1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AllocationOrder.h" 15 #include "InterferenceCache.h" 16 #include "LiveDebugVariables.h" 17 #include "RegAllocBase.h" 18 #include "SpillPlacement.h" 19 #include "SplitKit.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/BitVector.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/IndexedMap.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/Analysis/AliasAnalysis.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/CodeGen/CalcSpillWeights.h" 34 #include "llvm/CodeGen/EdgeBundles.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/LiveIntervalUnion.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveRangeEdit.h" 39 #include "llvm/CodeGen/LiveRegMatrix.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineLoopInfo.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RegAllocRegistry.h" 53 #include "llvm/CodeGen/RegisterClassInfo.h" 54 #include "llvm/CodeGen/SlotIndexes.h" 55 #include "llvm/CodeGen/Spiller.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/CodeGen/VirtRegMap.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/MC/MCRegisterInfo.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/BlockFrequency.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/Timer.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Target/TargetMachine.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <memory> 76 #include <queue> 77 #include <tuple> 78 #include <utility> 79 80 using namespace llvm; 81 82 #define DEBUG_TYPE "regalloc" 83 84 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 85 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 86 STATISTIC(NumEvicted, "Number of interferences evicted"); 87 88 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 89 "split-spill-mode", cl::Hidden, 90 cl::desc("Spill mode for splitting live ranges"), 91 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 92 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 93 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 94 cl::init(SplitEditor::SM_Speed)); 95 96 static cl::opt<unsigned> 97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 98 cl::desc("Last chance recoloring max depth"), 99 cl::init(5)); 100 101 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 102 "lcr-max-interf", cl::Hidden, 103 cl::desc("Last chance recoloring maximum number of considered" 104 " interference at a time"), 105 cl::init(8)); 106 107 static cl::opt<bool> ExhaustiveSearch( 108 "exhaustive-register-search", cl::NotHidden, 109 cl::desc("Exhaustive Search for registers bypassing the depth " 110 "and interference cutoffs of last chance recoloring"), 111 cl::Hidden); 112 113 static cl::opt<bool> EnableLocalReassignment( 114 "enable-local-reassign", cl::Hidden, 115 cl::desc("Local reassignment can yield better allocation decisions, but " 116 "may be compile time intensive"), 117 cl::init(false)); 118 119 static cl::opt<bool> EnableDeferredSpilling( 120 "enable-deferred-spilling", cl::Hidden, 121 cl::desc("Instead of spilling a variable right away, defer the actual " 122 "code insertion to the end of the allocation. That way the " 123 "allocator might still find a suitable coloring for this " 124 "variable because of other evicted variables."), 125 cl::init(false)); 126 127 // FIXME: Find a good default for this flag and remove the flag. 128 static cl::opt<unsigned> 129 CSRFirstTimeCost("regalloc-csr-first-time-cost", 130 cl::desc("Cost for first time use of callee-saved register."), 131 cl::init(0), cl::Hidden); 132 133 static cl::opt<bool> ConsiderLocalIntervalCost( 134 "consider-local-interval-cost", cl::Hidden, 135 cl::desc("Consider the cost of local intervals created by a split " 136 "candidate when choosing the best split candidate."), 137 cl::init(false)); 138 139 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 140 createGreedyRegisterAllocator); 141 142 namespace { 143 144 class RAGreedy : public MachineFunctionPass, 145 public RegAllocBase, 146 private LiveRangeEdit::Delegate { 147 // Convenient shortcuts. 148 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>; 149 using SmallLISet = SmallPtrSet<LiveInterval *, 4>; 150 using SmallVirtRegSet = SmallSet<unsigned, 16>; 151 152 // context 153 MachineFunction *MF; 154 155 // Shortcuts to some useful interface. 156 const TargetInstrInfo *TII; 157 const TargetRegisterInfo *TRI; 158 RegisterClassInfo RCI; 159 160 // analyses 161 SlotIndexes *Indexes; 162 MachineBlockFrequencyInfo *MBFI; 163 MachineDominatorTree *DomTree; 164 MachineLoopInfo *Loops; 165 MachineOptimizationRemarkEmitter *ORE; 166 EdgeBundles *Bundles; 167 SpillPlacement *SpillPlacer; 168 LiveDebugVariables *DebugVars; 169 AliasAnalysis *AA; 170 171 // state 172 std::unique_ptr<Spiller> SpillerInstance; 173 PQueue Queue; 174 unsigned NextCascade; 175 176 // Live ranges pass through a number of stages as we try to allocate them. 177 // Some of the stages may also create new live ranges: 178 // 179 // - Region splitting. 180 // - Per-block splitting. 181 // - Local splitting. 182 // - Spilling. 183 // 184 // Ranges produced by one of the stages skip the previous stages when they are 185 // dequeued. This improves performance because we can skip interference checks 186 // that are unlikely to give any results. It also guarantees that the live 187 // range splitting algorithm terminates, something that is otherwise hard to 188 // ensure. 189 enum LiveRangeStage { 190 /// Newly created live range that has never been queued. 191 RS_New, 192 193 /// Only attempt assignment and eviction. Then requeue as RS_Split. 194 RS_Assign, 195 196 /// Attempt live range splitting if assignment is impossible. 197 RS_Split, 198 199 /// Attempt more aggressive live range splitting that is guaranteed to make 200 /// progress. This is used for split products that may not be making 201 /// progress. 202 RS_Split2, 203 204 /// Live range will be spilled. No more splitting will be attempted. 205 RS_Spill, 206 207 208 /// Live range is in memory. Because of other evictions, it might get moved 209 /// in a register in the end. 210 RS_Memory, 211 212 /// There is nothing more we can do to this live range. Abort compilation 213 /// if it can't be assigned. 214 RS_Done 215 }; 216 217 // Enum CutOffStage to keep a track whether the register allocation failed 218 // because of the cutoffs encountered in last chance recoloring. 219 // Note: This is used as bitmask. New value should be next power of 2. 220 enum CutOffStage { 221 // No cutoffs encountered 222 CO_None = 0, 223 224 // lcr-max-depth cutoff encountered 225 CO_Depth = 1, 226 227 // lcr-max-interf cutoff encountered 228 CO_Interf = 2 229 }; 230 231 uint8_t CutOffInfo; 232 233 #ifndef NDEBUG 234 static const char *const StageName[]; 235 #endif 236 237 // RegInfo - Keep additional information about each live range. 238 struct RegInfo { 239 LiveRangeStage Stage = RS_New; 240 241 // Cascade - Eviction loop prevention. See canEvictInterference(). 242 unsigned Cascade = 0; 243 244 RegInfo() = default; 245 }; 246 247 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 248 249 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 250 return ExtraRegInfo[VirtReg.reg].Stage; 251 } 252 253 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 254 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 255 ExtraRegInfo[VirtReg.reg].Stage = Stage; 256 } 257 258 template<typename Iterator> 259 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 260 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 261 for (;Begin != End; ++Begin) { 262 unsigned Reg = *Begin; 263 if (ExtraRegInfo[Reg].Stage == RS_New) 264 ExtraRegInfo[Reg].Stage = NewStage; 265 } 266 } 267 268 /// Cost of evicting interference. 269 struct EvictionCost { 270 unsigned BrokenHints = 0; ///< Total number of broken hints. 271 float MaxWeight = 0; ///< Maximum spill weight evicted. 272 273 EvictionCost() = default; 274 275 bool isMax() const { return BrokenHints == ~0u; } 276 277 void setMax() { BrokenHints = ~0u; } 278 279 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } 280 281 bool operator<(const EvictionCost &O) const { 282 return std::tie(BrokenHints, MaxWeight) < 283 std::tie(O.BrokenHints, O.MaxWeight); 284 } 285 }; 286 287 /// EvictionTrack - Keeps track of past evictions in order to optimize region 288 /// split decision. 289 class EvictionTrack { 290 291 public: 292 using EvictorInfo = 293 std::pair<unsigned /* evictor */, unsigned /* physreg */>; 294 using EvicteeInfo = llvm::DenseMap<unsigned /* evictee */, EvictorInfo>; 295 296 private: 297 /// Each Vreg that has been evicted in the last stage of selectOrSplit will 298 /// be mapped to the evictor Vreg and the PhysReg it was evicted from. 299 EvicteeInfo Evictees; 300 301 public: 302 /// Clear all eviction information. 303 void clear() { Evictees.clear(); } 304 305 /// Clear eviction information for the given evictee Vreg. 306 /// E.g. when Vreg get's a new allocation, the old eviction info is no 307 /// longer relevant. 308 /// \param Evictee The evictee Vreg for whom we want to clear collected 309 /// eviction info. 310 void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); } 311 312 /// Track new eviction. 313 /// The Evictor vreg has evicted the Evictee vreg from Physreg. 314 /// \param PhysReg The physical register Evictee was evicted from. 315 /// \param Evictor The evictor Vreg that evicted Evictee. 316 /// \param Evictee The evictee Vreg. 317 void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) { 318 Evictees[Evictee].first = Evictor; 319 Evictees[Evictee].second = PhysReg; 320 } 321 322 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg. 323 /// \param Evictee The evictee vreg. 324 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if 325 /// nobody has evicted Evictee from PhysReg. 326 EvictorInfo getEvictor(unsigned Evictee) { 327 if (Evictees.count(Evictee)) { 328 return Evictees[Evictee]; 329 } 330 331 return EvictorInfo(0, 0); 332 } 333 }; 334 335 // Keeps track of past evictions in order to optimize region split decision. 336 EvictionTrack LastEvicted; 337 338 // splitting state. 339 std::unique_ptr<SplitAnalysis> SA; 340 std::unique_ptr<SplitEditor> SE; 341 342 /// Cached per-block interference maps 343 InterferenceCache IntfCache; 344 345 /// All basic blocks where the current register has uses. 346 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 347 348 /// Global live range splitting candidate info. 349 struct GlobalSplitCandidate { 350 // Register intended for assignment, or 0. 351 unsigned PhysReg; 352 353 // SplitKit interval index for this candidate. 354 unsigned IntvIdx; 355 356 // Interference for PhysReg. 357 InterferenceCache::Cursor Intf; 358 359 // Bundles where this candidate should be live. 360 BitVector LiveBundles; 361 SmallVector<unsigned, 8> ActiveBlocks; 362 363 void reset(InterferenceCache &Cache, unsigned Reg) { 364 PhysReg = Reg; 365 IntvIdx = 0; 366 Intf.setPhysReg(Cache, Reg); 367 LiveBundles.clear(); 368 ActiveBlocks.clear(); 369 } 370 371 // Set B[i] = C for every live bundle where B[i] was NoCand. 372 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 373 unsigned Count = 0; 374 for (unsigned i : LiveBundles.set_bits()) 375 if (B[i] == NoCand) { 376 B[i] = C; 377 Count++; 378 } 379 return Count; 380 } 381 }; 382 383 /// Candidate info for each PhysReg in AllocationOrder. 384 /// This vector never shrinks, but grows to the size of the largest register 385 /// class. 386 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 387 388 enum : unsigned { NoCand = ~0u }; 389 390 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 391 /// NoCand which indicates the stack interval. 392 SmallVector<unsigned, 32> BundleCand; 393 394 /// Callee-save register cost, calculated once per machine function. 395 BlockFrequency CSRCost; 396 397 /// Run or not the local reassignment heuristic. This information is 398 /// obtained from the TargetSubtargetInfo. 399 bool EnableLocalReassign; 400 401 /// Enable or not the consideration of the cost of local intervals created 402 /// by a split candidate when choosing the best split candidate. 403 bool EnableAdvancedRASplitCost; 404 405 /// Set of broken hints that may be reconciled later because of eviction. 406 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 407 408 public: 409 RAGreedy(); 410 411 /// Return the pass name. 412 StringRef getPassName() const override { return "Greedy Register Allocator"; } 413 414 /// RAGreedy analysis usage. 415 void getAnalysisUsage(AnalysisUsage &AU) const override; 416 void releaseMemory() override; 417 Spiller &spiller() override { return *SpillerInstance; } 418 void enqueue(LiveInterval *LI) override; 419 LiveInterval *dequeue() override; 420 Register selectOrSplit(LiveInterval&, SmallVectorImpl<Register>&) override; 421 void aboutToRemoveInterval(LiveInterval &) override; 422 423 /// Perform register allocation. 424 bool runOnMachineFunction(MachineFunction &mf) override; 425 426 MachineFunctionProperties getRequiredProperties() const override { 427 return MachineFunctionProperties().set( 428 MachineFunctionProperties::Property::NoPHIs); 429 } 430 431 static char ID; 432 433 private: 434 Register selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &, 435 SmallVirtRegSet &, unsigned = 0); 436 437 bool LRE_CanEraseVirtReg(unsigned) override; 438 void LRE_WillShrinkVirtReg(unsigned) override; 439 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 440 void enqueue(PQueue &CurQueue, LiveInterval *LI); 441 LiveInterval *dequeue(PQueue &CurQueue); 442 443 BlockFrequency calcSpillCost(); 444 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 445 bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 446 bool growRegion(GlobalSplitCandidate &Cand); 447 bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand, 448 unsigned BBNumber, 449 const AllocationOrder &Order); 450 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit, 451 GlobalSplitCandidate &Cand, unsigned BBNumber, 452 const AllocationOrder &Order); 453 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &, 454 const AllocationOrder &Order, 455 bool *CanCauseEvictionChain); 456 bool calcCompactRegion(GlobalSplitCandidate&); 457 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 458 void calcGapWeights(unsigned, SmallVectorImpl<float>&); 459 Register canReassign(LiveInterval &VirtReg, Register PrevReg); 460 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); 461 bool canEvictInterference(LiveInterval&, Register, bool, EvictionCost&, 462 const SmallVirtRegSet&); 463 bool canEvictInterferenceInRange(LiveInterval &VirtReg, Register oPhysReg, 464 SlotIndex Start, SlotIndex End, 465 EvictionCost &MaxCost); 466 unsigned getCheapestEvicteeWeight(const AllocationOrder &Order, 467 LiveInterval &VirtReg, SlotIndex Start, 468 SlotIndex End, float *BestEvictWeight); 469 void evictInterference(LiveInterval&, Register, 470 SmallVectorImpl<Register>&); 471 bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 472 SmallLISet &RecoloringCandidates, 473 const SmallVirtRegSet &FixedRegisters); 474 475 Register tryAssign(LiveInterval&, AllocationOrder&, 476 SmallVectorImpl<Register>&, 477 const SmallVirtRegSet&); 478 unsigned tryEvict(LiveInterval&, AllocationOrder&, 479 SmallVectorImpl<Register>&, unsigned, 480 const SmallVirtRegSet&); 481 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, 482 SmallVectorImpl<Register>&); 483 /// Calculate cost of region splitting. 