1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AllocationOrder.h" 15 #include "InterferenceCache.h" 16 #include "LiveDebugVariables.h" 17 #include "RegAllocBase.h" 18 #include "SpillPlacement.h" 19 #include "Spiller.h" 20 #include "SplitKit.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/BitVector.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/IndexedMap.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/StringRef.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/CodeGen/CalcSpillWeights.h" 35 #include "llvm/CodeGen/EdgeBundles.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervalUnion.h" 38 #include "llvm/CodeGen/LiveIntervals.h" 39 #include "llvm/CodeGen/LiveRangeEdit.h" 40 #include "llvm/CodeGen/LiveRegMatrix.h" 41 #include "llvm/CodeGen/LiveStacks.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineInstr.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/RegAllocRegistry.h" 54 #include "llvm/CodeGen/RegisterClassInfo.h" 55 #include "llvm/CodeGen/SlotIndexes.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/CodeGen/VirtRegMap.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/MC/MCRegisterInfo.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/BlockFrequency.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/Timer.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Target/TargetMachine.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <memory> 76 #include <queue> 77 #include <tuple> 78 #include <utility> 79 80 using namespace llvm; 81 82 #define DEBUG_TYPE "regalloc" 83 84 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 85 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 86 STATISTIC(NumEvicted, "Number of interferences evicted"); 87 88 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 89 "split-spill-mode", cl::Hidden, 90 cl::desc("Spill mode for splitting live ranges"), 91 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 92 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 93 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 94 cl::init(SplitEditor::SM_Speed)); 95 96 static cl::opt<unsigned> 97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 98 cl::desc("Last chance recoloring max depth"), 99 cl::init(5)); 100 101 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 102 "lcr-max-interf", cl::Hidden, 103 cl::desc("Last chance recoloring maximum number of considered" 104 " interference at a time"), 105 cl::init(8)); 106 107 static cl::opt<bool> ExhaustiveSearch( 108 "exhaustive-register-search", cl::NotHidden, 109 cl::desc("Exhaustive Search for registers bypassing the depth " 110 "and interference cutoffs of last chance recoloring"), 111 cl::Hidden); 112 113 static cl::opt<bool> EnableLocalReassignment( 114 "enable-local-reassign", cl::Hidden, 115 cl::desc("Local reassignment can yield better allocation decisions, but " 116 "may be compile time intensive"), 117 cl::init(false)); 118 119 static cl::opt<bool> EnableDeferredSpilling( 120 "enable-deferred-spilling", cl::Hidden, 121 cl::desc("Instead of spilling a variable right away, defer the actual " 122 "code insertion to the end of the allocation. That way the " 123 "allocator might still find a suitable coloring for this " 124 "variable because of other evicted variables."), 125 cl::init(false)); 126 127 static cl::opt<unsigned> 128 HugeSizeForSplit("huge-size-for-split", cl::Hidden, 129 cl::desc("A threshold of live range size which may cause " 130 "high compile time cost in global splitting."), 131 cl::init(5000)); 132 133 // FIXME: Find a good default for this flag and remove the flag. 134 static cl::opt<unsigned> 135 CSRFirstTimeCost("regalloc-csr-first-time-cost", 136 cl::desc("Cost for first time use of callee-saved register."), 137 cl::init(0), cl::Hidden); 138 139 static cl::opt<bool> ConsiderLocalIntervalCost( 140 "consider-local-interval-cost", cl::Hidden, 141 cl::desc("Consider the cost of local intervals created by a split " 142 "candidate when choosing the best split candidate."), 143 cl::init(false)); 144 145 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 146 createGreedyRegisterAllocator); 147 148 namespace { 149 150 class RAGreedy : public MachineFunctionPass, 151 public RegAllocBase, 152 private LiveRangeEdit::Delegate { 153 // Convenient shortcuts. 154 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>; 155 using SmallLISet = SmallPtrSet<LiveInterval *, 4>; 156 using SmallVirtRegSet = SmallSet<unsigned, 16>; 157 158 // context 159 MachineFunction *MF; 160 161 // Shortcuts to some useful interface. 162 const TargetInstrInfo *TII; 163 const TargetRegisterInfo *TRI; 164 RegisterClassInfo RCI; 165 166 // analyses 167 SlotIndexes *Indexes; 168 MachineBlockFrequencyInfo *MBFI; 169 MachineDominatorTree *DomTree; 170 MachineLoopInfo *Loops; 171 MachineOptimizationRemarkEmitter *ORE; 172 EdgeBundles *Bundles; 173 SpillPlacement *SpillPlacer; 174 LiveDebugVariables *DebugVars; 175 AliasAnalysis *AA; 176 177 // state 178 std::unique_ptr<Spiller> SpillerInstance; 179 PQueue Queue; 180 unsigned NextCascade; 181 182 // Live ranges pass through a number of stages as we try to allocate them. 183 // Some of the stages may also create new live ranges: 184 // 185 // - Region splitting. 186 // - Per-block splitting. 187 // - Local splitting. 188 // - Spilling. 189 // 190 // Ranges produced by one of the stages skip the previous stages when they are 191 // dequeued. This improves performance because we can skip interference checks 192 // that are unlikely to give any results. It also guarantees that the live 193 // range splitting algorithm terminates, something that is otherwise hard to 194 // ensure. 195 enum LiveRangeStage { 196 /// Newly created live range that has never been queued. 197 RS_New, 198 199 /// Only attempt assignment and eviction. Then requeue as RS_Split. 200 RS_Assign, 201 202 /// Attempt live range splitting if assignment is impossible. 203 RS_Split, 204 205 /// Attempt more aggressive live range splitting that is guaranteed to make 206 /// progress. This is used for split products that may not be making 207 /// progress. 208 RS_Split2, 209 210 /// Live range will be spilled. No more splitting will be attempted. 211 RS_Spill, 212 213 214 /// Live range is in memory. Because of other evictions, it might get moved 215 /// in a register in the end. 216 RS_Memory, 217 218 /// There is nothing more we can do to this live range. Abort compilation 219 /// if it can't be assigned. 220 RS_Done 221 }; 222 223 // Enum CutOffStage to keep a track whether the register allocation failed 224 // because of the cutoffs encountered in last chance recoloring. 225 // Note: This is used as bitmask. New value should be next power of 2. 226 enum CutOffStage { 227 // No cutoffs encountered 228 CO_None = 0, 229 230 // lcr-max-depth cutoff encountered 231 CO_Depth = 1, 232 233 // lcr-max-interf cutoff encountered 234 CO_Interf = 2 235 }; 236 237 uint8_t CutOffInfo; 238 239 #ifndef NDEBUG 240 static const char *const StageName[]; 241 #endif 242 243 // RegInfo - Keep additional information about each live range. 244 struct RegInfo { 245 LiveRangeStage Stage = RS_New; 246 247 // Cascade - Eviction loop prevention. See canEvictInterference(). 248 unsigned Cascade = 0; 249 250 RegInfo() = default; 251 }; 252 253 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 254 255 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 256 return ExtraRegInfo[VirtReg.reg].Stage; 257 } 258 259 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 260 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 261 ExtraRegInfo[VirtReg.reg].Stage = Stage; 262 } 263 264 template<typename Iterator> 265 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 266 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 267 for (;Begin != End; ++Begin) { 268 unsigned Reg = *Begin; 269 if (ExtraRegInfo[Reg].Stage == RS_New) 270 ExtraRegInfo[Reg].Stage = NewStage; 271 } 272 } 273 274 /// Cost of evicting interference. 275 struct EvictionCost { 276 unsigned BrokenHints = 0; ///< Total number of broken hints. 277 float MaxWeight = 0; ///< Maximum spill weight evicted. 278 279 EvictionCost() = default; 280 281 bool isMax() const { return BrokenHints == ~0u; } 282 283 void setMax() { BrokenHints = ~0u; } 284 285 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } 286 287 bool operator<(const EvictionCost &O) const { 288 return std::tie(BrokenHints, MaxWeight) < 289 std::tie(O.BrokenHints, O.MaxWeight); 290 } 291 }; 292 293 /// EvictionTrack - Keeps track of past evictions in order to optimize region 294 /// split decision. 295 class EvictionTrack { 296 297 public: 298 using EvictorInfo = 299 std::pair<unsigned /* evictor */, unsigned /* physreg */>; 300 using EvicteeInfo = llvm::DenseMap<unsigned /* evictee */, EvictorInfo>; 301 302 private: 303 /// Each Vreg that has been evicted in the last stage of selectOrSplit will 304 /// be mapped to the evictor Vreg and the PhysReg it was evicted from. 305 EvicteeInfo Evictees; 306 307 public: 308 /// Clear all eviction information. 309 void clear() { Evictees.clear(); } 310 311 /// Clear eviction information for the given evictee Vreg. 312 /// E.g. when Vreg get's a new allocation, the old eviction info is no 313 /// longer relevant. 314 /// \param Evictee The evictee Vreg for whom we want to clear collected 315 /// eviction info. 316 void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); } 317 318 /// Track new eviction. 319 /// The Evictor vreg has evicted the Evictee vreg from Physreg. 320 /// \param PhysReg The physical register Evictee was evicted from. 321 /// \param Evictor The evictor Vreg that evicted Evictee. 322 /// \param Evictee The evictee Vreg. 323 void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) { 324 Evictees[Evictee].first = Evictor; 325 Evictees[Evictee].second = PhysReg; 326 } 327 328 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg. 329 /// \param Evictee The evictee vreg. 330 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if 331 /// nobody has evicted Evictee from PhysReg. 332 EvictorInfo getEvictor(unsigned Evictee) { 333 if (Evictees.count(Evictee)) { 334 return Evictees[Evictee]; 335 } 336 337 return EvictorInfo(0, 0); 338 } 339 }; 340 341 // Keeps track of past evictions in order to optimize region split decision. 342 EvictionTrack LastEvicted; 343 344 // splitting state. 345 std::unique_ptr<SplitAnalysis> SA; 346 std::unique_ptr<SplitEditor> SE; 347 348 /// Cached per-block interference maps 349 InterferenceCache IntfCache; 350 351 /// All basic blocks where the current register has uses. 352 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 353 354 /// Global live range splitting candidate info. 355 struct GlobalSplitCandidate { 356 // Register intended for assignment, or 0. 357 unsigned PhysReg; 358 359 // SplitKit interval index for this candidate. 360 unsigned IntvIdx; 361 362 // Interference for PhysReg. 363 InterferenceCache::Cursor Intf; 364 365 // Bundles where this candidate should be live. 366 BitVector LiveBundles; 367 SmallVector<unsigned, 8> ActiveBlocks; 368 369 void reset(InterferenceCache &Cache, unsigned Reg) { 370 PhysReg = Reg; 371 IntvIdx = 0; 372 Intf.setPhysReg(Cache, Reg); 373 LiveBundles.clear(); 374 ActiveBlocks.clear(); 375 } 376 377 // Set B[i] = C for every live bundle where B[i] was NoCand. 378 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 379 unsigned Count = 0; 380 for (unsigned i : LiveBundles.set_bits()) 381 if (B[i] == NoCand) { 382 B[i] = C; 383 Count++; 384 } 385 return Count; 386 } 387 }; 388 389 /// Candidate info for each PhysReg in AllocationOrder. 390 /// This vector never shrinks, but grows to the size of the largest register 391 /// class. 392 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 393 394 enum : unsigned { NoCand = ~0u }; 395 396 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 397 /// NoCand which indicates the stack interval. 398 SmallVector<unsigned, 32> BundleCand; 399 400 /// Callee-save register cost, calculated once per machine function. 401 BlockFrequency CSRCost; 402 403 /// Run or not the local reassignment heuristic. This information is 404 /// obtained from the TargetSubtargetInfo. 405 bool EnableLocalReassign; 406 407 /// Enable or not the consideration of the cost of local intervals created 408 /// by a split candidate when choosing the best split candidate. 409 bool EnableAdvancedRASplitCost; 410 411 /// Set of broken hints that may be reconciled later because of eviction. 412 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 413 414 public: 415 RAGreedy(); 416 417 /// Return the pass name. 418 StringRef getPassName() const override { return "Greedy Register Allocator"; } 419 420 /// RAGreedy analysis usage. 421 void getAnalysisUsage(AnalysisUsage &AU) const override; 422 void releaseMemory() override; 423 Spiller &spiller() override { return *SpillerInstance; } 424 void enqueue(LiveInterval *LI) override; 425 LiveInterval *dequeue() override; 426 unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override; 427 void aboutToRemoveInterval(LiveInterval &) override; 428 429 /// Perform register allocation. 430 bool runOnMachineFunction(MachineFunction &mf) override; 431 432 MachineFunctionProperties getRequiredProperties() const override { 433 return MachineFunctionProperties().set( 434 MachineFunctionProperties::Property::NoPHIs); 435 } 436 437 static char ID; 438 439 private: 440 unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &, 441 SmallVirtRegSet &, unsigned = 0); 442 443 bool LRE_CanEraseVirtReg(unsigned) override; 444 void LRE_WillShrinkVirtReg(unsigned) override; 445 void LRE_DidCloneVirtReg(unsigned, unsigned) override; 446 void enqueue(PQueue &CurQueue, LiveInterval *LI); 447 LiveInterval *dequeue(PQueue &CurQueue); 448 449 BlockFrequency calcSpillCost(); 450 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 451 bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 452 bool growRegion(GlobalSplitCandidate &Cand); 453 bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand, 454 unsigned BBNumber, 455 const AllocationOrder &Order); 456 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit, 457 GlobalSplitCandidate &Cand, unsigned BBNumber, 458 const AllocationOrder &Order); 459 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &, 460 const AllocationOrder &Order, 461 bool *CanCauseEvictionChain); 462 bool calcCompactRegion(GlobalSplitCandidate&); 463 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 464 void calcGapWeights(unsigned, SmallVectorImpl<float>&); 465 unsigned canReassign(LiveInterval &VirtReg, unsigned PrevReg); 466 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool); 467 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&, 468 const SmallVirtRegSet&); 469 bool canEvictInterferenceInRange(LiveInterval &VirtReg, unsigned PhysReg, 470 SlotIndex Start, SlotIndex End, 471 EvictionCost &MaxCost); 472 unsigned getCheapestEvicteeWeight(const AllocationOrder &Order, 473 LiveInterval &VirtReg, SlotIndex Start, 474 SlotIndex End, float *BestEvictWeight); 475 void evictInterference(LiveInterval&, unsigned, 476 SmallVectorImpl<unsigned>&); 477 bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 478 SmallLISet &RecoloringCandidates, 479 const SmallVirtRegSet &FixedRegisters); 480 481 unsigned tryAssign(LiveInterval&, AllocationOrder&, 482 SmallVectorImpl<unsigned>&, 483 const SmallVirtRegSet&); 484 unsigned tryEvict(LiveInterval&, AllocationOrder&, 485 SmallVectorImpl<unsigned>&, unsigned, 486 const SmallVirtRegSet&); 487 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&, 488 SmallVectorImpl<unsigned>&); 489 unsigned isSplitBenefitWorthCost(LiveInterval &VirtReg); 490 /// Calculate cost of region splitting. 