1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "RegAllocGreedy.h" 15 #include "AllocationOrder.h" 16 #include "InterferenceCache.h" 17 #include "LiveDebugVariables.h" 18 #include "RegAllocBase.h" 19 #include "RegAllocEvictionAdvisor.h" 20 #include "SpillPlacement.h" 21 #include "SplitKit.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/IndexedMap.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/Analysis/AliasAnalysis.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/CodeGen/CalcSpillWeights.h" 34 #include "llvm/CodeGen/EdgeBundles.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/LiveIntervalUnion.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveRangeEdit.h" 39 #include "llvm/CodeGen/LiveRegMatrix.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineLoopInfo.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RegAllocRegistry.h" 53 #include "llvm/CodeGen/RegisterClassInfo.h" 54 #include "llvm/CodeGen/SlotIndexes.h" 55 #include "llvm/CodeGen/Spiller.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/CodeGen/VirtRegMap.h" 60 #include "llvm/IR/DebugInfoMetadata.h" 61 #include "llvm/IR/Function.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/InitializePasses.h" 64 #include "llvm/MC/MCRegisterInfo.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/BlockFrequency.h" 67 #include "llvm/Support/BranchProbability.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/Timer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <utility> 77 78 using namespace llvm; 79 80 #define DEBUG_TYPE "regalloc" 81 82 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 83 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 84 STATISTIC(NumEvicted, "Number of interferences evicted"); 85 86 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 87 "split-spill-mode", cl::Hidden, 88 cl::desc("Spill mode for splitting live ranges"), 89 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 90 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 91 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 92 cl::init(SplitEditor::SM_Speed)); 93 94 static cl::opt<unsigned> 95 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 96 cl::desc("Last chance recoloring max depth"), 97 cl::init(5)); 98 99 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 100 "lcr-max-interf", cl::Hidden, 101 cl::desc("Last chance recoloring maximum number of considered" 102 " interference at a time"), 103 cl::init(8)); 104 105 static cl::opt<bool> ExhaustiveSearch( 106 "exhaustive-register-search", cl::NotHidden, 107 cl::desc("Exhaustive Search for registers bypassing the depth " 108 "and interference cutoffs of last chance recoloring"), 109 cl::Hidden); 110 111 static cl::opt<bool> EnableDeferredSpilling( 112 "enable-deferred-spilling", cl::Hidden, 113 cl::desc("Instead of spilling a variable right away, defer the actual " 114 "code insertion to the end of the allocation. That way the " 115 "allocator might still find a suitable coloring for this " 116 "variable because of other evicted variables."), 117 cl::init(false)); 118 119 // FIXME: Find a good default for this flag and remove the flag. 120 static cl::opt<unsigned> 121 CSRFirstTimeCost("regalloc-csr-first-time-cost", 122 cl::desc("Cost for first time use of callee-saved register."), 123 cl::init(0), cl::Hidden); 124 125 static cl::opt<unsigned long> GrowRegionComplexityBudget( 126 "grow-region-complexity-budget", 127 cl::desc("growRegion() does not scale with the number of BB edges, so " 128 "limit its budget and bail out once we reach the limit."), 129 cl::init(10000), cl::Hidden); 130 131 static cl::opt<bool> GreedyRegClassPriorityTrumpsGlobalness( 132 "greedy-regclass-priority-trumps-globalness", 133 cl::desc("Change the greedy register allocator's live range priority " 134 "calculation to make the AllocationPriority of the register class " 135 "more important then whether the range is global"), 136 cl::Hidden); 137 138 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 139 createGreedyRegisterAllocator); 140 141 char RAGreedy::ID = 0; 142 char &llvm::RAGreedyID = RAGreedy::ID; 143 144 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 145 "Greedy Register Allocator", false, false) 146 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 147 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 148 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 149 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 150 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 151 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 152 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 153 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 154 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 155 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 156 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 157 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 158 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 159 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis) 160 INITIALIZE_PASS_END(RAGreedy, "greedy", 161 "Greedy Register Allocator", false, false) 162 163 #ifndef NDEBUG 164 const char *const RAGreedy::StageName[] = { 165 "RS_New", 166 "RS_Assign", 167 "RS_Split", 168 "RS_Split2", 169 "RS_Spill", 170 "RS_Memory", 171 "RS_Done" 172 }; 173 #endif 174 175 // Hysteresis to use when comparing floats. 176 // This helps stabilize decisions based on float comparisons. 177 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 178 179 FunctionPass* llvm::createGreedyRegisterAllocator() { 180 return new RAGreedy(); 181 } 182 183 namespace llvm { 184 FunctionPass* createGreedyRegisterAllocator( 185 std::function<bool(const TargetRegisterInfo &TRI, 186 const TargetRegisterClass &RC)> Ftor); 187 188 } 189 190 FunctionPass* llvm::createGreedyRegisterAllocator( 191 std::function<bool(const TargetRegisterInfo &TRI, 192 const TargetRegisterClass &RC)> Ftor) { 193 return new RAGreedy(Ftor); 194 } 195 196 RAGreedy::RAGreedy(RegClassFilterFunc F): 197 MachineFunctionPass(ID), 198 RegAllocBase(F) { 199 } 200 201 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 202 AU.setPreservesCFG(); 203 AU.addRequired<MachineBlockFrequencyInfo>(); 204 AU.addPreserved<MachineBlockFrequencyInfo>(); 205 AU.addRequired<AAResultsWrapperPass>(); 206 AU.addPreserved<AAResultsWrapperPass>(); 207 AU.addRequired<LiveIntervals>(); 208 AU.addPreserved<LiveIntervals>(); 209 AU.addRequired<SlotIndexes>(); 210 AU.addPreserved<SlotIndexes>(); 211 AU.addRequired<LiveDebugVariables>(); 212 AU.addPreserved<LiveDebugVariables>(); 213 AU.addRequired<LiveStacks>(); 214 AU.addPreserved<LiveStacks>(); 215 AU.addRequired<MachineDominatorTree>(); 216 AU.addPreserved<MachineDominatorTree>(); 217 AU.addRequired<MachineLoopInfo>(); 218 AU.addPreserved<MachineLoopInfo>(); 219 AU.addRequired<VirtRegMap>(); 220 AU.addPreserved<VirtRegMap>(); 221 AU.addRequired<LiveRegMatrix>(); 222 AU.addPreserved<LiveRegMatrix>(); 223 AU.addRequired<EdgeBundles>(); 224 AU.addRequired<SpillPlacement>(); 225 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 226 AU.addRequired<RegAllocEvictionAdvisorAnalysis>(); 227 MachineFunctionPass::getAnalysisUsage(AU); 228 } 229 230 //===----------------------------------------------------------------------===// 231 // LiveRangeEdit delegate methods 232 //===----------------------------------------------------------------------===// 233 234 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) { 235 LiveInterval &LI = LIS->getInterval(VirtReg); 236 if (VRM->hasPhys(VirtReg)) { 237 Matrix->unassign(LI); 238 aboutToRemoveInterval(LI); 239 return true; 240 } 241 // Unassigned virtreg is probably in the priority queue. 242 // RegAllocBase will erase it after dequeueing. 243 // Nonetheless, clear the live-range so that the debug 244 // dump will show the right state for that VirtReg. 245 LI.clear(); 246 return false; 247 } 248 249 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) { 250 if (!VRM->hasPhys(VirtReg)) 251 return; 252 253 // Register is assigned, put it back on the queue for reassignment. 254 LiveInterval &LI = LIS->getInterval(VirtReg); 255 Matrix->unassign(LI); 256 RegAllocBase::enqueue(&LI); 257 } 258 259 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) { 260 ExtraInfo->LRE_DidCloneVirtReg(New, Old); 261 } 262 263 void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) { 264 // Cloning a register we haven't even heard about yet? Just ignore it. 265 if (!Info.inBounds(Old)) 266 return; 267 268 // LRE may clone a virtual register because dead code elimination causes it to 269 // be split into connected components. The new components are much smaller 270 // than the original, so they should get a new chance at being assigned. 271 // same stage as the parent. 272 Info[Old].Stage = RS_Assign; 273 Info.grow(New.id()); 274 Info[New] = Info[Old]; 275 } 276 277 void RAGreedy::releaseMemory() { 278 SpillerInstance.reset(); 279 GlobalCand.clear(); 280 } 281 282 void RAGreedy::enqueueImpl(const LiveInterval *LI) { enqueue(Queue, LI); } 283 284 void RAGreedy::enqueue(PQueue &CurQueue, const LiveInterval *LI) { 285 // Prioritize live ranges by size, assigning larger ranges first. 286 // The queue holds (size, reg) pairs. 287 const unsigned Size = LI->getSize(); 288 const Register Reg = LI->reg(); 289 assert(Reg.isVirtual() && "Can only enqueue virtual registers"); 290 unsigned Prio; 291 292 auto Stage = ExtraInfo->getOrInitStage(Reg); 293 if (Stage == RS_New) { 294 Stage = RS_Assign; 295 ExtraInfo->setStage(Reg, Stage); 296 } 297 if (Stage == RS_Split) { 298 // Unsplit ranges that couldn't be allocated immediately are deferred until 299 // everything else has been allocated. 300 Prio = Size; 301 } else if (Stage == RS_Memory) { 302 // Memory operand should be considered last. 303 // Change the priority such that Memory operand are assigned in 304 // the reverse order that they came in. 305 // TODO: Make this a member variable and probably do something about hints. 306 static unsigned MemOp = 0; 307 Prio = MemOp++; 308 } else { 309 // Giant live ranges fall back to the global assignment heuristic, which 310 // prevents excessive spilling in pathological cases. 311 bool ReverseLocal = TRI->reverseLocalAssignment(); 312 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 313 bool ForceGlobal = 314 !ReverseLocal && (Size / SlotIndex::InstrDist) > 315 (2 * RegClassInfo.getNumAllocatableRegs(&RC)); 316 unsigned GlobalBit = 0; 317 318 if (Stage == RS_Assign && !ForceGlobal && !LI->empty() && 319 LIS->intervalIsInOneMBB(*LI)) { 320 // Allocate original local ranges in linear instruction order. Since they 321 // are singly defined, this produces optimal coloring in the absence of 322 // global interference and other constraints. 323 if (!ReverseLocal) 324 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 325 else { 326 // Allocating bottom up may allow many short LRGs to be assigned first 327 // to one of the cheap registers. This could be much faster for very 328 // large blocks on targets with many physical registers. 329 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 330 } 331 } else { 332 // Allocate global and split ranges in long->short order. Long ranges that 333 // don't fit should be spilled (or split) ASAP so they don't create 334 // interference. Mark a bit to prioritize global above local ranges. 335 Prio = Size; 336 GlobalBit = 1; 337 } 338 if (RegClassPriorityTrumpsGlobalness) 339 Prio |= RC.AllocationPriority << 25 | GlobalBit << 24; 340 else 341 Prio |= GlobalBit << 29 | RC.AllocationPriority << 24; 342 343 // Mark a higher bit to prioritize global and local above RS_Split. 