xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/RegAllocGreedy.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RegAllocGreedy.h"
15 #include "AllocationOrder.h"
16 #include "InterferenceCache.h"
17 #include "RegAllocBase.h"
18 #include "RegAllocEvictionAdvisor.h"
19 #include "RegAllocPriorityAdvisor.h"
20 #include "SpillPlacement.h"
21 #include "SplitKit.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/IndexedMap.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/CodeGen/CalcSpillWeights.h"
32 #include "llvm/CodeGen/EdgeBundles.h"
33 #include "llvm/CodeGen/LiveDebugVariables.h"
34 #include "llvm/CodeGen/LiveInterval.h"
35 #include "llvm/CodeGen/LiveIntervalUnion.h"
36 #include "llvm/CodeGen/LiveIntervals.h"
37 #include "llvm/CodeGen/LiveRangeEdit.h"
38 #include "llvm/CodeGen/LiveRegMatrix.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
42 #include "llvm/CodeGen/MachineDominators.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineLoopInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/RegAllocRegistry.h"
52 #include "llvm/CodeGen/RegisterClassInfo.h"
53 #include "llvm/CodeGen/SlotIndexes.h"
54 #include "llvm/CodeGen/Spiller.h"
55 #include "llvm/CodeGen/TargetInstrInfo.h"
56 #include "llvm/CodeGen/TargetRegisterInfo.h"
57 #include "llvm/CodeGen/TargetSubtargetInfo.h"
58 #include "llvm/CodeGen/VirtRegMap.h"
59 #include "llvm/IR/DebugInfoMetadata.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/InitializePasses.h"
63 #include "llvm/MC/MCRegisterInfo.h"
64 #include "llvm/Pass.h"
65 #include "llvm/Support/BlockFrequency.h"
66 #include "llvm/Support/BranchProbability.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/Timer.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <utility>
76 
77 using namespace llvm;
78 
79 #define DEBUG_TYPE "regalloc"
80 
81 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
82 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
83 STATISTIC(NumEvicted,      "Number of interferences evicted");
84 
85 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
86     "split-spill-mode", cl::Hidden,
87     cl::desc("Spill mode for splitting live ranges"),
88     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
89                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
90                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
91     cl::init(SplitEditor::SM_Speed));
92 
93 static cl::opt<unsigned>
94 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
95                              cl::desc("Last chance recoloring max depth"),
96                              cl::init(5));
97 
98 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
99     "lcr-max-interf", cl::Hidden,
100     cl::desc("Last chance recoloring maximum number of considered"
101              " interference at a time"),
102     cl::init(8));
103 
104 static cl::opt<bool> ExhaustiveSearch(
105     "exhaustive-register-search", cl::NotHidden,
106     cl::desc("Exhaustive Search for registers bypassing the depth "
107              "and interference cutoffs of last chance recoloring"),
108     cl::Hidden);
109 
110 static cl::opt<bool> EnableDeferredSpilling(
111     "enable-deferred-spilling", cl::Hidden,
112     cl::desc("Instead of spilling a variable right away, defer the actual "
113              "code insertion to the end of the allocation. That way the "
114              "allocator might still find a suitable coloring for this "
115              "variable because of other evicted variables."),
116     cl::init(false));
117 
118 // FIXME: Find a good default for this flag and remove the flag.