491 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 492 AllocationOrder &Order, 493 BlockFrequency &BestCost, 494 unsigned &NumCands, bool IgnoreCSR, 495 bool *CanCauseEvictionChain = nullptr); 496 /// Perform region splitting. 497 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 498 bool HasCompact, 499 SmallVectorImpl<unsigned> &NewVRegs); 500 /// Check other options before using a callee-saved register for the first 501 /// time. 502 unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 503 unsigned PhysReg, unsigned &CostPerUseLimit, 504 SmallVectorImpl<unsigned> &NewVRegs); 505 void initializeCSRCost(); 506 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 507 SmallVectorImpl<unsigned>&); 508 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 509 SmallVectorImpl<unsigned>&); 510 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 511 SmallVectorImpl<unsigned>&); 512 unsigned trySplit(LiveInterval&, AllocationOrder&, 513 SmallVectorImpl<unsigned>&, 514 const SmallVirtRegSet&); 515 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 516 SmallVectorImpl<unsigned> &, 517 SmallVirtRegSet &, unsigned); 518 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &, 519 SmallVirtRegSet &, unsigned); 520 void tryHintRecoloring(LiveInterval &); 521 void tryHintsRecoloring(); 522 523 /// Model the information carried by one end of a copy. 524 struct HintInfo { 525 /// The frequency of the copy. 526 BlockFrequency Freq; 527 /// The virtual register or physical register. 528 unsigned Reg; 529 /// Its currently assigned register. 530 /// In case of a physical register Reg == PhysReg. 531 unsigned PhysReg; 532 533 HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg) 534 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 535 }; 536 using HintsInfo = SmallVector<HintInfo, 4>; 537 538 BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned); 539 void collectHintInfo(unsigned, HintsInfo &); 540 541 bool isUnusedCalleeSavedReg(unsigned PhysReg) const; 542 543 /// Compute and report the number of spills and reloads for a loop. 544 void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 545 unsigned &FoldedReloads, unsigned &Spills, 546 unsigned &FoldedSpills); 547 548 /// Report the number of spills and reloads for each loop. 549 void reportNumberOfSplillsReloads() { 550 for (MachineLoop *L : *Loops) { 551 unsigned Reloads, FoldedReloads, Spills, FoldedSpills; 552 reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills, 553 FoldedSpills); 554 } 555 } 556 }; 557 558 } // end anonymous namespace 559 560 char RAGreedy::ID = 0; 561 char &llvm::RAGreedyID = RAGreedy::ID; 562 563 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 564 "Greedy Register Allocator", false, false) 565 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 566 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 567 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 568 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 569 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 570 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 571 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 572 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 573 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 574 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 575 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 576 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 577 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 578 INITIALIZE_PASS_END(RAGreedy, "greedy", 579 "Greedy Register Allocator", false, false) 580 581 #ifndef NDEBUG 582 const char *const RAGreedy::StageName[] = { 583 "RS_New", 584 "RS_Assign", 585 "RS_Split", 586 "RS_Split2", 587 "RS_Spill", 588 "RS_Memory", 589 "RS_Done" 590 }; 591 #endif 592 593 // Hysteresis to use when comparing floats. 594 // This helps stabilize decisions based on float comparisons. 595 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 596 597 FunctionPass* llvm::createGreedyRegisterAllocator() { 598 return new RAGreedy(); 599 } 600 601 RAGreedy::RAGreedy(): MachineFunctionPass(ID) { 602 } 603 604 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 605 AU.setPreservesCFG(); 606 AU.addRequired<MachineBlockFrequencyInfo>(); 607 AU.addPreserved<MachineBlockFrequencyInfo>(); 608 AU.addRequired<AAResultsWrapperPass>(); 609 AU.addPreserved<AAResultsWrapperPass>(); 610 AU.addRequired<LiveIntervals>(); 611 AU.addPreserved<LiveIntervals>(); 612 AU.addRequired<SlotIndexes>(); 613 AU.addPreserved<SlotIndexes>(); 614 AU.addRequired<LiveDebugVariables>(); 615 AU.addPreserved<LiveDebugVariables>(); 616 AU.addRequired<LiveStacks>(); 617 AU.addPreserved<LiveStacks>(); 618 AU.addRequired<MachineDominatorTree>(); 619 AU.addPreserved<MachineDominatorTree>(); 620 AU.addRequired<MachineLoopInfo>(); 621 AU.addPreserved<MachineLoopInfo>(); 622 AU.addRequired<VirtRegMap>(); 623 AU.addPreserved<VirtRegMap>(); 624 AU.addRequired<LiveRegMatrix>(); 625 AU.addPreserved<LiveRegMatrix>(); 626 AU.addRequired<EdgeBundles>(); 627 AU.addRequired<SpillPlacement>(); 628 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 629 MachineFunctionPass::getAnalysisUsage(AU); 630 } 631 632 //===----------------------------------------------------------------------===// 633 // LiveRangeEdit delegate methods 634 //===----------------------------------------------------------------------===// 635 636 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) { 637 LiveInterval &LI = LIS->getInterval(VirtReg); 638 if (VRM->hasPhys(VirtReg)) { 639 Matrix->unassign(LI); 640 aboutToRemoveInterval(LI); 641 return true; 642 } 643 // Unassigned virtreg is probably in the priority queue. 644 // RegAllocBase will erase it after dequeueing. 645 // Nonetheless, clear the live-range so that the debug 646 // dump will show the right state for that VirtReg. 647 LI.clear(); 648 return false; 649 } 650 651 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) { 652 if (!VRM->hasPhys(VirtReg)) 653 return; 654 655 // Register is assigned, put it back on the queue for reassignment. 656 LiveInterval &LI = LIS->getInterval(VirtReg); 657 Matrix->unassign(LI); 658 enqueue(&LI); 659 } 660 661 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) { 662 // Cloning a register we haven't even heard about yet? Just ignore it. 663 if (!ExtraRegInfo.inBounds(Old)) 664 return; 665 666 // LRE may clone a virtual register because dead code elimination causes it to 667 // be split into connected components. The new components are much smaller 668 // than the original, so they should get a new chance at being assigned. 669 // same stage as the parent. 670 ExtraRegInfo[Old].Stage = RS_Assign; 671 ExtraRegInfo.grow(New); 672 ExtraRegInfo[New] = ExtraRegInfo[Old]; 673 } 674 675 void RAGreedy::releaseMemory() { 676 SpillerInstance.reset(); 677 ExtraRegInfo.clear(); 678 GlobalCand.clear(); 679 } 680 681 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); } 682 683 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 684 // Prioritize live ranges by size, assigning larger ranges first. 685 // The queue holds (size, reg) pairs. 686 const unsigned Size = LI->getSize(); 687 const unsigned Reg = LI->reg; 688 assert(Register::isVirtualRegister(Reg) && 689 "Can only enqueue virtual registers"); 690 unsigned Prio; 691 692 ExtraRegInfo.grow(Reg); 693 if (ExtraRegInfo[Reg].Stage == RS_New) 694 ExtraRegInfo[Reg].Stage = RS_Assign; 695 696 if (ExtraRegInfo[Reg].Stage == RS_Split) { 697 // Unsplit ranges that couldn't be allocated immediately are deferred until 698 // everything else has been allocated. 699 Prio = Size; 700 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 701 // Memory operand should be considered last. 702 // Change the priority such that Memory operand are assigned in 703 // the reverse order that they came in. 704 // TODO: Make this a member variable and probably do something about hints. 705 static unsigned MemOp = 0; 706 Prio = MemOp++; 707 } else { 708 // Giant live ranges fall back to the global assignment heuristic, which 709 // prevents excessive spilling in pathological cases. 710 bool ReverseLocal = TRI->reverseLocalAssignment(); 711 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 712 bool ForceGlobal = !ReverseLocal && 713 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); 714 715 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 716 LIS->intervalIsInOneMBB(*LI)) { 717 // Allocate original local ranges in linear instruction order. Since they 718 // are singly defined, this produces optimal coloring in the absence of 719 // global interference and other constraints. 720 if (!ReverseLocal) 721 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 722 else { 723 // Allocating bottom up may allow many short LRGs to be assigned first 724 // to one of the cheap registers. This could be much faster for very 725 // large blocks on targets with many physical registers. 726 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 727 } 728 Prio |= RC.AllocationPriority << 24; 729 } else { 730 // Allocate global and split ranges in long->short order. Long ranges that 731 // don't fit should be spilled (or split) ASAP so they don't create 732 // interference. Mark a bit to prioritize global above local ranges. 733 Prio = (1u << 29) + Size; 734 } 735 // Mark a higher bit to prioritize global and local above RS_Split. 736 Prio |= (1u << 31); 737 738 // Boost ranges that have a physical register hint. 739 if (VRM->hasKnownPreference(Reg)) 740 Prio |= (1u << 30); 741 } 742 // The virtual register number is a tie breaker for same-sized ranges. 743 // Give lower vreg numbers higher priority to assign them first. 744 CurQueue.push(std::make_pair(Prio, ~Reg)); 745 } 746 747 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 748 749 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 750 if (CurQueue.empty()) 751 return nullptr; 752 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 753 CurQueue.pop(); 754 return LI; 755 } 756 757 //===----------------------------------------------------------------------===// 758 // Direct Assignment 759 //===----------------------------------------------------------------------===// 760 761 /// tryAssign - Try to assign VirtReg to an available register. 762 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg, 763 AllocationOrder &Order, 764 SmallVectorImpl<unsigned> &NewVRegs, 765 const SmallVirtRegSet &FixedRegisters) { 766 Order.rewind(); 767 unsigned PhysReg; 768 while ((PhysReg = Order.next())) 769 if (!Matrix->checkInterference(VirtReg, PhysReg)) 770 break; 771 if (!PhysReg || Order.isHint()) 772 return PhysReg; 773 774 // PhysReg is available, but there may be a better choice. 775 776 // If we missed a simple hint, try to cheaply evict interference from the 777 // preferred register. 778 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg)) 779 if (Order.isHint(Hint)) { 780 LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n'); 781 EvictionCost MaxCost; 782 MaxCost.setBrokenHints(1); 783 if (canEvictInterference(VirtReg, Hint, true, MaxCost, FixedRegisters)) { 784 evictInterference(VirtReg, Hint, NewVRegs); 785 return Hint; 786 } 787 // Record the missed hint, we may be able to recover 788 // at the end if the surrounding allocation changed. 789 SetOfBrokenHints.insert(&VirtReg); 790 } 791 792 // Try to evict interference from a cheaper alternative. 793 unsigned Cost = TRI->getCostPerUse(PhysReg); 794 795 // Most registers have 0 additional cost. 796 if (!Cost) 797 return PhysReg; 798 799 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 800 << Cost << '\n'); 801 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 802 return CheapReg ? CheapReg : PhysReg; 803 } 804 805 //===----------------------------------------------------------------------===// 806 // Interference eviction 807 //===----------------------------------------------------------------------===// 808 809 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) { 810 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 811 unsigned PhysReg; 812 while ((PhysReg = Order.next())) { 813 if (PhysReg == PrevReg) 814 continue; 815 816 MCRegUnitIterator Units(PhysReg, TRI); 817 for (; Units.isValid(); ++Units) { 818 // Instantiate a "subquery", not to be confused with the Queries array. 819 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 820 if (subQ.checkInterference()) 821 break; 822 } 823 // If no units have interference, break out with the current PhysReg. 824 if (!Units.isValid()) 825 break; 826 } 827 if (PhysReg) 828 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 829 << printReg(PrevReg, TRI) << " to " 830 << printReg(PhysReg, TRI) << '\n'); 831 return PhysReg; 832 } 833 834 /// shouldEvict - determine if A should evict the assigned live range B. The 835 /// eviction policy defined by this function together with the allocation order 836 /// defined by enqueue() decides which registers ultimately end up being split 837 /// and spilled. 838 /// 839 /// Cascade numbers are used to prevent infinite loops if this function is a 840 /// cyclic relation. 841 /// 842 /// @param A The live range to be assigned. 843 /// @param IsHint True when A is about to be assigned to its preferred 844 /// register. 845 /// @param B The live range to be evicted. 846 /// @param BreaksHint True when B is already assigned to its preferred register. 847 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 848 LiveInterval &B, bool BreaksHint) { 849 bool CanSplit = getStage(B) < RS_Spill; 850 851 // Be fairly aggressive about following hints as long as the evictee can be 852 // split. 853 if (CanSplit && IsHint && !BreaksHint) 854 return true; 855 856 if (A.weight > B.weight) { 857 LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n'); 858 return true; 859 } 860 return false; 861 } 862 863 /// canEvictInterference - Return true if all interferences between VirtReg and 864 /// PhysReg can be evicted. 865 /// 866 /// @param VirtReg Live range that is about to be assigned. 867 /// @param PhysReg Desired register for assignment. 868 /// @param IsHint True when PhysReg is VirtReg's preferred register. 869 /// @param MaxCost Only look for cheaper candidates and update with new cost 870 /// when returning true. 871 /// @returns True when interference can be evicted cheaper than MaxCost. 872 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg, 873 bool IsHint, EvictionCost &MaxCost, 874 const SmallVirtRegSet &FixedRegisters) { 875 // It is only possible to evict virtual register interference. 