344 Prio |= (1u << 31); 345 346 // Boost ranges that have a physical register hint. 347 if (VRM->hasKnownPreference(Reg)) 348 Prio |= (1u << 30); 349 } 350 // The virtual register number is a tie breaker for same-sized ranges. 351 // Give lower vreg numbers higher priority to assign them first. 352 CurQueue.push(std::make_pair(Prio, ~Reg)); 353 } 354 355 const LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 356 357 const LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 358 if (CurQueue.empty()) 359 return nullptr; 360 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 361 CurQueue.pop(); 362 return LI; 363 } 364 365 //===----------------------------------------------------------------------===// 366 // Direct Assignment 367 //===----------------------------------------------------------------------===// 368 369 /// tryAssign - Try to assign VirtReg to an available register. 370 MCRegister RAGreedy::tryAssign(const LiveInterval &VirtReg, 371 AllocationOrder &Order, 372 SmallVectorImpl<Register> &NewVRegs, 373 const SmallVirtRegSet &FixedRegisters) { 374 MCRegister PhysReg; 375 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 376 assert(*I); 377 if (!Matrix->checkInterference(VirtReg, *I)) { 378 if (I.isHint()) 379 return *I; 380 else 381 PhysReg = *I; 382 } 383 } 384 if (!PhysReg.isValid()) 385 return PhysReg; 386 387 // PhysReg is available, but there may be a better choice. 388 389 // If we missed a simple hint, try to cheaply evict interference from the 390 // preferred register. 391 if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) 392 if (Order.isHint(Hint)) { 393 MCRegister PhysHint = Hint.asMCReg(); 394 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n'); 395 396 if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint, 397 FixedRegisters)) { 398 evictInterference(VirtReg, PhysHint, NewVRegs); 399 return PhysHint; 400 } 401 // Record the missed hint, we may be able to recover 402 // at the end if the surrounding allocation changed. 403 SetOfBrokenHints.insert(&VirtReg); 404 } 405 406 // Try to evict interference from a cheaper alternative. 407 uint8_t Cost = RegCosts[PhysReg]; 408 409 // Most registers have 0 additional cost. 410 if (!Cost) 411 return PhysReg; 412 413 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 414 << (unsigned)Cost << '\n'); 415 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 416 return CheapReg ? CheapReg : PhysReg; 417 } 418 419 //===----------------------------------------------------------------------===// 420 // Interference eviction 421 //===----------------------------------------------------------------------===// 422 423 Register RegAllocEvictionAdvisor::canReassign(const LiveInterval &VirtReg, 424 Register PrevReg) const { 425 auto Order = 426 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 427 MCRegister PhysReg; 428 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 429 if ((*I).id() == PrevReg.id()) 430 continue; 431 432 MCRegUnitIterator Units(*I, TRI); 433 for (; Units.isValid(); ++Units) { 434 // Instantiate a "subquery", not to be confused with the Queries array. 435 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 436 if (subQ.checkInterference()) 437 break; 438 } 439 // If no units have interference, break out with the current PhysReg. 440 if (!Units.isValid()) 441 PhysReg = *I; 442 } 443 if (PhysReg) 444 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 445 << printReg(PrevReg, TRI) << " to " 446 << printReg(PhysReg, TRI) << '\n'); 447 return PhysReg; 448 } 449 450 /// evictInterference - Evict any interferring registers that prevent VirtReg 451 /// from being assigned to Physreg. This assumes that canEvictInterference 452 /// returned true. 453 void RAGreedy::evictInterference(const LiveInterval &VirtReg, 454 MCRegister PhysReg, 455 SmallVectorImpl<Register> &NewVRegs) { 456 // Make sure that VirtReg has a cascade number, and assign that cascade 457 // number to every evicted register. These live ranges than then only be 458 // evicted by a newer cascade, preventing infinite loops. 459 unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg()); 460 461 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 462 << " interference: Cascade " << Cascade << '\n'); 463 464 // Collect all interfering virtregs first. 465 SmallVector<const LiveInterval *, 8> Intfs; 466 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 467 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 468 // We usually have the interfering VRegs cached so collectInterferingVRegs() 469 // should be fast, we may need to recalculate if when different physregs 470 // overlap the same register unit so we had different SubRanges queried 471 // against it. 472 ArrayRef<const LiveInterval *> IVR = Q.interferingVRegs(); 473 Intfs.append(IVR.begin(), IVR.end()); 474 } 475 476 // Evict them second. This will invalidate the queries. 477 for (const LiveInterval *Intf : Intfs) { 478 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 479 if (!VRM->hasPhys(Intf->reg())) 480 continue; 481 482 Matrix->unassign(*Intf); 483 assert((ExtraInfo->getCascade(Intf->reg()) < Cascade || 484 VirtReg.isSpillable() < Intf->isSpillable()) && 485 "Cannot decrease cascade number, illegal eviction"); 486 ExtraInfo->setCascade(Intf->reg(), Cascade); 487 ++NumEvicted; 488 NewVRegs.push_back(Intf->reg()); 489 } 490 } 491 492 /// Returns true if the given \p PhysReg is a callee saved register and has not 493 /// been used for allocation yet. 494 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 495 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 496 if (!CSR) 497 return false; 498 499 return !Matrix->isPhysRegUsed(PhysReg); 500 } 501 502 Optional<unsigned> 503 RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg, 504 const AllocationOrder &Order, 505 unsigned CostPerUseLimit) const { 506 unsigned OrderLimit = Order.getOrder().size(); 507 508 if (CostPerUseLimit < uint8_t(~0u)) { 509 // Check of any registers in RC are below CostPerUseLimit. 510 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); 511 uint8_t MinCost = RegClassInfo.getMinCost(RC); 512 if (MinCost >= CostPerUseLimit) { 513 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 514 << MinCost << ", no cheaper registers to be found.\n"); 515 return None; 516 } 517 518 // It is normal for register classes to have a long tail of registers with 519 // the same cost. We don't need to look at them if they're too expensive. 520 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) { 521 OrderLimit = RegClassInfo.getLastCostChange(RC); 522 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 523 << " regs.\n"); 524 } 525 } 526 return OrderLimit; 527 } 528 529 bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit, 530 MCRegister PhysReg) const { 531 if (RegCosts[PhysReg] >= CostPerUseLimit) 532 return false; 533 // The first use of a callee-saved register in a function has cost 1. 534 // Don't start using a CSR when the CostPerUseLimit is low. 535 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 536 LLVM_DEBUG( 537 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 538 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 539 << '\n'); 540 return false; 541 } 542 return true; 543 } 544 545 /// tryEvict - Try to evict all interferences for a physreg. 546 /// @param VirtReg Currently unassigned virtual register. 547 /// @param Order Physregs to try. 548 /// @return Physreg to assign VirtReg, or 0. 549 MCRegister RAGreedy::tryEvict(const LiveInterval &VirtReg, 550 AllocationOrder &Order, 551 SmallVectorImpl<Register> &NewVRegs, 552 uint8_t CostPerUseLimit, 553 const SmallVirtRegSet &FixedRegisters) { 554 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 555 TimePassesIsEnabled); 556 557 MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate( 558 VirtReg, Order, CostPerUseLimit, FixedRegisters); 559 if (BestPhys.isValid()) 560 evictInterference(VirtReg, BestPhys, NewVRegs); 561 return BestPhys; 562 } 563 564 //===----------------------------------------------------------------------===// 565 // Region Splitting 566 //===----------------------------------------------------------------------===// 567 568 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 569 /// interference pattern in Physreg and its aliases. Add the constraints to 570 /// SpillPlacement and return the static cost of this split in Cost, assuming 571 /// that all preferences in SplitConstraints are met. 572 /// Return false if there are no bundles with positive bias. 573 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 574 BlockFrequency &Cost) { 575 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 576 577 // Reset interference dependent info. 578 SplitConstraints.resize(UseBlocks.size()); 579 BlockFrequency StaticCost = 0; 580 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 581 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 582 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 583 584 BC.Number = BI.MBB->getNumber(); 585 Intf.moveToBlock(BC.Number); 586 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 587 BC.Exit = (BI.LiveOut && 588 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 589 ? SpillPlacement::PrefReg 590 : SpillPlacement::DontCare; 591 BC.ChangesValue = BI.FirstDef.isValid(); 592 593 if (!Intf.hasInterference()) 594 continue; 595 596 // Number of spill code instructions to insert. 597 unsigned Ins = 0; 598 599 // Interference for the live-in value. 600 if (BI.LiveIn) { 601 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 602 BC.Entry = SpillPlacement::MustSpill; 603 ++Ins; 604 } else if (Intf.first() < BI.FirstInstr) { 605 BC.Entry = SpillPlacement::PrefSpill; 606 ++Ins; 607 } else if (Intf.first() < BI.LastInstr) { 608 ++Ins; 609 } 610 611 // Abort if the spill cannot be inserted at the MBB' start 612 if (((BC.Entry == SpillPlacement::MustSpill) || 613 (BC.Entry == SpillPlacement::PrefSpill)) && 614 SlotIndex::isEarlierInstr(BI.FirstInstr, 615 SA->getFirstSplitPoint(BC.Number))) 616 return false; 617 } 618 619 // Interference for the live-out value. 620 if (BI.LiveOut) { 621 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 622 BC.Exit = SpillPlacement::MustSpill; 623 ++Ins; 624 } else if (Intf.last() > BI.LastInstr) { 625 BC.Exit = SpillPlacement::PrefSpill; 626 ++Ins; 627 } else if (Intf.last() > BI.FirstInstr) { 628 ++Ins; 629 } 630 } 631 632 // Accumulate the total frequency of inserted spill code. 633 while (Ins--) 634 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 635 } 636 Cost = StaticCost; 637 638 // Add constraints for use-blocks. Note that these are the only constraints 639 // that may add a positive bias, it is downhill from here. 640 SpillPlacer->addConstraints(SplitConstraints); 641 return SpillPlacer->scanActiveBundles(); 642 } 643 644 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 645 /// live-through blocks in Blocks. 646 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 647 ArrayRef<unsigned> Blocks) { 648 const unsigned GroupSize = 8; 649 SpillPlacement::BlockConstraint BCS[GroupSize]; 650 unsigned TBS[GroupSize]; 651 unsigned B = 0, T = 0; 652 653 for (unsigned Number : Blocks) { 654 Intf.moveToBlock(Number); 655 656 if (!Intf.hasInterference()) { 657 assert(T < GroupSize && "Array overflow"); 658 TBS[T] = Number; 659 if (++T == GroupSize) { 660 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 661 T = 0; 662 } 663 continue; 664 } 665 666 assert(B < GroupSize && "Array overflow"); 667 BCS[B].Number = Number; 668 669 // Abort if the spill cannot be inserted at the MBB' start 670 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 671 auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr(); 672 if (FirstNonDebugInstr != MBB->end() && 673 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr), 674 SA->getFirstSplitPoint(Number))) 675 return false; 676 // Interference for the live-in value. 