2363 /// Broken hints may be repaired by recoloring when an evicted variable
2364 /// freed up a register for a larger live-range.
2365 /// Consider the following example:
2366 /// BB1:
2367 ///   a =
2368 ///   b =
2369 /// BB2:
2370 ///   ...
2371 ///   = b
2372 ///   = a
2373 /// Let us assume b gets split:
2374 /// BB1:
2375 ///   a =
2376 ///   b =
2377 /// BB2:
2378 ///   c = b
2379 ///   ...
2380 ///   d = c
2381 ///   = d
2382 ///   = a
2383 /// Because of how the allocation work, b, c, and d may be assigned different
2384 /// colors. Now, if a gets evicted later:
2385 /// BB1:
2386 ///   a =
2387 ///   st a, SpillSlot
2388 ///   b =
2389 /// BB2:
2390 ///   c = b
2391 ///   ...
2392 ///   d = c
2393 ///   = d
2394 ///   e = ld SpillSlot
2395 ///   = e
2396 /// This is likely that we can assign the same register for b, c, and d,
2397 /// getting rid of 2 copies.
2398 void RAGreedy::tryHintsRecoloring() {
2399   for (const LiveInterval *LI : SetOfBrokenHints) {
2400     assert(LI->reg().isVirtual() &&
2401            "Recoloring is possible only for virtual registers");
2402     // Some dead defs may be around (e.g., because of debug uses).
2403     // Ignore those.
2404     if (!VRM->hasPhys(LI->reg()))
2405       continue;
2406     tryHintRecoloring(*LI);
2407   }
2408 }
2409 
2410 MCRegister RAGreedy::selectOrSplitImpl(const LiveInterval &VirtReg,
2411                                        SmallVectorImpl<Register> &NewVRegs,
2412                                        SmallVirtRegSet &FixedRegisters,
2413                                        RecoloringStack &RecolorStack,
2414                                        unsigned Depth) {
2415   uint8_t CostPerUseLimit = uint8_t(~0u);
2416   // First try assigning a free register.
2417   auto Order =
2418       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
2419   if (MCRegister PhysReg =
2420           tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
2421     // When NewVRegs is not empty, we may have made decisions such as evicting
2422     // a virtual register, go with the earlier decisions and use the physical
2423     // register.
2424     if (CSRCost.getFrequency() &&
2425         EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) {
2426       MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2427                                                 CostPerUseLimit, NewVRegs);
2428       if (CSRReg || !NewVRegs.empty())
2429         // Return now if we decide to use a CSR or create new vregs due to
2430         // pre-splitting.
2431         return CSRReg;
2432     } else
2433       return PhysReg;
2434   }
2435   // Non emtpy NewVRegs means VirtReg has been split.
2436   if (!NewVRegs.empty())
2437     return 0;
2438 
2439   LiveRangeStage Stage = ExtraInfo->getStage(VirtReg);
2440   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
2441                     << ExtraInfo->getCascade(VirtReg.reg()) << '\n');
2442 
2443   // Try to evict a less worthy live range, but only for ranges from the primary
2444   // queue. The RS_Split ranges already failed to do this, and they should not
2445   // get a second chance until they have been split.
2446   if (Stage != RS_Split)
2447     if (Register PhysReg =
2448             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
2449                      FixedRegisters)) {
2450       Register Hint = MRI->getSimpleHint(VirtReg.reg());
2451       // If VirtReg has a hint and that hint is broken record this
2452       // virtual register as a recoloring candidate for broken hint.
2453       // Indeed, since we evicted a variable in its neighborhood it is
2454       // likely we can at least partially recolor some of the
2455       // copy-related live-ranges.
2456       if (Hint && Hint != PhysReg)
2457         SetOfBrokenHints.insert(&VirtReg);
2458       return PhysReg;
2459     }
2460 
2461   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
2462 
2463   // The first time we see a live range, don't try to split or spill.
2464   // Wait until the second time, when all smaller ranges have been allocated.
2465   // This gives a better picture of the interference to split around.