484 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 485 AllocationOrder &Order, 486 BlockFrequency &BestCost, 487 unsigned &NumCands, bool IgnoreCSR, 488 bool *CanCauseEvictionChain = nullptr); 489 /// Perform region splitting. 490 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 491 bool HasCompact, 492 SmallVectorImpl<Register> &NewVRegs); 493 /// Check other options before using a callee-saved register for the first 494 /// time. 495 unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 496 Register PhysReg, unsigned &CostPerUseLimit, 497 SmallVectorImpl<Register> &NewVRegs); 498 void initializeCSRCost(); 499 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 500 SmallVectorImpl<Register>&); 501 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 502 SmallVectorImpl<Register>&); 503 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 504 SmallVectorImpl<Register>&); 505 unsigned trySplit(LiveInterval&, AllocationOrder&, 506 SmallVectorImpl<Register>&, 507 const SmallVirtRegSet&); 508 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 509 SmallVectorImpl<Register> &, 510 SmallVirtRegSet &, unsigned); 511 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &, 512 SmallVirtRegSet &, unsigned); 513 void tryHintRecoloring(LiveInterval &); 514 void tryHintsRecoloring(); 515 516 /// Model the information carried by one end of a copy. 517 struct HintInfo { 518 /// The frequency of the copy. 519 BlockFrequency Freq; 520 /// The virtual register or physical register. 521 Register Reg; 522 /// Its currently assigned register. 523 /// In case of a physical register Reg == PhysReg. 524 MCRegister PhysReg; 525 526 HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg) 527 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 528 }; 529 using HintsInfo = SmallVector<HintInfo, 4>; 530 531 BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned); 532 void collectHintInfo(unsigned, HintsInfo &); 533 534 bool isUnusedCalleeSavedReg(MCRegister PhysReg) const; 535 536 /// Compute and report the number of spills and reloads for a loop. 537 void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 538 unsigned &FoldedReloads, unsigned &Spills, 539 unsigned &FoldedSpills); 540 541 /// Report the number of spills and reloads for each loop. 542 void reportNumberOfSplillsReloads() { 543 for (MachineLoop *L : *Loops) { 544 unsigned Reloads, FoldedReloads, Spills, FoldedSpills; 545 reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills, 546 FoldedSpills); 547 } 548 } 549 }; 550 551 } // end anonymous namespace 552 553 char RAGreedy::ID = 0; 554 char &llvm::RAGreedyID = RAGreedy::ID; 555 556 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 557 "Greedy Register Allocator", false, false) 558 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 559 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 560 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 561 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 562 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 563 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 564 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 565 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 566 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 567 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 568 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 569 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 570 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 571 INITIALIZE_PASS_END(RAGreedy, "greedy", 572 "Greedy Register Allocator", false, false) 573 574 #ifndef NDEBUG 575 const char *const RAGreedy::StageName[] = { 576 "RS_New", 577 "RS_Assign", 578 "RS_Split", 579 "RS_Split2", 580 "RS_Spill", 581 "RS_Memory", 582 "RS_Done" 583 }; 584 #endif 585 586 // Hysteresis to use when comparing floats. 587 // This helps stabilize decisions based on float comparisons. 588 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 589 590 FunctionPass* llvm::createGreedyRegisterAllocator() { 591 return new RAGreedy(); 592 } 593 594 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 595 } 596 597 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 598 AU.setPreservesCFG(); 599 AU.addRequired<MachineBlockFrequencyInfo>(); 600 AU.addPreserved<MachineBlockFrequencyInfo>(); 601 AU.addRequired<AAResultsWrapperPass>(); 602 AU.addPreserved<AAResultsWrapperPass>(); 603 AU.addRequired<LiveIntervals>(); 604 AU.addPreserved<LiveIntervals>(); 605 AU.addRequired<SlotIndexes>(); 606 AU.addPreserved<SlotIndexes>(); 607 AU.addRequired<LiveDebugVariables>(); 608 AU.addPreserved<LiveDebugVariables>(); 609 AU.addRequired<LiveStacks>(); 610 AU.addPreserved<LiveStacks>(); 611 AU.addRequired<MachineDominatorTree>(); 612 AU.addPreserved<MachineDominatorTree>(); 613 AU.addRequired<MachineLoopInfo>(); 614 AU.addPreserved<MachineLoopInfo>(); 615 AU.addRequired<VirtRegMap>(); 616 AU.addPreserved<VirtRegMap>(); 617 AU.addRequired<LiveRegMatrix>(); 618 AU.addPreserved<LiveRegMatrix>(); 619 AU.addRequired<EdgeBundles>(); 620 AU.addRequired<SpillPlacement>(); 621 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 622 MachineFunctionPass::getAnalysisUsage(AU); 623 } 624 625 //===----------------------------------------------------------------------===// 626 // LiveRangeEdit delegate methods 627 //===----------------------------------------------------------------------===// 628 629 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { 630 LiveInterval &LI = LIS->getInterval(VirtReg); 631 if (VRM->hasPhys(VirtReg)) { 632 Matrix->unassign(LI); 633 aboutToRemoveInterval(LI); 634 return true; 635 } 636 // Unassigned virtreg is probably in the priority queue. 637 // RegAllocBase will erase it after dequeueing. 638 // Nonetheless, clear the live-range so that the debug 639 // dump will show the right state for that VirtReg. 640 LI.clear(); 641 return false; 642 } 643 644 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { 645 if (!VRM->hasPhys(VirtReg)) 646 return; 647 648 // Register is assigned, put it back on the queue for reassignment. 649 LiveInterval &LI = LIS->getInterval(VirtReg); 650 Matrix->unassign(LI); 651 enqueue(&LI); 652 } 653 654 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 655 // Cloning a register we haven't even heard about yet? Just ignore it. 656 if (!ExtraRegInfo.inBounds(Old)) 657 return; 658 659 // LRE may clone a virtual register because dead code elimination causes it to 660 // be split into connected components. The new components are much smaller 661 // than the original, so they should get a new chance at being assigned. 662 // same stage as the parent. 663 ExtraRegInfo[Old].Stage = RS_Assign; 664 ExtraRegInfo.grow(New); 665 ExtraRegInfo[New] = ExtraRegInfo[Old]; 666 } 667 668 void RAGreedy::releaseMemory() { 669 SpillerInstance.reset(); 670 ExtraRegInfo.clear(); 671 GlobalCand.clear(); 672 } 673 674 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); } 675 676 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 677 // Prioritize live ranges by size, assigning larger ranges first. 678 // The queue holds (size, reg) pairs. 679 const unsigned Size = LI->getSize(); 680 const unsigned Reg = LI->reg; 681 assert(Register::isVirtualRegister(Reg) && 682 "Can only enqueue virtual registers"); 683 unsigned Prio; 684 685 ExtraRegInfo.grow(Reg); 686 if (ExtraRegInfo[Reg].Stage == RS_New) 687 ExtraRegInfo[Reg].Stage = RS_Assign; 688 689 if (ExtraRegInfo[Reg].Stage == RS_Split) { 690 // Unsplit ranges that couldn't be allocated immediately are deferred until 691 // everything else has been allocated. 692 Prio = Size; 693 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 694 // Memory operand should be considered last. 695 // Change the priority such that Memory operand are assigned in 696 // the reverse order that they came in. 697 // TODO: Make this a member variable and probably do something about hints. 698 static unsigned MemOp = 0; 699 Prio = MemOp++; 700 } else { 701 // Giant live ranges fall back to the global assignment heuristic, which 702 // prevents excessive spilling in pathological cases. 703 bool ReverseLocal = TRI->reverseLocalAssignment(); 704 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 705 bool ForceGlobal = !ReverseLocal && 706 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); 707 708 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 709 LIS->intervalIsInOneMBB(*LI)) { 710 // Allocate original local ranges in linear instruction order. Since they 711 // are singly defined, this produces optimal coloring in the absence of 712 // global interference and other constraints. 713 if (!ReverseLocal) 714 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 715 else { 716 // Allocating bottom up may allow many short LRGs to be assigned first 717 // to one of the cheap registers. This could be much faster for very 718 // large blocks on targets with many physical registers. 719 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 720 } 721 Prio |= RC.AllocationPriority << 24; 722 } else { 723 // Allocate global and split ranges in long->short order. Long ranges that 724 // don't fit should be spilled (or split) ASAP so they don't create 725 // interference. Mark a bit to prioritize global above local ranges. 726 Prio = (1u << 29) + Size; 727 } 728 // Mark a higher bit to prioritize global and local above RS_Split. 729 Prio |= (1u << 31); 730 731 // Boost ranges that have a physical register hint. 732 if (VRM->hasKnownPreference(Reg)) 733 Prio |= (1u << 30); 734 } 735 // The virtual register number is a tie breaker for same-sized ranges. 736 // Give lower vreg numbers higher priority to assign them first. 737 CurQueue.push(std::make_pair(Prio, ~Reg)); 738 } 739 740 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 741 742 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 743 if (CurQueue.empty()) 744 return nullptr; 745 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 746 CurQueue.pop(); 747 return LI; 748 } 749 750 //===----------------------------------------------------------------------===// 751 // Direct Assignment 752 //===----------------------------------------------------------------------===// 753 754 /// tryAssign - Try to assign VirtReg to an available register. 755 Register RAGreedy::tryAssign(LiveInterval &VirtReg, 756 AllocationOrder &Order, 757 SmallVectorImpl<Register> &NewVRegs, 758 const SmallVirtRegSet &FixedRegisters) { 759 Order.rewind(); 760 Register PhysReg; 761 while ((PhysReg = Order.next())) 762 if (!Matrix->checkInterference(VirtReg, PhysReg)) 763 break; 764 if (!PhysReg || Order.isHint()) 765 return PhysReg; 766 767 // PhysReg is available, but there may be a better choice. 768 769 // If we missed a simple hint, try to cheaply evict interference from the 770 // preferred register. 771 if (Register Hint = MRI->getSimpleHint(VirtReg.reg)) 772 if (Order.isHint(Hint)) { 773 LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n'); 774 EvictionCost MaxCost; 775 MaxCost.setBrokenHints(1); 776 if (canEvictInterference(VirtReg, Hint, true, MaxCost, FixedRegisters)) { 777 evictInterference(VirtReg, Hint, NewVRegs); 778 return Hint; 779 } 780 // Record the missed hint, we may be able to recover 781 // at the end if the surrounding allocation changed. 782 SetOfBrokenHints.insert(&VirtReg); 783 } 784 785 // Try to evict interference from a cheaper alternative. 786 unsigned Cost = TRI->getCostPerUse(PhysReg); 787 788 // Most registers have 0 additional cost. 789 if (!Cost) 790 return PhysReg; 791 792 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 793 << Cost << '\n'); 794 Register CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 795 return CheapReg ? CheapReg : PhysReg; 796 } 797 798 //===----------------------------------------------------------------------===// 799 // Interference eviction 800 //===----------------------------------------------------------------------===// 801 802 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) { 803 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 804 Register PhysReg; 805 while ((PhysReg = Order.next())) { 806 if (PhysReg == PrevReg) 807 continue; 808 809 MCRegUnitIterator Units(PhysReg, TRI); 810 for (; Units.isValid(); ++Units) { 811 // Instantiate a "subquery", not to be confused with the Queries array. 812 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 813 if (subQ.checkInterference()) 814 break; 815 } 816 // If no units have interference, break out with the current PhysReg. 817 if (!Units.isValid()) 818 break; 819 } 820 if (PhysReg) 821 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 822 << printReg(PrevReg, TRI) << " to " 823 << printReg(PhysReg, TRI) << '\n'); 824 return PhysReg; 825 } 826 827 /// shouldEvict - determine if A should evict the assigned live range B. The 828 /// eviction policy defined by this function together with the allocation order 829 /// defined by enqueue() decides which registers ultimately end up being split 830 /// and spilled. 831 /// 832 /// Cascade numbers are used to prevent infinite loops if this function is a 833 /// cyclic relation. 834 /// 835 /// @param A The live range to be assigned. 836 /// @param IsHint True when A is about to be assigned to its preferred 837 /// register. 838 /// @param B The live range to be evicted. 839 /// @param BreaksHint True when B is already assigned to its preferred register. 840 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 841 LiveInterval &B, bool BreaksHint) { 842 bool CanSplit = getStage(B) < RS_Spill; 843 844 // Be fairly aggressive about following hints as long as the evictee can be 845 // split. 846 if (CanSplit && IsHint && !BreaksHint) 847 return true; 848 849 if (A.weight > B.weight) { 850 LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n'); 851 return true; 852 } 853 return false; 854 } 855 856 /// canEvictInterference - Return true if all interferences between VirtReg and 857 /// PhysReg can be evicted. 858 /// 859 /// @param VirtReg Live range that is about to be assigned. 860 /// @param PhysReg Desired register for assignment. 861 /// @param IsHint True when PhysReg is VirtReg's preferred register. 862 /// @param MaxCost Only look for cheaper candidates and update with new cost 863 /// when returning true. 864 /// @returns True when interference can be evicted cheaper than MaxCost. 865 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, Register PhysReg, 866 bool IsHint, EvictionCost &MaxCost, 867 const SmallVirtRegSet &FixedRegisters) { 868 // It is only possible to evict virtual register interference. 