677 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 678 BCS[B].Entry = SpillPlacement::MustSpill; 679 else 680 BCS[B].Entry = SpillPlacement::PrefSpill; 681 682 // Interference for the live-out value. 683 if (Intf.last() >= SA->getLastSplitPoint(Number)) 684 BCS[B].Exit = SpillPlacement::MustSpill; 685 else 686 BCS[B].Exit = SpillPlacement::PrefSpill; 687 688 if (++B == GroupSize) { 689 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 690 B = 0; 691 } 692 } 693 694 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 695 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 696 return true; 697 } 698 699 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 700 // Keep track of through blocks that have not been added to SpillPlacer. 701 BitVector Todo = SA->getThroughBlocks(); 702 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 703 unsigned AddedTo = 0; 704 #ifndef NDEBUG 705 unsigned Visited = 0; 706 #endif 707 708 unsigned long Budget = GrowRegionComplexityBudget; 709 while (true) { 710 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 711 // Find new through blocks in the periphery of PrefRegBundles. 712 for (unsigned Bundle : NewBundles) { 713 // Look at all blocks connected to Bundle in the full graph. 714 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 715 // Limit compilation time by bailing out after we use all our budget. 716 if (Blocks.size() >= Budget) 717 return false; 718 Budget -= Blocks.size(); 719 for (unsigned Block : Blocks) { 720 if (!Todo.test(Block)) 721 continue; 722 Todo.reset(Block); 723 // This is a new through block. Add it to SpillPlacer later. 724 ActiveBlocks.push_back(Block); 725 #ifndef NDEBUG 726 ++Visited; 727 #endif 728 } 729 } 730 // Any new blocks to add? 731 if (ActiveBlocks.size() == AddedTo) 732 break; 733 734 // Compute through constraints from the interference, or assume that all 735 // through blocks prefer spilling when forming compact regions. 736 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 737 if (Cand.PhysReg) { 738 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 739 return false; 740 } else 741 // Provide a strong negative bias on through blocks to prevent unwanted 742 // liveness on loop backedges. 743 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 744 AddedTo = ActiveBlocks.size(); 745 746 // Perhaps iterating can enable more bundles? 747 SpillPlacer->iterate(); 748 } 749 LLVM_DEBUG(dbgs() << ", v=" << Visited); 750 return true; 751 } 752 753 /// calcCompactRegion - Compute the set of edge bundles that should be live 754 /// when splitting the current live range into compact regions. Compact 755 /// regions can be computed without looking at interference. They are the 756 /// regions formed by removing all the live-through blocks from the live range. 757 /// 758 /// Returns false if the current live range is already compact, or if the 759 /// compact regions would form single block regions anyway. 760 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 761 // Without any through blocks, the live range is already compact. 762 if (!SA->getNumThroughBlocks()) 763 return false; 764 765 // Compact regions don't correspond to any physreg. 766 Cand.reset(IntfCache, MCRegister::NoRegister); 767 768 LLVM_DEBUG(dbgs() << "Compact region bundles"); 769 770 // Use the spill placer to determine the live bundles. GrowRegion pretends 771 // that all the through blocks have interference when PhysReg is unset. 772 SpillPlacer->prepare(Cand.LiveBundles); 773 774 // The static split cost will be zero since Cand.Intf reports no interference. 775 BlockFrequency Cost; 776 if (!addSplitConstraints(Cand.Intf, Cost)) { 777 LLVM_DEBUG(dbgs() << ", none.\n"); 778 return false; 779 } 780 781 if (!growRegion(Cand)) { 782 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 783 return false; 784 } 785 786 SpillPlacer->finish(); 787 788 if (!Cand.LiveBundles.any()) { 789 LLVM_DEBUG(dbgs() << ", none.\n"); 790 return false; 791 } 792 793 LLVM_DEBUG({ 794 for (int I : Cand.LiveBundles.set_bits()) 795 dbgs() << " EB#" << I; 796 dbgs() << ".\n"; 797 }); 798 return true; 799 } 800 801 /// calcSpillCost - Compute how expensive it would be to split the live range in 802 /// SA around all use blocks instead of forming bundle regions. 803 BlockFrequency RAGreedy::calcSpillCost() { 804 BlockFrequency Cost = 0; 805 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 806 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 807 unsigned Number = BI.MBB->getNumber(); 808 // We normally only need one spill instruction - a load or a store. 809 Cost += SpillPlacer->getBlockFrequency(Number); 810 811 // Unless the value is redefined in the block. 812 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 813 Cost += SpillPlacer->getBlockFrequency(Number); 814 } 815 return Cost; 816 } 817 818 /// calcGlobalSplitCost - Return the global split cost of following the split 819 /// pattern in LiveBundles. This cost should be added to the local cost of the 820 /// interference pattern in SplitConstraints. 821 /// 822 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 823 const AllocationOrder &Order) { 824 BlockFrequency GlobalCost = 0; 825 const BitVector &LiveBundles = Cand.LiveBundles; 826 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 827 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 828 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 829 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 830 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 831 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 832 unsigned Ins = 0; 833 834 Cand.Intf.moveToBlock(BC.Number); 835 836 if (BI.LiveIn) 837 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 838 if (BI.LiveOut) 839 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 840 while (Ins--) 841 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 842 } 843 844 for (unsigned Number : Cand.ActiveBlocks) { 845 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 846 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 847 if (!RegIn && !RegOut) 848 continue; 849 if (RegIn && RegOut) { 850 // We need double spill code if this block has interference. 851 Cand.Intf.moveToBlock(Number); 852 if (Cand.Intf.hasInterference()) { 853 GlobalCost += SpillPlacer->getBlockFrequency(Number); 854 GlobalCost += SpillPlacer->getBlockFrequency(Number); 855 } 856 continue; 857 } 858 // live-in / stack-out or stack-in live-out. 859 GlobalCost += SpillPlacer->getBlockFrequency(Number); 860 } 861 return GlobalCost; 862 } 863 864 /// splitAroundRegion - Split the current live range around the regions 865 /// determined by BundleCand and GlobalCand. 866 /// 867 /// Before calling this function, GlobalCand and BundleCand must be initialized 868 /// so each bundle is assigned to a valid candidate, or NoCand for the 869 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 870 /// objects must be initialized for the current live range, and intervals 871 /// created for the used candidates. 872 /// 873 /// @param LREdit The LiveRangeEdit object handling the current split. 874 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 875 /// must appear in this list. 876 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 877 ArrayRef<unsigned> UsedCands) { 878 // These are the intervals created for new global ranges. We may create more 879 // intervals for local ranges. 880 const unsigned NumGlobalIntvs = LREdit.size(); 881 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 882 << " globals.\n"); 883 assert(NumGlobalIntvs && "No global intervals configured"); 884 885 // Isolate even single instructions when dealing with a proper sub-class. 886 // That guarantees register class inflation for the stack interval because it 887 // is all copies. 888 Register Reg = SA->getParent().reg(); 889 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 890 891 // First handle all the blocks with uses. 892 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 893 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 894 unsigned Number = BI.MBB->getNumber(); 895 unsigned IntvIn = 0, IntvOut = 0; 896 SlotIndex IntfIn, IntfOut; 897 if (BI.LiveIn) { 898 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 899 if (CandIn != NoCand) { 900 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 901 IntvIn = Cand.IntvIdx; 902 Cand.Intf.moveToBlock(Number); 903 IntfIn = Cand.Intf.first(); 904 } 905 } 906 if (BI.LiveOut) { 907 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 908 if (CandOut != NoCand) { 909 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 910 IntvOut = Cand.IntvIdx; 911 Cand.Intf.moveToBlock(Number); 912 IntfOut = Cand.Intf.last(); 913 } 914 } 915 916 // Create separate intervals for isolated blocks with multiple uses. 917 if (!IntvIn && !IntvOut) { 918 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 919 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 920 SE->splitSingleBlock(BI); 921 continue; 922 } 923 924 if (IntvIn && IntvOut) 925 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 926 else if (IntvIn) 927 SE->splitRegInBlock(BI, IntvIn, IntfIn); 928 else 929 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 930 } 931 932 // Handle live-through blocks. The relevant live-through blocks are stored in 933 // the ActiveBlocks list with each candidate. We need to filter out 934 // duplicates. 935 BitVector Todo = SA->getThroughBlocks(); 936 for (unsigned UsedCand : UsedCands) { 937 ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks; 938 for (unsigned Number : Blocks) { 939 if (!Todo.test(Number)) 940 continue; 941 Todo.reset(Number); 942 943 unsigned IntvIn = 0, IntvOut = 0; 944 SlotIndex IntfIn, IntfOut; 945 946 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 947 if (CandIn != NoCand) { 948 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 949 IntvIn = Cand.IntvIdx; 950 Cand.Intf.moveToBlock(Number); 951 IntfIn = Cand.Intf.first(); 952 } 953 954 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 955 if (CandOut != NoCand) { 956 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 957 IntvOut = Cand.IntvIdx; 958 Cand.Intf.moveToBlock(Number); 959 IntfOut = Cand.Intf.last(); 960 } 961 if (!IntvIn && !IntvOut) 962 continue; 963 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 964 } 965 } 966 967 ++NumGlobalSplits; 968 969 SmallVector<unsigned, 8> IntvMap; 970 SE->finish(&IntvMap); 971 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 972 973 unsigned OrigBlocks = SA->getNumLiveBlocks(); 974 975 // Sort out the new intervals created by splitting. We get four kinds: 976 // - Remainder intervals should not be split again. 977 // - Candidate intervals can be assigned to Cand.PhysReg. 978 // - Block-local splits are candidates for local splitting. 979 // - DCE leftovers should go back on the queue. 980 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 981 const LiveInterval &Reg = LIS->getInterval(LREdit.get(I)); 982 983 // Ignore old intervals from DCE. 984 if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New) 985 continue; 986 987 // Remainder interval. Don't try splitting again, spill if it doesn't 988 // allocate. 989 if (IntvMap[I] == 0) { 990 ExtraInfo->setStage(Reg, RS_Spill); 991 continue; 992 } 993 994 // Global intervals. Allow repeated splitting as long as the number of live 995 // blocks is strictly decreasing. 996 if (IntvMap[I] < NumGlobalIntvs) { 997 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 998 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 999 << " blocks as original.\n"); 1000 // Don't allow repeated splitting as a safe guard against looping. 