2466   if (Stage < RS_Split) {
2467     ExtraInfo->setStage(VirtReg, RS_Split);
2468     LLVM_DEBUG(dbgs() << "wait for second round\n");
2469     NewVRegs.push_back(VirtReg.reg());
2470     return 0;
2471   }
2472 
2473   if (Stage < RS_Spill) {
2474     // Try splitting VirtReg or interferences.
2475     unsigned NewVRegSizeBefore = NewVRegs.size();
2476     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
2477     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore))
2478       return PhysReg;
2479   }
2480 
2481   // If we couldn't allocate a register from spilling, there is probably some
2482   // invalid inline assembly. The base class will report it.
2483   if (Stage >= RS_Done || !VirtReg.isSpillable()) {
2484     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
2485                                    RecolorStack, Depth);
2486   }
2487 
2488   // Finally spill VirtReg itself.
2489   if ((EnableDeferredSpilling ||
2490        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
2491       ExtraInfo->getStage(VirtReg) < RS_Memory) {
2492     // TODO: This is experimental and in particular, we do not model
2493     // the live range splitting done by spilling correctly.
2494     // We would need a deep integration with the spiller to do the
2495     // right thing here. Anyway, that is still good for early testing.
2496     ExtraInfo->setStage(VirtReg, RS_Memory);
2497     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
2498     NewVRegs.push_back(VirtReg.reg());
2499   } else {
2500     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
2501                        TimerGroupDescription, TimePassesIsEnabled);
2502     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2503     spiller().spill(LRE);
2504     ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
2505 
2506     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
2507     // the new regs are kept in LDV (still mapping to the old register), until
2508     // we rewrite spilled locations in LDV at a later stage.
2509     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
2510 
2511     if (VerifyEnabled)
2512       MF->verify(this, "After spilling");
2513   }
2514 
2515   // The live virtual register requesting allocation was spilled, so tell
2516   // the caller not to allocate anything during this round.
2517   return 0;
2518 }
2519 
2520 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) {
2521   using namespace ore;
2522   if (Spills) {
2523     R << NV("NumSpills", Spills) << " spills ";
2524     R << NV("TotalSpillsCost", SpillsCost) << " total spills cost ";
2525   }
2526   if (FoldedSpills) {
2527     R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
2528     R << NV("TotalFoldedSpillsCost", FoldedSpillsCost)
2529       << " total folded spills cost ";
2530   }
2531   if (Reloads) {
2532     R << NV("NumReloads", Reloads) << " reloads ";
2533     R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost ";
2534   }
2535   if (FoldedReloads) {
2536     R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
2537     R << NV("TotalFoldedReloadsCost", FoldedReloadsCost)
2538       << " total folded reloads cost ";
2539   }
2540   if (ZeroCostFoldedReloads)
2541     R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads)
2542       << " zero cost folded reloads ";
2543   if (Copies) {
2544     R << NV("NumVRCopies", Copies) << " virtual registers copies ";
2545     R << NV("TotalCopiesCost", CopiesCost) << " total copies cost ";
2546   }
2547 }
2548 
2549 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) {
2550   RAGreedyStats Stats;
2551   const MachineFrameInfo &MFI = MF->getFrameInfo();
2552   int FI;
2553 
2554   auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
2555     return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>(
2556         A->getPseudoValue())->getFrameIndex());
2557   };
2558   auto isPatchpointInstr = [](const MachineInstr &MI) {
2559     return MI.getOpcode() == TargetOpcode::PATCHPOINT ||
2560            MI.getOpcode() == TargetOpcode::STACKMAP ||
2561            MI.getOpcode() == TargetOpcode::STATEPOINT;
2562   };
2563   for (MachineInstr &MI : MBB) {
2564     auto DestSrc = TII->isCopyInstr(MI);
2565     if (DestSrc) {
2566       const MachineOperand &Dest = *DestSrc->Destination;
2567       const MachineOperand &Src = *DestSrc->Source;
2568       Register SrcReg = Src.getReg();
2569       Register DestReg = Dest.getReg();
2570       // Only count `COPY`s with a virtual register as source or destination.