876 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 877 return false; 878 879 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 880 881 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 882 // involved in an eviction before. If a cascade number was assigned, deny 883 // evicting anything with the same or a newer cascade number. This prevents 884 // infinite eviction loops. 885 // 886 // This works out so a register without a cascade number is allowed to evict 887 // anything, and it can be evicted by anything. 888 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 889 if (!Cascade) 890 Cascade = NextCascade; 891 892 EvictionCost Cost; 893 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 894 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 895 // If there is 10 or more interferences, chances are one is heavier. 896 if (Q.collectInterferingVRegs(10) >= 10) 897 return false; 898 899 // Check if any interfering live range is heavier than MaxWeight. 900 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 901 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 902 assert(Register::isVirtualRegister(Intf->reg) && 903 "Only expecting virtual register interference from query"); 904 905 // Do not allow eviction of a virtual register if we are in the middle 906 // of last-chance recoloring and this virtual register is one that we 907 // have scavenged a physical register for. 908 if (FixedRegisters.count(Intf->reg)) 909 return false; 910 911 // Never evict spill products. They cannot split or spill. 912 if (getStage(*Intf) == RS_Done) 913 return false; 914 // Once a live range becomes small enough, it is urgent that we find a 915 // register for it. This is indicated by an infinite spill weight. These 916 // urgent live ranges get to evict almost anything. 917 // 918 // Also allow urgent evictions of unspillable ranges from a strictly 919 // larger allocation order. 920 bool Urgent = !VirtReg.isSpillable() && 921 (Intf->isSpillable() || 922 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) < 923 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg))); 924 // Only evict older cascades or live ranges without a cascade. 925 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade; 926 if (Cascade <= IntfCascade) { 927 if (!Urgent) 928 return false; 929 // We permit breaking cascades for urgent evictions. It should be the 930 // last resort, though, so make it really expensive. 931 Cost.BrokenHints += 10; 932 } 933 // Would this break a satisfied hint? 934 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 935 // Update eviction cost. 936 Cost.BrokenHints += BreaksHint; 937 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 938 // Abort if this would be too expensive. 939 if (!(Cost < MaxCost)) 940 return false; 941 if (Urgent) 942 continue; 943 // Apply the eviction policy for non-urgent evictions. 944 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 945 return false; 946 // If !MaxCost.isMax(), then we're just looking for a cheap register. 947 // Evicting another local live range in this case could lead to suboptimal 948 // coloring. 949 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 950 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 951 return false; 952 } 953 } 954 } 955 MaxCost = Cost; 956 return true; 957 } 958 959 /// Return true if all interferences between VirtReg and PhysReg between 960 /// Start and End can be evicted. 961 /// 962 /// \param VirtReg Live range that is about to be assigned. 963 /// \param PhysReg Desired register for assignment. 964 /// \param Start Start of range to look for interferences. 965 /// \param End End of range to look for interferences. 966 /// \param MaxCost Only look for cheaper candidates and update with new cost 967 /// when returning true. 968 /// \return True when interference can be evicted cheaper than MaxCost. 969 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg, 970 unsigned PhysReg, SlotIndex Start, 971 SlotIndex End, 972 EvictionCost &MaxCost) { 973 EvictionCost Cost; 974 975 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 976 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 977 978 // Check if any interfering live range is heavier than MaxWeight. 979 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 980 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 981 982 // Check if interference overlast the segment in interest. 983 if (!Intf->overlaps(Start, End)) 984 continue; 985 986 // Cannot evict non virtual reg interference. 987 if (!Register::isVirtualRegister(Intf->reg)) 988 return false; 989 // Never evict spill products. They cannot split or spill. 990 if (getStage(*Intf) == RS_Done) 991 return false; 992 993 // Would this break a satisfied hint? 994 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg); 995 // Update eviction cost. 996 Cost.BrokenHints += BreaksHint; 997 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight); 998 // Abort if this would be too expensive. 999 if (!(Cost < MaxCost)) 1000 return false; 1001 } 1002 } 1003 1004 if (Cost.MaxWeight == 0) 1005 return false; 1006 1007 MaxCost = Cost; 1008 return true; 1009 } 1010 1011 /// Return the physical register that will be best 1012 /// candidate for eviction by a local split interval that will be created 1013 /// between Start and End. 1014 /// 1015 /// \param Order The allocation order 1016 /// \param VirtReg Live range that is about to be assigned. 1017 /// \param Start Start of range to look for interferences 1018 /// \param End End of range to look for interferences 1019 /// \param BestEvictweight The eviction cost of that eviction 1020 /// \return The PhysReg which is the best candidate for eviction and the 1021 /// eviction cost in BestEvictweight 1022 unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 1023 LiveInterval &VirtReg, 1024 SlotIndex Start, SlotIndex End, 1025 float *BestEvictweight) { 1026 EvictionCost BestEvictCost; 1027 BestEvictCost.setMax(); 1028 BestEvictCost.MaxWeight = VirtReg.weight; 1029 unsigned BestEvicteePhys = 0; 1030 1031 // Go over all physical registers and find the best candidate for eviction 1032 for (auto PhysReg : Order.getOrder()) { 1033 1034 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 1035 BestEvictCost)) 1036 continue; 1037 1038 // Best so far. 1039 BestEvicteePhys = PhysReg; 1040 } 1041 *BestEvictweight = BestEvictCost.MaxWeight; 1042 return BestEvicteePhys; 1043 } 1044 1045 /// evictInterference - Evict any interferring registers that prevent VirtReg 1046 /// from being assigned to Physreg. This assumes that canEvictInterference 1047 /// returned true. 1048 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg, 1049 SmallVectorImpl<unsigned> &NewVRegs) { 1050 // Make sure that VirtReg has a cascade number, and assign that cascade 1051 // number to every evicted register. These live ranges than then only be 1052 // evicted by a newer cascade, preventing infinite loops. 1053 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade; 1054 if (!Cascade) 1055 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++; 1056 1057 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 1058 << " interference: Cascade " << Cascade << '\n'); 1059 1060 // Collect all interfering virtregs first. 1061 SmallVector<LiveInterval*, 8> Intfs; 1062 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1063 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1064 // We usually have the interfering VRegs cached so collectInterferingVRegs() 1065 // should be fast, we may need to recalculate if when different physregs 1066 // overlap the same register unit so we had different SubRanges queried 1067 // against it. 1068 Q.collectInterferingVRegs(); 1069 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 1070 Intfs.append(IVR.begin(), IVR.end()); 1071 } 1072 1073 // Evict them second. This will invalidate the queries. 1074 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) { 1075 LiveInterval *Intf = Intfs[i]; 1076 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 1077 if (!VRM->hasPhys(Intf->reg)) 1078 continue; 1079 1080 LastEvicted.addEviction(PhysReg, VirtReg.reg, Intf->reg); 1081 1082 Matrix->unassign(*Intf); 1083 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade || 1084 VirtReg.isSpillable() < Intf->isSpillable()) && 1085 "Cannot decrease cascade number, illegal eviction"); 1086 ExtraRegInfo[Intf->reg].Cascade = Cascade; 1087 ++NumEvicted; 1088 NewVRegs.push_back(Intf->reg); 1089 } 1090 } 1091 1092 /// Returns true if the given \p PhysReg is a callee saved register and has not 1093 /// been used for allocation yet. 1094 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const { 1095 unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 1096 if (CSR == 0) 1097 return false; 1098 1099 return !Matrix->isPhysRegUsed(PhysReg); 1100 } 1101 1102 /// tryEvict - Try to evict all interferences for a physreg. 1103 /// @param VirtReg Currently unassigned virtual register. 1104 /// @param Order Physregs to try. 1105 /// @return Physreg to assign VirtReg, or 0. 1106 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg, 1107 AllocationOrder &Order, 1108 SmallVectorImpl<unsigned> &NewVRegs, 1109 unsigned CostPerUseLimit, 1110 const SmallVirtRegSet &FixedRegisters) { 1111 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 1112 TimePassesIsEnabled); 1113 1114 // Keep track of the cheapest interference seen so far. 1115 EvictionCost BestCost; 1116 BestCost.setMax(); 1117 unsigned BestPhys = 0; 1118 unsigned OrderLimit = Order.getOrder().size(); 1119 1120 // When we are just looking for a reduced cost per use, don't break any 1121 // hints, and only evict smaller spill weights. 1122 if (CostPerUseLimit < ~0u) { 1123 BestCost.BrokenHints = 0; 1124 BestCost.MaxWeight = VirtReg.weight; 1125 1126 // Check of any registers in RC are below CostPerUseLimit. 1127 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg); 1128 unsigned MinCost = RegClassInfo.getMinCost(RC); 1129 if (MinCost >= CostPerUseLimit) { 1130 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 1131 << MinCost << ", no cheaper registers to be found.\n"); 1132 return 0; 1133 } 1134 1135 // It is normal for register classes to have a long tail of registers with 1136 // the same cost. We don't need to look at them if they're too expensive. 1137 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) { 1138 OrderLimit = RegClassInfo.getLastCostChange(RC); 1139 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 1140 << " regs.\n"); 1141 } 1142 } 1143 1144 Order.rewind(); 1145 while (unsigned PhysReg = Order.next(OrderLimit)) { 1146 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit) 1147 continue; 1148 // The first use of a callee-saved register in a function has cost 1. 1149 // Don't start using a CSR when the CostPerUseLimit is low. 1150 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 1151 LLVM_DEBUG( 1152 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 1153 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 1154 << '\n'); 1155 continue; 1156 } 1157 1158 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost, 1159 FixedRegisters)) 1160 continue; 1161 1162 // Best so far. 1163 BestPhys = PhysReg; 1164 1165 // Stop if the hint can be used. 1166 if (Order.isHint()) 1167 break; 1168 } 1169 1170 if (!BestPhys) 1171 return 0; 1172 1173 evictInterference(VirtReg, BestPhys, NewVRegs); 1174 return BestPhys; 1175 } 1176 1177 //===----------------------------------------------------------------------===// 1178 // Region Splitting 1179 //===----------------------------------------------------------------------===// 1180 1181 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 1182 /// interference pattern in Physreg and its aliases. Add the constraints to 1183 /// SpillPlacement and return the static cost of this split in Cost, assuming 1184 /// that all preferences in SplitConstraints are met. 1185 /// Return false if there are no bundles with positive bias. 1186 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 1187 BlockFrequency &Cost) { 1188 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1189 1190 // Reset interference dependent info. 1191 SplitConstraints.resize(UseBlocks.size()); 1192 BlockFrequency StaticCost = 0; 1193 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1194 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1195 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1196 1197 BC.Number = BI.MBB->getNumber(); 1198 Intf.moveToBlock(BC.Number); 1199 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1200 BC.Exit = (BI.LiveOut && 1201 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 1202 ? SpillPlacement::PrefReg 1203 : SpillPlacement::DontCare; 1204 BC.ChangesValue = BI.FirstDef.isValid(); 1205 1206 if (!Intf.hasInterference()) 1207 continue; 1208 1209 // Number of spill code instructions to insert. 1210 unsigned Ins = 0; 1211 1212 // Interference for the live-in value. 1213 if (BI.LiveIn) { 1214 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 1215 BC.Entry = SpillPlacement::MustSpill; 1216 ++Ins; 1217 } else if (Intf.first() < BI.FirstInstr) { 1218 BC.Entry = SpillPlacement::PrefSpill; 1219 ++Ins; 1220 } else if (Intf.first() < BI.LastInstr) { 1221 ++Ins; 1222 } 1223 1224 // Abort if the spill cannot be inserted at the MBB' start 1225 if (((BC.Entry == SpillPlacement::MustSpill) || 1226 (BC.Entry == SpillPlacement::PrefSpill)) && 1227 SlotIndex::isEarlierInstr(BI.FirstInstr, 1228 SA->getFirstSplitPoint(BC.Number))) 1229 return false; 1230 } 1231 1232 // Interference for the live-out value. 1233 if (BI.LiveOut) { 1234 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 1235 BC.Exit = SpillPlacement::MustSpill; 1236 ++Ins; 1237 } else if (Intf.last() > BI.LastInstr) { 1238 BC.Exit = SpillPlacement::PrefSpill; 1239 ++Ins; 1240 } else if (Intf.last() > BI.FirstInstr) { 1241 ++Ins; 1242 } 1243 } 1244 1245 // Accumulate the total frequency of inserted spill code. 1246 while (Ins--) 1247 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 1248 } 1249 Cost = StaticCost; 1250 1251 // Add constraints for use-blocks. Note that these are the only constraints 1252 // that may add a positive bias, it is downhill from here. 1253 SpillPlacer->addConstraints(SplitConstraints); 1254 return SpillPlacer->scanActiveBundles(); 1255 } 1256 1257 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1258 /// live-through blocks in Blocks. 1259 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1260 ArrayRef<unsigned> Blocks) { 1261 const unsigned GroupSize = 8; 1262 SpillPlacement::BlockConstraint BCS[GroupSize]; 1263 unsigned TBS[GroupSize]; 1264 unsigned B = 0, T = 0; 1265 1266 for (unsigned i = 0; i != Blocks.size(); ++i) { 1267 unsigned Number = Blocks[i]; 1268 Intf.moveToBlock(Number); 1269 1270 if (!Intf.hasInterference()) { 1271 assert(T < GroupSize && "Array overflow"); 1272 TBS[T] = Number; 1273 if (++T == GroupSize) { 1274 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1275 T = 0; 1276 } 1277 continue; 1278 } 1279 1280 assert(B < GroupSize && "Array overflow"); 1281 BCS[B].Number = Number; 1282 1283 // Abort if the spill cannot be inserted at the MBB' start 1284 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 1285 if (!MBB->empty() && 1286 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()), 1287 SA->getFirstSplitPoint(Number))) 1288 return false; 1289 // Interference for the live-in value. 