1001 ExtraInfo->setStage(Reg, RS_Split2); 1002 } 1003 continue; 1004 } 1005 1006 // Other intervals are treated as new. This includes local intervals created 1007 // for blocks with multiple uses, and anything created by DCE. 1008 } 1009 1010 if (VerifyEnabled) 1011 MF->verify(this, "After splitting live range around region"); 1012 } 1013 1014 MCRegister RAGreedy::tryRegionSplit(const LiveInterval &VirtReg, 1015 AllocationOrder &Order, 1016 SmallVectorImpl<Register> &NewVRegs) { 1017 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1018 return MCRegister::NoRegister; 1019 unsigned NumCands = 0; 1020 BlockFrequency SpillCost = calcSpillCost(); 1021 BlockFrequency BestCost; 1022 1023 // Check if we can split this live range around a compact region. 1024 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1025 if (HasCompact) { 1026 // Yes, keep GlobalCand[0] as the compact region candidate. 1027 NumCands = 1; 1028 BestCost = BlockFrequency::getMaxFrequency(); 1029 } else { 1030 // No benefit from the compact region, our fallback will be per-block 1031 // splitting. Make sure we find a solution that is cheaper than spilling. 1032 BestCost = SpillCost; 1033 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1034 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1035 } 1036 1037 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 1038 NumCands, false /*IgnoreCSR*/); 1039 1040 // No solutions found, fall back to single block splitting. 1041 if (!HasCompact && BestCand == NoCand) 1042 return MCRegister::NoRegister; 1043 1044 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1045 } 1046 1047 unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval &VirtReg, 1048 AllocationOrder &Order, 1049 BlockFrequency &BestCost, 1050 unsigned &NumCands, 1051 bool IgnoreCSR) { 1052 unsigned BestCand = NoCand; 1053 for (MCPhysReg PhysReg : Order) { 1054 assert(PhysReg); 1055 if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg)) 1056 continue; 1057 1058 // Discard bad candidates before we run out of interference cache cursors. 1059 // This will only affect register classes with a lot of registers (>32). 1060 if (NumCands == IntfCache.getMaxCursors()) { 1061 unsigned WorstCount = ~0u; 1062 unsigned Worst = 0; 1063 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) { 1064 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg) 1065 continue; 1066 unsigned Count = GlobalCand[CandIndex].LiveBundles.count(); 1067 if (Count < WorstCount) { 1068 Worst = CandIndex; 1069 WorstCount = Count; 1070 } 1071 } 1072 --NumCands; 1073 GlobalCand[Worst] = GlobalCand[NumCands]; 1074 if (BestCand == NumCands) 1075 BestCand = Worst; 1076 } 1077 1078 if (GlobalCand.size() <= NumCands) 1079 GlobalCand.resize(NumCands+1); 1080 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1081 Cand.reset(IntfCache, PhysReg); 1082 1083 SpillPlacer->prepare(Cand.LiveBundles); 1084 BlockFrequency Cost; 1085 if (!addSplitConstraints(Cand.Intf, Cost)) { 1086 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1087 continue; 1088 } 1089 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1090 MBFI->printBlockFreq(dbgs(), Cost)); 1091 if (Cost >= BestCost) { 1092 LLVM_DEBUG({ 1093 if (BestCand == NoCand) 1094 dbgs() << " worse than no bundles\n"; 1095 else 1096 dbgs() << " worse than " 1097 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1098 }); 1099 continue; 1100 } 1101 if (!growRegion(Cand)) { 1102 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1103 continue; 1104 } 1105 1106 SpillPlacer->finish(); 1107 1108 // No live bundles, defer to splitSingleBlocks(). 1109 if (!Cand.LiveBundles.any()) { 1110 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1111 continue; 1112 } 1113 1114 Cost += calcGlobalSplitCost(Cand, Order); 1115 LLVM_DEBUG({ 1116 dbgs() << ", total = "; 1117 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1118 for (int I : Cand.LiveBundles.set_bits()) 1119 dbgs() << " EB#" << I; 1120 dbgs() << ".\n"; 1121 }); 1122 if (Cost < BestCost) { 1123 BestCand = NumCands; 1124 BestCost = Cost; 1125 } 1126 ++NumCands; 1127 } 1128 1129 return BestCand; 1130 } 1131 1132 unsigned RAGreedy::doRegionSplit(const LiveInterval &VirtReg, unsigned BestCand, 1133 bool HasCompact, 1134 SmallVectorImpl<Register> &NewVRegs) { 1135 SmallVector<unsigned, 8> UsedCands; 1136 // Prepare split editor. 1137 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1138 SE->reset(LREdit, SplitSpillMode); 1139 1140 // Assign all edge bundles to the preferred candidate, or NoCand. 1141 BundleCand.assign(Bundles->getNumBundles(), NoCand); 1142 1143 // Assign bundles for the best candidate region. 1144 if (BestCand != NoCand) { 1145 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 1146 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 1147 UsedCands.push_back(BestCand); 1148 Cand.IntvIdx = SE->openIntv(); 1149 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 1150 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 1151 (void)B; 1152 } 1153 } 1154 1155 // Assign bundles for the compact region. 1156 if (HasCompact) { 1157 GlobalSplitCandidate &Cand = GlobalCand.front(); 1158 assert(!Cand.PhysReg && "Compact region has no physreg"); 1159 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 1160 UsedCands.push_back(0); 1161 Cand.IntvIdx = SE->openIntv(); 1162 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 1163 << " bundles, intv " << Cand.IntvIdx << ".\n"); 1164 (void)B; 1165 } 1166 } 1167 1168 splitAroundRegion(LREdit, UsedCands); 1169 return 0; 1170 } 1171 1172 //===----------------------------------------------------------------------===// 1173 // Per-Block Splitting 1174 //===----------------------------------------------------------------------===// 1175 1176 /// tryBlockSplit - Split a global live range around every block with uses. This 1177 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 1178 /// they don't allocate. 1179 unsigned RAGreedy::tryBlockSplit(const LiveInterval &VirtReg, 1180 AllocationOrder &Order, 1181 SmallVectorImpl<Register> &NewVRegs) { 1182 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 1183 Register Reg = VirtReg.reg(); 1184 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1185 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1186 SE->reset(LREdit, SplitSpillMode); 1187 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1188 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1189 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1190 SE->splitSingleBlock(BI); 1191 } 1192 // No blocks were split. 1193 if (LREdit.empty()) 1194 return 0; 1195 1196 // We did split for some blocks. 1197 SmallVector<unsigned, 8> IntvMap; 1198 SE->finish(&IntvMap); 1199 1200 // Tell LiveDebugVariables about the new ranges. 1201 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1202 1203 // Sort out the new intervals created by splitting. The remainder interval 1204 // goes straight to spilling, the new local ranges get to stay RS_New. 1205 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1206 const LiveInterval &LI = LIS->getInterval(LREdit.get(I)); 1207 if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0) 1208 ExtraInfo->setStage(LI, RS_Spill); 1209 } 1210 1211 if (VerifyEnabled) 1212 MF->verify(this, "After splitting live range around basic blocks"); 1213 return 0; 1214 } 1215 1216 //===----------------------------------------------------------------------===// 1217 // Per-Instruction Splitting 1218 //===----------------------------------------------------------------------===// 1219 1220 /// Get the number of allocatable registers that match the constraints of \p Reg 1221 /// on \p MI and that are also in \p SuperRC. 1222 static unsigned getNumAllocatableRegsForConstraints( 1223 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, 1224 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1225 const RegisterClassInfo &RCI) { 1226 assert(SuperRC && "Invalid register class"); 1227 1228 const TargetRegisterClass *ConstrainedRC = 1229 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 1230 /* ExploreBundle */ true); 1231 if (!ConstrainedRC) 1232 return 0; 1233 return RCI.getNumAllocatableRegs(ConstrainedRC); 1234 } 1235 1236 /// tryInstructionSplit - Split a live range around individual instructions. 1237 /// This is normally not worthwhile since the spiller is doing essentially the 1238 /// same thing. However, when the live range is in a constrained register 1239 /// class, it may help to insert copies such that parts of the live range can 1240 /// be moved to a larger register class. 1241 /// 1242 /// This is similar to spilling to a larger register class. 1243 unsigned RAGreedy::tryInstructionSplit(const LiveInterval &VirtReg, 1244 AllocationOrder &Order, 1245 SmallVectorImpl<Register> &NewVRegs) { 1246 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 1247 // There is no point to this if there are no larger sub-classes. 1248 if (!RegClassInfo.isProperSubClass(CurRC)) 1249 return 0; 1250 1251 // Always enable split spill mode, since we're effectively spilling to a 1252 // register. 1253 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1254 SE->reset(LREdit, SplitEditor::SM_Size); 1255 1256 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1257 if (Uses.size() <= 1) 1258 return 0; 1259 1260 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 1261 << " individual instrs.\n"); 1262 1263 const TargetRegisterClass *SuperRC = 1264 TRI->getLargestLegalSuperClass(CurRC, *MF); 1265 unsigned SuperRCNumAllocatableRegs = 1266 RegClassInfo.getNumAllocatableRegs(SuperRC); 1267 // Split around every non-copy instruction if this split will relax 1268 // the constraints on the virtual register. 1269 // Otherwise, splitting just inserts uncoalescable copies that do not help 1270 // the allocation. 1271 for (const SlotIndex Use : Uses) { 1272 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) 1273 if (MI->isFullCopy() || 1274 SuperRCNumAllocatableRegs == 1275 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, 1276 TII, TRI, RegClassInfo)) { 1277 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI); 1278 continue; 1279 } 1280 SE->openIntv(); 1281 SlotIndex SegStart = SE->enterIntvBefore(Use); 1282 SlotIndex SegStop = SE->leaveIntvAfter(Use); 1283 SE->useIntv(SegStart, SegStop); 1284 } 1285 1286 if (LREdit.empty()) { 1287 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 1288 return 0; 1289 } 1290 1291 SmallVector<unsigned, 8> IntvMap; 1292 SE->finish(&IntvMap); 1293 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 1294 // Assign all new registers to RS_Spill. This was the last chance. 1295 ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill); 1296 return 0; 1297 } 1298 1299 //===----------------------------------------------------------------------===// 1300 // Local Splitting 1301 //===----------------------------------------------------------------------===// 1302 1303 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 1304 /// in order to use PhysReg between two entries in SA->UseSlots. 1305 /// 1306 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1]. 1307 /// 1308 void RAGreedy::calcGapWeights(MCRegister PhysReg, 1309 SmallVectorImpl<float> &GapWeight) { 1310 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 1311 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1312 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1313 const unsigned NumGaps = Uses.size()-1; 1314 1315 // Start and end points for the interference check. 1316 SlotIndex StartIdx = 1317 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 1318 SlotIndex StopIdx = 1319 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 1320 1321 GapWeight.assign(NumGaps, 0.0f); 1322 1323 // Add interference from each overlapping register. 