869 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 870 return false; 871 872 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 873 874 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 875 // involved in an eviction before. If a cascade number was assigned, deny 876 // evicting anything with the same or a newer cascade number. This prevents 877 // infinite eviction loops. 878 // 879 // This works out so a register without a cascade number is allowed to evict 880 // anything, and it can be evicted by anything. 881 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 882 if (!Cascade) 883 Cascade = NextCascade; 884 885 EvictionCost Cost; 886 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 887 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 888 // If there is 10 or more interferences, chances are one is heavier. 889 if (Q.collectInterferingVRegs(10) >= 10) 890 return false; 891 892 // Check if any interfering live range is heavier than MaxWeight. 893 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 894 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 895 assert(Register::isVirtualRegister(Intf->reg) && 896 "Only expecting virtual register interference from query"); 897 898 // Do not allow eviction of a virtual register if we are in the middle 899 // of last-chance recoloring and this virtual register is one that we 900 // have scavenged a physical register for. 901 if (FixedRegisters.count(Intf->reg)) 902 return false; 903 904 // Never evict spill products. They cannot split or spill. 905 if (getStage(*Intf) == RS_Done) 906 return false; 907 // Once a live range becomes small enough, it is urgent that we find a 908 // register for it. This is indicated by an infinite spill weight. These 909 // urgent live ranges get to evict almost anything. 910 // 911 // Also allow urgent evictions of unspillable ranges from a strictly 912 // larger allocation order. 913 bool Urgent = !VirtReg.isSpillable() && 914 (Intf->isSpillable() || 915 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) < 916 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg))); 917 // Only evict older cascades or live ranges without a cascade. 918 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; 919 if (Cascade <= IntfCascade) { 920 if (!Urgent) 921 return false; 922 // We permit breaking cascades for urgent evictions. It should be the 923 // last resort, though, so make it really expensive. 924 Cost.BrokenHints += 10; 925 } 926 // Would this break a satisfied hint? 927 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 928 // Update eviction cost. 929 Cost.BrokenHints += BreaksHint; 930 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 931 // Abort if this would be too expensive. 932 if (!(Cost < MaxCost)) 933 return false; 934 if (Urgent) 935 continue; 936 // Apply the eviction policy for non-urgent evictions. 937 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 938 return false; 939 // If !MaxCost.isMax(), then we're just looking for a cheap register. 940 // Evicting another local live range in this case could lead to suboptimal 941 // coloring. 942 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 943 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 944 return false; 945 } 946 } 947 } 948 MaxCost = Cost; 949 return true; 950 } 951 952 /// Return true if all interferences between VirtReg and PhysReg between 953 /// Start and End can be evicted. 954 /// 955 /// \param VirtReg Live range that is about to be assigned. 956 /// \param PhysReg Desired register for assignment. 957 /// \param Start Start of range to look for interferences. 958 /// \param End End of range to look for interferences. 959 /// \param MaxCost Only look for cheaper candidates and update with new cost 960 /// when returning true. 961 /// \return True when interference can be evicted cheaper than MaxCost. 962 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg, 963 Register PhysReg, SlotIndex Start, 964 SlotIndex End, 965 EvictionCost &MaxCost) { 966 EvictionCost Cost; 967 968 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 969 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 970 971 // Check if any interfering live range is heavier than MaxWeight. 972 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 973 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 974 975 // Check if interference overlast the segment in interest. 976 if (!Intf->overlaps(Start, End)) 977 continue; 978 979 // Cannot evict non virtual reg interference. 980 if (!Register::isVirtualRegister(Intf->reg)) 981 return false; 982 // Never evict spill products. They cannot split or spill. 983 if (getStage(*Intf) == RS_Done) 984 return false; 985 986 // Would this break a satisfied hint? 987 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 988 // Update eviction cost. 989 Cost.BrokenHints += BreaksHint; 990 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 991 // Abort if this would be too expensive. 992 if (!(Cost < MaxCost)) 993 return false; 994 } 995 } 996 997 if (Cost.MaxWeight == 0) 998 return false; 999 1000 MaxCost = Cost; 1001 return true; 1002 } 1003 1004 /// Return the physical register that will be best 1005 /// candidate for eviction by a local split interval that will be created 1006 /// between Start and End. 1007 /// 1008 /// \param Order The allocation order 1009 /// \param VirtReg Live range that is about to be assigned. 1010 /// \param Start Start of range to look for interferences 1011 /// \param End End of range to look for interferences 1012 /// \param BestEvictweight The eviction cost of that eviction 1013 /// \return The PhysReg which is the best candidate for eviction and the 1014 /// eviction cost in BestEvictweight 1015 unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 1016 LiveInterval &VirtReg, 1017 SlotIndex Start, SlotIndex End, 1018 float *BestEvictweight) { 1019 EvictionCost BestEvictCost; 1020 BestEvictCost.setMax(); 1021 BestEvictCost.MaxWeight = VirtReg.weight; 1022 unsigned BestEvicteePhys = 0; 1023 1024 // Go over all physical registers and find the best candidate for eviction 1025 for (auto PhysReg : Order.getOrder()) { 1026 1027 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 1028 BestEvictCost)) 1029 continue; 1030 1031 // Best so far. 1032 BestEvicteePhys = PhysReg; 1033 } 1034 *BestEvictweight = BestEvictCost.MaxWeight; 1035 return BestEvicteePhys; 1036 } 1037 1038 /// evictInterference - Evict any interferring registers that prevent VirtReg 1039 /// from being assigned to Physreg. This assumes that canEvictInterference 1040 /// returned true. 1041 void RAGreedy::evictInterference(LiveInterval &VirtReg, Register PhysReg, 1042 SmallVectorImpl<Register> &NewVRegs) { 1043 // Make sure that VirtReg has a cascade number, and assign that cascade 1044 // number to every evicted register. These live ranges than then only be 1045 // evicted by a newer cascade, preventing infinite loops. 1046 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 1047 if (!Cascade) 1048 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; 1049 1050 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 1051 << " interference: Cascade " << Cascade << '\n'); 1052 1053 // Collect all interfering virtregs first. 1054 SmallVector<LiveInterval*, 8> Intfs; 1055 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1056 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1057 // We usually have the interfering VRegs cached so collectInterferingVRegs() 1058 // should be fast, we may need to recalculate if when different physregs 1059 // overlap the same register unit so we had different SubRanges queried 1060 // against it. 1061 Q.collectInterferingVRegs(); 1062 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 1063 Intfs.append(IVR.begin(), IVR.end()); 1064 } 1065 1066 // Evict them second. This will invalidate the queries. 1067 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) { 1068 LiveInterval *Intf = Intfs[i]; 1069 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 1070 if (!VRM->hasPhys(Intf->reg)) 1071 continue; 1072 1073 LastEvicted.addEviction(PhysReg, VirtReg.reg, Intf->reg); 1074 1075 Matrix->unassign(*Intf); 1076 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || 1077 VirtReg.isSpillable() < Intf->isSpillable()) && 1078 "Cannot decrease cascade number, illegal eviction"); 1079 ExtraRegInfo[Intf->reg].Cascade = Cascade; 1080 ++NumEvicted; 1081 NewVRegs.push_back(Intf->reg); 1082 } 1083 } 1084 1085 /// Returns true if the given \p PhysReg is a callee saved register and has not 1086 /// been used for allocation yet. 1087 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 1088 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 1089 if (!CSR) 1090 return false; 1091 1092 return !Matrix->isPhysRegUsed(PhysReg); 1093 } 1094 1095 /// tryEvict - Try to evict all interferences for a physreg. 1096 /// @param VirtReg Currently unassigned virtual register. 1097 /// @param Order Physregs to try. 1098 /// @return Physreg to assign VirtReg, or 0. 1099 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, 1100 AllocationOrder &Order, 1101 SmallVectorImpl<Register> &NewVRegs, 1102 unsigned CostPerUseLimit, 1103 const SmallVirtRegSet &FixedRegisters) { 1104 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 1105 TimePassesIsEnabled); 1106 1107 // Keep track of the cheapest interference seen so far. 1108 EvictionCost BestCost; 1109 BestCost.setMax(); 1110 unsigned BestPhys = 0; 1111 unsigned OrderLimit = Order.getOrder().size(); 1112 1113 // When we are just looking for a reduced cost per use, don't break any 1114 // hints, and only evict smaller spill weights. 1115 if (CostPerUseLimit < ~0u) { 1116 BestCost.BrokenHints = 0; 1117 BestCost.MaxWeight = VirtReg.weight; 1118 1119 // Check of any registers in RC are below CostPerUseLimit. 1120 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg); 1121 unsigned MinCost = RegClassInfo.getMinCost(RC); 1122 if (MinCost >= CostPerUseLimit) { 1123 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 1124 << MinCost << ", no cheaper registers to be found.\n"); 1125 return 0; 1126 } 1127 1128 // It is normal for register classes to have a long tail of registers with 1129 // the same cost. We don't need to look at them if they're too expensive. 1130 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) { 1131 OrderLimit = RegClassInfo.getLastCostChange(RC); 1132 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 1133 << " regs.\n"); 1134 } 1135 } 1136 1137 Order.rewind(); 1138 while (MCRegister PhysReg = Order.next(OrderLimit)) { 1139 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) 1140 continue; 1141 // The first use of a callee-saved register in a function has cost 1. 1142 // Don't start using a CSR when the CostPerUseLimit is low. 1143 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 1144 LLVM_DEBUG( 1145 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 1146 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 1147 << '\n'); 1148 continue; 1149 } 1150 1151 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost, 1152 FixedRegisters)) 1153 continue; 1154 1155 // Best so far. 1156 BestPhys = PhysReg; 1157 1158 // Stop if the hint can be used. 1159 if (Order.isHint()) 1160 break; 1161 } 1162 1163 if (!BestPhys) 1164 return 0; 1165 1166 evictInterference(VirtReg, BestPhys, NewVRegs); 1167 return BestPhys; 1168 } 1169 1170 //===----------------------------------------------------------------------===// 1171 // Region Splitting 1172 //===----------------------------------------------------------------------===// 1173 1174 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 1175 /// interference pattern in Physreg and its aliases. Add the constraints to 1176 /// SpillPlacement and return the static cost of this split in Cost, assuming 1177 /// that all preferences in SplitConstraints are met. 1178 /// Return false if there are no bundles with positive bias. 1179 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 1180 BlockFrequency &Cost) { 1181 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1182 1183 // Reset interference dependent info. 1184 SplitConstraints.resize(UseBlocks.size()); 1185 BlockFrequency StaticCost = 0; 1186 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1187 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1188 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1189 1190 BC.Number = BI.MBB->getNumber(); 1191 Intf.moveToBlock(BC.Number); 1192 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1193 BC.Exit = (BI.LiveOut && 1194 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 1195 ? SpillPlacement::PrefReg 1196 : SpillPlacement::DontCare; 1197 BC.ChangesValue = BI.FirstDef.isValid(); 1198 1199 if (!Intf.hasInterference()) 1200 continue; 1201 1202 // Number of spill code instructions to insert. 1203 unsigned Ins = 0; 1204 1205 // Interference for the live-in value. 1206 if (BI.LiveIn) { 1207 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 1208 BC.Entry = SpillPlacement::MustSpill; 1209 ++Ins; 1210 } else if (Intf.first() < BI.FirstInstr) { 1211 BC.Entry = SpillPlacement::PrefSpill; 1212 ++Ins; 1213 } else if (Intf.first() < BI.LastInstr) { 1214 ++Ins; 1215 } 1216 1217 // Abort if the spill cannot be inserted at the MBB' start 1218 if (((BC.Entry == SpillPlacement::MustSpill) || 1219 (BC.Entry == SpillPlacement::PrefSpill)) && 1220 SlotIndex::isEarlierInstr(BI.FirstInstr, 1221 SA->getFirstSplitPoint(BC.Number))) 1222 return false; 1223 } 1224 1225 // Interference for the live-out value. 1226 if (BI.LiveOut) { 1227 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 1228 BC.Exit = SpillPlacement::MustSpill; 1229 ++Ins; 1230 } else if (Intf.last() > BI.LastInstr) { 1231 BC.Exit = SpillPlacement::PrefSpill; 1232 ++Ins; 1233 } else if (Intf.last() > BI.FirstInstr) { 1234 ++Ins; 1235 } 1236 } 1237 1238 // Accumulate the total frequency of inserted spill code. 1239 while (Ins--) 1240 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 1241 } 1242 Cost = StaticCost; 1243 1244 // Add constraints for use-blocks. Note that these are the only constraints 1245 // that may add a positive bias, it is downhill from here. 1246 SpillPlacer->addConstraints(SplitConstraints); 1247 return SpillPlacer->scanActiveBundles(); 1248 } 1249 1250 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1251 /// live-through blocks in Blocks. 1252 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1253 ArrayRef<unsigned> Blocks) { 1254 const unsigned GroupSize = 8; 1255 SpillPlacement::BlockConstraint BCS[GroupSize]; 1256 unsigned TBS[GroupSize]; 1257 unsigned B = 0, T = 0; 1258 1259 for (unsigned i = 0; i != Blocks.size(); ++i) { 1260 unsigned Number = Blocks[i]; 1261 Intf.moveToBlock(Number); 1262 1263 if (!Intf.hasInterference()) { 1264 assert(T < GroupSize && "Array overflow"); 1265 TBS[T] = Number; 1266 if (++T == GroupSize) { 1267 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1268 T = 0; 1269 } 1270 continue; 1271 } 1272 1273 assert(B < GroupSize && "Array overflow"); 1274 BCS[B].Number = Number; 1275 1276 // Abort if the spill cannot be inserted at the MBB' start 1277 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 1278 if (!MBB->empty() && 1279 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()), 1280 SA->getFirstSplitPoint(Number))) 1281 return false; 1282 // Interference for the live-in value. 