1290 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1291 BCS[B].Entry = SpillPlacement::MustSpill; 1292 else 1293 BCS[B].Entry = SpillPlacement::PrefSpill; 1294 1295 // Interference for the live-out value. 1296 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1297 BCS[B].Exit = SpillPlacement::MustSpill; 1298 else 1299 BCS[B].Exit = SpillPlacement::PrefSpill; 1300 1301 if (++B == GroupSize) { 1302 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1303 B = 0; 1304 } 1305 } 1306 1307 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1308 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1309 return true; 1310 } 1311 1312 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1313 // Keep track of through blocks that have not been added to SpillPlacer. 1314 BitVector Todo = SA->getThroughBlocks(); 1315 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1316 unsigned AddedTo = 0; 1317 #ifndef NDEBUG 1318 unsigned Visited = 0; 1319 #endif 1320 1321 while (true) { 1322 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1323 // Find new through blocks in the periphery of PrefRegBundles. 1324 for (int i = 0, e = NewBundles.size(); i != e; ++i) { 1325 unsigned Bundle = NewBundles[i]; 1326 // Look at all blocks connected to Bundle in the full graph. 1327 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1328 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end(); 1329 I != E; ++I) { 1330 unsigned Block = *I; 1331 if (!Todo.test(Block)) 1332 continue; 1333 Todo.reset(Block); 1334 // This is a new through block. Add it to SpillPlacer later. 1335 ActiveBlocks.push_back(Block); 1336 #ifndef NDEBUG 1337 ++Visited; 1338 #endif 1339 } 1340 } 1341 // Any new blocks to add? 1342 if (ActiveBlocks.size() == AddedTo) 1343 break; 1344 1345 // Compute through constraints from the interference, or assume that all 1346 // through blocks prefer spilling when forming compact regions. 1347 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1348 if (Cand.PhysReg) { 1349 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 1350 return false; 1351 } else 1352 // Provide a strong negative bias on through blocks to prevent unwanted 1353 // liveness on loop backedges. 1354 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1355 AddedTo = ActiveBlocks.size(); 1356 1357 // Perhaps iterating can enable more bundles? 1358 SpillPlacer->iterate(); 1359 } 1360 LLVM_DEBUG(dbgs() << ", v=" << Visited); 1361 return true; 1362 } 1363 1364 /// calcCompactRegion - Compute the set of edge bundles that should be live 1365 /// when splitting the current live range into compact regions. Compact 1366 /// regions can be computed without looking at interference. They are the 1367 /// regions formed by removing all the live-through blocks from the live range. 1368 /// 1369 /// Returns false if the current live range is already compact, or if the 1370 /// compact regions would form single block regions anyway. 1371 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1372 // Without any through blocks, the live range is already compact. 1373 if (!SA->getNumThroughBlocks()) 1374 return false; 1375 1376 // Compact regions don't correspond to any physreg. 1377 Cand.reset(IntfCache, 0); 1378 1379 LLVM_DEBUG(dbgs() << "Compact region bundles"); 1380 1381 // Use the spill placer to determine the live bundles. GrowRegion pretends 1382 // that all the through blocks have interference when PhysReg is unset. 1383 SpillPlacer->prepare(Cand.LiveBundles); 1384 1385 // The static split cost will be zero since Cand.Intf reports no interference. 1386 BlockFrequency Cost; 1387 if (!addSplitConstraints(Cand.Intf, Cost)) { 1388 LLVM_DEBUG(dbgs() << ", none.\n"); 1389 return false; 1390 } 1391 1392 if (!growRegion(Cand)) { 1393 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1394 return false; 1395 } 1396 1397 SpillPlacer->finish(); 1398 1399 if (!Cand.LiveBundles.any()) { 1400 LLVM_DEBUG(dbgs() << ", none.\n"); 1401 return false; 1402 } 1403 1404 LLVM_DEBUG({ 1405 for (int i : Cand.LiveBundles.set_bits()) 1406 dbgs() << " EB#" << i; 1407 dbgs() << ".\n"; 1408 }); 1409 return true; 1410 } 1411 1412 /// calcSpillCost - Compute how expensive it would be to split the live range in 1413 /// SA around all use blocks instead of forming bundle regions. 1414 BlockFrequency RAGreedy::calcSpillCost() { 1415 BlockFrequency Cost = 0; 1416 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1417 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1418 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1419 unsigned Number = BI.MBB->getNumber(); 1420 // We normally only need one spill instruction - a load or a store. 1421 Cost += SpillPlacer->getBlockFrequency(Number); 1422 1423 // Unless the value is redefined in the block. 1424 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1425 Cost += SpillPlacer->getBlockFrequency(Number); 1426 } 1427 return Cost; 1428 } 1429 1430 /// Check if splitting Evictee will create a local split interval in 1431 /// basic block number BBNumber that may cause a bad eviction chain. This is 1432 /// intended to prevent bad eviction sequences like: 1433 /// movl %ebp, 8(%esp) # 4-byte Spill 1434 /// movl %ecx, %ebp 1435 /// movl %ebx, %ecx 1436 /// movl %edi, %ebx 1437 /// movl %edx, %edi 1438 /// cltd 1439 /// idivl %esi 1440 /// movl %edi, %edx 1441 /// movl %ebx, %edi 1442 /// movl %ecx, %ebx 1443 /// movl %ebp, %ecx 1444 /// movl 16(%esp), %ebp # 4 - byte Reload 1445 /// 1446 /// Such sequences are created in 2 scenarios: 1447 /// 1448 /// Scenario #1: 1449 /// %0 is evicted from physreg0 by %1. 1450 /// Evictee %0 is intended for region splitting with split candidate 1451 /// physreg0 (the reg %0 was evicted from). 1452 /// Region splitting creates a local interval because of interference with the 1453 /// evictor %1 (normally region splitting creates 2 interval, the "by reg" 1454 /// and "by stack" intervals and local interval created when interference 1455 /// occurs). 1456 /// One of the split intervals ends up evicting %2 from physreg1. 1457 /// Evictee %2 is intended for region splitting with split candidate 1458 /// physreg1. 1459 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1460 /// 1461 /// Scenario #2 1462 /// %0 is evicted from physreg0 by %1. 1463 /// %2 is evicted from physreg2 by %3 etc. 1464 /// Evictee %0 is intended for region splitting with split candidate 1465 /// physreg1. 1466 /// Region splitting creates a local interval because of interference with the 1467 /// evictor %1. 1468 /// One of the split intervals ends up evicting back original evictor %1 1469 /// from physreg0 (the reg %0 was evicted from). 1470 /// Another evictee %2 is intended for region splitting with split candidate 1471 /// physreg1. 1472 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1473 /// 1474 /// \param Evictee The register considered to be split. 1475 /// \param Cand The split candidate that determines the physical register 1476 /// we are splitting for and the interferences. 1477 /// \param BBNumber The number of a BB for which the region split process will 1478 /// create a local split interval. 1479 /// \param Order The physical registers that may get evicted by a split 1480 /// artifact of Evictee. 1481 /// \return True if splitting Evictee may cause a bad eviction chain, false 1482 /// otherwise. 1483 bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee, 1484 GlobalSplitCandidate &Cand, 1485 unsigned BBNumber, 1486 const AllocationOrder &Order) { 1487 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 1488 unsigned Evictor = VregEvictorInfo.first; 1489 unsigned PhysReg = VregEvictorInfo.second; 1490 1491 // No actual evictor. 1492 if (!Evictor || !PhysReg) 1493 return false; 1494 1495 float MaxWeight = 0; 1496 unsigned FutureEvictedPhysReg = 1497 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 1498 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 1499 1500 // The bad eviction chain occurs when either the split candidate is the 1501 // evicting reg or one of the split artifact will evict the evicting reg. 1502 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 1503 return false; 1504 1505 Cand.Intf.moveToBlock(BBNumber); 1506 1507 // Check to see if the Evictor contains interference (with Evictee) in the 1508 // given BB. If so, this interference caused the eviction of Evictee from 1509 // PhysReg. This suggest that we will create a local interval during the 1510 // region split to avoid this interference This local interval may cause a bad 1511 // eviction chain. 1512 if (!LIS->hasInterval(Evictor)) 1513 return false; 1514 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 1515 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 1516 return false; 1517 1518 // Now, check to see if the local interval we will create is going to be 1519 // expensive enough to evict somebody If so, this may cause a bad eviction 1520 // chain. 1521 VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI); 1522 float splitArtifactWeight = 1523 VRAI.futureWeight(LIS->getInterval(Evictee), 1524 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1525 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 1526 return false; 1527 1528 return true; 1529 } 1530 1531 /// Check if splitting VirtRegToSplit will create a local split interval 1532 /// in basic block number BBNumber that may cause a spill. 1533 /// 1534 /// \param VirtRegToSplit The register considered to be split. 1535 /// \param Cand The split candidate that determines the physical 1536 /// register we are splitting for and the interferences. 1537 /// \param BBNumber The number of a BB for which the region split process 1538 /// will create a local split interval. 1539 /// \param Order The physical registers that may get evicted by a 1540 /// split artifact of VirtRegToSplit. 1541 /// \return True if splitting VirtRegToSplit may cause a spill, false 1542 /// otherwise. 1543 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit, 1544 GlobalSplitCandidate &Cand, 1545 unsigned BBNumber, 1546 const AllocationOrder &Order) { 1547 Cand.Intf.moveToBlock(BBNumber); 1548 1549 // Check if the local interval will find a non interfereing assignment. 1550 for (auto PhysReg : Order.getOrder()) { 1551 if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(), 1552 Cand.Intf.last(), PhysReg)) 1553 return false; 1554 } 1555 1556 // Check if the local interval will evict a cheaper interval. 1557 float CheapestEvictWeight = 0; 1558 unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight( 1559 Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(), 1560 Cand.Intf.last(), &CheapestEvictWeight); 1561 1562 // Have we found an interval that can be evicted? 1563 if (FutureEvictedPhysReg) { 1564 VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI); 1565 float splitArtifactWeight = 1566 VRAI.futureWeight(LIS->getInterval(VirtRegToSplit), 1567 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1568 // Will the weight of the local interval be higher than the cheapest evictee 1569 // weight? If so it will evict it and will not cause a spill. 1570 if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight) 1571 return false; 1572 } 1573 1574 // The local interval is not able to find non interferencing assignment and 1575 // not able to evict a less worthy interval, therfore, it can cause a spill. 1576 return true; 1577 } 1578 1579 /// calcGlobalSplitCost - Return the global split cost of following the split 1580 /// pattern in LiveBundles. This cost should be added to the local cost of the 1581 /// interference pattern in SplitConstraints. 1582 /// 1583 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 1584 const AllocationOrder &Order, 1585 bool *CanCauseEvictionChain) { 1586 BlockFrequency GlobalCost = 0; 1587 const BitVector &LiveBundles = Cand.LiveBundles; 1588 unsigned VirtRegToSplit = SA->getParent().reg; 1589 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1590 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1591 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1592 SpillPlacement::BlockConstraint &BC = SplitConstraints[i]; 1593 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1594 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1595 unsigned Ins = 0; 1596 1597 Cand.Intf.moveToBlock(BC.Number); 1598 // Check wheather a local interval is going to be created during the region 1599 // split. Calculate adavanced spilt cost (cost of local intervals) if option 1600 // is enabled. 1601 if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn && 1602 BI.LiveOut && RegIn && RegOut) { 1603 1604 if (CanCauseEvictionChain && 1605 splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { 1606 // This interference causes our eviction from this assignment, we might 1607 // evict somebody else and eventually someone will spill, add that cost. 1608 // See splitCanCauseEvictionChain for detailed description of scenarios. 1609 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1610 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1611 1612 *CanCauseEvictionChain = true; 1613 1614 } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number, 1615 Order)) { 1616 // This interference causes local interval to spill, add that cost. 1617 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1618 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1619 } 1620 } 1621 1622 if (BI.LiveIn) 1623 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1624 if (BI.LiveOut) 1625 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1626 while (Ins--) 1627 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1628 } 1629 1630 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) { 1631 unsigned Number = Cand.ActiveBlocks[i]; 1632 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1633 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1634 if (!RegIn && !RegOut) 1635 continue; 1636 if (RegIn && RegOut) { 1637 // We need double spill code if this block has interference. 1638 Cand.Intf.moveToBlock(Number); 1639 if (Cand.Intf.hasInterference()) { 1640 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1641 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1642 1643 // Check wheather a local interval is going to be created during the 1644 // region split. 1645 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1646 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { 1647 // This interference cause our eviction from this assignment, we might 1648 // evict somebody else, add that cost. 1649 // See splitCanCauseEvictionChain for detailed description of 1650 // scenarios. 