1324 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1325 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 1326 .checkInterference()) 1327 continue; 1328 1329 // We know that VirtReg is a continuous interval from FirstInstr to 1330 // LastInstr, so we don't need InterferenceQuery. 1331 // 1332 // Interference that overlaps an instruction is counted in both gaps 1333 // surrounding the instruction. The exception is interference before 1334 // StartIdx and after StopIdx. 1335 // 1336 LiveIntervalUnion::SegmentIter IntI = 1337 Matrix->getLiveUnions()[*Units] .find(StartIdx); 1338 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 1339 // Skip the gaps before IntI. 1340 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 1341 if (++Gap == NumGaps) 1342 break; 1343 if (Gap == NumGaps) 1344 break; 1345 1346 // Update the gaps covered by IntI. 1347 const float weight = IntI.value()->weight(); 1348 for (; Gap != NumGaps; ++Gap) { 1349 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 1350 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 1351 break; 1352 } 1353 if (Gap == NumGaps) 1354 break; 1355 } 1356 } 1357 1358 // Add fixed interference. 1359 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1360 const LiveRange &LR = LIS->getRegUnit(*Units); 1361 LiveRange::const_iterator I = LR.find(StartIdx); 1362 LiveRange::const_iterator E = LR.end(); 1363 1364 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 1365 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 1366 while (Uses[Gap+1].getBoundaryIndex() < I->start) 1367 if (++Gap == NumGaps) 1368 break; 1369 if (Gap == NumGaps) 1370 break; 1371 1372 for (; Gap != NumGaps; ++Gap) { 1373 GapWeight[Gap] = huge_valf; 1374 if (Uses[Gap+1].getBaseIndex() >= I->end) 1375 break; 1376 } 1377 if (Gap == NumGaps) 1378 break; 1379 } 1380 } 1381 } 1382 1383 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 1384 /// basic block. 1385 /// 1386 unsigned RAGreedy::tryLocalSplit(const LiveInterval &VirtReg, 1387 AllocationOrder &Order, 1388 SmallVectorImpl<Register> &NewVRegs) { 1389 // TODO: the function currently only handles a single UseBlock; it should be 1390 // possible to generalize. 1391 if (SA->getUseBlocks().size() != 1) 1392 return 0; 1393 1394 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 1395 1396 // Note that it is possible to have an interval that is live-in or live-out 1397 // while only covering a single block - A phi-def can use undef values from 1398 // predecessors, and the block could be a single-block loop. 1399 // We don't bother doing anything clever about such a case, we simply assume 1400 // that the interval is continuous from FirstInstr to LastInstr. We should 1401 // make sure that we don't do anything illegal to such an interval, though. 1402 1403 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 1404 if (Uses.size() <= 2) 1405 return 0; 1406 const unsigned NumGaps = Uses.size()-1; 1407 1408 LLVM_DEBUG({ 1409 dbgs() << "tryLocalSplit: "; 1410 for (const auto &Use : Uses) 1411 dbgs() << ' ' << Use; 1412 dbgs() << '\n'; 1413 }); 1414 1415 // If VirtReg is live across any register mask operands, compute a list of 1416 // gaps with register masks. 1417 SmallVector<unsigned, 8> RegMaskGaps; 1418 if (Matrix->checkRegMaskInterference(VirtReg)) { 1419 // Get regmask slots for the whole block. 1420 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 1421 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 1422 // Constrain to VirtReg's live range. 1423 unsigned RI = 1424 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 1425 unsigned RE = RMS.size(); 1426 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) { 1427 // Look for Uses[I] <= RMS <= Uses[I + 1]. 1428 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I])); 1429 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI])) 1430 continue; 1431 // Skip a regmask on the same instruction as the last use. It doesn't 1432 // overlap the live range. 1433 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps) 1434 break; 1435 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-' 1436 << Uses[I + 1]); 1437 RegMaskGaps.push_back(I); 1438 // Advance ri to the next gap. A regmask on one of the uses counts in 1439 // both gaps. 1440 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1])) 1441 ++RI; 1442 } 1443 LLVM_DEBUG(dbgs() << '\n'); 1444 } 1445 1446 // Since we allow local split results to be split again, there is a risk of 1447 // creating infinite loops. It is tempting to require that the new live 1448 // ranges have less instructions than the original. That would guarantee 1449 // convergence, but it is too strict. A live range with 3 instructions can be 1450 // split 2+3 (including the COPY), and we want to allow that. 1451 // 1452 // Instead we use these rules: 1453 // 1454 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 1455 // noop split, of course). 1456 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 1457 // the new ranges must have fewer instructions than before the split. 1458 // 3. New ranges with the same number of instructions are marked RS_Split2, 1459 // smaller ranges are marked RS_New. 1460 // 1461 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 1462 // excessive splitting and infinite loops. 1463 // 1464 bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2; 1465 1466 // Best split candidate. 1467 unsigned BestBefore = NumGaps; 1468 unsigned BestAfter = 0; 1469 float BestDiff = 0; 1470 1471 const float blockFreq = 1472 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 1473 (1.0f / MBFI->getEntryFreq()); 1474 SmallVector<float, 8> GapWeight; 1475 1476 for (MCPhysReg PhysReg : Order) { 1477 assert(PhysReg); 1478 // Keep track of the largest spill weight that would need to be evicted in 1479 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1]. 1480 calcGapWeights(PhysReg, GapWeight); 1481 1482 // Remove any gaps with regmask clobbers. 1483 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 1484 for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I) 1485 GapWeight[RegMaskGaps[I]] = huge_valf; 1486 1487 // Try to find the best sequence of gaps to close. 1488 // The new spill weight must be larger than any gap interference. 1489 1490 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 1491 unsigned SplitBefore = 0, SplitAfter = 1; 1492 1493 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 1494 // It is the spill weight that needs to be evicted. 1495 float MaxGap = GapWeight[0]; 1496 1497 while (true) { 1498 // Live before/after split? 1499 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 1500 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 1501 1502 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 1503 << '-' << Uses[SplitAfter] << " I=" << MaxGap); 1504 1505 // Stop before the interval gets so big we wouldn't be making progress. 1506 if (!LiveBefore && !LiveAfter) { 1507 LLVM_DEBUG(dbgs() << " all\n"); 1508 break; 1509 } 1510 // Should the interval be extended or shrunk? 1511 bool Shrink = true; 1512 1513 // How many gaps would the new range have? 1514 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 1515 1516 // Legally, without causing looping? 1517 bool Legal = !ProgressRequired || NewGaps < NumGaps; 1518 1519 if (Legal && MaxGap < huge_valf) { 1520 // Estimate the new spill weight. Each instruction reads or writes the 1521 // register. Conservatively assume there are no read-modify-write 1522 // instructions. 1523 // 1524 // Try to guess the size of the new interval. 1525 const float EstWeight = normalizeSpillWeight( 1526 blockFreq * (NewGaps + 1), 1527 Uses[SplitBefore].distance(Uses[SplitAfter]) + 1528 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 1529 1); 1530 // Would this split be possible to allocate? 1531 // Never allocate all gaps, we wouldn't be making progress. 1532 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 1533 if (EstWeight * Hysteresis >= MaxGap) { 1534 Shrink = false; 1535 float Diff = EstWeight - MaxGap; 1536 if (Diff > BestDiff) { 1537 LLVM_DEBUG(dbgs() << " (best)"); 1538 BestDiff = Hysteresis * Diff; 1539 BestBefore = SplitBefore; 1540 BestAfter = SplitAfter; 1541 } 1542 } 1543 } 1544 1545 // Try to shrink. 1546 if (Shrink) { 1547 if (++SplitBefore < SplitAfter) { 1548 LLVM_DEBUG(dbgs() << " shrink\n"); 1549 // Recompute the max when necessary. 1550 if (GapWeight[SplitBefore - 1] >= MaxGap) { 1551 MaxGap = GapWeight[SplitBefore]; 1552 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I) 1553 MaxGap = std::max(MaxGap, GapWeight[I]); 1554 } 1555 continue; 1556 } 1557 MaxGap = 0; 1558 } 1559 1560 // Try to extend the interval. 1561 if (SplitAfter >= NumGaps) { 1562 LLVM_DEBUG(dbgs() << " end\n"); 1563 break; 1564 } 1565 1566 LLVM_DEBUG(dbgs() << " extend\n"); 1567 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 1568 } 1569 } 1570 1571 // Didn't find any candidates? 1572 if (BestBefore == NumGaps) 1573 return 0; 1574 1575 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 1576 << Uses[BestAfter] << ", " << BestDiff << ", " 1577 << (BestAfter - BestBefore + 1) << " instrs\n"); 1578 1579 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 1580 SE->reset(LREdit); 1581 1582 SE->openIntv(); 1583 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 1584 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 1585 SE->useIntv(SegStart, SegStop); 1586 SmallVector<unsigned, 8> IntvMap; 1587 SE->finish(&IntvMap); 1588 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 1589 // If the new range has the same number of instructions as before, mark it as 1590 // RS_Split2 so the next split will be forced to make progress. Otherwise, 1591 // leave the new intervals as RS_New so they can compete. 1592 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 1593 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 1594 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 1595 if (NewGaps >= NumGaps) { 1596 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:"); 1597 assert(!ProgressRequired && "Didn't make progress when it was required."); 1598 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I) 1599 if (IntvMap[I] == 1) { 1600 ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2); 1601 LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I))); 1602 } 1603 LLVM_DEBUG(dbgs() << '\n'); 1604 } 1605 ++NumLocalSplits; 1606 1607 return 0; 1608 } 1609 1610 //===----------------------------------------------------------------------===// 1611 // Live Range Splitting 1612 //===----------------------------------------------------------------------===// 1613 1614 /// trySplit - Try to split VirtReg or one of its interferences, making it 1615 /// assignable. 1616 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 1617 unsigned RAGreedy::trySplit(const LiveInterval &VirtReg, AllocationOrder &Order, 1618 SmallVectorImpl<Register> &NewVRegs, 1619 const SmallVirtRegSet &FixedRegisters) { 1620 // Ranges must be Split2 or less. 1621 if (ExtraInfo->getStage(VirtReg) >= RS_Spill) 1622 return 0; 1623 1624 // Local intervals are handled separately. 1625 if (LIS->intervalIsInOneMBB(VirtReg)) { 1626 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 1627 TimerGroupDescription, TimePassesIsEnabled); 1628 SA->analyze(&VirtReg); 1629 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 1630 if (PhysReg || !NewVRegs.empty()) 1631 return PhysReg; 1632 return tryInstructionSplit(VirtReg, Order, NewVRegs); 1633 } 1634 1635 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 1636 TimerGroupDescription, TimePassesIsEnabled); 1637 1638 SA->analyze(&VirtReg); 1639 1640 // First try to split around a region spanning multiple blocks. RS_Split2 1641 // ranges already made dubious progress with region splitting, so they go 1642 // straight to single block splitting. 