1283 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1284 BCS[B].Entry = SpillPlacement::MustSpill; 1285 else 1286 BCS[B].Entry = SpillPlacement::PrefSpill; 1287 1288 // Interference for the live-out value. 1289 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1290 BCS[B].Exit = SpillPlacement::MustSpill; 1291 else 1292 BCS[B].Exit = SpillPlacement::PrefSpill; 1293 1294 if (++B == GroupSize) { 1295 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1296 B = 0; 1297 } 1298 } 1299 1300 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1301 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1302 return true; 1303 } 1304 1305 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1306 // Keep track of through blocks that have not been added to SpillPlacer. 1307 BitVector Todo = SA->getThroughBlocks(); 1308 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1309 unsigned AddedTo = 0; 1310 #ifndef NDEBUG 1311 unsigned Visited = 0; 1312 #endif 1313 1314 while (true) { 1315 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1316 // Find new through blocks in the periphery of PrefRegBundles. 1317 for (int i = 0, e = NewBundles.size(); i != e; ++i) { 1318 unsigned Bundle = NewBundles[i]; 1319 // Look at all blocks connected to Bundle in the full graph. 1320 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1321 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 1322 I != E; ++I) { 1323 unsigned Block = *I; 1324 if (!Todo.test(Block)) 1325 continue; 1326 Todo.reset(Block); 1327 // This is a new through block. Add it to SpillPlacer later. 1328 ActiveBlocks.push_back(Block); 1329 #ifndef NDEBUG 1330 ++Visited; 1331 #endif 1332 } 1333 } 1334 // Any new blocks to add? 1335 if (ActiveBlocks.size() == AddedTo) 1336 break; 1337 1338 // Compute through constraints from the interference, or assume that all 1339 // through blocks prefer spilling when forming compact regions. 1340 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1341 if (Cand.PhysReg) { 1342 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 1343 return false; 1344 } else 1345 // Provide a strong negative bias on through blocks to prevent unwanted 1346 // liveness on loop backedges. 1347 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1348 AddedTo = ActiveBlocks.size(); 1349 1350 // Perhaps iterating can enable more bundles? 1351 SpillPlacer->iterate(); 1352 } 1353 LLVM_DEBUG(dbgs() << ", v=" << Visited); 1354 return true; 1355 } 1356 1357 /// calcCompactRegion - Compute the set of edge bundles that should be live 1358 /// when splitting the current live range into compact regions. Compact 1359 /// regions can be computed without looking at interference. They are the 1360 /// regions formed by removing all the live-through blocks from the live range. 1361 /// 1362 /// Returns false if the current live range is already compact, or if the 1363 /// compact regions would form single block regions anyway. 1364 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1365 // Without any through blocks, the live range is already compact. 1366 if (!SA->getNumThroughBlocks()) 1367 return false; 1368 1369 // Compact regions don't correspond to any physreg. 1370 Cand.reset(IntfCache, 0); 1371 1372 LLVM_DEBUG(dbgs() << "Compact region bundles"); 1373 1374 // Use the spill placer to determine the live bundles. GrowRegion pretends 1375 // that all the through blocks have interference when PhysReg is unset. 1376 SpillPlacer->prepare(Cand.LiveBundles); 1377 1378 // The static split cost will be zero since Cand.Intf reports no interference. 1379 BlockFrequency Cost; 1380 if (!addSplitConstraints(Cand.Intf, Cost)) { 1381 LLVM_DEBUG(dbgs() << ", none.\n"); 1382 return false; 1383 } 1384 1385 if (!growRegion(Cand)) { 1386 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1387 return false; 1388 } 1389 1390 SpillPlacer->finish(); 1391 1392 if (!Cand.LiveBundles.any()) { 1393 LLVM_DEBUG(dbgs() << ", none.\n"); 1394 return false; 1395 } 1396 1397 LLVM_DEBUG({ 1398 for (int i : Cand.LiveBundles.set_bits()) 1399 dbgs() << " EB#" << i; 1400 dbgs() << ".\n"; 1401 }); 1402 return true; 1403 } 1404 1405 /// calcSpillCost - Compute how expensive it would be to split the live range in 1406 /// SA around all use blocks instead of forming bundle regions. 1407 BlockFrequency RAGreedy::calcSpillCost() { 1408 BlockFrequency Cost = 0; 1409 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1410 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1411 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1412 unsigned Number = BI.MBB->getNumber(); 1413 // We normally only need one spill instruction - a load or a store. 1414 Cost += SpillPlacer->getBlockFrequency(Number); 1415 1416 // Unless the value is redefined in the block. 1417 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1418 Cost += SpillPlacer->getBlockFrequency(Number); 1419 } 1420 return Cost; 1421 } 1422 1423 /// Check if splitting Evictee will create a local split interval in 1424 /// basic block number BBNumber that may cause a bad eviction chain. This is 1425 /// intended to prevent bad eviction sequences like: 1426 /// movl %ebp, 8(%esp) # 4-byte Spill 1427 /// movl %ecx, %ebp 1428 /// movl %ebx, %ecx 1429 /// movl %edi, %ebx 1430 /// movl %edx, %edi 1431 /// cltd 1432 /// idivl %esi 1433 /// movl %edi, %edx 1434 /// movl %ebx, %edi 1435 /// movl %ecx, %ebx 1436 /// movl %ebp, %ecx 1437 /// movl 16(%esp), %ebp # 4 - byte Reload 1438 /// 1439 /// Such sequences are created in 2 scenarios: 1440 /// 1441 /// Scenario #1: 1442 /// %0 is evicted from physreg0 by %1. 1443 /// Evictee %0 is intended for region splitting with split candidate 1444 /// physreg0 (the reg %0 was evicted from). 1445 /// Region splitting creates a local interval because of interference with the 1446 /// evictor %1 (normally region splitting creates 2 interval, the "by reg" 1447 /// and "by stack" intervals and local interval created when interference 1448 /// occurs). 1449 /// One of the split intervals ends up evicting %2 from physreg1. 1450 /// Evictee %2 is intended for region splitting with split candidate 1451 /// physreg1. 1452 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1453 /// 1454 /// Scenario #2 1455 /// %0 is evicted from physreg0 by %1. 1456 /// %2 is evicted from physreg2 by %3 etc. 1457 /// Evictee %0 is intended for region splitting with split candidate 1458 /// physreg1. 1459 /// Region splitting creates a local interval because of interference with the 1460 /// evictor %1. 1461 /// One of the split intervals ends up evicting back original evictor %1 1462 /// from physreg0 (the reg %0 was evicted from). 1463 /// Another evictee %2 is intended for region splitting with split candidate 1464 /// physreg1. 1465 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1466 /// 1467 /// \param Evictee The register considered to be split. 1468 /// \param Cand The split candidate that determines the physical register 1469 /// we are splitting for and the interferences. 1470 /// \param BBNumber The number of a BB for which the region split process will 1471 /// create a local split interval. 1472 /// \param Order The physical registers that may get evicted by a split 1473 /// artifact of Evictee. 1474 /// \return True if splitting Evictee may cause a bad eviction chain, false 1475 /// otherwise. 1476 bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee, 1477 GlobalSplitCandidate &Cand, 1478 unsigned BBNumber, 1479 const AllocationOrder &Order) { 1480 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 1481 unsigned Evictor = VregEvictorInfo.first; 1482 unsigned PhysReg = VregEvictorInfo.second; 1483 1484 // No actual evictor. 1485 if (!Evictor || !PhysReg) 1486 return false; 1487 1488 float MaxWeight = 0; 1489 unsigned FutureEvictedPhysReg = 1490 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 1491 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 1492 1493 // The bad eviction chain occurs when either the split candidate is the 1494 // evicting reg or one of the split artifact will evict the evicting reg. 1495 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 1496 return false; 1497 1498 Cand.Intf.moveToBlock(BBNumber); 1499 1500 // Check to see if the Evictor contains interference (with Evictee) in the 1501 // given BB. If so, this interference caused the eviction of Evictee from 1502 // PhysReg. This suggest that we will create a local interval during the 1503 // region split to avoid this interference This local interval may cause a bad 1504 // eviction chain. 1505 if (!LIS->hasInterval(Evictor)) 1506 return false; 1507 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 1508 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 1509 return false; 1510 1511 // Now, check to see if the local interval we will create is going to be 1512 // expensive enough to evict somebody If so, this may cause a bad eviction 1513 // chain. 1514 VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI); 1515 float splitArtifactWeight = 1516 VRAI.futureWeight(LIS->getInterval(Evictee), 1517 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1518 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 1519 return false; 1520 1521 return true; 1522 } 1523 1524 /// Check if splitting VirtRegToSplit will create a local split interval 1525 /// in basic block number BBNumber that may cause a spill. 1526 /// 1527 /// \param VirtRegToSplit The register considered to be split. 1528 /// \param Cand The split candidate that determines the physical 1529 /// register we are splitting for and the interferences. 1530 /// \param BBNumber The number of a BB for which the region split process 1531 /// will create a local split interval. 1532 /// \param Order The physical registers that may get evicted by a 1533 /// split artifact of VirtRegToSplit. 1534 /// \return True if splitting VirtRegToSplit may cause a spill, false 1535 /// otherwise. 1536 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit, 1537 GlobalSplitCandidate &Cand, 1538 unsigned BBNumber, 1539 const AllocationOrder &Order) { 1540 Cand.Intf.moveToBlock(BBNumber); 1541 1542 // Check if the local interval will find a non interfereing assignment. 1543 for (auto PhysReg : Order.getOrder()) { 1544 if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(), 1545 Cand.Intf.last(), PhysReg)) 1546 return false; 1547 } 1548 1549 // Check if the local interval will evict a cheaper interval. 1550 float CheapestEvictWeight = 0; 1551 unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight( 1552 Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(), 1553 Cand.Intf.last(), &CheapestEvictWeight); 1554 1555 // Have we found an interval that can be evicted? 1556 if (FutureEvictedPhysReg) { 1557 VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI); 1558 float splitArtifactWeight = 1559 VRAI.futureWeight(LIS->getInterval(VirtRegToSplit), 1560 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1561 // Will the weight of the local interval be higher than the cheapest evictee 1562 // weight? If so it will evict it and will not cause a spill. 1563 if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight) 1564 return false; 1565 } 1566 1567 // The local interval is not able to find non interferencing assignment and 1568 // not able to evict a less worthy interval, therfore, it can cause a spill. 1569 return true; 1570 } 1571 1572 /// calcGlobalSplitCost - Return the global split cost of following the split 1573 /// pattern in LiveBundles. This cost should be added to the local cost of the 1574 /// interference pattern in SplitConstraints. 1575 /// 1576 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 1577 const AllocationOrder &Order, 1578 bool *CanCauseEvictionChain) { 1579 BlockFrequency GlobalCost = 0; 1580 const BitVector &LiveBundles = Cand.LiveBundles; 1581 unsigned VirtRegToSplit = SA->getParent().reg; 1582 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1583 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1584 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1585 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1586 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1587 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1588 unsigned Ins = 0; 1589 1590 Cand.Intf.moveToBlock(BC.Number); 1591 // Check wheather a local interval is going to be created during the region 1592 // split. Calculate adavanced spilt cost (cost of local intervals) if option 1593 // is enabled. 1594 if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn && 1595 BI.LiveOut && RegIn && RegOut) { 1596 1597 if (CanCauseEvictionChain && 1598 splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { 1599 // This interference causes our eviction from this assignment, we might 1600 // evict somebody else and eventually someone will spill, add that cost. 1601 // See splitCanCauseEvictionChain for detailed description of scenarios. 1602 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1603 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1604 1605 *CanCauseEvictionChain = true; 1606 1607 } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number, 1608 Order)) { 1609 // This interference causes local interval to spill, add that cost. 1610 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1611 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1612 } 1613 } 1614 1615 if (BI.LiveIn) 1616 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1617 if (BI.LiveOut) 1618 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1619 while (Ins--) 1620 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1621 } 1622 1623 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { 1624 unsigned Number = Cand.ActiveBlocks[i]; 1625 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1626 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1627 if (!RegIn && !RegOut) 1628 continue; 1629 if (RegIn && RegOut) { 1630 // We need double spill code if this block has interference. 1631 Cand.Intf.moveToBlock(Number); 1632 if (Cand.Intf.hasInterference()) { 1633 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1634 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1635 1636 // Check wheather a local interval is going to be created during the 1637 // region split. 1638 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1639 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { 1640 // This interference cause our eviction from this assignment, we might 1641 // evict somebody else, add that cost. 1642 // See splitCanCauseEvictionChain for detailed description of 1643 // scenarios. 1644 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1645 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1646 1647 *CanCauseEvictionChain = true; 1648 } 1649 } 1650 continue; 1651 } 1652 // live-in / stack-out or stack-in live-out. 1653 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1654 } 1655 return GlobalCost; 1656 } 1657 1658 /// splitAroundRegion - Split the current live range around the regions 1659 /// determined by BundleCand and GlobalCand. 