1651 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1652 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1653 1654 *CanCauseEvictionChain = true; 1655 } 1656 } 1657 continue; 1658 } 1659 // live-in / stack-out or stack-in live-out. 1660 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1661 } 1662 return GlobalCost; 1663 } 1664 1665 /// splitAroundRegion - Split the current live range around the regions 1666 /// determined by BundleCand and GlobalCand. 1667 /// 1668 /// Before calling this function, GlobalCand and BundleCand must be initialized 1669 /// so each bundle is assigned to a valid candidate, or NoCand for the 1670 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1671 /// objects must be initialized for the current live range, and intervals 1672 /// created for the used candidates. 1673 /// 1674 /// @param LREdit The LiveRangeEdit object handling the current split. 1675 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1676 /// must appear in this list. 1677 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1678 ArrayRef<unsigned> UsedCands) { 1679 // These are the intervals created for new global ranges. We may create more 1680 // intervals for local ranges. 1681 const unsigned NumGlobalIntvs = LREdit.size(); 1682 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 1683 << " globals.\n"); 1684 assert(NumGlobalIntvs && "No global intervals configured"); 1685 1686 // Isolate even single instructions when dealing with a proper sub-class. 1687 // That guarantees register class inflation for the stack interval because it 1688 // is all copies. 1689 unsigned Reg = SA->getParent().reg; 1690 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1691 1692 // First handle all the blocks with uses. 1693 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1694 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 1695 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 1696 unsigned Number = BI.MBB->getNumber(); 1697 unsigned IntvIn = 0, IntvOut = 0; 1698 SlotIndex IntfIn, IntfOut; 1699 if (BI.LiveIn) { 1700 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1701 if (CandIn != NoCand) { 1702 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1703 IntvIn = Cand.IntvIdx; 1704 Cand.Intf.moveToBlock(Number); 1705 IntfIn = Cand.Intf.first(); 1706 } 1707 } 1708 if (BI.LiveOut) { 1709 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1710 if (CandOut != NoCand) { 1711 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1712 IntvOut = Cand.IntvIdx; 1713 Cand.Intf.moveToBlock(Number); 1714 IntfOut = Cand.Intf.last(); 1715 } 1716 } 1717 1718 // Create separate intervals for isolated blocks with multiple uses. 1719 if (!IntvIn && !IntvOut) { 1720 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 1721 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1722 SE->splitSingleBlock(BI); 1723 continue; 1724 } 1725 1726 if (IntvIn && IntvOut) 1727 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1728 else if (IntvIn) 1729 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1730 else 1731 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1732 } 1733 1734 // Handle live-through blocks. The relevant live-through blocks are stored in 1735 // the ActiveBlocks list with each candidate. We need to filter out 1736 // duplicates. 1737 BitVector Todo = SA->getThroughBlocks(); 1738 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1739 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1740 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 1741 unsigned Number = Blocks[i]; 1742 if (!Todo.test(Number)) 1743 continue; 1744 Todo.reset(Number); 1745 1746 unsigned IntvIn = 0, IntvOut = 0; 1747 SlotIndex IntfIn, IntfOut; 1748 1749 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1750 if (CandIn != NoCand) { 1751 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1752 IntvIn = Cand.IntvIdx; 1753 Cand.Intf.moveToBlock(Number); 1754 IntfIn = Cand.Intf.first(); 1755 } 1756 1757 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1758 if (CandOut != NoCand) { 1759 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1760 IntvOut = Cand.IntvIdx; 1761 Cand.Intf.moveToBlock(Number); 1762 IntfOut = Cand.Intf.last(); 1763 } 1764 if (!IntvIn && !IntvOut) 1765 continue; 1766 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1767 } 1768 } 1769 1770 ++NumGlobalSplits; 1771 1772 SmallVector<unsigned, 8> IntvMap; 1773 SE->finish(&IntvMap); 1774 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1775 1776 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1777 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1778 1779 // Sort out the new intervals created by splitting. We get four kinds: 1780 // - Remainder intervals should not be split again. 1781 // - Candidate intervals can be assigned to Cand.PhysReg. 1782 // - Block-local splits are candidates for local splitting. 1783 // - DCE leftovers should go back on the queue. 1784 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 1785 LiveInterval &Reg = LIS->getInterval(LREdit.get(i)); 1786 1787 // Ignore old intervals from DCE. 1788 if (getStage(Reg) != RS_New) 1789 continue; 1790 1791 // Remainder interval. Don't try splitting again, spill if it doesn't 1792 // allocate. 1793 if (IntvMap[i] == 0) { 1794 setStage(Reg, RS_Spill); 1795 continue; 1796 } 1797 1798 // Global intervals. Allow repeated splitting as long as the number of live 1799 // blocks is strictly decreasing. 1800 if (IntvMap[i] < NumGlobalIntvs) { 1801 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1802 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1803 << " blocks as original.\n"); 1804 // Don't allow repeated splitting as a safe guard against looping. 1805 setStage(Reg, RS_Split2); 1806 } 1807 continue; 1808 } 1809 1810 // Other intervals are treated as new. This includes local intervals created 1811 // for blocks with multiple uses, and anything created by DCE. 1812 } 1813 1814 if (VerifyEnabled) 1815 MF->verify(this, "After splitting live range around region"); 1816 } 1817 1818 // Global split has high compile time cost especially for large live range. 1819 // Return false for the case here where the potential benefit will never 1820 // worth the cost. 1821 unsigned RAGreedy::isSplitBenefitWorthCost(LiveInterval &VirtReg) { 1822 MachineInstr *MI = MRI->getUniqueVRegDef(VirtReg.reg); 1823 if (MI && TII->isTriviallyReMaterializable(*MI, AA) && 1824 VirtReg.size() > HugeSizeForSplit) 1825 return false; 1826 return true; 1827 } 1828 1829 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 1830 SmallVectorImpl<unsigned> &NewVRegs) { 1831 if (!isSplitBenefitWorthCost(VirtReg)) 1832 return 0; 1833 unsigned NumCands = 0; 1834 BlockFrequency SpillCost = calcSpillCost(); 1835 BlockFrequency BestCost; 1836 1837 // Check if we can split this live range around a compact region. 1838 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1839 if (HasCompact) { 1840 // Yes, keep GlobalCand[0] as the compact region candidate. 1841 NumCands = 1; 1842 BestCost = BlockFrequency::getMaxFrequency(); 1843 } else { 1844 // No benefit from the compact region, our fallback will be per-block 1845 // splitting. Make sure we find a solution that is cheaper than spilling. 1846 BestCost = SpillCost; 1847 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1848 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1849 } 1850 1851 bool CanCauseEvictionChain = false; 1852 unsigned BestCand = 1853 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1854 false /*IgnoreCSR*/, &CanCauseEvictionChain); 1855 1856 // Split candidates with compact regions can cause a bad eviction sequence. 1857 // See splitCanCauseEvictionChain for detailed description of scenarios. 1858 // To avoid it, we need to comapre the cost with the spill cost and not the 1859 // current max frequency. 1860 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && 1861 CanCauseEvictionChain) { 1862 return 0; 1863 } 1864 1865 // No solutions found, fall back to single block splitting. 1866 if (!HasCompact && BestCand == NoCand) 1867 return 0; 1868 1869 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1870 } 1871 1872 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1873 AllocationOrder &Order, 1874 BlockFrequency &BestCost, 1875 unsigned &NumCands, bool IgnoreCSR, 1876 bool *CanCauseEvictionChain) { 1877 unsigned BestCand = NoCand; 1878 Order.rewind(); 1879 while (unsigned PhysReg = Order.next()) { 1880 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1881 continue; 1882 1883 // Discard bad candidates before we run out of interference cache cursors. 1884 // This will only affect register classes with a lot of registers (>32). 1885 if (NumCands == IntfCache.getMaxCursors()) { 1886 unsigned WorstCount = ~0u; 1887 unsigned Worst = 0; 1888 for (unsigned i = 0; i != NumCands; ++i) { 1889 if (i == BestCand || !GlobalCand[i].PhysReg) 1890 continue; 1891 unsigned Count = GlobalCand[i].LiveBundles.count(); 1892 if (Count < WorstCount) { 1893 Worst = i; 1894 WorstCount = Count; 1895 } 1896 } 1897 --NumCands; 1898 GlobalCand[Worst] = GlobalCand[NumCands]; 1899 if (BestCand == NumCands) 1900 BestCand = Worst; 1901 } 1902 1903 if (GlobalCand.size() <= NumCands) 1904 GlobalCand.resize(NumCands+1); 1905 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1906 Cand.reset(IntfCache, PhysReg); 1907 1908 SpillPlacer->prepare(Cand.LiveBundles); 1909 BlockFrequency Cost; 1910 if (!addSplitConstraints(Cand.Intf, Cost)) { 1911 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1912 continue; 1913 } 1914 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1915 MBFI->printBlockFreq(dbgs(), Cost)); 1916 if (Cost >= BestCost) { 1917 LLVM_DEBUG({ 1918 if (BestCand == NoCand) 1919 dbgs() << " worse than no bundles\n"; 1920 else 1921 dbgs() << " worse than " 1922 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1923 }); 1924 continue; 1925 } 1926 if (!growRegion(Cand)) { 1927 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1928 continue; 1929 } 1930 1931 SpillPlacer->finish(); 1932 1933 // No live bundles, defer to splitSingleBlocks(). 1934 if (!Cand.LiveBundles.any()) { 1935 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1936 continue; 1937 } 1938 1939 bool HasEvictionChain = false; 1940 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); 1941 LLVM_DEBUG({ 1942 dbgs() << ", total = "; 1943 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1944 for (int i : Cand.LiveBundles.set_bits()) 1945 dbgs() << " EB#" << i; 1946 dbgs() << ".\n"; 1947 }); 1948 if (Cost < BestCost) { 1949 BestCand = NumCands; 1950 BestCost = Cost; 1951 // See splitCanCauseEvictionChain for detailed description of bad 1952 // eviction chain scenarios. 1953 if (CanCauseEvictionChain) 1954 *CanCauseEvictionChain = HasEvictionChain; 1955 } 1956 ++NumCands; 1957 } 1958 1959 if (CanCauseEvictionChain && BestCand != NoCand) { 1960 // See splitCanCauseEvictionChain for detailed description of bad 1961 // eviction chain scenarios. 1962 LLVM_DEBUG(dbgs() << "Best split candidate of vreg " 1963 << printReg(VirtReg.reg, TRI) << " may "); 1964 if (!(*CanCauseEvictionChain)) 1965 LLVM_DEBUG(dbgs() << "not "); 1966 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n"); 1967 } 1968 1969 return BestCand; 1970 } 1971 1972 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1973 bool HasCompact, 1974 SmallVectorImpl<unsigned> &NewVRegs) { 1975 SmallVector<unsigned, 8> UsedCands; 1976 // Prepare split editor. 1977 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1978 SE->reset(LREdit, SplitSpillMode); 1979 1980 // Assign all edge bundles to the preferred candidate, or NoCand. 1981 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1982 1983 // Assign bundles for the best candidate region. 1984 if (BestCand != NoCand) { 1985 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1986 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1987 UsedCands.push_back(BestCand); 1988 Cand.IntvIdx = SE->openIntv(); 1989 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1990 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1991 (void)B; 1992 } 1993 } 1994 1995 // Assign bundles for the compact region. 1996 if (HasCompact) { 1997 GlobalSplitCandidate &Cand = GlobalCand.front(); 1998 assert(!Cand.PhysReg && "Compact region has no physreg"); 1999 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 2000 UsedCands.push_back(0); 2001 Cand.IntvIdx = SE->openIntv(); 2002 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 2003 << " bundles, intv " << Cand.IntvIdx << ".\n"); 2004 (void)B; 2005 } 2006 } 2007 2008 splitAroundRegion(LREdit, UsedCands); 2009 return 0; 2010 } 2011 2012 //===----------------------------------------------------------------------===// 2013 // Per-Block Splitting 2014 //===----------------------------------------------------------------------===// 2015 2016 /// tryBlockSplit - Split a global live range around every block with uses. This 2017 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 2018 /// they don't allocate. 2019 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2020 SmallVectorImpl<unsigned> &NewVRegs) { 2021 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 2022 unsigned Reg = VirtReg.reg; 2023 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 2024 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2025 SE->reset(LREdit, SplitSpillMode); 2026 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 2027 for (unsigned i = 0; i != UseBlocks.size(); ++i) { 2028 const SplitAnalysis::BlockInfo &BI = UseBlocks[i]; 2029 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 2030 SE->splitSingleBlock(BI); 2031 } 2032 // No blocks were split. 2033 if (LREdit.empty()) 2034 return 0; 2035 2036 // We did split for some blocks. 2037 SmallVector<unsigned, 8> IntvMap; 2038 SE->finish(&IntvMap); 2039 2040 // Tell LiveDebugVariables about the new ranges. 2041 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 2042 2043 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2044 2045 // Sort out the new intervals created by splitting. The remainder interval 2046 // goes straight to spilling, the new local ranges get to stay RS_New. 2047 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) { 2048 LiveInterval &LI = LIS->getInterval(LREdit.get(i)); 2049 if (getStage(LI) == RS_New && IntvMap[i] == 0) 2050 setStage(LI, RS_Spill); 2051 } 2052 2053 if (VerifyEnabled) 2054 MF->verify(this, "After splitting live range around basic blocks"); 2055 return 0; 2056 } 2057 2058 //===----------------------------------------------------------------------===// 2059 // Per-Instruction Splitting 2060 //===----------------------------------------------------------------------===// 2061 2062 /// Get the number of allocatable registers that match the constraints of \p Reg 2063 /// on \p MI and that are also in \p SuperRC. 2064 static unsigned getNumAllocatableRegsForConstraints( 2065 const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC, 2066 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 2067 const RegisterClassInfo &RCI) { 2068 assert(SuperRC && "Invalid register class"); 2069 2070 const TargetRegisterClass *ConstrainedRC = 2071 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 2072 /* ExploreBundle */ true); 2073 if (!ConstrainedRC) 2074 return 0; 2075 return RCI.getNumAllocatableRegs(ConstrainedRC); 2076 } 2077 2078 /// tryInstructionSplit - Split a live range around individual instructions. 