2571       if (SrcReg.isVirtual() || DestReg.isVirtual()) {
2572         if (SrcReg.isVirtual()) {
2573           SrcReg = VRM->getPhys(SrcReg);
2574           if (SrcReg && Src.getSubReg())
2575             SrcReg = TRI->getSubReg(SrcReg, Src.getSubReg());
2576         }
2577         if (DestReg.isVirtual()) {
2578           DestReg = VRM->getPhys(DestReg);
2579           if (DestReg && Dest.getSubReg())
2580             DestReg = TRI->getSubReg(DestReg, Dest.getSubReg());
2581         }
2582         if (SrcReg != DestReg)
2583           ++Stats.Copies;
2584       }
2585       continue;
2586     }
2587 
2588     SmallVector<const MachineMemOperand *, 2> Accesses;
2589     if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2590       ++Stats.Reloads;
2591       continue;
2592     }
2593     if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2594       ++Stats.Spills;
2595       continue;
2596     }
2597     if (TII->hasLoadFromStackSlot(MI, Accesses) &&
2598         llvm::any_of(Accesses, isSpillSlotAccess)) {
2599       if (!isPatchpointInstr(MI)) {
2600         Stats.FoldedReloads += Accesses.size();
2601         continue;
2602       }
2603       // For statepoint there may be folded and zero cost folded stack reloads.
2604       std::pair<unsigned, unsigned> NonZeroCostRange =
2605           TII->getPatchpointUnfoldableRange(MI);
2606       SmallSet<unsigned, 16> FoldedReloads;
2607       SmallSet<unsigned, 16> ZeroCostFoldedReloads;
2608       for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) {
2609         MachineOperand &MO = MI.getOperand(Idx);
2610         if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex()))
2611           continue;
2612         if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second)
2613           FoldedReloads.insert(MO.getIndex());
2614         else
2615           ZeroCostFoldedReloads.insert(MO.getIndex());
2616       }
2617       // If stack slot is used in folded reload it is not zero cost then.
2618       for (unsigned Slot : FoldedReloads)
2619         ZeroCostFoldedReloads.erase(Slot);
2620       Stats.FoldedReloads += FoldedReloads.size();
2621       Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size();
2622       continue;
2623     }
2624     Accesses.clear();
2625     if (TII->hasStoreToStackSlot(MI, Accesses) &&
2626         llvm::any_of(Accesses, isSpillSlotAccess)) {
2627       Stats.FoldedSpills += Accesses.size();
2628     }
2629   }
2630   // Set cost of collected statistic by multiplication to relative frequency of
2631   // this basic block.
2632   float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB);
2633   Stats.ReloadsCost = RelFreq * Stats.Reloads;
2634   Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads;
2635   Stats.SpillsCost = RelFreq * Stats.Spills;
2636   Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills;
2637   Stats.CopiesCost = RelFreq * Stats.Copies;
2638   return Stats;
2639 }
2640 
2641 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) {
2642   RAGreedyStats Stats;
2643 
2644   // Sum up the spill and reloads in subloops.
2645   for (MachineLoop *SubLoop : *L)
2646     Stats.add(reportStats(SubLoop));
2647 
2648   for (MachineBasicBlock *MBB : L->getBlocks())
2649     // Handle blocks that were not included in subloops.
2650     if (Loops->getLoopFor(MBB) == L)
2651       Stats.add(computeStats(*MBB));
2652 
2653   if (!Stats.isEmpty()) {
2654     using namespace ore;
2655 
2656     ORE->emit([&]() {
2657       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies",
2658                                         L->getStartLoc(), L->getHeader());
2659       Stats.report(R);
2660       R << "generated in loop";
2661       return R;
2662     });
2663   }
2664   return Stats;
2665 }
2666 
2667 void RAGreedy::reportStats() {
2668   if (!ORE->allowExtraAnalysis(DEBUG_TYPE))
2669     return;
2670   RAGreedyStats Stats;
2671   for (MachineLoop *L : *Loops)
2672     Stats.add(reportStats(L));
2673   // Process non-loop blocks.