1660 /// 1661 /// Before calling this function, GlobalCand and BundleCand must be initialized 1662 /// so each bundle is assigned to a valid candidate, or NoCand for the 1663 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1664 /// objects must be initialized for the current live range, and intervals 1665 /// created for the used candidates. 1666 /// 1667 /// @param LREdit The LiveRangeEdit object handling the current split. 1668 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1669 /// must appear in this list. 1670 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1671 ArrayRef<unsigned> UsedCands) { 1672 // These are the intervals created for new global ranges. We may create more 1673 // intervals for local ranges. 1674 const unsigned NumGlobalIntvs = LREdit.size(); 1675 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 1676 << " globals.\n"); 1677 assert(NumGlobalIntvs && "No global intervals configured"); 1678 1679 // Isolate even single instructions when dealing with a proper sub-class. 1680 // That guarantees register class inflation for the stack interval because it 1681 // is all copies. 1682 unsigned Reg = SA->getParent().reg; 1683 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1684 1685 // First handle all the blocks with uses. 1686 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1687 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1688 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1689 unsigned Number = BI.MBB->getNumber(); 1690 unsigned IntvIn = 0, IntvOut = 0; 1691 SlotIndex IntfIn, IntfOut; 1692 if (BI.LiveIn) { 1693 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1694 if (CandIn != NoCand) { 1695 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1696 IntvIn = Cand.IntvIdx; 1697 Cand.Intf.moveToBlock(Number); 1698 IntfIn = Cand.Intf.first(); 1699 } 1700 } 1701 if (BI.LiveOut) { 1702 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1703 if (CandOut != NoCand) { 1704 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1705 IntvOut = Cand.IntvIdx; 1706 Cand.Intf.moveToBlock(Number); 1707 IntfOut = Cand.Intf.last(); 1708 } 1709 } 1710 1711 // Create separate intervals for isolated blocks with multiple uses. 1712 if (!IntvIn && !IntvOut) { 1713 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 1714 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1715 SE->splitSingleBlock(BI); 1716 continue; 1717 } 1718 1719 if (IntvIn && IntvOut) 1720 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1721 else if (IntvIn) 1722 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1723 else 1724 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1725 } 1726 1727 // Handle live-through blocks. The relevant live-through blocks are stored in 1728 // the ActiveBlocks list with each candidate. We need to filter out 1729 // duplicates. 1730 BitVector Todo = SA->getThroughBlocks(); 1731 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1732 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1733 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1734 unsigned Number = Blocks[i]; 1735 if (!Todo.test(Number)) 1736 continue; 1737 Todo.reset(Number); 1738 1739 unsigned IntvIn = 0, IntvOut = 0; 1740 SlotIndex IntfIn, IntfOut; 1741 1742 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1743 if (CandIn != NoCand) { 1744 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1745 IntvIn = Cand.IntvIdx; 1746 Cand.Intf.moveToBlock(Number); 1747 IntfIn = Cand.Intf.first(); 1748 } 1749 1750 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1751 if (CandOut != NoCand) { 1752 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1753 IntvOut = Cand.IntvIdx; 1754 Cand.Intf.moveToBlock(Number); 1755 IntfOut = Cand.Intf.last(); 1756 } 1757 if (!IntvIn && !IntvOut) 1758 continue; 1759 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1760 } 1761 } 1762 1763 ++NumGlobalSplits; 1764 1765 SmallVector<unsigned, 8> IntvMap; 1766 SE->finish(&IntvMap); 1767 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1768 1769 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1770 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1771 1772 // Sort out the new intervals created by splitting. We get four kinds: 1773 // - Remainder intervals should not be split again. 1774 // - Candidate intervals can be assigned to Cand.PhysReg. 1775 // - Block-local splits are candidates for local splitting. 1776 // - DCE leftovers should go back on the queue. 1777 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1778 LiveInterval &Reg = LIS->getInterval(LREdit.get(i)); 1779 1780 // Ignore old intervals from DCE. 1781 if (getStage(Reg) != RS_New) 1782 continue; 1783 1784 // Remainder interval. Don't try splitting again, spill if it doesn't 1785 // allocate. 1786 if (IntvMap[i] == 0) { 1787 setStage(Reg, RS_Spill); 1788 continue; 1789 } 1790 1791 // Global intervals. Allow repeated splitting as long as the number of live 1792 // blocks is strictly decreasing. 1793 if (IntvMap[i] < NumGlobalIntvs) { 1794 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1795 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1796 << " blocks as original.\n"); 1797 // Don't allow repeated splitting as a safe guard against looping. 1798 setStage(Reg, RS_Split2); 1799 } 1800 continue; 1801 } 1802 1803 // Other intervals are treated as new. This includes local intervals created 1804 // for blocks with multiple uses, and anything created by DCE. 1805 } 1806 1807 if (VerifyEnabled) 1808 MF->verify(this, "After splitting live range around region"); 1809 } 1810 1811 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1812 SmallVectorImpl<Register> &NewVRegs) { 1813 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1814 return 0; 1815 unsigned NumCands = 0; 1816 BlockFrequency SpillCost = calcSpillCost(); 1817 BlockFrequency BestCost; 1818 1819 // Check if we can split this live range around a compact region. 1820 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1821 if (HasCompact) { 1822 // Yes, keep GlobalCand[0] as the compact region candidate. 1823 NumCands = 1; 1824 BestCost = BlockFrequency::getMaxFrequency(); 1825 } else { 1826 // No benefit from the compact region, our fallback will be per-block 1827 // splitting. Make sure we find a solution that is cheaper than spilling. 1828 BestCost = SpillCost; 1829 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1830 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1831 } 1832 1833 bool CanCauseEvictionChain = false; 1834 unsigned BestCand = 1835 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1836 false /*IgnoreCSR*/, &CanCauseEvictionChain); 1837 1838 // Split candidates with compact regions can cause a bad eviction sequence. 1839 // See splitCanCauseEvictionChain for detailed description of scenarios. 1840 // To avoid it, we need to comapre the cost with the spill cost and not the 1841 // current max frequency. 1842 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && 1843 CanCauseEvictionChain) { 1844 return 0; 1845 } 1846 1847 // No solutions found, fall back to single block splitting. 1848 if (!HasCompact && BestCand == NoCand) 1849 return 0; 1850 1851 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1852 } 1853 1854 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1855 AllocationOrder &Order, 1856 BlockFrequency &BestCost, 1857 unsigned &NumCands, bool IgnoreCSR, 1858 bool *CanCauseEvictionChain) { 1859 unsigned BestCand = NoCand; 1860 Order.rewind(); 1861 while (unsigned PhysReg = Order.next()) { 1862 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1863 continue; 1864 1865 // Discard bad candidates before we run out of interference cache cursors. 1866 // This will only affect register classes with a lot of registers (>32). 1867 if (NumCands == IntfCache.getMaxCursors()) { 1868 unsigned WorstCount = ~0u; 1869 unsigned Worst = 0; 1870 for (unsigned i = 0; i != NumCands; ++i) { 1871 if (i == BestCand || !GlobalCand[i].PhysReg) 1872 continue; 1873 unsigned Count = GlobalCand[i].LiveBundles.count(); 1874 if (Count < WorstCount) { 1875 Worst = i; 1876 WorstCount = Count; 1877 } 1878 } 1879 --NumCands; 1880 GlobalCand[Worst] = GlobalCand[NumCands]; 1881 if (BestCand == NumCands) 1882 BestCand = Worst; 1883 } 1884 1885 if (GlobalCand.size() <= NumCands) 1886 GlobalCand.resize(NumCands+1); 1887 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1888 Cand.reset(IntfCache, PhysReg); 1889 1890 SpillPlacer->prepare(Cand.LiveBundles); 1891 BlockFrequency Cost; 1892 if (!addSplitConstraints(Cand.Intf, Cost)) { 1893 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1894 continue; 1895 } 1896 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1897 MBFI->printBlockFreq(dbgs(), Cost)); 1898 if (Cost >= BestCost) { 1899 LLVM_DEBUG({ 1900 if (BestCand == NoCand) 1901 dbgs() << " worse than no bundles\n"; 1902 else 1903 dbgs() << " worse than " 1904 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1905 }); 1906 continue; 1907 } 1908 if (!growRegion(Cand)) { 1909 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1910 continue; 1911 } 1912 1913 SpillPlacer->finish(); 1914 1915 // No live bundles, defer to splitSingleBlocks(). 1916 if (!Cand.LiveBundles.any()) { 1917 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1918 continue; 1919 } 1920 1921 bool HasEvictionChain = false; 1922 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); 1923 LLVM_DEBUG({ 1924 dbgs() << ", total = "; 1925 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1926 for (int i : Cand.LiveBundles.set_bits()) 1927 dbgs() << " EB#" << i; 1928 dbgs() << ".\n"; 1929 }); 1930 if (Cost < BestCost) { 1931 BestCand = NumCands; 1932 BestCost = Cost; 1933 // See splitCanCauseEvictionChain for detailed description of bad 1934 // eviction chain scenarios. 1935 if (CanCauseEvictionChain) 1936 *CanCauseEvictionChain = HasEvictionChain; 1937 } 1938 ++NumCands; 1939 } 1940 1941 if (CanCauseEvictionChain && BestCand != NoCand) { 1942 // See splitCanCauseEvictionChain for detailed description of bad 1943 // eviction chain scenarios. 1944 LLVM_DEBUG(dbgs() << "Best split candidate of vreg " 1945 << printReg(VirtReg.reg, TRI) << " may "); 1946 if (!(*CanCauseEvictionChain)) 1947 LLVM_DEBUG(dbgs() << "not "); 1948 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n"); 1949 } 1950 1951 return BestCand; 1952 } 1953 1954 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1955 bool HasCompact, 1956 SmallVectorImpl<Register> &NewVRegs) { 1957 SmallVector<unsigned, 8> UsedCands; 1958 // Prepare split editor. 1959 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1960 SE->reset(LREdit, SplitSpillMode); 1961 1962 // Assign all edge bundles to the preferred candidate, or NoCand. 1963 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1964 1965 // Assign bundles for the best candidate region. 1966 if (BestCand != NoCand) { 1967 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1968 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1969 UsedCands.push_back(BestCand); 1970 Cand.IntvIdx = SE->openIntv(); 1971 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1972 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1973 (void)B; 1974 } 1975 } 1976 1977 // Assign bundles for the compact region. 1978 if (HasCompact) { 1979 GlobalSplitCandidate &Cand = GlobalCand.front(); 1980 assert(!Cand.PhysReg && "Compact region has no physreg"); 1981 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1982 UsedCands.push_back(0); 1983 Cand.IntvIdx = SE->openIntv(); 1984 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 1985 << " bundles, intv " << Cand.IntvIdx << ".\n"); 1986 (void)B; 1987 } 1988 } 1989 1990 splitAroundRegion(LREdit, UsedCands); 1991 return 0; 1992 } 1993 1994 //===----------------------------------------------------------------------===// 1995 // Per-Block Splitting 1996 //===----------------------------------------------------------------------===// 1997 1998 /// tryBlockSplit - Split a global live range around every block with uses. This 1999 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 2000 /// they don't allocate. 2001 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2002 SmallVectorImpl<Register> &NewVRegs) { 2003 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 2004 Register Reg = VirtReg.reg; 2005 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 2006 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2007 SE->reset(LREdit, SplitSpillMode); 2008 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 2009 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 2010 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 2011 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 2012 SE->splitSingleBlock(BI); 2013 } 2014 // No blocks were split. 2015 if (LREdit.empty()) 2016 return 0; 2017 2018 // We did split for some blocks. 2019 SmallVector<unsigned, 8> IntvMap; 2020 SE->finish(&IntvMap); 2021 2022 // Tell LiveDebugVariables about the new ranges. 2023 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 2024 2025 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2026 2027 // Sort out the new intervals created by splitting. The remainder interval 2028 // goes straight to spilling, the new local ranges get to stay RS_New. 2029 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 2030 LiveInterval &LI = LIS->getInterval(LREdit.get(i)); 2031 if (getStage(LI) == RS_New && IntvMap[i] == 0) 2032 setStage(LI, RS_Spill); 2033 } 2034 2035 if (VerifyEnabled) 2036 MF->verify(this, "After splitting live range around basic blocks"); 2037 return 0; 2038 } 2039 2040 //===----------------------------------------------------------------------===// 2041 // Per-Instruction Splitting 2042 //===----------------------------------------------------------------------===// 2043 2044 /// Get the number of allocatable registers that match the constraints of \p Reg 2045 /// on \p MI and that are also in \p SuperRC. 2046 static unsigned getNumAllocatableRegsForConstraints( 2047 const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC, 2048 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 2049 const RegisterClassInfo &RCI) { 2050 assert(SuperRC && "Invalid register class"); 2051 2052 const TargetRegisterClass *ConstrainedRC = 2053 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 2054 /* ExploreBundle */ true); 2055 if (!ConstrainedRC) 2056 return 0; 2057 return RCI.getNumAllocatableRegs(ConstrainedRC); 2058 } 2059 2060 /// tryInstructionSplit - Split a live range around individual instructions. 2061 /// This is normally not worthwhile since the spiller is doing essentially the 2062 /// same thing. However, when the live range is in a constrained register 2063 /// class, it may help to insert copies such that parts of the live range can 2064 /// be moved to a larger register class. 