1643 if (ExtraInfo->getStage(VirtReg) < RS_Split2) { 1644 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 1645 if (PhysReg || !NewVRegs.empty()) 1646 return PhysReg; 1647 } 1648 1649 // Then isolate blocks. 1650 return tryBlockSplit(VirtReg, Order, NewVRegs); 1651 } 1652 1653 //===----------------------------------------------------------------------===// 1654 // Last Chance Recoloring 1655 //===----------------------------------------------------------------------===// 1656 1657 /// Return true if \p reg has any tied def operand. 1658 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 1659 for (const MachineOperand &MO : MRI->def_operands(reg)) 1660 if (MO.isTied()) 1661 return true; 1662 1663 return false; 1664 } 1665 1666 /// Return true if the existing assignment of \p Intf overlaps, but is not the 1667 /// same, as \p PhysReg. 1668 static bool assignedRegPartiallyOverlaps(const TargetRegisterInfo &TRI, 1669 const VirtRegMap &VRM, 1670 MCRegister PhysReg, 1671 const LiveInterval &Intf) { 1672 MCRegister AssignedReg = VRM.getPhys(Intf.reg()); 1673 if (PhysReg == AssignedReg) 1674 return false; 1675 return TRI.regsOverlap(PhysReg, AssignedReg); 1676 } 1677 1678 /// mayRecolorAllInterferences - Check if the virtual registers that 1679 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 1680 /// recolored to free \p PhysReg. 1681 /// When true is returned, \p RecoloringCandidates has been augmented with all 1682 /// the live intervals that need to be recolored in order to free \p PhysReg 1683 /// for \p VirtReg. 1684 /// \p FixedRegisters contains all the virtual registers that cannot be 1685 /// recolored. 1686 bool RAGreedy::mayRecolorAllInterferences( 1687 MCRegister PhysReg, const LiveInterval &VirtReg, 1688 SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters) { 1689 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 1690 1691 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1692 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1693 // If there is LastChanceRecoloringMaxInterference or more interferences, 1694 // chances are one would not be recolorable. 1695 if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >= 1696 LastChanceRecoloringMaxInterference && 1697 !ExhaustiveSearch) { 1698 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 1699 CutOffInfo |= CO_Interf; 1700 return false; 1701 } 1702 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 1703 // If Intf is done and sits on the same register class as VirtReg, it 1704 // would not be recolorable as it is in the same state as 1705 // VirtReg. However there are at least two exceptions. 1706 // 1707 // If VirtReg has tied defs and Intf doesn't, then 1708 // there is still a point in examining if it can be recolorable. 1709 // 1710 // Additionally, if the register class has overlapping tuple members, it 1711 // may still be recolorable using a different tuple. This is more likely 1712 // if the existing assignment aliases with the candidate. 1713 // 1714 if (((ExtraInfo->getStage(*Intf) == RS_Done && 1715 MRI->getRegClass(Intf->reg()) == CurRC && 1716 !assignedRegPartiallyOverlaps(*TRI, *VRM, PhysReg, *Intf)) && 1717 !(hasTiedDef(MRI, VirtReg.reg()) && 1718 !hasTiedDef(MRI, Intf->reg()))) || 1719 FixedRegisters.count(Intf->reg())) { 1720 LLVM_DEBUG( 1721 dbgs() << "Early abort: the interference is not recolorable.\n"); 1722 return false; 1723 } 1724 RecoloringCandidates.insert(Intf); 1725 } 1726 } 1727 return true; 1728 } 1729 1730 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 1731 /// its interferences. 1732 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 1733 /// virtual register that was using it. The recoloring process may recursively 1734 /// use the last chance recoloring. Therefore, when a virtual register has been 1735 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 1736 /// be last-chance-recolored again during this recoloring "session". 1737 /// E.g., 1738 /// Let 1739 /// vA can use {R1, R2 } 1740 /// vB can use { R2, R3} 1741 /// vC can use {R1 } 1742 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 1743 /// instance) and they all interfere. 1744 /// 1745 /// vA is assigned R1 1746 /// vB is assigned R2 1747 /// vC tries to evict vA but vA is already done. 1748 /// Regular register allocation fails. 1749 /// 1750 /// Last chance recoloring kicks in: 1751 /// vC does as if vA was evicted => vC uses R1. 1752 /// vC is marked as fixed. 1753 /// vA needs to find a color. 1754 /// None are available. 1755 /// vA cannot evict vC: vC is a fixed virtual register now. 1756 /// vA does as if vB was evicted => vA uses R2. 1757 /// vB needs to find a color. 1758 /// R3 is available. 1759 /// Recoloring => vC = R1, vA = R2, vB = R3 1760 /// 1761 /// \p Order defines the preferred allocation order for \p VirtReg. 1762 /// \p NewRegs will contain any new virtual register that have been created 1763 /// (split, spill) during the process and that must be assigned. 1764 /// \p FixedRegisters contains all the virtual registers that cannot be 1765 /// recolored. 1766 /// 1767 /// \p RecolorStack tracks the original assignments of successfully recolored 1768 /// registers. 1769 /// 1770 /// \p Depth gives the current depth of the last chance recoloring. 1771 /// \return a physical register that can be used for VirtReg or ~0u if none 1772 /// exists. 1773 unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval &VirtReg, 1774 AllocationOrder &Order, 1775 SmallVectorImpl<Register> &NewVRegs, 1776 SmallVirtRegSet &FixedRegisters, 1777 RecoloringStack &RecolorStack, 1778 unsigned Depth) { 1779 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) 1780 return ~0u; 1781 1782 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 1783 1784 const ssize_t EntryStackSize = RecolorStack.size(); 1785 1786 // Ranges must be Done. 1787 assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 1788 "Last chance recoloring should really be last chance"); 1789 // Set the max depth to LastChanceRecoloringMaxDepth. 1790 // We may want to reconsider that if we end up with a too large search space 1791 // for target with hundreds of registers. 1792 // Indeed, in that case we may want to cut the search space earlier. 1793 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 1794 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 1795 CutOffInfo |= CO_Depth; 1796 return ~0u; 1797 } 1798 1799 // Set of Live intervals that will need to be recolored. 1800 SmallLISet RecoloringCandidates; 1801 1802 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 1803 // this recoloring "session". 1804 assert(!FixedRegisters.count(VirtReg.reg())); 1805 FixedRegisters.insert(VirtReg.reg()); 1806 SmallVector<Register, 4> CurrentNewVRegs; 1807 1808 for (MCRegister PhysReg : Order) { 1809 assert(PhysReg.isValid()); 1810 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 1811 << printReg(PhysReg, TRI) << '\n'); 1812 RecoloringCandidates.clear(); 1813 CurrentNewVRegs.clear(); 1814 1815 // It is only possible to recolor virtual register interference. 1816 if (Matrix->checkInterference(VirtReg, PhysReg) > 1817 LiveRegMatrix::IK_VirtReg) { 1818 LLVM_DEBUG( 1819 dbgs() << "Some interferences are not with virtual registers.\n"); 1820 1821 continue; 1822 } 1823 1824 // Early give up on this PhysReg if it is obvious we cannot recolor all 1825 // the interferences. 1826 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 1827 FixedRegisters)) { 1828 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 1829 continue; 1830 } 1831 1832 // RecoloringCandidates contains all the virtual registers that interfere 1833 // with VirtReg on PhysReg (or one of its aliases). Enqueue them for 1834 // recoloring and perform the actual recoloring. 1835 PQueue RecoloringQueue; 1836 for (const LiveInterval *RC : RecoloringCandidates) { 1837 Register ItVirtReg = RC->reg(); 1838 enqueue(RecoloringQueue, RC); 1839 assert(VRM->hasPhys(ItVirtReg) && 1840 "Interferences are supposed to be with allocated variables"); 1841 1842 // Record the current allocation. 1843 RecolorStack.push_back(std::make_pair(RC, VRM->getPhys(ItVirtReg))); 1844 1845 // unset the related struct. 1846 Matrix->unassign(*RC); 1847 } 1848 1849 // Do as if VirtReg was assigned to PhysReg so that the underlying 1850 // recoloring has the right information about the interferes and 1851 // available colors. 1852 Matrix->assign(VirtReg, PhysReg); 1853 1854 // Save the current recoloring state. 1855 // If we cannot recolor all the interferences, we will have to start again 1856 // at this point for the next physical register. 1857 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 1858 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 1859 FixedRegisters, RecolorStack, Depth)) { 1860 // Push the queued vregs into the main queue. 1861 for (Register NewVReg : CurrentNewVRegs) 1862 NewVRegs.push_back(NewVReg); 1863 // Do not mess up with the global assignment process. 1864 // I.e., VirtReg must be unassigned. 1865 Matrix->unassign(VirtReg); 1866 return PhysReg; 1867 } 1868 1869 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 1870 << printReg(PhysReg, TRI) << '\n'); 1871 1872 // The recoloring attempt failed, undo the changes. 1873 FixedRegisters = SaveFixedRegisters; 1874 Matrix->unassign(VirtReg); 1875 1876 // For a newly created vreg which is also in RecoloringCandidates, 1877 // don't add it to NewVRegs because its physical register will be restored 1878 // below. Other vregs in CurrentNewVRegs are created by calling 1879 // selectOrSplit and should be added into NewVRegs. 1880 for (Register &R : CurrentNewVRegs) { 1881 if (RecoloringCandidates.count(&LIS->getInterval(R))) 1882 continue; 1883 NewVRegs.push_back(R); 1884 } 1885 1886 // Roll back our unsuccessful recoloring. Also roll back any successful 1887 // recolorings in any recursive recoloring attempts, since it's possible 1888 // they would have introduced conflicts with assignments we will be 1889 // restoring further up the stack. Perform all unassignments prior to 1890 // reassigning, since sub-recolorings may have conflicted with the registers 1891 // we are going to restore to their original assignments. 1892 for (ssize_t I = RecolorStack.size() - 1; I >= EntryStackSize; --I) { 1893 const LiveInterval *LI; 1894 MCRegister PhysReg; 1895 std::tie(LI, PhysReg) = RecolorStack[I]; 1896 1897 if (VRM->hasPhys(LI->reg())) 1898 Matrix->unassign(*LI); 1899 } 1900 1901 for (size_t I = EntryStackSize; I != RecolorStack.size(); ++I) { 1902 const LiveInterval *LI; 1903 MCRegister PhysReg; 1904 std::tie(LI, PhysReg) = RecolorStack[I]; 1905 if (!LI->empty() && !MRI->reg_nodbg_empty(LI->reg())) 1906 Matrix->assign(*LI, PhysReg); 1907 } 1908 1909 // Pop the stack of recoloring attempts. 1910 RecolorStack.resize(EntryStackSize); 1911 } 1912 1913 // Last chance recoloring did not worked either, give up. 1914 return ~0u; 1915 } 1916 1917 /// tryRecoloringCandidates - Try to assign a new color to every register 1918 /// in \RecoloringQueue. 1919 /// \p NewRegs will contain any new virtual register created during the 1920 /// recoloring process. 1921 /// \p FixedRegisters[in/out] contains all the registers that have been 1922 /// recolored. 1923 /// \return true if all virtual registers in RecoloringQueue were successfully 1924 /// recolored, false otherwise. 1925 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 1926 SmallVectorImpl<Register> &NewVRegs, 1927 SmallVirtRegSet &FixedRegisters, 1928 RecoloringStack &RecolorStack, 1929 unsigned Depth) { 1930 while (!RecoloringQueue.empty()) { 1931 const LiveInterval *LI = dequeue(RecoloringQueue); 1932 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 1933 MCRegister PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, 1934 RecolorStack, Depth + 1); 1935 // When splitting happens, the live-range may actually be empty. 