2674   for (MachineBasicBlock &MBB : *MF)
2675     if (!Loops->getLoopFor(&MBB))
2676       Stats.add(computeStats(MBB));
2677   if (!Stats.isEmpty()) {
2678     using namespace ore;
2679 
2680     ORE->emit([&]() {
2681       DebugLoc Loc;
2682       if (auto *SP = MF->getFunction().getSubprogram())
2683         Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
2684       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc,
2685                                         &MF->front());
2686       Stats.report(R);
2687       R << "generated in function";
2688       return R;
2689     });
2690   }
2691 }
2692 
2693 bool RAGreedy::hasVirtRegAlloc() {
2694   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2695     Register Reg = Register::index2VirtReg(I);
2696     if (MRI->reg_nodbg_empty(Reg))
2697       continue;
2698     const TargetRegisterClass *RC = MRI->getRegClass(Reg);
2699     if (!RC)
2700       continue;
2701     if (ShouldAllocateClass(*TRI, *RC))
2702       return true;
2703   }
2704 
2705   return false;
2706 }
2707 
2708 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
2709   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2710                     << "********** Function: " << mf.getName() << '\n');
2711 
2712   MF = &mf;
2713   TII = MF->getSubtarget().getInstrInfo();
2714 
2715   if (VerifyEnabled)
2716     MF->verify(this, "Before greedy register allocator");
2717 
2718   RegAllocBase::init(getAnalysis<VirtRegMap>(),
2719                      getAnalysis<LiveIntervals>(),
2720                      getAnalysis<LiveRegMatrix>());
2721 
2722   // Early return if there is no virtual register to be allocated to a
2723   // physical register.
2724   if (!hasVirtRegAlloc())
2725     return false;
2726 
2727   Indexes = &getAnalysis<SlotIndexes>();
2728   // Renumber to get accurate and consistent results from
2729   // SlotIndexes::getApproxInstrDistance.
2730   Indexes->packIndexes();
2731   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2732   DomTree = &getAnalysis<MachineDominatorTree>();
2733   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
2734   Loops = &getAnalysis<MachineLoopInfo>();
2735   Bundles = &getAnalysis<EdgeBundles>();
2736   SpillPlacer = &getAnalysis<SpillPlacement>();
2737   DebugVars = &getAnalysis<LiveDebugVariables>();
2738 
2739   initializeCSRCost();
2740 
2741   RegCosts = TRI->getRegisterCosts(*MF);
2742   RegClassPriorityTrumpsGlobalness =
2743       GreedyRegClassPriorityTrumpsGlobalness.getNumOccurrences()
2744           ? GreedyRegClassPriorityTrumpsGlobalness
2745           : TRI->regClassPriorityTrumpsGlobalness(*MF);
2746 
2747   ReverseLocalAssignment = GreedyReverseLocalAssignment.getNumOccurrences()
2748                                ? GreedyReverseLocalAssignment
2749                                : TRI->reverseLocalAssignment();
2750 
2751   ExtraInfo.emplace();
2752   EvictAdvisor =
2753       getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this);
2754   PriorityAdvisor =
2755       getAnalysis<RegAllocPriorityAdvisorAnalysis>().getAdvisor(*MF, *this);
2756 
2757   VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
2758   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI));
2759 
2760   VRAI->calculateSpillWeightsAndHints();
2761 
2762   LLVM_DEBUG(LIS->dump());
2763 
2764   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
2765   SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI, *VRAI));
2766 
2767   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
2768   GlobalCand.resize(32);  // This will grow as needed.
2769   SetOfBrokenHints.clear();
2770 
2771   allocatePhysRegs();
2772   tryHintsRecoloring();
2773 
2774   if (VerifyEnabled)
2775     MF->verify(this, "Before post optimization");
2776   postOptimization();
2777   reportStats();
2778 
2779   releaseMemory();
2780   return true;
2781 }
2782