2065 /// 2066 /// This is similar to spilling to a larger register class. 2067 unsigned 2068 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2069 SmallVectorImpl<Register> &NewVRegs) { 2070 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 2071 // There is no point to this if there are no larger sub-classes. 2072 if (!RegClassInfo.isProperSubClass(CurRC)) 2073 return 0; 2074 2075 // Always enable split spill mode, since we're effectively spilling to a 2076 // register. 2077 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2078 SE->reset(LREdit, SplitEditor::SM_Size); 2079 2080 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2081 if (Uses.size() <= 1) 2082 return 0; 2083 2084 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 2085 << " individual instrs.\n"); 2086 2087 const TargetRegisterClass *SuperRC = 2088 TRI->getLargestLegalSuperClass(CurRC, *MF); 2089 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 2090 // Split around every non-copy instruction if this split will relax 2091 // the constraints on the virtual register. 2092 // Otherwise, splitting just inserts uncoalescable copies that do not help 2093 // the allocation. 2094 for (unsigned i = 0; i != Uses.size(); ++i) { 2095 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i])) 2096 if (MI->isFullCopy() || 2097 SuperRCNumAllocatableRegs == 2098 getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII, 2099 TRI, RCI)) { 2100 LLVM_DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI); 2101 continue; 2102 } 2103 SE->openIntv(); 2104 SlotIndex SegStart = SE->enterIntvBefore(Uses[i]); 2105 SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]); 2106 SE->useIntv(SegStart, SegStop); 2107 } 2108 2109 if (LREdit.empty()) { 2110 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 2111 return 0; 2112 } 2113 2114 SmallVector<unsigned, 8> IntvMap; 2115 SE->finish(&IntvMap); 2116 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 2117 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2118 2119 // Assign all new registers to RS_Spill. This was the last chance. 2120 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 2121 return 0; 2122 } 2123 2124 //===----------------------------------------------------------------------===// 2125 // Local Splitting 2126 //===----------------------------------------------------------------------===// 2127 2128 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 2129 /// in order to use PhysReg between two entries in SA->UseSlots. 2130 /// 2131 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. 2132 /// 2133 void RAGreedy::calcGapWeights(unsigned PhysReg, 2134 SmallVectorImpl<float> &GapWeight) { 2135 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2136 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2137 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2138 const unsigned NumGaps = Uses.size()-1; 2139 2140 // Start and end points for the interference check. 2141 SlotIndex StartIdx = 2142 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 2143 SlotIndex StopIdx = 2144 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 2145 2146 GapWeight.assign(NumGaps, 0.0f); 2147 2148 // Add interference from each overlapping register. 2149 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2150 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 2151 .checkInterference()) 2152 continue; 2153 2154 // We know that VirtReg is a continuous interval from FirstInstr to 2155 // LastInstr, so we don't need InterferenceQuery. 2156 // 2157 // Interference that overlaps an instruction is counted in both gaps 2158 // surrounding the instruction. The exception is interference before 2159 // StartIdx and after StopIdx. 2160 // 2161 LiveIntervalUnion::SegmentIter IntI = 2162 Matrix->getLiveUnions()[*Units] .find(StartIdx); 2163 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 2164 // Skip the gaps before IntI. 2165 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 2166 if (++Gap == NumGaps) 2167 break; 2168 if (Gap == NumGaps) 2169 break; 2170 2171 // Update the gaps covered by IntI. 2172 const float weight = IntI.value()->weight; 2173 for (; Gap != NumGaps; ++Gap) { 2174 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 2175 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 2176 break; 2177 } 2178 if (Gap == NumGaps) 2179 break; 2180 } 2181 } 2182 2183 // Add fixed interference. 2184 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2185 const LiveRange &LR = LIS->getRegUnit(*Units); 2186 LiveRange::const_iterator I = LR.find(StartIdx); 2187 LiveRange::const_iterator E = LR.end(); 2188 2189 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 2190 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 2191 while (Uses[Gap+1].getBoundaryIndex() < I->start) 2192 if (++Gap == NumGaps) 2193 break; 2194 if (Gap == NumGaps) 2195 break; 2196 2197 for (; Gap != NumGaps; ++Gap) { 2198 GapWeight[Gap] = huge_valf; 2199 if (Uses[Gap+1].getBaseIndex() >= I->end) 2200 break; 2201 } 2202 if (Gap == NumGaps) 2203 break; 2204 } 2205 } 2206 } 2207 2208 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 2209 /// basic block. 2210 /// 2211 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2212 SmallVectorImpl<Register> &NewVRegs) { 2213 // TODO: the function currently only handles a single UseBlock; it should be 2214 // possible to generalize. 2215 if (SA->getUseBlocks().size() != 1) 2216 return 0; 2217 2218 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2219 2220 // Note that it is possible to have an interval that is live-in or live-out 2221 // while only covering a single block - A phi-def can use undef values from 2222 // predecessors, and the block could be a single-block loop. 2223 // We don't bother doing anything clever about such a case, we simply assume 2224 // that the interval is continuous from FirstInstr to LastInstr. We should 2225 // make sure that we don't do anything illegal to such an interval, though. 2226 2227 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2228 if (Uses.size() <= 2) 2229 return 0; 2230 const unsigned NumGaps = Uses.size()-1; 2231 2232 LLVM_DEBUG({ 2233 dbgs() << "tryLocalSplit: "; 2234 for (unsigned i = 0, e = Uses.size(); i != e; ++i) 2235 dbgs() << ' ' << Uses[i]; 2236 dbgs() << '\n'; 2237 }); 2238 2239 // If VirtReg is live across any register mask operands, compute a list of 2240 // gaps with register masks. 2241 SmallVector<unsigned, 8> RegMaskGaps; 2242 if (Matrix->checkRegMaskInterference(VirtReg)) { 2243 // Get regmask slots for the whole block. 2244 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 2245 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 2246 // Constrain to VirtReg's live range. 2247 unsigned ri = 2248 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 2249 unsigned re = RMS.size(); 2250 for (unsigned i = 0; i != NumGaps && ri != re; ++i) { 2251 // Look for Uses[i] <= RMS <= Uses[i+1]. 2252 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i])); 2253 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri])) 2254 continue; 2255 // Skip a regmask on the same instruction as the last use. It doesn't 2256 // overlap the live range. 2257 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps) 2258 break; 2259 LLVM_DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' 2260 << Uses[i + 1]); 2261 RegMaskGaps.push_back(i); 2262 // Advance ri to the next gap. A regmask on one of the uses counts in 2263 // both gaps. 2264 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1])) 2265 ++ri; 2266 } 2267 LLVM_DEBUG(dbgs() << '\n'); 2268 } 2269 2270 // Since we allow local split results to be split again, there is a risk of 2271 // creating infinite loops. It is tempting to require that the new live 2272 // ranges have less instructions than the original. That would guarantee 2273 // convergence, but it is too strict. A live range with 3 instructions can be 2274 // split 2+3 (including the COPY), and we want to allow that. 2275 // 2276 // Instead we use these rules: 2277 // 2278 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 2279 // noop split, of course). 2280 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 2281 // the new ranges must have fewer instructions than before the split. 2282 // 3. New ranges with the same number of instructions are marked RS_Split2, 2283 // smaller ranges are marked RS_New. 2284 // 2285 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 2286 // excessive splitting and infinite loops. 2287 // 2288 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 2289 2290 // Best split candidate. 2291 unsigned BestBefore = NumGaps; 2292 unsigned BestAfter = 0; 2293 float BestDiff = 0; 2294 2295 const float blockFreq = 2296 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 2297 (1.0f / MBFI->getEntryFreq()); 2298 SmallVector<float, 8> GapWeight; 2299 2300 Order.rewind(); 2301 while (unsigned PhysReg = Order.next()) { 2302 // Keep track of the largest spill weight that would need to be evicted in 2303 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. 2304 calcGapWeights(PhysReg, GapWeight); 2305 2306 // Remove any gaps with regmask clobbers. 2307 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 2308 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i) 2309 GapWeight[RegMaskGaps[i]] = huge_valf; 2310 2311 // Try to find the best sequence of gaps to close. 2312 // The new spill weight must be larger than any gap interference. 2313 2314 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 2315 unsigned SplitBefore = 0, SplitAfter = 1; 2316 2317 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 2318 // It is the spill weight that needs to be evicted. 2319 float MaxGap = GapWeight[0]; 2320 2321 while (true) { 2322 // Live before/after split? 2323 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 2324 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 2325 2326 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 2327 << '-' << Uses[SplitAfter] << " i=" << MaxGap); 2328 2329 // Stop before the interval gets so big we wouldn't be making progress. 2330 if (!LiveBefore && !LiveAfter) { 2331 LLVM_DEBUG(dbgs() << " all\n"); 2332 break; 2333 } 2334 // Should the interval be extended or shrunk? 2335 bool Shrink = true; 2336 2337 // How many gaps would the new range have? 2338 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 2339 2340 // Legally, without causing looping? 2341 bool Legal = !ProgressRequired || NewGaps < NumGaps; 2342 2343 if (Legal && MaxGap < huge_valf) { 2344 // Estimate the new spill weight. Each instruction reads or writes the 2345 // register. Conservatively assume there are no read-modify-write 2346 // instructions. 2347 // 2348 // Try to guess the size of the new interval. 2349 const float EstWeight = normalizeSpillWeight( 2350 blockFreq * (NewGaps + 1), 2351 Uses[SplitBefore].distance(Uses[SplitAfter]) + 2352 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 2353 1); 2354 // Would this split be possible to allocate? 2355 // Never allocate all gaps, we wouldn't be making progress. 2356 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 2357 if (EstWeight * Hysteresis >= MaxGap) { 2358 Shrink = false; 2359 float Diff = EstWeight - MaxGap; 2360 if (Diff > BestDiff) { 2361 LLVM_DEBUG(dbgs() << " (best)"); 2362 BestDiff = Hysteresis * Diff; 2363 BestBefore = SplitBefore; 2364 BestAfter = SplitAfter; 2365 } 2366 } 2367 } 2368 2369 // Try to shrink. 2370 if (Shrink) { 2371 if (++SplitBefore < SplitAfter) { 2372 LLVM_DEBUG(dbgs() << " shrink\n"); 2373 // Recompute the max when necessary. 2374 if (GapWeight[SplitBefore - 1] >= MaxGap) { 2375 MaxGap = GapWeight[SplitBefore]; 2376 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) 2377 MaxGap = std::max(MaxGap, GapWeight[i]); 2378 } 2379 continue; 2380 } 2381 MaxGap = 0; 2382 } 2383 2384 // Try to extend the interval. 2385 if (SplitAfter >= NumGaps) { 2386 LLVM_DEBUG(dbgs() << " end\n"); 2387 break; 2388 } 2389 2390 LLVM_DEBUG(dbgs() << " extend\n"); 2391 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 2392 } 2393 } 2394 2395 // Didn't find any candidates? 2396 if (BestBefore == NumGaps) 2397 return 0; 2398 2399 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 2400 << Uses[BestAfter] << ", " << BestDiff << ", " 2401 << (BestAfter - BestBefore + 1) << " instrs\n"); 2402 2403 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2404 SE->reset(LREdit); 2405 2406 SE->openIntv(); 2407 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 2408 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 2409 SE->useIntv(SegStart, SegStop); 2410 SmallVector<unsigned, 8> IntvMap; 2411 SE->finish(&IntvMap); 2412 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 2413 2414 // If the new range has the same number of instructions as before, mark it as 2415 // RS_Split2 so the next split will be forced to make progress. Otherwise, 2416 // leave the new intervals as RS_New so they can compete. 2417 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 2418 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 2419 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 2420 if (NewGaps >= NumGaps) { 2421 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: "); 2422 assert(!ProgressRequired && "Didn't make progress when it was required."); 2423 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) 2424 if (IntvMap[i] == 1) { 2425 setStage(LIS->getInterval(LREdit.get(i)), RS_Split2); 2426 LLVM_DEBUG(dbgs() << printReg(LREdit.get(i))); 2427 } 2428 LLVM_DEBUG(dbgs() << '\n'); 2429 } 2430 ++NumLocalSplits; 2431 2432 return 0; 2433 } 2434 2435 //===----------------------------------------------------------------------===// 2436 // Live Range Splitting 2437 //===----------------------------------------------------------------------===// 2438 2439 /// trySplit - Try to split VirtReg or one of its interferences, making it 2440 /// assignable. 2441 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 2442 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 2443 SmallVectorImpl<Register> &NewVRegs, 2444 const SmallVirtRegSet &FixedRegisters) { 2445 // Ranges must be Split2 or less. 2446 if (getStage(VirtReg) >= RS_Spill) 2447 return 0; 2448 2449 // Local intervals are handled separately. 2450 if (LIS->intervalIsInOneMBB(VirtReg)) { 2451 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 2452 TimerGroupDescription, TimePassesIsEnabled); 2453 SA->analyze(&VirtReg); 2454 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 2455 if (PhysReg || !NewVRegs.empty()) 2456 return PhysReg; 2457 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2458 } 2459 2460 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2461 TimerGroupDescription, TimePassesIsEnabled); 2462 2463 SA->analyze(&VirtReg); 2464 2465 // FIXME: SplitAnalysis may repair broken live ranges coming from the 2466 // coalescer. That may cause the range to become allocatable which means that 2467 // tryRegionSplit won't be making progress. This check should be replaced with 2468 // an assertion when the coalescer is fixed. 