1936 // In that case, this is okay to continue the recoloring even 1937 // if we did not find an alternative color for it. Indeed, 1938 // there will not be anything to color for LI in the end. 1939 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 1940 return false; 1941 1942 if (!PhysReg) { 1943 assert(LI->empty() && "Only empty live-range do not require a register"); 1944 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 1945 << " succeeded. Empty LI.\n"); 1946 continue; 1947 } 1948 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 1949 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 1950 1951 Matrix->assign(*LI, PhysReg); 1952 FixedRegisters.insert(LI->reg()); 1953 } 1954 return true; 1955 } 1956 1957 //===----------------------------------------------------------------------===// 1958 // Main Entry Point 1959 //===----------------------------------------------------------------------===// 1960 1961 MCRegister RAGreedy::selectOrSplit(const LiveInterval &VirtReg, 1962 SmallVectorImpl<Register> &NewVRegs) { 1963 CutOffInfo = CO_None; 1964 LLVMContext &Ctx = MF->getFunction().getContext(); 1965 SmallVirtRegSet FixedRegisters; 1966 RecoloringStack RecolorStack; 1967 MCRegister Reg = 1968 selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters, RecolorStack); 1969 if (Reg == ~0U && (CutOffInfo != CO_None)) { 1970 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 1971 if (CutOffEncountered == CO_Depth) 1972 Ctx.emitError("register allocation failed: maximum depth for recoloring " 1973 "reached. Use -fexhaustive-register-search to skip " 1974 "cutoffs"); 1975 else if (CutOffEncountered == CO_Interf) 1976 Ctx.emitError("register allocation failed: maximum interference for " 1977 "recoloring reached. Use -fexhaustive-register-search " 1978 "to skip cutoffs"); 1979 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 1980 Ctx.emitError("register allocation failed: maximum interference and " 1981 "depth for recoloring reached. Use " 1982 "-fexhaustive-register-search to skip cutoffs"); 1983 } 1984 return Reg; 1985 } 1986 1987 /// Using a CSR for the first time has a cost because it causes push|pop 1988 /// to be added to prologue|epilogue. Splitting a cold section of the live 1989 /// range can have lower cost than using the CSR for the first time; 1990 /// Spilling a live range in the cold path can have lower cost than using 1991 /// the CSR for the first time. Returns the physical register if we decide 1992 /// to use the CSR; otherwise return 0. 1993 MCRegister RAGreedy::tryAssignCSRFirstTime( 1994 const LiveInterval &VirtReg, AllocationOrder &Order, MCRegister PhysReg, 1995 uint8_t &CostPerUseLimit, SmallVectorImpl<Register> &NewVRegs) { 1996 if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 1997 // We choose spill over using the CSR for the first time if the spill cost 1998 // is lower than CSRCost. 1999 SA->analyze(&VirtReg); 2000 if (calcSpillCost() >= CSRCost) 2001 return PhysReg; 2002 2003 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2004 // we will not use a callee-saved register in tryEvict. 2005 CostPerUseLimit = 1; 2006 return 0; 2007 } 2008 if (ExtraInfo->getStage(VirtReg) < RS_Split) { 2009 // We choose pre-splitting over using the CSR for the first time if 2010 // the cost of splitting is lower than CSRCost. 2011 SA->analyze(&VirtReg); 2012 unsigned NumCands = 0; 2013 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2014 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2015 NumCands, true /*IgnoreCSR*/); 2016 if (BestCand == NoCand) 2017 // Use the CSR if we can't find a region split below CSRCost. 2018 return PhysReg; 2019 2020 // Perform the actual pre-splitting. 2021 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2022 return 0; 2023 } 2024 return PhysReg; 2025 } 2026 2027 void RAGreedy::aboutToRemoveInterval(const LiveInterval &LI) { 2028 // Do not keep invalid information around. 2029 SetOfBrokenHints.remove(&LI); 2030 } 2031 2032 void RAGreedy::initializeCSRCost() { 2033 // We use the larger one out of the command-line option and the value report 2034 // by TRI. 2035 CSRCost = BlockFrequency( 2036 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2037 if (!CSRCost.getFrequency()) 2038 return; 2039 2040 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2041 uint64_t ActualEntry = MBFI->getEntryFreq(); 2042 if (!ActualEntry) { 2043 CSRCost = 0; 2044 return; 2045 } 2046 uint64_t FixedEntry = 1 << 14; 2047 if (ActualEntry < FixedEntry) 2048 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2049 else if (ActualEntry <= UINT32_MAX) 2050 // Invert the fraction and divide. 2051 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2052 else 2053 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2054 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2055 } 2056 2057 /// Collect the hint info for \p Reg. 2058 /// The results are stored into \p Out. 2059 /// \p Out is not cleared before being populated. 2060 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) { 2061 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2062 if (!Instr.isFullCopy()) 2063 continue; 2064 // Look for the other end of the copy. 2065 Register OtherReg = Instr.getOperand(0).getReg(); 2066 if (OtherReg == Reg) { 2067 OtherReg = Instr.getOperand(1).getReg(); 2068 if (OtherReg == Reg) 2069 continue; 2070 } 2071 // Get the current assignment. 2072 MCRegister OtherPhysReg = 2073 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 2074 // Push the collected information. 2075 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2076 OtherPhysReg)); 2077 } 2078 } 2079 2080 /// Using the given \p List, compute the cost of the broken hints if 2081 /// \p PhysReg was used. 2082 /// \return The cost of \p List for \p PhysReg. 2083 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2084 MCRegister PhysReg) { 2085 BlockFrequency Cost = 0; 2086 for (const HintInfo &Info : List) { 2087 if (Info.PhysReg != PhysReg) 2088 Cost += Info.Freq; 2089 } 2090 return Cost; 2091 } 2092 2093 /// Using the register assigned to \p VirtReg, try to recolor 2094 /// all the live ranges that are copy-related with \p VirtReg. 2095 /// The recoloring is then propagated to all the live-ranges that have 2096 /// been recolored and so on, until no more copies can be coalesced or 2097 /// it is not profitable. 2098 /// For a given live range, profitability is determined by the sum of the 2099 /// frequencies of the non-identity copies it would introduce with the old 2100 /// and new register. 2101 void RAGreedy::tryHintRecoloring(const LiveInterval &VirtReg) { 2102 // We have a broken hint, check if it is possible to fix it by 2103 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2104 // some register and PhysReg may be available for the other live-ranges. 2105 SmallSet<Register, 4> Visited; 2106 SmallVector<unsigned, 2> RecoloringCandidates; 2107 HintsInfo Info; 2108 Register Reg = VirtReg.reg(); 2109 MCRegister PhysReg = VRM->getPhys(Reg); 2110 // Start the recoloring algorithm from the input live-interval, then 2111 // it will propagate to the ones that are copy-related with it. 2112 Visited.insert(Reg); 2113 RecoloringCandidates.push_back(Reg); 2114 2115 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2116 << '(' << printReg(PhysReg, TRI) << ")\n"); 2117 2118 do { 2119 Reg = RecoloringCandidates.pop_back_val(); 2120 2121 // We cannot recolor physical register. 2122 if (Register::isPhysicalRegister(Reg)) 2123 continue; 2124 2125 // This may be a skipped class 2126 if (!VRM->hasPhys(Reg)) { 2127 assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) && 2128 "We have an unallocated variable which should have been handled"); 2129 continue; 2130 } 2131 2132 // Get the live interval mapped with this virtual register to be able 2133 // to check for the interference with the new color. 2134 LiveInterval &LI = LIS->getInterval(Reg); 2135 MCRegister CurrPhys = VRM->getPhys(Reg); 2136 // Check that the new color matches the register class constraints and 2137 // that it is free for this live range. 2138 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2139 Matrix->checkInterference(LI, PhysReg))) 2140 continue; 2141 2142 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2143 << ") is recolorable.\n"); 2144 2145 // Gather the hint info. 2146 Info.clear(); 2147 collectHintInfo(Reg, Info); 2148 // Check if recoloring the live-range will increase the cost of the 2149 // non-identity copies. 2150 if (CurrPhys != PhysReg) { 2151 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2152 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2153 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2154 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2155 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2156 << '\n'); 2157 if (OldCopiesCost < NewCopiesCost) { 2158 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2159 continue; 2160 } 2161 // At this point, the cost is either cheaper or equal. If it is 2162 // equal, we consider this is profitable because it may expose 2163 // more recoloring opportunities. 2164 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2165 // Recolor the live-range. 2166 Matrix->unassign(LI); 2167 Matrix->assign(LI, PhysReg); 2168 } 2169 // Push all copy-related live-ranges to keep reconciling the broken 2170 // hints. 2171 for (const HintInfo &HI : Info) { 2172 if (Visited.insert(HI.Reg).second) 2173 RecoloringCandidates.push_back(HI.Reg); 2174 } 2175 } while (!RecoloringCandidates.empty()); 2176 } 2177 2178 /// Try to recolor broken hints. 2179 /// Broken hints may be repaired by recoloring when an evicted variable 2180 /// freed up a register for a larger live-range. 2181 /// Consider the following example: 2182 /// BB1: 2183 /// a = 2184 /// b = 2185 /// BB2: 2186 /// ... 2187 /// = b 2188 /// = a 2189 /// Let us assume b gets split: 2190 /// BB1: 2191 /// a = 2192 /// b = 2193 /// BB2: 2194 /// c = b 2195 /// ... 2196 /// d = c 2197 /// = d 2198 /// = a 2199 /// Because of how the allocation work, b, c, and d may be assigned different 2200 /// colors. Now, if a gets evicted later: 2201 /// BB1: 2202 /// a = 2203 /// st a, SpillSlot 2204 /// b = 2205 /// BB2: 2206 /// c = b 2207 /// ... 2208 /// d = c 2209 /// = d 2210 /// e = ld SpillSlot 2211 /// = e 2212 /// This is likely that we can assign the same register for b, c, and d, 2213 /// getting rid of 2 copies. 2214 void RAGreedy::tryHintsRecoloring() { 2215 for (const LiveInterval *LI : SetOfBrokenHints) { 2216 assert(Register::isVirtualRegister(LI->reg()) && 2217 "Recoloring is possible only for virtual registers"); 2218 // Some dead defs may be around (e.g., because of debug uses). 2219 // Ignore those. 2220 if (!VRM->hasPhys(LI->reg())) 2221 continue; 2222 tryHintRecoloring(*LI); 2223 } 2224 } 2225 2226 MCRegister RAGreedy::selectOrSplitImpl(const LiveInterval &VirtReg, 2227 SmallVectorImpl<Register> &NewVRegs, 2228 SmallVirtRegSet &FixedRegisters, 2229 RecoloringStack &RecolorStack, 2230 unsigned Depth) { 2231 uint8_t CostPerUseLimit = uint8_t(~0u); 2232 // First try assigning a free register. 2233 auto Order = 2234 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 2235 if (MCRegister PhysReg = 2236 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 2237 // When NewVRegs is not empty, we may have made decisions such as evicting 2238 // a virtual register, go with the earlier decisions and use the physical 2239 // register. 