119 static cl::opt<unsigned>
120 CSRFirstTimeCost("regalloc-csr-first-time-cost",
121               cl::desc("Cost for first time use of callee-saved register."),
122               cl::init(0), cl::Hidden);
123 
124 static cl::opt<unsigned long> GrowRegionComplexityBudget(
125     "grow-region-complexity-budget",
126     cl::desc("growRegion() does not scale with the number of BB edges, so "
127              "limit its budget and bail out once we reach the limit."),
128     cl::init(10000), cl::Hidden);
129 
130 static cl::opt<bool> GreedyRegClassPriorityTrumpsGlobalness(
131     "greedy-regclass-priority-trumps-globalness",
132     cl::desc("Change the greedy register allocator's live range priority "
133              "calculation to make the AllocationPriority of the register class "
134              "more important then whether the range is global"),
135     cl::Hidden);
136 
137 static cl::opt<bool> GreedyReverseLocalAssignment(
138     "greedy-reverse-local-assignment",
139     cl::desc("Reverse allocation order of local live ranges, such that "
140              "shorter local live ranges will tend to be allocated first"),
141     cl::Hidden);
142 
143 static cl::opt<unsigned> SplitThresholdForRegWithHint(
144     "split-threshold-for-reg-with-hint",
145     cl::desc("The threshold for splitting a virtual register with a hint, in "
146              "percentate"),
147     cl::init(75), cl::Hidden);
148 
149 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
150                                        createGreedyRegisterAllocator);
151 
152 char RAGreedy::ID = 0;
153 char &llvm::RAGreedyID = RAGreedy::ID;
154 
155 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
156                 "Greedy Register Allocator", false, false)
157 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
158 INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass)
159 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass)
160 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
161 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
162 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
163 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
164 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
165 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
166 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
167 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
168 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
169 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
170 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis)
171 INITIALIZE_PASS_DEPENDENCY(RegAllocPriorityAdvisorAnalysis)
172 INITIALIZE_PASS_END(RAGreedy, "greedy",
173                 "Greedy Register Allocator", false, false)
174 
175 #ifndef NDEBUG
176 const char *const RAGreedy::StageName[] = {
177     "RS_New",
178     "RS_Assign",
179     "RS_Split",
180     "RS_Split2",
181     "RS_Spill",
182     "RS_Memory",
183     "RS_Done"
184 };
185 #endif
186 
187 // Hysteresis to use when comparing floats.
188 // This helps stabilize decisions based on float comparisons.
189 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
190 
191 FunctionPass* llvm::createGreedyRegisterAllocator() {
192   return new RAGreedy();
193 }
194 
195 FunctionPass *llvm::createGreedyRegisterAllocator(RegAllocFilterFunc Ftor) {
196   return new RAGreedy(Ftor);
197 }
198 
199 RAGreedy::RAGreedy(RegAllocFilterFunc F)
200     : MachineFunctionPass(ID), RegAllocBase(F) {}
201 
202 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
203   AU.setPreservesCFG();
204   AU.addRequired<MachineBlockFrequencyInfoWrapperPass>();
205   AU.addPreserved<MachineBlockFrequencyInfoWrapperPass>();
206   AU.addRequired<LiveIntervalsWrapperPass>();
207   AU.addPreserved<LiveIntervalsWrapperPass>();
208   AU.addRequired<SlotIndexesWrapperPass>();
209   AU.addPreserved<SlotIndexesWrapperPass>();
210   AU.addRequired<LiveDebugVariables>();
211   AU.addPreserved<LiveDebugVariables>();
212   AU.addRequired<LiveStacks>();
213   AU.addPreserved<LiveStacks>();
214   AU.addRequired<MachineDominatorTreeWrapperPass>();
215   AU.addPreserved<MachineDominatorTreeWrapperPass>();
216   AU.addRequired<MachineLoopInfoWrapperPass>();
217   AU.addPreserved<MachineLoopInfoWrapperPass>();
218   AU.addRequired<VirtRegMap>();
219   AU.addPreserved<VirtRegMap>();
220   AU.addRequired<LiveRegMatrix>();
221   AU.addPreserved<LiveRegMatrix>();
222   AU.addRequired<EdgeBundles>();
223   AU.addRequired<SpillPlacement>();
224   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
225   AU.addRequired<RegAllocEvictionAdvisorAnalysis>();
226   AU.addRequired<RegAllocPriorityAdvisorAnalysis>();
227   MachineFunctionPass::getAnalysisUsage(AU);
228 }
229 
230 //===----------------------------------------------------------------------===//
231 //                     LiveRangeEdit delegate methods
232 //===----------------------------------------------------------------------===//
233 
234 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
235   LiveInterval &LI = LIS->getInterval(VirtReg);
236   if (VRM->hasPhys(VirtReg)) {
237     Matrix->unassign(LI);
238     aboutToRemoveInterval(LI);
239     return true;
240   }
241   // Unassigned virtreg is probably in the priority queue.