2469 if (SA->didRepairRange()) { 2470 // VirtReg has changed, so all cached queries are invalid. 2471 Matrix->invalidateVirtRegs(); 2472 if (Register PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) 2473 return PhysReg; 2474 } 2475 2476 // First try to split around a region spanning multiple blocks. RS_Split2 2477 // ranges already made dubious progress with region splitting, so they go 2478 // straight to single block splitting. 2479 if (getStage(VirtReg) < RS_Split2) { 2480 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2481 if (PhysReg || !NewVRegs.empty()) 2482 return PhysReg; 2483 } 2484 2485 // Then isolate blocks. 2486 return tryBlockSplit(VirtReg, Order, NewVRegs); 2487 } 2488 2489 //===----------------------------------------------------------------------===// 2490 // Last Chance Recoloring 2491 //===----------------------------------------------------------------------===// 2492 2493 /// Return true if \p reg has any tied def operand. 2494 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 2495 for (const MachineOperand &MO : MRI->def_operands(reg)) 2496 if (MO.isTied()) 2497 return true; 2498 2499 return false; 2500 } 2501 2502 /// mayRecolorAllInterferences - Check if the virtual registers that 2503 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2504 /// recolored to free \p PhysReg. 2505 /// When true is returned, \p RecoloringCandidates has been augmented with all 2506 /// the live intervals that need to be recolored in order to free \p PhysReg 2507 /// for \p VirtReg. 2508 /// \p FixedRegisters contains all the virtual registers that cannot be 2509 /// recolored. 2510 bool 2511 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 2512 SmallLISet &RecoloringCandidates, 2513 const SmallVirtRegSet &FixedRegisters) { 2514 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 2515 2516 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2517 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2518 // If there is LastChanceRecoloringMaxInterference or more interferences, 2519 // chances are one would not be recolorable. 2520 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= 2521 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { 2522 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2523 CutOffInfo |= CO_Interf; 2524 return false; 2525 } 2526 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 2527 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 2528 // If Intf is done and sit on the same register class as VirtReg, 2529 // it would not be recolorable as it is in the same state as VirtReg. 2530 // However, if VirtReg has tied defs and Intf doesn't, then 2531 // there is still a point in examining if it can be recolorable. 2532 if (((getStage(*Intf) == RS_Done && 2533 MRI->getRegClass(Intf->reg) == CurRC) && 2534 !(hasTiedDef(MRI, VirtReg.reg) && !hasTiedDef(MRI, Intf->reg))) || 2535 FixedRegisters.count(Intf->reg)) { 2536 LLVM_DEBUG( 2537 dbgs() << "Early abort: the interference is not recolorable.\n"); 2538 return false; 2539 } 2540 RecoloringCandidates.insert(Intf); 2541 } 2542 } 2543 return true; 2544 } 2545 2546 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2547 /// its interferences. 2548 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2549 /// virtual register that was using it. The recoloring process may recursively 2550 /// use the last chance recoloring. Therefore, when a virtual register has been 2551 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2552 /// be last-chance-recolored again during this recoloring "session". 2553 /// E.g., 2554 /// Let 2555 /// vA can use {R1, R2 } 2556 /// vB can use { R2, R3} 2557 /// vC can use {R1 } 2558 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2559 /// instance) and they all interfere. 2560 /// 2561 /// vA is assigned R1 2562 /// vB is assigned R2 2563 /// vC tries to evict vA but vA is already done. 2564 /// Regular register allocation fails. 2565 /// 2566 /// Last chance recoloring kicks in: 2567 /// vC does as if vA was evicted => vC uses R1. 2568 /// vC is marked as fixed. 2569 /// vA needs to find a color. 2570 /// None are available. 2571 /// vA cannot evict vC: vC is a fixed virtual register now. 2572 /// vA does as if vB was evicted => vA uses R2. 2573 /// vB needs to find a color. 2574 /// R3 is available. 2575 /// Recoloring => vC = R1, vA = R2, vB = R3 2576 /// 2577 /// \p Order defines the preferred allocation order for \p VirtReg. 2578 /// \p NewRegs will contain any new virtual register that have been created 2579 /// (split, spill) during the process and that must be assigned. 2580 /// \p FixedRegisters contains all the virtual registers that cannot be 2581 /// recolored. 2582 /// \p Depth gives the current depth of the last chance recoloring. 2583 /// \return a physical register that can be used for VirtReg or ~0u if none 2584 /// exists. 2585 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2586 AllocationOrder &Order, 2587 SmallVectorImpl<Register> &NewVRegs, 2588 SmallVirtRegSet &FixedRegisters, 2589 unsigned Depth) { 2590 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2591 // Ranges must be Done. 2592 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2593 "Last chance recoloring should really be last chance"); 2594 // Set the max depth to LastChanceRecoloringMaxDepth. 2595 // We may want to reconsider that if we end up with a too large search space 2596 // for target with hundreds of registers. 2597 // Indeed, in that case we may want to cut the search space earlier. 2598 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2599 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2600 CutOffInfo |= CO_Depth; 2601 return ~0u; 2602 } 2603 2604 // Set of Live intervals that will need to be recolored. 2605 SmallLISet RecoloringCandidates; 2606 // Record the original mapping virtual register to physical register in case 2607 // the recoloring fails. 2608 DenseMap<Register, Register> VirtRegToPhysReg; 2609 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2610 // this recoloring "session". 2611 assert(!FixedRegisters.count(VirtReg.reg)); 2612 FixedRegisters.insert(VirtReg.reg); 2613 SmallVector<Register, 4> CurrentNewVRegs; 2614 2615 Order.rewind(); 2616 while (Register PhysReg = Order.next()) { 2617 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2618 << printReg(PhysReg, TRI) << '\n'); 2619 RecoloringCandidates.clear(); 2620 VirtRegToPhysReg.clear(); 2621 CurrentNewVRegs.clear(); 2622 2623 // It is only possible to recolor virtual register interference. 2624 if (Matrix->checkInterference(VirtReg, PhysReg) > 2625 LiveRegMatrix::IK_VirtReg) { 2626 LLVM_DEBUG( 2627 dbgs() << "Some interferences are not with virtual registers.\n"); 2628 2629 continue; 2630 } 2631 2632 // Early give up on this PhysReg if it is obvious we cannot recolor all 2633 // the interferences. 2634 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2635 FixedRegisters)) { 2636 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2637 continue; 2638 } 2639 2640 // RecoloringCandidates contains all the virtual registers that interfer 2641 // with VirtReg on PhysReg (or one of its aliases). 2642 // Enqueue them for recoloring and perform the actual recoloring. 2643 PQueue RecoloringQueue; 2644 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2645 EndIt = RecoloringCandidates.end(); 2646 It != EndIt; ++It) { 2647 Register ItVirtReg = (*It)->reg; 2648 enqueue(RecoloringQueue, *It); 2649 assert(VRM->hasPhys(ItVirtReg) && 2650 "Interferences are supposed to be with allocated variables"); 2651 2652 // Record the current allocation. 2653 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2654 // unset the related struct. 2655 Matrix->unassign(**It); 2656 } 2657 2658 // Do as if VirtReg was assigned to PhysReg so that the underlying 2659 // recoloring has the right information about the interferes and 2660 // available colors. 2661 Matrix->assign(VirtReg, PhysReg); 2662 2663 // Save the current recoloring state. 2664 // If we cannot recolor all the interferences, we will have to start again 2665 // at this point for the next physical register. 2666 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2667 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2668 FixedRegisters, Depth)) { 2669 // Push the queued vregs into the main queue. 2670 for (Register NewVReg : CurrentNewVRegs) 2671 NewVRegs.push_back(NewVReg); 2672 // Do not mess up with the global assignment process. 2673 // I.e., VirtReg must be unassigned. 2674 Matrix->unassign(VirtReg); 2675 return PhysReg; 2676 } 2677 2678 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2679 << printReg(PhysReg, TRI) << '\n'); 2680 2681 // The recoloring attempt failed, undo the changes. 2682 FixedRegisters = SaveFixedRegisters; 2683 Matrix->unassign(VirtReg); 2684 2685 // For a newly created vreg which is also in RecoloringCandidates, 2686 // don't add it to NewVRegs because its physical register will be restored 2687 // below. Other vregs in CurrentNewVRegs are created by calling 2688 // selectOrSplit and should be added into NewVRegs. 2689 for (SmallVectorImpl<Register>::iterator Next = CurrentNewVRegs.begin(), 2690 End = CurrentNewVRegs.end(); 2691 Next != End; ++Next) { 2692 if (RecoloringCandidates.count(&LIS->getInterval(*Next))) 2693 continue; 2694 NewVRegs.push_back(*Next); 2695 } 2696 2697 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2698 EndIt = RecoloringCandidates.end(); 2699 It != EndIt; ++It) { 2700 Register ItVirtReg = (*It)->reg; 2701 if (VRM->hasPhys(ItVirtReg)) 2702 Matrix->unassign(**It); 2703 Register ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2704 Matrix->assign(**It, ItPhysReg); 2705 } 2706 } 2707 2708 // Last chance recoloring did not worked either, give up. 2709 return ~0u; 2710 } 2711 2712 /// tryRecoloringCandidates - Try to assign a new color to every register 2713 /// in \RecoloringQueue. 2714 /// \p NewRegs will contain any new virtual register created during the 2715 /// recoloring process. 2716 /// \p FixedRegisters[in/out] contains all the registers that have been 2717 /// recolored. 2718 /// \return true if all virtual registers in RecoloringQueue were successfully 2719 /// recolored, false otherwise. 2720 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2721 SmallVectorImpl<Register> &NewVRegs, 2722 SmallVirtRegSet &FixedRegisters, 2723 unsigned Depth) { 2724 while (!RecoloringQueue.empty()) { 2725 LiveInterval *LI = dequeue(RecoloringQueue); 2726 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2727 Register PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, 2728 Depth + 1); 2729 // When splitting happens, the live-range may actually be empty. 2730 // In that case, this is okay to continue the recoloring even 2731 // if we did not find an alternative color for it. Indeed, 2732 // there will not be anything to color for LI in the end. 2733 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2734 return false; 2735 2736 if (!PhysReg) { 2737 assert(LI->empty() && "Only empty live-range do not require a register"); 2738 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2739 << " succeeded. Empty LI.\n"); 2740 continue; 2741 } 2742 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2743 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2744 2745 Matrix->assign(*LI, PhysReg); 2746 FixedRegisters.insert(LI->reg); 2747 } 2748 return true; 2749 } 2750 2751 //===----------------------------------------------------------------------===// 2752 // Main Entry Point 2753 //===----------------------------------------------------------------------===// 2754 2755 Register RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2756 SmallVectorImpl<Register> &NewVRegs) { 2757 CutOffInfo = CO_None; 2758 LLVMContext &Ctx = MF->getFunction().getContext(); 2759 SmallVirtRegSet FixedRegisters; 2760 Register Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2761 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2762 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2763 if (CutOffEncountered == CO_Depth) 2764 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2765 "reached. Use -fexhaustive-register-search to skip " 2766 "cutoffs"); 2767 else if (CutOffEncountered == CO_Interf) 2768 Ctx.emitError("register allocation failed: maximum interference for " 2769 "recoloring reached. Use -fexhaustive-register-search " 2770 "to skip cutoffs"); 2771 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2772 Ctx.emitError("register allocation failed: maximum interference and " 2773 "depth for recoloring reached. Use " 2774 "-fexhaustive-register-search to skip cutoffs"); 2775 } 2776 return Reg; 2777 } 2778 2779 /// Using a CSR for the first time has a cost because it causes push|pop 2780 /// to be added to prologue|epilogue. Splitting a cold section of the live 2781 /// range can have lower cost than using the CSR for the first time; 2782 /// Spilling a live range in the cold path can have lower cost than using 2783 /// the CSR for the first time. Returns the physical register if we decide 2784 /// to use the CSR; otherwise return 0. 2785 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, 2786 AllocationOrder &Order, 2787 Register PhysReg, 2788 unsigned &CostPerUseLimit, 2789 SmallVectorImpl<Register> &NewVRegs) { 2790 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2791 // We choose spill over using the CSR for the first time if the spill cost 2792 // is lower than CSRCost. 2793 SA->analyze(&VirtReg); 2794 if (calcSpillCost() >= CSRCost) 2795 return PhysReg; 2796 2797 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2798 // we will not use a callee-saved register in tryEvict. 2799 CostPerUseLimit = 1; 2800 return 0; 2801 } 2802 if (getStage(VirtReg) < RS_Split) { 2803 // We choose pre-splitting over using the CSR for the first time if 2804 // the cost of splitting is lower than CSRCost. 2805 SA->analyze(&VirtReg); 2806 unsigned NumCands = 0; 2807 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2808 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2809 NumCands, true /*IgnoreCSR*/); 2810 if (BestCand == NoCand) 2811 // Use the CSR if we can't find a region split below CSRCost. 2812 return PhysReg; 2813 2814 // Perform the actual pre-splitting. 2815 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2816 return 0; 2817 } 2818 return PhysReg; 2819 } 2820 2821 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2822 // Do not keep invalid information around. 2823 SetOfBrokenHints.remove(&LI); 2824 } 2825 2826 void RAGreedy::initializeCSRCost() { 2827 // We use the larger one out of the command-line option and the value report 2828 // by TRI. 2829 CSRCost = BlockFrequency( 2830 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2831 if (!CSRCost.getFrequency()) 2832 return; 2833 2834 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2835 uint64_t ActualEntry = MBFI->getEntryFreq(); 2836 if (!ActualEntry) { 2837 CSRCost = 0; 2838 return; 2839 } 2840 uint64_t FixedEntry = 1 << 14; 2841 if (ActualEntry < FixedEntry) 2842 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2843 else if (ActualEntry <= UINT32_MAX) 2844 // Invert the fraction and divide. 