2079 /// This is normally not worthwhile since the spiller is doing essentially the 2080 /// same thing. However, when the live range is in a constrained register 2081 /// class, it may help to insert copies such that parts of the live range can 2082 /// be moved to a larger register class. 2083 /// 2084 /// This is similar to spilling to a larger register class. 2085 unsigned 2086 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2087 SmallVectorImpl<unsigned> &NewVRegs) { 2088 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 2089 // There is no point to this if there are no larger sub-classes. 2090 if (!RegClassInfo.isProperSubClass(CurRC)) 2091 return 0; 2092 2093 // Always enable split spill mode, since we're effectively spilling to a 2094 // register. 2095 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2096 SE->reset(LREdit, SplitEditor::SM_Size); 2097 2098 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2099 if (Uses.size() <= 1) 2100 return 0; 2101 2102 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 2103 << " individual instrs.\n"); 2104 2105 const TargetRegisterClass *SuperRC = 2106 TRI->getLargestLegalSuperClass(CurRC, *MF); 2107 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 2108 // Split around every non-copy instruction if this split will relax 2109 // the constraints on the virtual register. 2110 // Otherwise, splitting just inserts uncoalescable copies that do not help 2111 // the allocation. 2112 for (unsigned i = 0; i != Uses.size(); ++i) { 2113 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i])) 2114 if (MI->isFullCopy() || 2115 SuperRCNumAllocatableRegs == 2116 getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII, 2117 TRI, RCI)) { 2118 LLVM_DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI); 2119 continue; 2120 } 2121 SE->openIntv(); 2122 SlotIndex SegStart = SE->enterIntvBefore(Uses[i]); 2123 SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]); 2124 SE->useIntv(SegStart, SegStop); 2125 } 2126 2127 if (LREdit.empty()) { 2128 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 2129 return 0; 2130 } 2131 2132 SmallVector<unsigned, 8> IntvMap; 2133 SE->finish(&IntvMap); 2134 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 2135 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2136 2137 // Assign all new registers to RS_Spill. This was the last chance. 2138 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 2139 return 0; 2140 } 2141 2142 //===----------------------------------------------------------------------===// 2143 // Local Splitting 2144 //===----------------------------------------------------------------------===// 2145 2146 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 2147 /// in order to use PhysReg between two entries in SA->UseSlots. 2148 /// 2149 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1]. 2150 /// 2151 void RAGreedy::calcGapWeights(unsigned PhysReg, 2152 SmallVectorImpl<float> &GapWeight) { 2153 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2154 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2155 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2156 const unsigned NumGaps = Uses.size()-1; 2157 2158 // Start and end points for the interference check. 2159 SlotIndex StartIdx = 2160 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 2161 SlotIndex StopIdx = 2162 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 2163 2164 GapWeight.assign(NumGaps, 0.0f); 2165 2166 // Add interference from each overlapping register. 2167 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2168 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 2169 .checkInterference()) 2170 continue; 2171 2172 // We know that VirtReg is a continuous interval from FirstInstr to 2173 // LastInstr, so we don't need InterferenceQuery. 2174 // 2175 // Interference that overlaps an instruction is counted in both gaps 2176 // surrounding the instruction. The exception is interference before 2177 // StartIdx and after StopIdx. 2178 // 2179 LiveIntervalUnion::SegmentIter IntI = 2180 Matrix->getLiveUnions()[*Units] .find(StartIdx); 2181 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 2182 // Skip the gaps before IntI. 2183 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 2184 if (++Gap == NumGaps) 2185 break; 2186 if (Gap == NumGaps) 2187 break; 2188 2189 // Update the gaps covered by IntI. 2190 const float weight = IntI.value()->weight; 2191 for (; Gap != NumGaps; ++Gap) { 2192 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 2193 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 2194 break; 2195 } 2196 if (Gap == NumGaps) 2197 break; 2198 } 2199 } 2200 2201 // Add fixed interference. 2202 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2203 const LiveRange &LR = LIS->getRegUnit(*Units); 2204 LiveRange::const_iterator I = LR.find(StartIdx); 2205 LiveRange::const_iterator E = LR.end(); 2206 2207 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 2208 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 2209 while (Uses[Gap+1].getBoundaryIndex() < I->start) 2210 if (++Gap == NumGaps) 2211 break; 2212 if (Gap == NumGaps) 2213 break; 2214 2215 for (; Gap != NumGaps; ++Gap) { 2216 GapWeight[Gap] = huge_valf; 2217 if (Uses[Gap+1].getBaseIndex() >= I->end) 2218 break; 2219 } 2220 if (Gap == NumGaps) 2221 break; 2222 } 2223 } 2224 } 2225 2226 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 2227 /// basic block. 2228 /// 2229 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2230 SmallVectorImpl<unsigned> &NewVRegs) { 2231 // TODO: the function currently only handles a single UseBlock; it should be 2232 // possible to generalize. 2233 if (SA->getUseBlocks().size() != 1) 2234 return 0; 2235 2236 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2237 2238 // Note that it is possible to have an interval that is live-in or live-out 2239 // while only covering a single block - A phi-def can use undef values from 2240 // predecessors, and the block could be a single-block loop. 2241 // We don't bother doing anything clever about such a case, we simply assume 2242 // that the interval is continuous from FirstInstr to LastInstr. We should 2243 // make sure that we don't do anything illegal to such an interval, though. 2244 2245 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2246 if (Uses.size() <= 2) 2247 return 0; 2248 const unsigned NumGaps = Uses.size()-1; 2249 2250 LLVM_DEBUG({ 2251 dbgs() << "tryLocalSplit: "; 2252 for (unsigned i = 0, e = Uses.size(); i != e; ++i) 2253 dbgs() << ' ' << Uses[i]; 2254 dbgs() << '\n'; 2255 }); 2256 2257 // If VirtReg is live across any register mask operands, compute a list of 2258 // gaps with register masks. 2259 SmallVector<unsigned, 8> RegMaskGaps; 2260 if (Matrix->checkRegMaskInterference(VirtReg)) { 2261 // Get regmask slots for the whole block. 2262 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 2263 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 2264 // Constrain to VirtReg's live range. 2265 unsigned ri = 2266 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 2267 unsigned re = RMS.size(); 2268 for (unsigned i = 0; i != NumGaps && ri != re; ++i) { 2269 // Look for Uses[i] <= RMS <= Uses[i+1]. 2270 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i])); 2271 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri])) 2272 continue; 2273 // Skip a regmask on the same instruction as the last use. It doesn't 2274 // overlap the live range. 2275 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps) 2276 break; 2277 LLVM_DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' 2278 << Uses[i + 1]); 2279 RegMaskGaps.push_back(i); 2280 // Advance ri to the next gap. A regmask on one of the uses counts in 2281 // both gaps. 2282 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1])) 2283 ++ri; 2284 } 2285 LLVM_DEBUG(dbgs() << '\n'); 2286 } 2287 2288 // Since we allow local split results to be split again, there is a risk of 2289 // creating infinite loops. It is tempting to require that the new live 2290 // ranges have less instructions than the original. That would guarantee 2291 // convergence, but it is too strict. A live range with 3 instructions can be 2292 // split 2+3 (including the COPY), and we want to allow that. 2293 // 2294 // Instead we use these rules: 2295 // 2296 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 2297 // noop split, of course). 2298 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 2299 // the new ranges must have fewer instructions than before the split. 2300 // 3. New ranges with the same number of instructions are marked RS_Split2, 2301 // smaller ranges are marked RS_New. 2302 // 2303 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 2304 // excessive splitting and infinite loops. 2305 // 2306 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 2307 2308 // Best split candidate. 2309 unsigned BestBefore = NumGaps; 2310 unsigned BestAfter = 0; 2311 float BestDiff = 0; 2312 2313 const float blockFreq = 2314 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 2315 (1.0f / MBFI->getEntryFreq()); 2316 SmallVector<float, 8> GapWeight; 2317 2318 Order.rewind(); 2319 while (unsigned PhysReg = Order.next()) { 2320 // Keep track of the largest spill weight that would need to be evicted in 2321 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1]. 2322 calcGapWeights(PhysReg, GapWeight); 2323 2324 // Remove any gaps with regmask clobbers. 2325 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 2326 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i) 2327 GapWeight[RegMaskGaps[i]] = huge_valf; 2328 2329 // Try to find the best sequence of gaps to close. 2330 // The new spill weight must be larger than any gap interference. 2331 2332 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 2333 unsigned SplitBefore = 0, SplitAfter = 1; 2334 2335 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 2336 // It is the spill weight that needs to be evicted. 2337 float MaxGap = GapWeight[0]; 2338 2339 while (true) { 2340 // Live before/after split? 2341 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 2342 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 2343 2344 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 2345 << '-' << Uses[SplitAfter] << " i=" << MaxGap); 2346 2347 // Stop before the interval gets so big we wouldn't be making progress. 2348 if (!LiveBefore && !LiveAfter) { 2349 LLVM_DEBUG(dbgs() << " all\n"); 2350 break; 2351 } 2352 // Should the interval be extended or shrunk? 2353 bool Shrink = true; 2354 2355 // How many gaps would the new range have? 2356 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 2357 2358 // Legally, without causing looping? 2359 bool Legal = !ProgressRequired || NewGaps < NumGaps; 2360 2361 if (Legal && MaxGap < huge_valf) { 2362 // Estimate the new spill weight. Each instruction reads or writes the 2363 // register. Conservatively assume there are no read-modify-write 2364 // instructions. 2365 // 2366 // Try to guess the size of the new interval. 2367 const float EstWeight = normalizeSpillWeight( 2368 blockFreq * (NewGaps + 1), 2369 Uses[SplitBefore].distance(Uses[SplitAfter]) + 2370 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 2371 1); 2372 // Would this split be possible to allocate? 2373 // Never allocate all gaps, we wouldn't be making progress. 2374 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 2375 if (EstWeight * Hysteresis >= MaxGap) { 2376 Shrink = false; 2377 float Diff = EstWeight - MaxGap; 2378 if (Diff > BestDiff) { 2379 LLVM_DEBUG(dbgs() << " (best)"); 2380 BestDiff = Hysteresis * Diff; 2381 BestBefore = SplitBefore; 2382 BestAfter = SplitAfter; 2383 } 2384 } 2385 } 2386 2387 // Try to shrink. 2388 if (Shrink) { 2389 if (++SplitBefore < SplitAfter) { 2390 LLVM_DEBUG(dbgs() << " shrink\n"); 2391 // Recompute the max when necessary. 2392 if (GapWeight[SplitBefore - 1] >= MaxGap) { 2393 MaxGap = GapWeight[SplitBefore]; 2394 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i) 2395 MaxGap = std::max(MaxGap, GapWeight[i]); 2396 } 2397 continue; 2398 } 2399 MaxGap = 0; 2400 } 2401 2402 // Try to extend the interval. 2403 if (SplitAfter >= NumGaps) { 2404 LLVM_DEBUG(dbgs() << " end\n"); 2405 break; 2406 } 2407 2408 LLVM_DEBUG(dbgs() << " extend\n"); 2409 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 2410 } 2411 } 2412 2413 // Didn't find any candidates? 2414 if (BestBefore == NumGaps) 2415 return 0; 2416 2417 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 2418 << Uses[BestAfter] << ", " << BestDiff << ", " 2419 << (BestAfter - BestBefore + 1) << " instrs\n"); 2420 2421 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2422 SE->reset(LREdit); 2423 2424 SE->openIntv(); 2425 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 2426 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 2427 SE->useIntv(SegStart, SegStop); 2428 SmallVector<unsigned, 8> IntvMap; 2429 SE->finish(&IntvMap); 2430 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS); 2431 2432 // If the new range has the same number of instructions as before, mark it as 2433 // RS_Split2 so the next split will be forced to make progress. Otherwise, 2434 // leave the new intervals as RS_New so they can compete. 2435 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 2436 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 2437 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 2438 if (NewGaps >= NumGaps) { 2439 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: "); 2440 assert(!ProgressRequired && "Didn't make progress when it was required."); 2441 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i) 2442 if (IntvMap[i] == 1) { 2443 setStage(LIS->getInterval(LREdit.get(i)), RS_Split2); 2444 LLVM_DEBUG(dbgs() << printReg(LREdit.get(i))); 2445 } 2446 LLVM_DEBUG(dbgs() << '\n'); 2447 } 2448 ++NumLocalSplits; 2449 2450 return 0; 2451 } 2452 2453 //===----------------------------------------------------------------------===// 2454 // Live Range Splitting 2455 //===----------------------------------------------------------------------===// 2456 2457 /// trySplit - Try to split VirtReg or one of its interferences, making it 2458 /// assignable. 2459 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 2460 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 2461 SmallVectorImpl<unsigned>&NewVRegs, 2462 const SmallVirtRegSet &FixedRegisters) { 2463 // Ranges must be Split2 or less. 2464 if (getStage(VirtReg) >= RS_Spill) 2465 return 0; 2466 2467 // Local intervals are handled separately. 2468 if (LIS->intervalIsInOneMBB(VirtReg)) { 2469 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 2470 TimerGroupDescription, TimePassesIsEnabled); 2471 SA->analyze(&VirtReg); 2472 unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 2473 if (PhysReg || !NewVRegs.empty()) 2474 return PhysReg; 2475 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2476 } 2477 2478 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2479 TimerGroupDescription, TimePassesIsEnabled); 2480 2481 SA->analyze(&VirtReg); 2482 2483 // FIXME: SplitAnalysis may repair broken live ranges coming from the 2484 // coalescer. That may cause the range to become allocatable which means that 2485 // tryRegionSplit won't be making progress. This check should be replaced with 2486 // an assertion when the coalescer is fixed. 