242   // RegAllocBase will erase it after dequeueing.
243   // Nonetheless, clear the live-range so that the debug
244   // dump will show the right state for that VirtReg.
245   LI.clear();
246   return false;
247 }
248 
249 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
250   if (!VRM->hasPhys(VirtReg))
251     return;
252 
253   // Register is assigned, put it back on the queue for reassignment.
254   LiveInterval &LI = LIS->getInterval(VirtReg);
255   Matrix->unassign(LI);
256   RegAllocBase::enqueue(&LI);
257 }
258 
259 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
260   ExtraInfo->LRE_DidCloneVirtReg(New, Old);
261 }
262 
263 void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) {
264   // Cloning a register we haven't even heard about yet?  Just ignore it.
265   if (!Info.inBounds(Old))
266     return;
267 
268   // LRE may clone a virtual register because dead code elimination causes it to
269   // be split into connected components. The new components are much smaller
270   // than the original, so they should get a new chance at being assigned.
271   // same stage as the parent.
272   Info[Old].Stage = RS_Assign;
273   Info.grow(New.id());
274   Info[New] = Info[Old];
275 }
276 
277 void RAGreedy::releaseMemory() {
278   SpillerInstance.reset();
279   GlobalCand.clear();
280 }
281 
282 void RAGreedy::enqueueImpl(const LiveInterval *LI) { enqueue(Queue, LI); }
283 
284 void RAGreedy::enqueue(PQueue &CurQueue, const LiveInterval *LI) {
285   // Prioritize live ranges by size, assigning larger ranges first.
286   // The queue holds (size, reg) pairs.
287   const Register Reg = LI->reg();
288   assert(Reg.isVirtual() && "Can only enqueue virtual registers");
289 
290   auto Stage = ExtraInfo->getOrInitStage(Reg);
291   if (Stage == RS_New) {
292     Stage = RS_Assign;
293     ExtraInfo->setStage(Reg, Stage);
294   }
295 
296   unsigned Ret = PriorityAdvisor->getPriority(*LI);
297 
298   // The virtual register number is a tie breaker for same-sized ranges.
299   // Give lower vreg numbers higher priority to assign them first.
300   CurQueue.push(std::make_pair(Ret, ~Reg));
301 }
302 
303 unsigned DefaultPriorityAdvisor::getPriority(const LiveInterval &LI) const {
304   const unsigned Size = LI.getSize();
305   const Register Reg = LI.reg();
306   unsigned Prio;
307   LiveRangeStage Stage = RA.getExtraInfo().getStage(LI);
308 
309   if (Stage == RS_Split) {
310     // Unsplit ranges that couldn't be allocated immediately are deferred until
311     // everything else has been allocated.
312     Prio = Size;
313   } else if (Stage == RS_Memory) {
314     // Memory operand should be considered last.
315     // Change the priority such that Memory operand are assigned in
316     // the reverse order that they came in.
317     // TODO: Make this a member variable and probably do something about hints.
318     static unsigned MemOp = 0;
319     Prio = MemOp++;
320   } else {
321     // Giant live ranges fall back to the global assignment heuristic, which
322     // prevents excessive spilling in pathological cases.
323     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
324     bool ForceGlobal = RC.GlobalPriority ||
325                        (!ReverseLocalAssignment &&
326                         (Size / SlotIndex::InstrDist) >
327                             (2 * RegClassInfo.getNumAllocatableRegs(&RC)));
328     unsigned GlobalBit = 0;
329 
330     if (Stage == RS_Assign && !ForceGlobal && !LI.empty() &&
331         LIS->intervalIsInOneMBB(LI)) {
332       // Allocate original local ranges in linear instruction order. Since they
333       // are singly defined, this produces optimal coloring in the absence of
334       // global interference and other constraints.