2845 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2846 else 2847 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2848 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2849 } 2850 2851 /// Collect the hint info for \p Reg. 2852 /// The results are stored into \p Out. 2853 /// \p Out is not cleared before being populated. 2854 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) { 2855 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2856 if (!Instr.isFullCopy()) 2857 continue; 2858 // Look for the other end of the copy. 2859 Register OtherReg = Instr.getOperand(0).getReg(); 2860 if (OtherReg == Reg) { 2861 OtherReg = Instr.getOperand(1).getReg(); 2862 if (OtherReg == Reg) 2863 continue; 2864 } 2865 // Get the current assignment. 2866 Register OtherPhysReg = Register::isPhysicalRegister(OtherReg) 2867 ? OtherReg 2868 : VRM->getPhys(OtherReg); 2869 // Push the collected information. 2870 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2871 OtherPhysReg)); 2872 } 2873 } 2874 2875 /// Using the given \p List, compute the cost of the broken hints if 2876 /// \p PhysReg was used. 2877 /// \return The cost of \p List for \p PhysReg. 2878 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2879 unsigned PhysReg) { 2880 BlockFrequency Cost = 0; 2881 for (const HintInfo &Info : List) { 2882 if (Info.PhysReg != PhysReg) 2883 Cost += Info.Freq; 2884 } 2885 return Cost; 2886 } 2887 2888 /// Using the register assigned to \p VirtReg, try to recolor 2889 /// all the live ranges that are copy-related with \p VirtReg. 2890 /// The recoloring is then propagated to all the live-ranges that have 2891 /// been recolored and so on, until no more copies can be coalesced or 2892 /// it is not profitable. 2893 /// For a given live range, profitability is determined by the sum of the 2894 /// frequencies of the non-identity copies it would introduce with the old 2895 /// and new register. 2896 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2897 // We have a broken hint, check if it is possible to fix it by 2898 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2899 // some register and PhysReg may be available for the other live-ranges. 2900 SmallSet<unsigned, 4> Visited; 2901 SmallVector<unsigned, 2> RecoloringCandidates; 2902 HintsInfo Info; 2903 unsigned Reg = VirtReg.reg; 2904 Register PhysReg = VRM->getPhys(Reg); 2905 // Start the recoloring algorithm from the input live-interval, then 2906 // it will propagate to the ones that are copy-related with it. 2907 Visited.insert(Reg); 2908 RecoloringCandidates.push_back(Reg); 2909 2910 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2911 << '(' << printReg(PhysReg, TRI) << ")\n"); 2912 2913 do { 2914 Reg = RecoloringCandidates.pop_back_val(); 2915 2916 // We cannot recolor physical register. 2917 if (Register::isPhysicalRegister(Reg)) 2918 continue; 2919 2920 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!"); 2921 2922 // Get the live interval mapped with this virtual register to be able 2923 // to check for the interference with the new color. 2924 LiveInterval &LI = LIS->getInterval(Reg); 2925 Register CurrPhys = VRM->getPhys(Reg); 2926 // Check that the new color matches the register class constraints and 2927 // that it is free for this live range. 2928 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2929 Matrix->checkInterference(LI, PhysReg))) 2930 continue; 2931 2932 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2933 << ") is recolorable.\n"); 2934 2935 // Gather the hint info. 2936 Info.clear(); 2937 collectHintInfo(Reg, Info); 2938 // Check if recoloring the live-range will increase the cost of the 2939 // non-identity copies. 2940 if (CurrPhys != PhysReg) { 2941 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2942 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2943 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2944 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2945 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2946 << '\n'); 2947 if (OldCopiesCost < NewCopiesCost) { 2948 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2949 continue; 2950 } 2951 // At this point, the cost is either cheaper or equal. If it is 2952 // equal, we consider this is profitable because it may expose 2953 // more recoloring opportunities. 2954 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2955 // Recolor the live-range. 2956 Matrix->unassign(LI); 2957 Matrix->assign(LI, PhysReg); 2958 } 2959 // Push all copy-related live-ranges to keep reconciling the broken 2960 // hints. 2961 for (const HintInfo &HI : Info) { 2962 if (Visited.insert(HI.Reg).second) 2963 RecoloringCandidates.push_back(HI.Reg); 2964 } 2965 } while (!RecoloringCandidates.empty()); 2966 } 2967 2968 /// Try to recolor broken hints. 2969 /// Broken hints may be repaired by recoloring when an evicted variable 2970 /// freed up a register for a larger live-range. 2971 /// Consider the following example: 2972 /// BB1: 2973 /// a = 2974 /// b = 2975 /// BB2: 2976 /// ... 2977 /// = b 2978 /// = a 2979 /// Let us assume b gets split: 2980 /// BB1: 2981 /// a = 2982 /// b = 2983 /// BB2: 2984 /// c = b 2985 /// ... 2986 /// d = c 2987 /// = d 2988 /// = a 2989 /// Because of how the allocation work, b, c, and d may be assigned different 2990 /// colors. Now, if a gets evicted later: 2991 /// BB1: 2992 /// a = 2993 /// st a, SpillSlot 2994 /// b = 2995 /// BB2: 2996 /// c = b 2997 /// ... 2998 /// d = c 2999 /// = d 3000 /// e = ld SpillSlot 3001 /// = e 3002 /// This is likely that we can assign the same register for b, c, and d, 3003 /// getting rid of 2 copies. 3004 void RAGreedy::tryHintsRecoloring() { 3005 for (LiveInterval *LI : SetOfBrokenHints) { 3006 assert(Register::isVirtualRegister(LI->reg) && 3007 "Recoloring is possible only for virtual registers"); 3008 // Some dead defs may be around (e.g., because of debug uses). 3009 // Ignore those. 3010 if (!VRM->hasPhys(LI->reg)) 3011 continue; 3012 tryHintRecoloring(*LI); 3013 } 3014 } 3015 3016 Register RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 3017 SmallVectorImpl<Register> &NewVRegs, 3018 SmallVirtRegSet &FixedRegisters, 3019 unsigned Depth) { 3020 unsigned CostPerUseLimit = ~0u; 3021 // First try assigning a free register. 3022 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 3023 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 3024 // If VirtReg got an assignment, the eviction info is no longre relevant. 3025 LastEvicted.clearEvicteeInfo(VirtReg.reg); 3026 // When NewVRegs is not empty, we may have made decisions such as evicting 3027 // a virtual register, go with the earlier decisions and use the physical 3028 // register. 3029 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 3030 NewVRegs.empty()) { 3031 Register CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 3032 CostPerUseLimit, NewVRegs); 3033 if (CSRReg || !NewVRegs.empty()) 3034 // Return now if we decide to use a CSR or create new vregs due to 3035 // pre-splitting. 3036 return CSRReg; 3037 } else 3038 return PhysReg; 3039 } 3040 3041 LiveRangeStage Stage = getStage(VirtReg); 3042 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 3043 << ExtraRegInfo[VirtReg.reg].Cascade << '\n'); 3044 3045 // Try to evict a less worthy live range, but only for ranges from the primary 3046 // queue. The RS_Split ranges already failed to do this, and they should not 3047 // get a second chance until they have been split. 3048 if (Stage != RS_Split) 3049 if (Register PhysReg = 3050 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 3051 FixedRegisters)) { 3052 Register Hint = MRI->getSimpleHint(VirtReg.reg); 3053 // If VirtReg has a hint and that hint is broken record this 3054 // virtual register as a recoloring candidate for broken hint. 3055 // Indeed, since we evicted a variable in its neighborhood it is 3056 // likely we can at least partially recolor some of the 3057 // copy-related live-ranges. 3058 if (Hint && Hint != PhysReg) 3059 SetOfBrokenHints.insert(&VirtReg); 3060 // If VirtReg eviction someone, the eviction info for it as an evictee is 3061 // no longre relevant. 3062 LastEvicted.clearEvicteeInfo(VirtReg.reg); 3063 return PhysReg; 3064 } 3065 3066 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 3067 3068 // The first time we see a live range, don't try to split or spill. 3069 // Wait until the second time, when all smaller ranges have been allocated. 3070 // This gives a better picture of the interference to split around. 3071 if (Stage < RS_Split) { 3072 setStage(VirtReg, RS_Split); 3073 LLVM_DEBUG(dbgs() << "wait for second round\n"); 3074 NewVRegs.push_back(VirtReg.reg); 3075 return 0; 3076 } 3077 3078 if (Stage < RS_Spill) { 3079 // Try splitting VirtReg or interferences. 3080 unsigned NewVRegSizeBefore = NewVRegs.size(); 3081 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 3082 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 3083 // If VirtReg got split, the eviction info is no longer relevant. 3084 LastEvicted.clearEvicteeInfo(VirtReg.reg); 3085 return PhysReg; 3086 } 3087 } 3088 3089 // If we couldn't allocate a register from spilling, there is probably some 3090 // invalid inline assembly. The base class will report it. 3091 if (Stage >= RS_Done || !VirtReg.isSpillable()) 3092 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 3093 Depth); 3094 3095 // Finally spill VirtReg itself. 3096 if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) { 3097 // TODO: This is experimental and in particular, we do not model 3098 // the live range splitting done by spilling correctly. 3099 // We would need a deep integration with the spiller to do the 3100 // right thing here. Anyway, that is still good for early testing. 3101 setStage(VirtReg, RS_Memory); 3102 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 3103 NewVRegs.push_back(VirtReg.reg); 3104 } else { 3105 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 3106 TimerGroupDescription, TimePassesIsEnabled); 3107 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 3108 spiller().spill(LRE); 3109 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 3110 3111 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 3112 // the new regs are kept in LDV (still mapping to the old register), until 3113 // we rewrite spilled locations in LDV at a later stage. 3114 DebugVars->splitRegister(VirtReg.reg, LRE.regs(), *LIS); 3115 3116 if (VerifyEnabled) 3117 MF->verify(this, "After spilling"); 3118 } 3119 3120 // The live virtual register requesting allocation was spilled, so tell 3121 // the caller not to allocate anything during this round. 3122 return 0; 3123 } 3124 3125 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 3126 unsigned &FoldedReloads, 3127 unsigned &Spills, 3128 unsigned &FoldedSpills) { 3129 Reloads = 0; 3130 FoldedReloads = 0; 3131 Spills = 0; 3132 FoldedSpills = 0; 3133 3134 // Sum up the spill and reloads in subloops. 3135 for (MachineLoop *SubLoop : *L) { 3136 unsigned SubReloads; 3137 unsigned SubFoldedReloads; 3138 unsigned SubSpills; 3139 unsigned SubFoldedSpills; 3140 3141 reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads, 3142 SubSpills, SubFoldedSpills); 3143 Reloads += SubReloads; 3144 FoldedReloads += SubFoldedReloads; 3145 Spills += SubSpills; 3146 FoldedSpills += SubFoldedSpills; 3147 } 3148 3149 const MachineFrameInfo &MFI = MF->getFrameInfo(); 3150 int FI; 3151 3152 for (MachineBasicBlock *MBB : L->getBlocks()) 3153 // Handle blocks that were not included in subloops. 3154 if (Loops->getLoopFor(MBB) == L) 3155 for (MachineInstr &MI : *MBB) { 3156 SmallVector<const MachineMemOperand *, 2> Accesses; 3157 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 3158 return MFI.isSpillSlotObjectIndex( 3159 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 3160 ->getFrameIndex()); 3161 }; 3162 3163 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) 3164 ++Reloads; 3165 else if (TII->hasLoadFromStackSlot(MI, Accesses) && 3166 llvm::any_of(Accesses, isSpillSlotAccess)) 3167 ++FoldedReloads; 3168 else if (TII->isStoreToStackSlot(MI, FI) && 3169 MFI.isSpillSlotObjectIndex(FI)) 3170 ++Spills; 3171 else if (TII->hasStoreToStackSlot(MI, Accesses) && 3172 llvm::any_of(Accesses, isSpillSlotAccess)) 3173 ++FoldedSpills; 3174 } 3175 3176 if (Reloads || FoldedReloads || Spills || FoldedSpills) { 3177 using namespace ore; 3178 3179 ORE->emit([&]() { 3180 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload", 3181 L->getStartLoc(), L->getHeader()); 3182 if (Spills) 3183 R << NV("NumSpills", Spills) << " spills "; 3184 if (FoldedSpills) 3185 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 3186 if (Reloads) 3187 R << NV("NumReloads", Reloads) << " reloads "; 3188 if (FoldedReloads) 3189 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 3190 R << "generated in loop"; 3191 return R; 3192 }); 3193 } 3194 } 3195 3196 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 3197 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 3198 << "********** Function: " << mf.getName() << '\n'); 3199 3200 MF = &mf; 3201 TRI = MF->getSubtarget().getRegisterInfo(); 3202 TII = MF->getSubtarget().getInstrInfo(); 3203 RCI.runOnMachineFunction(mf); 3204 3205 EnableLocalReassign = EnableLocalReassignment || 3206 MF->getSubtarget().enableRALocalReassignment( 3207 MF->getTarget().getOptLevel()); 3208 3209 EnableAdvancedRASplitCost = 3210 ConsiderLocalIntervalCost.getNumOccurrences() 3211 ? ConsiderLocalIntervalCost 3212 : MF->getSubtarget().enableAdvancedRASplitCost(); 3213 3214 if (VerifyEnabled) 3215 MF->verify(this, "Before greedy register allocator"); 3216 3217 RegAllocBase::init(getAnalysis<VirtRegMap>(), 3218 getAnalysis<LiveIntervals>(), 3219 getAnalysis<LiveRegMatrix>()); 3220 Indexes = &getAnalysis<SlotIndexes>(); 3221 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3222 DomTree = &getAnalysis<MachineDominatorTree>(); 3223 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 3224 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 3225 Loops = &getAnalysis<MachineLoopInfo>(); 3226 Bundles = &getAnalysis<EdgeBundles>(); 3227 SpillPlacer = &getAnalysis<SpillPlacement>(); 3228 DebugVars = &getAnalysis<LiveDebugVariables>(); 3229 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3230 3231 initializeCSRCost(); 3232 3233 calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI); 3234 3235 LLVM_DEBUG(LIS->dump()); 3236 3237 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 3238 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI)); 3239 ExtraRegInfo.clear(); 3240 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 3241 NextCascade = 1; 3242 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 3243 GlobalCand.resize(32); // This will grow as needed. 3244 SetOfBrokenHints.clear(); 3245 LastEvicted.clear(); 3246 3247 allocatePhysRegs(); 3248 tryHintsRecoloring(); 3249 postOptimization(); 3250 reportNumberOfSplillsReloads(); 3251 3252 releaseMemory(); 3253 return true; 3254 } 3255