2487 if (SA->didRepairRange()) { 2488 // VirtReg has changed, so all cached queries are invalid. 2489 Matrix->invalidateVirtRegs(); 2490 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) 2491 return PhysReg; 2492 } 2493 2494 // First try to split around a region spanning multiple blocks. RS_Split2 2495 // ranges already made dubious progress with region splitting, so they go 2496 // straight to single block splitting. 2497 if (getStage(VirtReg) < RS_Split2) { 2498 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2499 if (PhysReg || !NewVRegs.empty()) 2500 return PhysReg; 2501 } 2502 2503 // Then isolate blocks. 2504 return tryBlockSplit(VirtReg, Order, NewVRegs); 2505 } 2506 2507 //===----------------------------------------------------------------------===// 2508 // Last Chance Recoloring 2509 //===----------------------------------------------------------------------===// 2510 2511 /// Return true if \p reg has any tied def operand. 2512 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 2513 for (const MachineOperand &MO : MRI->def_operands(reg)) 2514 if (MO.isTied()) 2515 return true; 2516 2517 return false; 2518 } 2519 2520 /// mayRecolorAllInterferences - Check if the virtual registers that 2521 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2522 /// recolored to free \p PhysReg. 2523 /// When true is returned, \p RecoloringCandidates has been augmented with all 2524 /// the live intervals that need to be recolored in order to free \p PhysReg 2525 /// for \p VirtReg. 2526 /// \p FixedRegisters contains all the virtual registers that cannot be 2527 /// recolored. 2528 bool 2529 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg, 2530 SmallLISet &RecoloringCandidates, 2531 const SmallVirtRegSet &FixedRegisters) { 2532 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg); 2533 2534 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2535 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2536 // If there is LastChanceRecoloringMaxInterference or more interferences, 2537 // chances are one would not be recolorable. 2538 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= 2539 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { 2540 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2541 CutOffInfo |= CO_Interf; 2542 return false; 2543 } 2544 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 2545 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 2546 // If Intf is done and sit on the same register class as VirtReg, 2547 // it would not be recolorable as it is in the same state as VirtReg. 2548 // However, if VirtReg has tied defs and Intf doesn't, then 2549 // there is still a point in examining if it can be recolorable. 2550 if (((getStage(*Intf) == RS_Done && 2551 MRI->getRegClass(Intf->reg) == CurRC) && 2552 !(hasTiedDef(MRI, VirtReg.reg) && !hasTiedDef(MRI, Intf->reg))) || 2553 FixedRegisters.count(Intf->reg)) { 2554 LLVM_DEBUG( 2555 dbgs() << "Early abort: the interference is not recolorable.\n"); 2556 return false; 2557 } 2558 RecoloringCandidates.insert(Intf); 2559 } 2560 } 2561 return true; 2562 } 2563 2564 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2565 /// its interferences. 2566 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2567 /// virtual register that was using it. The recoloring process may recursively 2568 /// use the last chance recoloring. Therefore, when a virtual register has been 2569 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2570 /// be last-chance-recolored again during this recoloring "session". 2571 /// E.g., 2572 /// Let 2573 /// vA can use {R1, R2 } 2574 /// vB can use { R2, R3} 2575 /// vC can use {R1 } 2576 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2577 /// instance) and they all interfere. 2578 /// 2579 /// vA is assigned R1 2580 /// vB is assigned R2 2581 /// vC tries to evict vA but vA is already done. 2582 /// Regular register allocation fails. 2583 /// 2584 /// Last chance recoloring kicks in: 2585 /// vC does as if vA was evicted => vC uses R1. 2586 /// vC is marked as fixed. 2587 /// vA needs to find a color. 2588 /// None are available. 2589 /// vA cannot evict vC: vC is a fixed virtual register now. 2590 /// vA does as if vB was evicted => vA uses R2. 2591 /// vB needs to find a color. 2592 /// R3 is available. 2593 /// Recoloring => vC = R1, vA = R2, vB = R3 2594 /// 2595 /// \p Order defines the preferred allocation order for \p VirtReg. 2596 /// \p NewRegs will contain any new virtual register that have been created 2597 /// (split, spill) during the process and that must be assigned. 2598 /// \p FixedRegisters contains all the virtual registers that cannot be 2599 /// recolored. 2600 /// \p Depth gives the current depth of the last chance recoloring. 2601 /// \return a physical register that can be used for VirtReg or ~0u if none 2602 /// exists. 2603 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2604 AllocationOrder &Order, 2605 SmallVectorImpl<unsigned> &NewVRegs, 2606 SmallVirtRegSet &FixedRegisters, 2607 unsigned Depth) { 2608 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2609 // Ranges must be Done. 2610 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2611 "Last chance recoloring should really be last chance"); 2612 // Set the max depth to LastChanceRecoloringMaxDepth. 2613 // We may want to reconsider that if we end up with a too large search space 2614 // for target with hundreds of registers. 2615 // Indeed, in that case we may want to cut the search space earlier. 2616 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2617 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2618 CutOffInfo |= CO_Depth; 2619 return ~0u; 2620 } 2621 2622 // Set of Live intervals that will need to be recolored. 2623 SmallLISet RecoloringCandidates; 2624 // Record the original mapping virtual register to physical register in case 2625 // the recoloring fails. 2626 DenseMap<unsigned, unsigned> VirtRegToPhysReg; 2627 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2628 // this recoloring "session". 2629 assert(!FixedRegisters.count(VirtReg.reg)); 2630 FixedRegisters.insert(VirtReg.reg); 2631 SmallVector<unsigned, 4> CurrentNewVRegs; 2632 2633 Order.rewind(); 2634 while (unsigned PhysReg = Order.next()) { 2635 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2636 << printReg(PhysReg, TRI) << '\n'); 2637 RecoloringCandidates.clear(); 2638 VirtRegToPhysReg.clear(); 2639 CurrentNewVRegs.clear(); 2640 2641 // It is only possible to recolor virtual register interference. 2642 if (Matrix->checkInterference(VirtReg, PhysReg) > 2643 LiveRegMatrix::IK_VirtReg) { 2644 LLVM_DEBUG( 2645 dbgs() << "Some interferences are not with virtual registers.\n"); 2646 2647 continue; 2648 } 2649 2650 // Early give up on this PhysReg if it is obvious we cannot recolor all 2651 // the interferences. 2652 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2653 FixedRegisters)) { 2654 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2655 continue; 2656 } 2657 2658 // RecoloringCandidates contains all the virtual registers that interfer 2659 // with VirtReg on PhysReg (or one of its aliases). 2660 // Enqueue them for recoloring and perform the actual recoloring. 2661 PQueue RecoloringQueue; 2662 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2663 EndIt = RecoloringCandidates.end(); 2664 It != EndIt; ++It) { 2665 unsigned ItVirtReg = (*It)->reg; 2666 enqueue(RecoloringQueue, *It); 2667 assert(VRM->hasPhys(ItVirtReg) && 2668 "Interferences are supposed to be with allocated variables"); 2669 2670 // Record the current allocation. 2671 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2672 // unset the related struct. 2673 Matrix->unassign(**It); 2674 } 2675 2676 // Do as if VirtReg was assigned to PhysReg so that the underlying 2677 // recoloring has the right information about the interferes and 2678 // available colors. 2679 Matrix->assign(VirtReg, PhysReg); 2680 2681 // Save the current recoloring state. 2682 // If we cannot recolor all the interferences, we will have to start again 2683 // at this point for the next physical register. 2684 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2685 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2686 FixedRegisters, Depth)) { 2687 // Push the queued vregs into the main queue. 2688 for (unsigned NewVReg : CurrentNewVRegs) 2689 NewVRegs.push_back(NewVReg); 2690 // Do not mess up with the global assignment process. 2691 // I.e., VirtReg must be unassigned. 2692 Matrix->unassign(VirtReg); 2693 return PhysReg; 2694 } 2695 2696 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2697 << printReg(PhysReg, TRI) << '\n'); 2698 2699 // The recoloring attempt failed, undo the changes. 2700 FixedRegisters = SaveFixedRegisters; 2701 Matrix->unassign(VirtReg); 2702 2703 // For a newly created vreg which is also in RecoloringCandidates, 2704 // don't add it to NewVRegs because its physical register will be restored 2705 // below. Other vregs in CurrentNewVRegs are created by calling 2706 // selectOrSplit and should be added into NewVRegs. 2707 for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(), 2708 End = CurrentNewVRegs.end(); 2709 Next != End; ++Next) { 2710 if (RecoloringCandidates.count(&LIS->getInterval(*Next))) 2711 continue; 2712 NewVRegs.push_back(*Next); 2713 } 2714 2715 for (SmallLISet::iterator It = RecoloringCandidates.begin(), 2716 EndIt = RecoloringCandidates.end(); 2717 It != EndIt; ++It) { 2718 unsigned ItVirtReg = (*It)->reg; 2719 if (VRM->hasPhys(ItVirtReg)) 2720 Matrix->unassign(**It); 2721 unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2722 Matrix->assign(**It, ItPhysReg); 2723 } 2724 } 2725 2726 // Last chance recoloring did not worked either, give up. 2727 return ~0u; 2728 } 2729 2730 /// tryRecoloringCandidates - Try to assign a new color to every register 2731 /// in \RecoloringQueue. 2732 /// \p NewRegs will contain any new virtual register created during the 2733 /// recoloring process. 2734 /// \p FixedRegisters[in/out] contains all the registers that have been 2735 /// recolored. 2736 /// \return true if all virtual registers in RecoloringQueue were successfully 2737 /// recolored, false otherwise. 2738 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2739 SmallVectorImpl<unsigned> &NewVRegs, 2740 SmallVirtRegSet &FixedRegisters, 2741 unsigned Depth) { 2742 while (!RecoloringQueue.empty()) { 2743 LiveInterval *LI = dequeue(RecoloringQueue); 2744 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2745 unsigned PhysReg; 2746 PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2747 // When splitting happens, the live-range may actually be empty. 2748 // In that case, this is okay to continue the recoloring even 2749 // if we did not find an alternative color for it. Indeed, 2750 // there will not be anything to color for LI in the end. 2751 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2752 return false; 2753 2754 if (!PhysReg) { 2755 assert(LI->empty() && "Only empty live-range do not require a register"); 2756 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2757 << " succeeded. Empty LI.\n"); 2758 continue; 2759 } 2760 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2761 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2762 2763 Matrix->assign(*LI, PhysReg); 2764 FixedRegisters.insert(LI->reg); 2765 } 2766 return true; 2767 } 2768 2769 //===----------------------------------------------------------------------===// 2770 // Main Entry Point 2771 //===----------------------------------------------------------------------===// 2772 2773 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2774 SmallVectorImpl<unsigned> &NewVRegs) { 2775 CutOffInfo = CO_None; 2776 LLVMContext &Ctx = MF->getFunction().getContext(); 2777 SmallVirtRegSet FixedRegisters; 2778 unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2779 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2780 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2781 if (CutOffEncountered == CO_Depth) 2782 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2783 "reached. Use -fexhaustive-register-search to skip " 2784 "cutoffs"); 2785 else if (CutOffEncountered == CO_Interf) 2786 Ctx.emitError("register allocation failed: maximum interference for " 2787 "recoloring reached. Use -fexhaustive-register-search " 2788 "to skip cutoffs"); 2789 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2790 Ctx.emitError("register allocation failed: maximum interference and " 2791 "depth for recoloring reached. Use " 2792 "-fexhaustive-register-search to skip cutoffs"); 2793 } 2794 return Reg; 2795 } 2796 2797 /// Using a CSR for the first time has a cost because it causes push|pop 2798 /// to be added to prologue|epilogue. Splitting a cold section of the live 2799 /// range can have lower cost than using the CSR for the first time; 2800 /// Spilling a live range in the cold path can have lower cost than using 2801 /// the CSR for the first time. Returns the physical register if we decide 2802 /// to use the CSR; otherwise return 0. 2803 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, 2804 AllocationOrder &Order, 2805 unsigned PhysReg, 2806 unsigned &CostPerUseLimit, 2807 SmallVectorImpl<unsigned> &NewVRegs) { 2808 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2809 // We choose spill over using the CSR for the first time if the spill cost 2810 // is lower than CSRCost. 2811 SA->analyze(&VirtReg); 2812 if (calcSpillCost() >= CSRCost) 2813 return PhysReg; 2814 2815 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2816 // we will not use a callee-saved register in tryEvict. 2817 CostPerUseLimit = 1; 2818 return 0; 2819 } 2820 if (getStage(VirtReg) < RS_Split) { 2821 // We choose pre-splitting over using the CSR for the first time if 2822 // the cost of splitting is lower than CSRCost. 2823 SA->analyze(&VirtReg); 2824 unsigned NumCands = 0; 2825 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2826 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2827 NumCands, true /*IgnoreCSR*/); 2828 if (BestCand == NoCand) 2829 // Use the CSR if we can't find a region split below CSRCost. 2830 return PhysReg; 2831 2832 // Perform the actual pre-splitting. 2833 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2834 return 0; 2835 } 2836 return PhysReg; 2837 } 2838 2839 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2840 // Do not keep invalid information around. 