335       if (!ReverseLocalAssignment)
336         Prio = LI.beginIndex().getApproxInstrDistance(Indexes->getLastIndex());
337       else {
338         // Allocating bottom up may allow many short LRGs to be assigned first
339         // to one of the cheap registers. This could be much faster for very
340         // large blocks on targets with many physical registers.
341         Prio = Indexes->getZeroIndex().getApproxInstrDistance(LI.endIndex());
342       }
343     } else {
344       // Allocate global and split ranges in long->short order. Long ranges that
345       // don't fit should be spilled (or split) ASAP so they don't create
346       // interference.  Mark a bit to prioritize global above local ranges.
347       Prio = Size;
348       GlobalBit = 1;
349     }
350 
351     // Priority bit layout:
352     // 31 RS_Assign priority
353     // 30 Preference priority
354     // if (RegClassPriorityTrumpsGlobalness)
355     //   29-25 AllocPriority
356     //   24 GlobalBit
357     // else
358     //   29 Global bit
359     //   28-24 AllocPriority
360     // 0-23 Size/Instr distance
361 
362     // Clamp the size to fit with the priority masking scheme
363     Prio = std::min(Prio, (unsigned)maxUIntN(24));
364     assert(isUInt<5>(RC.AllocationPriority) && "allocation priority overflow");
365 
366     if (RegClassPriorityTrumpsGlobalness)
367       Prio |= RC.AllocationPriority << 25 | GlobalBit << 24;
368     else
369       Prio |= GlobalBit << 29 | RC.AllocationPriority << 24;
370 
371     // Mark a higher bit to prioritize global and local above RS_Split.
372     Prio |= (1u << 31);
373 
374     // Boost ranges that have a physical register hint.
375     if (VRM->hasKnownPreference(Reg))
376       Prio |= (1u << 30);
377   }
378 
379   return Prio;
380 }
381 
382 const LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
383 
384 const LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
385   if (CurQueue.empty())
386     return nullptr;
387   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
388   CurQueue.pop();
389   return LI;
390 }
391 
392 //===----------------------------------------------------------------------===//
393 //                            Direct Assignment
394 //===----------------------------------------------------------------------===//
395 
396 /// tryAssign - Try to assign VirtReg to an available register.
397 MCRegister RAGreedy::tryAssign(const LiveInterval &VirtReg,
398                                AllocationOrder &Order,
399                                SmallVectorImpl<Register> &NewVRegs,
400                                const SmallVirtRegSet &FixedRegisters) {
401   MCRegister PhysReg;
402   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
403     assert(*I);
404     if (!Matrix->checkInterference(VirtReg, *I)) {
405       if (I.isHint())
406         return *I;
407       else
408         PhysReg = *I;
409     }
410   }
411   if (!PhysReg.isValid())
412     return PhysReg;
413 
414   // PhysReg is available, but there may be a better choice.
415 
416   // If we missed a simple hint, try to cheaply evict interference from the
417   // preferred register.
418   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
419     if (Order.isHint(Hint)) {
420       MCRegister PhysHint = Hint.asMCReg();
421       LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
422 
423       if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint,
424                                                  FixedRegisters)) {
425         evictInterference(VirtReg, PhysHint, NewVRegs);
426         return PhysHint;
427       }
428 
429       // We can also split the virtual register in cold blocks.
430       if (trySplitAroundHintReg(PhysHint, VirtReg, NewVRegs, Order))
431         return 0;
432 
433       // Record the missed hint, we may be able to recover
434       // at the end if the surrounding allocation changed.
435       SetOfBrokenHints.insert(&VirtReg);
436     }
437 
438   // Try to evict interference from a cheaper alternative.