2240 if (CSRCost.getFrequency() && 2241 EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) { 2242 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 2243 CostPerUseLimit, NewVRegs); 2244 if (CSRReg || !NewVRegs.empty()) 2245 // Return now if we decide to use a CSR or create new vregs due to 2246 // pre-splitting. 2247 return CSRReg; 2248 } else 2249 return PhysReg; 2250 } 2251 2252 LiveRangeStage Stage = ExtraInfo->getStage(VirtReg); 2253 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 2254 << ExtraInfo->getCascade(VirtReg.reg()) << '\n'); 2255 2256 // Try to evict a less worthy live range, but only for ranges from the primary 2257 // queue. The RS_Split ranges already failed to do this, and they should not 2258 // get a second chance until they have been split. 2259 if (Stage != RS_Split) 2260 if (Register PhysReg = 2261 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 2262 FixedRegisters)) { 2263 Register Hint = MRI->getSimpleHint(VirtReg.reg()); 2264 // If VirtReg has a hint and that hint is broken record this 2265 // virtual register as a recoloring candidate for broken hint. 2266 // Indeed, since we evicted a variable in its neighborhood it is 2267 // likely we can at least partially recolor some of the 2268 // copy-related live-ranges. 2269 if (Hint && Hint != PhysReg) 2270 SetOfBrokenHints.insert(&VirtReg); 2271 return PhysReg; 2272 } 2273 2274 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 2275 2276 // The first time we see a live range, don't try to split or spill. 2277 // Wait until the second time, when all smaller ranges have been allocated. 2278 // This gives a better picture of the interference to split around. 2279 if (Stage < RS_Split) { 2280 ExtraInfo->setStage(VirtReg, RS_Split); 2281 LLVM_DEBUG(dbgs() << "wait for second round\n"); 2282 NewVRegs.push_back(VirtReg.reg()); 2283 return 0; 2284 } 2285 2286 if (Stage < RS_Spill) { 2287 // Try splitting VirtReg or interferences. 2288 unsigned NewVRegSizeBefore = NewVRegs.size(); 2289 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 2290 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) 2291 return PhysReg; 2292 } 2293 2294 // If we couldn't allocate a register from spilling, there is probably some 2295 // invalid inline assembly. The base class will report it. 2296 if (Stage >= RS_Done || !VirtReg.isSpillable()) { 2297 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 2298 RecolorStack, Depth); 2299 } 2300 2301 // Finally spill VirtReg itself. 2302 if ((EnableDeferredSpilling || 2303 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) && 2304 ExtraInfo->getStage(VirtReg) < RS_Memory) { 2305 // TODO: This is experimental and in particular, we do not model 2306 // the live range splitting done by spilling correctly. 2307 // We would need a deep integration with the spiller to do the 2308 // right thing here. Anyway, that is still good for early testing. 2309 ExtraInfo->setStage(VirtReg, RS_Memory); 2310 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 2311 NewVRegs.push_back(VirtReg.reg()); 2312 } else { 2313 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 2314 TimerGroupDescription, TimePassesIsEnabled); 2315 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2316 spiller().spill(LRE); 2317 ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 2318 2319 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 2320 // the new regs are kept in LDV (still mapping to the old register), until 2321 // we rewrite spilled locations in LDV at a later stage. 2322 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS); 2323 2324 if (VerifyEnabled) 2325 MF->verify(this, "After spilling"); 2326 } 2327 2328 // The live virtual register requesting allocation was spilled, so tell 2329 // the caller not to allocate anything during this round. 2330 return 0; 2331 } 2332 2333 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) { 2334 using namespace ore; 2335 if (Spills) { 2336 R << NV("NumSpills", Spills) << " spills "; 2337 R << NV("TotalSpillsCost", SpillsCost) << " total spills cost "; 2338 } 2339 if (FoldedSpills) { 2340 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 2341 R << NV("TotalFoldedSpillsCost", FoldedSpillsCost) 2342 << " total folded spills cost "; 2343 } 2344 if (Reloads) { 2345 R << NV("NumReloads", Reloads) << " reloads "; 2346 R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost "; 2347 } 2348 if (FoldedReloads) { 2349 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 2350 R << NV("TotalFoldedReloadsCost", FoldedReloadsCost) 2351 << " total folded reloads cost "; 2352 } 2353 if (ZeroCostFoldedReloads) 2354 R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads) 2355 << " zero cost folded reloads "; 2356 if (Copies) { 2357 R << NV("NumVRCopies", Copies) << " virtual registers copies "; 2358 R << NV("TotalCopiesCost", CopiesCost) << " total copies cost "; 2359 } 2360 } 2361 2362 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) { 2363 RAGreedyStats Stats; 2364 const MachineFrameInfo &MFI = MF->getFrameInfo(); 2365 int FI; 2366 2367 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 2368 return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>( 2369 A->getPseudoValue())->getFrameIndex()); 2370 }; 2371 auto isPatchpointInstr = [](const MachineInstr &MI) { 2372 return MI.getOpcode() == TargetOpcode::PATCHPOINT || 2373 MI.getOpcode() == TargetOpcode::STACKMAP || 2374 MI.getOpcode() == TargetOpcode::STATEPOINT; 2375 }; 2376 for (MachineInstr &MI : MBB) { 2377 if (MI.isCopy()) { 2378 MachineOperand &Dest = MI.getOperand(0); 2379 MachineOperand &Src = MI.getOperand(1); 2380 if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() && 2381 Src.getReg().isVirtual()) 2382 ++Stats.Copies; 2383 continue; 2384 } 2385 2386 SmallVector<const MachineMemOperand *, 2> Accesses; 2387 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 2388 ++Stats.Reloads; 2389 continue; 2390 } 2391 if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 2392 ++Stats.Spills; 2393 continue; 2394 } 2395 if (TII->hasLoadFromStackSlot(MI, Accesses) && 2396 llvm::any_of(Accesses, isSpillSlotAccess)) { 2397 if (!isPatchpointInstr(MI)) { 2398 Stats.FoldedReloads += Accesses.size(); 2399 continue; 2400 } 2401 // For statepoint there may be folded and zero cost folded stack reloads. 2402 std::pair<unsigned, unsigned> NonZeroCostRange = 2403 TII->getPatchpointUnfoldableRange(MI); 2404 SmallSet<unsigned, 16> FoldedReloads; 2405 SmallSet<unsigned, 16> ZeroCostFoldedReloads; 2406 for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) { 2407 MachineOperand &MO = MI.getOperand(Idx); 2408 if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex())) 2409 continue; 2410 if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second) 2411 FoldedReloads.insert(MO.getIndex()); 2412 else 2413 ZeroCostFoldedReloads.insert(MO.getIndex()); 2414 } 2415 // If stack slot is used in folded reload it is not zero cost then. 2416 for (unsigned Slot : FoldedReloads) 2417 ZeroCostFoldedReloads.erase(Slot); 2418 Stats.FoldedReloads += FoldedReloads.size(); 2419 Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size(); 2420 continue; 2421 } 2422 Accesses.clear(); 2423 if (TII->hasStoreToStackSlot(MI, Accesses) && 2424 llvm::any_of(Accesses, isSpillSlotAccess)) { 2425 Stats.FoldedSpills += Accesses.size(); 2426 } 2427 } 2428 // Set cost of collected statistic by multiplication to relative frequency of 2429 // this basic block. 2430 float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB); 2431 Stats.ReloadsCost = RelFreq * Stats.Reloads; 2432 Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads; 2433 Stats.SpillsCost = RelFreq * Stats.Spills; 2434 Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills; 2435 Stats.CopiesCost = RelFreq * Stats.Copies; 2436 return Stats; 2437 } 2438 2439 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) { 2440 RAGreedyStats Stats; 2441 2442 // Sum up the spill and reloads in subloops. 2443 for (MachineLoop *SubLoop : *L) 2444 Stats.add(reportStats(SubLoop)); 2445 2446 for (MachineBasicBlock *MBB : L->getBlocks()) 2447 // Handle blocks that were not included in subloops. 2448 if (Loops->getLoopFor(MBB) == L) 2449 Stats.add(computeStats(*MBB)); 2450 2451 if (!Stats.isEmpty()) { 2452 using namespace ore; 2453 2454 ORE->emit([&]() { 2455 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies", 2456 L->getStartLoc(), L->getHeader()); 2457 Stats.report(R); 2458 R << "generated in loop"; 2459 return R; 2460 }); 2461 } 2462 return Stats; 2463 } 2464 2465 void RAGreedy::reportStats() { 2466 if (!ORE->allowExtraAnalysis(DEBUG_TYPE)) 2467 return; 2468 RAGreedyStats Stats; 2469 for (MachineLoop *L : *Loops) 2470 Stats.add(reportStats(L)); 2471 // Process non-loop blocks. 2472 for (MachineBasicBlock &MBB : *MF) 2473 if (!Loops->getLoopFor(&MBB)) 2474 Stats.add(computeStats(MBB)); 2475 if (!Stats.isEmpty()) { 2476 using namespace ore; 2477 2478 ORE->emit([&]() { 2479 DebugLoc Loc; 2480 if (auto *SP = MF->getFunction().getSubprogram()) 2481 Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 2482 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc, 2483 &MF->front()); 2484 Stats.report(R); 2485 R << "generated in function"; 2486 return R; 2487 }); 2488 } 2489 } 2490 2491 bool RAGreedy::hasVirtRegAlloc() { 2492 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2493 Register Reg = Register::index2VirtReg(I); 2494 if (MRI->reg_nodbg_empty(Reg)) 2495 continue; 2496 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 2497 if (!RC) 2498 continue; 2499 if (ShouldAllocateClass(*TRI, *RC)) 2500 return true; 2501 } 2502 2503 return false; 2504 } 2505 2506 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 2507 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 2508 << "********** Function: " << mf.getName() << '\n'); 2509 2510 MF = &mf; 2511 TII = MF->getSubtarget().getInstrInfo(); 2512 2513 if (VerifyEnabled) 2514 MF->verify(this, "Before greedy register allocator"); 2515 2516 RegAllocBase::init(getAnalysis<VirtRegMap>(), 2517 getAnalysis<LiveIntervals>(), 2518 getAnalysis<LiveRegMatrix>()); 2519 2520 // Early return if there is no virtual register to be allocated to a 2521 // physical register. 2522 if (!hasVirtRegAlloc()) 2523 return false; 2524 2525 Indexes = &getAnalysis<SlotIndexes>(); 2526 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 2527 DomTree = &getAnalysis<MachineDominatorTree>(); 2528 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 2529 Loops = &getAnalysis<MachineLoopInfo>(); 2530 Bundles = &getAnalysis<EdgeBundles>(); 2531 SpillPlacer = &getAnalysis<SpillPlacement>(); 2532 DebugVars = &getAnalysis<LiveDebugVariables>(); 2533 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2534 2535 initializeCSRCost(); 2536 2537 RegCosts = TRI->getRegisterCosts(*MF); 2538 RegClassPriorityTrumpsGlobalness = 2539 GreedyRegClassPriorityTrumpsGlobalness.getNumOccurrences() 2540 ? GreedyRegClassPriorityTrumpsGlobalness 2541 : TRI->regClassPriorityTrumpsGlobalness(*MF); 2542 2543 ExtraInfo.emplace(); 2544 EvictAdvisor = 2545 getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this); 2546 2547 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI); 2548 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI)); 2549 2550 VRAI->calculateSpillWeightsAndHints(); 2551 2552 LLVM_DEBUG(LIS->dump()); 2553 2554 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 2555 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI)); 2556 2557 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 2558 GlobalCand.resize(32); // This will grow as needed. 2559 SetOfBrokenHints.clear(); 2560 2561 allocatePhysRegs(); 2562 tryHintsRecoloring(); 2563 2564 if (VerifyEnabled) 2565 MF->verify(this, "Before post optimization"); 2566 postOptimization(); 2567 reportStats(); 2568 2569 releaseMemory(); 2570 return true; 2571 } 2572