2841 SetOfBrokenHints.remove(&LI); 2842 } 2843 2844 void RAGreedy::initializeCSRCost() { 2845 // We use the larger one out of the command-line option and the value report 2846 // by TRI. 2847 CSRCost = BlockFrequency( 2848 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2849 if (!CSRCost.getFrequency()) 2850 return; 2851 2852 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2853 uint64_t ActualEntry = MBFI->getEntryFreq(); 2854 if (!ActualEntry) { 2855 CSRCost = 0; 2856 return; 2857 } 2858 uint64_t FixedEntry = 1 << 14; 2859 if (ActualEntry < FixedEntry) 2860 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2861 else if (ActualEntry <= UINT32_MAX) 2862 // Invert the fraction and divide. 2863 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2864 else 2865 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2866 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2867 } 2868 2869 /// Collect the hint info for \p Reg. 2870 /// The results are stored into \p Out. 2871 /// \p Out is not cleared before being populated. 2872 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) { 2873 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2874 if (!Instr.isFullCopy()) 2875 continue; 2876 // Look for the other end of the copy. 2877 Register OtherReg = Instr.getOperand(0).getReg(); 2878 if (OtherReg == Reg) { 2879 OtherReg = Instr.getOperand(1).getReg(); 2880 if (OtherReg == Reg) 2881 continue; 2882 } 2883 // Get the current assignment. 2884 Register OtherPhysReg = Register::isPhysicalRegister(OtherReg) 2885 ? OtherReg 2886 : VRM->getPhys(OtherReg); 2887 // Push the collected information. 2888 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2889 OtherPhysReg)); 2890 } 2891 } 2892 2893 /// Using the given \p List, compute the cost of the broken hints if 2894 /// \p PhysReg was used. 2895 /// \return The cost of \p List for \p PhysReg. 2896 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2897 unsigned PhysReg) { 2898 BlockFrequency Cost = 0; 2899 for (const HintInfo &Info : List) { 2900 if (Info.PhysReg != PhysReg) 2901 Cost += Info.Freq; 2902 } 2903 return Cost; 2904 } 2905 2906 /// Using the register assigned to \p VirtReg, try to recolor 2907 /// all the live ranges that are copy-related with \p VirtReg. 2908 /// The recoloring is then propagated to all the live-ranges that have 2909 /// been recolored and so on, until no more copies can be coalesced or 2910 /// it is not profitable. 2911 /// For a given live range, profitability is determined by the sum of the 2912 /// frequencies of the non-identity copies it would introduce with the old 2913 /// and new register. 2914 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2915 // We have a broken hint, check if it is possible to fix it by 2916 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2917 // some register and PhysReg may be available for the other live-ranges. 2918 SmallSet<unsigned, 4> Visited; 2919 SmallVector<unsigned, 2> RecoloringCandidates; 2920 HintsInfo Info; 2921 unsigned Reg = VirtReg.reg; 2922 Register PhysReg = VRM->getPhys(Reg); 2923 // Start the recoloring algorithm from the input live-interval, then 2924 // it will propagate to the ones that are copy-related with it. 2925 Visited.insert(Reg); 2926 RecoloringCandidates.push_back(Reg); 2927 2928 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2929 << '(' << printReg(PhysReg, TRI) << ")\n"); 2930 2931 do { 2932 Reg = RecoloringCandidates.pop_back_val(); 2933 2934 // We cannot recolor physical register. 2935 if (Register::isPhysicalRegister(Reg)) 2936 continue; 2937 2938 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!"); 2939 2940 // Get the live interval mapped with this virtual register to be able 2941 // to check for the interference with the new color. 2942 LiveInterval &LI = LIS->getInterval(Reg); 2943 Register CurrPhys = VRM->getPhys(Reg); 2944 // Check that the new color matches the register class constraints and 2945 // that it is free for this live range. 2946 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2947 Matrix->checkInterference(LI, PhysReg))) 2948 continue; 2949 2950 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2951 << ") is recolorable.\n"); 2952 2953 // Gather the hint info. 2954 Info.clear(); 2955 collectHintInfo(Reg, Info); 2956 // Check if recoloring the live-range will increase the cost of the 2957 // non-identity copies. 2958 if (CurrPhys != PhysReg) { 2959 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2960 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2961 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2962 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2963 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2964 << '\n'); 2965 if (OldCopiesCost < NewCopiesCost) { 2966 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2967 continue; 2968 } 2969 // At this point, the cost is either cheaper or equal. If it is 2970 // equal, we consider this is profitable because it may expose 2971 // more recoloring opportunities. 2972 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2973 // Recolor the live-range. 2974 Matrix->unassign(LI); 2975 Matrix->assign(LI, PhysReg); 2976 } 2977 // Push all copy-related live-ranges to keep reconciling the broken 2978 // hints. 2979 for (const HintInfo &HI : Info) { 2980 if (Visited.insert(HI.Reg).second) 2981 RecoloringCandidates.push_back(HI.Reg); 2982 } 2983 } while (!RecoloringCandidates.empty()); 2984 } 2985 2986 /// Try to recolor broken hints. 2987 /// Broken hints may be repaired by recoloring when an evicted variable 2988 /// freed up a register for a larger live-range. 2989 /// Consider the following example: 2990 /// BB1: 2991 /// a = 2992 /// b = 2993 /// BB2: 2994 /// ... 2995 /// = b 2996 /// = a 2997 /// Let us assume b gets split: 2998 /// BB1: 2999 /// a = 3000 /// b = 3001 /// BB2: 3002 /// c = b 3003 /// ... 3004 /// d = c 3005 /// = d 3006 /// = a 3007 /// Because of how the allocation work, b, c, and d may be assigned different 3008 /// colors. Now, if a gets evicted later: 3009 /// BB1: 3010 /// a = 3011 /// st a, SpillSlot 3012 /// b = 3013 /// BB2: 3014 /// c = b 3015 /// ... 3016 /// d = c 3017 /// = d 3018 /// e = ld SpillSlot 3019 /// = e 3020 /// This is likely that we can assign the same register for b, c, and d, 3021 /// getting rid of 2 copies. 3022 void RAGreedy::tryHintsRecoloring() { 3023 for (LiveInterval *LI : SetOfBrokenHints) { 3024 assert(Register::isVirtualRegister(LI->reg) && 3025 "Recoloring is possible only for virtual registers"); 3026 // Some dead defs may be around (e.g., because of debug uses). 3027 // Ignore those. 3028 if (!VRM->hasPhys(LI->reg)) 3029 continue; 3030 tryHintRecoloring(*LI); 3031 } 3032 } 3033 3034 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 3035 SmallVectorImpl<unsigned> &NewVRegs, 3036 SmallVirtRegSet &FixedRegisters, 3037 unsigned Depth) { 3038 unsigned CostPerUseLimit = ~0u; 3039 // First try assigning a free register. 3040 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 3041 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 3042 // If VirtReg got an assignment, the eviction info is no longre relevant. 3043 LastEvicted.clearEvicteeInfo(VirtReg.reg); 3044 // When NewVRegs is not empty, we may have made decisions such as evicting 3045 // a virtual register, go with the earlier decisions and use the physical 3046 // register. 3047 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 3048 NewVRegs.empty()) { 3049 unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 3050 CostPerUseLimit, NewVRegs); 3051 if (CSRReg || !NewVRegs.empty()) 3052 // Return now if we decide to use a CSR or create new vregs due to 3053 // pre-splitting. 3054 return CSRReg; 3055 } else 3056 return PhysReg; 3057 } 3058 3059 LiveRangeStage Stage = getStage(VirtReg); 3060 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 3061 << ExtraRegInfo[VirtReg.reg].Cascade << '\n'); 3062 3063 // Try to evict a less worthy live range, but only for ranges from the primary 3064 // queue. The RS_Split ranges already failed to do this, and they should not 3065 // get a second chance until they have been split. 3066 if (Stage != RS_Split) 3067 if (unsigned PhysReg = 3068 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 3069 FixedRegisters)) { 3070 unsigned Hint = MRI->getSimpleHint(VirtReg.reg); 3071 // If VirtReg has a hint and that hint is broken record this 3072 // virtual register as a recoloring candidate for broken hint. 3073 // Indeed, since we evicted a variable in its neighborhood it is 3074 // likely we can at least partially recolor some of the 3075 // copy-related live-ranges. 3076 if (Hint && Hint != PhysReg) 3077 SetOfBrokenHints.insert(&VirtReg); 3078 // If VirtReg eviction someone, the eviction info for it as an evictee is 3079 // no longre relevant. 3080 LastEvicted.clearEvicteeInfo(VirtReg.reg); 3081 return PhysReg; 3082 } 3083 3084 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 3085 3086 // The first time we see a live range, don't try to split or spill. 3087 // Wait until the second time, when all smaller ranges have been allocated. 3088 // This gives a better picture of the interference to split around. 3089 if (Stage < RS_Split) { 3090 setStage(VirtReg, RS_Split); 3091 LLVM_DEBUG(dbgs() << "wait for second round\n"); 3092 NewVRegs.push_back(VirtReg.reg); 3093 return 0; 3094 } 3095 3096 if (Stage < RS_Spill) { 3097 // Try splitting VirtReg or interferences. 3098 unsigned NewVRegSizeBefore = NewVRegs.size(); 3099 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 3100 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 3101 // If VirtReg got split, the eviction info is no longre relevant. 3102 LastEvicted.clearEvicteeInfo(VirtReg.reg); 3103 return PhysReg; 3104 } 3105 } 3106 3107 // If we couldn't allocate a register from spilling, there is probably some 3108 // invalid inline assembly. The base class will report it. 3109 if (Stage >= RS_Done || !VirtReg.isSpillable()) 3110 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 3111 Depth); 3112 3113 // Finally spill VirtReg itself. 3114 if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) { 3115 // TODO: This is experimental and in particular, we do not model 3116 // the live range splitting done by spilling correctly. 3117 // We would need a deep integration with the spiller to do the 3118 // right thing here. Anyway, that is still good for early testing. 3119 setStage(VirtReg, RS_Memory); 3120 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 3121 NewVRegs.push_back(VirtReg.reg); 3122 } else { 3123 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 3124 TimerGroupDescription, TimePassesIsEnabled); 3125 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 3126 spiller().spill(LRE); 3127 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 3128 3129 if (VerifyEnabled) 3130 MF->verify(this, "After spilling"); 3131 } 3132 3133 // The live virtual register requesting allocation was spilled, so tell 3134 // the caller not to allocate anything during this round. 3135 return 0; 3136 } 3137 3138 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads, 3139 unsigned &FoldedReloads, 3140 unsigned &Spills, 3141 unsigned &FoldedSpills) { 3142 Reloads = 0; 3143 FoldedReloads = 0; 3144 Spills = 0; 3145 FoldedSpills = 0; 3146 3147 // Sum up the spill and reloads in subloops. 3148 for (MachineLoop *SubLoop : *L) { 3149 unsigned SubReloads; 3150 unsigned SubFoldedReloads; 3151 unsigned SubSpills; 3152 unsigned SubFoldedSpills; 3153 3154 reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads, 3155 SubSpills, SubFoldedSpills); 3156 Reloads += SubReloads; 3157 FoldedReloads += SubFoldedReloads; 3158 Spills += SubSpills; 3159 FoldedSpills += SubFoldedSpills; 3160 } 3161 3162 const MachineFrameInfo &MFI = MF->getFrameInfo(); 3163 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 3164 int FI; 3165 3166 for (MachineBasicBlock *MBB : L->getBlocks()) 3167 // Handle blocks that were not included in subloops. 3168 if (Loops->getLoopFor(MBB) == L) 3169 for (MachineInstr &MI : *MBB) { 3170 SmallVector<const MachineMemOperand *, 2> Accesses; 3171 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 3172 return MFI.isSpillSlotObjectIndex( 3173 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 3174 ->getFrameIndex()); 3175 }; 3176 3177 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) 3178 ++Reloads; 3179 else if (TII->hasLoadFromStackSlot(MI, Accesses) && 3180 llvm::any_of(Accesses, isSpillSlotAccess)) 3181 ++FoldedReloads; 3182 else if (TII->isStoreToStackSlot(MI, FI) && 3183 MFI.isSpillSlotObjectIndex(FI)) 3184 ++Spills; 3185 else if (TII->hasStoreToStackSlot(MI, Accesses) && 3186 llvm::any_of(Accesses, isSpillSlotAccess)) 3187 ++FoldedSpills; 3188 } 3189 3190 if (Reloads || FoldedReloads || Spills || FoldedSpills) { 3191 using namespace ore; 3192 3193 ORE->emit([&]() { 3194 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload", 3195 L->getStartLoc(), L->getHeader()); 3196 if (Spills) 3197 R << NV("NumSpills", Spills) << " spills "; 3198 if (FoldedSpills) 3199 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 3200 if (Reloads) 3201 R << NV("NumReloads", Reloads) << " reloads "; 3202 if (FoldedReloads) 3203 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 3204 R << "generated in loop"; 3205 return R; 3206 }); 3207 } 3208 } 3209 3210 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 3211 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 3212 << "********** Function: " << mf.getName() << '\n'); 3213 3214 MF = &mf; 3215 TRI = MF->getSubtarget().getRegisterInfo(); 3216 TII = MF->getSubtarget().getInstrInfo(); 3217 RCI.runOnMachineFunction(mf); 3218 3219 EnableLocalReassign = EnableLocalReassignment || 3220 MF->getSubtarget().enableRALocalReassignment( 3221 MF->getTarget().getOptLevel()); 3222 3223 EnableAdvancedRASplitCost = ConsiderLocalIntervalCost || 3224 MF->getSubtarget().enableAdvancedRASplitCost(); 3225 3226 if (VerifyEnabled) 3227 MF->verify(this, "Before greedy register allocator"); 3228 3229 RegAllocBase::init(getAnalysis<VirtRegMap>(), 3230 getAnalysis<LiveIntervals>(), 3231 getAnalysis<LiveRegMatrix>()); 3232 Indexes = &getAnalysis<SlotIndexes>(); 3233 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3234 DomTree = &getAnalysis<MachineDominatorTree>(); 3235 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 3236 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 3237 Loops = &getAnalysis<MachineLoopInfo>(); 3238 Bundles = &getAnalysis<EdgeBundles>(); 3239 SpillPlacer = &getAnalysis<SpillPlacement>(); 3240 DebugVars = &getAnalysis<LiveDebugVariables>(); 3241 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3242 3243 initializeCSRCost(); 3244 3245 calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI); 3246 3247 LLVM_DEBUG(LIS->dump()); 3248 3249 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 3250 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI)); 3251 ExtraRegInfo.clear(); 3252 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 3253 NextCascade = 1; 3254 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 3255 GlobalCand.resize(32); // This will grow as needed. 3256 SetOfBrokenHints.clear(); 3257 LastEvicted.clear(); 3258 3259 allocatePhysRegs(); 3260 tryHintsRecoloring(); 3261 postOptimization(); 3262 reportNumberOfSplillsReloads(); 3263 3264 releaseMemory(); 3265 return true; 3266 } 3267