439   uint8_t Cost = RegCosts[PhysReg];
440 
441   // Most registers have 0 additional cost.
442   if (!Cost)
443     return PhysReg;
444 
445   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
446                     << (unsigned)Cost << '\n');
447   MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
448   return CheapReg ? CheapReg : PhysReg;
449 }
450 
451 //===----------------------------------------------------------------------===//
452 //                         Interference eviction
453 //===----------------------------------------------------------------------===//
454 
455 bool RegAllocEvictionAdvisor::canReassign(const LiveInterval &VirtReg,
456                                           MCRegister FromReg) const {
457   auto HasRegUnitInterference = [&](MCRegUnit Unit) {
458     // Instantiate a "subquery", not to be confused with the Queries array.
459     LiveIntervalUnion::Query SubQ(VirtReg, Matrix->getLiveUnions()[Unit]);
460     return SubQ.checkInterference();
461   };
462 
463   for (MCRegister Reg :
464        AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix)) {
465     if (Reg == FromReg)
466       continue;
467     // If no units have interference, reassignment is possible.
468     if (none_of(TRI->regunits(Reg), HasRegUnitInterference)) {
469       LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
470                         << printReg(FromReg, TRI) << " to "
471                         << printReg(Reg, TRI) << '\n');
472       return true;
473     }
474   }
475   return false;
476 }
477 
478 /// evictInterference - Evict any interferring registers that prevent VirtReg
479 /// from being assigned to Physreg. This assumes that canEvictInterference
480 /// returned true.
481 void RAGreedy::evictInterference(const LiveInterval &VirtReg,
482                                  MCRegister PhysReg,
483                                  SmallVectorImpl<Register> &NewVRegs) {
484   // Make sure that VirtReg has a cascade number, and assign that cascade
485   // number to every evicted register. These live ranges than then only be
486   // evicted by a newer cascade, preventing infinite loops.
487   unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg());
488 
489   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
490                     << " interference: Cascade " << Cascade << '\n');
491 
492   // Collect all interfering virtregs first.
493   SmallVector<const LiveInterval *, 8> Intfs;
494   for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
495     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, Unit);
496     // We usually have the interfering VRegs cached so collectInterferingVRegs()
497     // should be fast, we may need to recalculate if when different physregs
498     // overlap the same register unit so we had different SubRanges queried
499     // against it.
500     ArrayRef<const LiveInterval *> IVR = Q.interferingVRegs();
501     Intfs.append(IVR.begin(), IVR.end());
502   }
503 
504   // Evict them second. This will invalidate the queries.
505   for (const LiveInterval *Intf : Intfs) {
506     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
507     if (!VRM->hasPhys(Intf->reg()))
508       continue;
509 
510     Matrix->unassign(*Intf);
511     assert((ExtraInfo->getCascade(Intf->reg()) < Cascade ||
512             VirtReg.isSpillable() < Intf->isSpillable()) &&
513            "Cannot decrease cascade number, illegal eviction");
514     ExtraInfo->setCascade(Intf->reg(), Cascade);
515     ++NumEvicted;
516     NewVRegs.push_back(Intf->reg());
517   }
518 }
519 
520 /// Returns true if the given \p PhysReg is a callee saved register and has not
521 /// been used for allocation yet.
522 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
523   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
524   if (!CSR)
525     return false;
526 
527   return !Matrix->isPhysRegUsed(PhysReg);
528 }
529 
530 std::optional<unsigned>
531 RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg,
532                                        const AllocationOrder &Order,
533                                        unsigned CostPerUseLimit) const {
534   unsigned OrderLimit = Order.getOrder().size();
535 
536   if (CostPerUseLimit < uint8_t(~0u)) {
537     // Check of any registers in RC are below CostPerUseLimit.
538     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
539     uint8_t MinCost = RegClassInfo.getMinCost(RC);
540     if (MinCost >= CostPerUseLimit) {
541       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
542                         << MinCost << ", no cheaper registers to be found.\n");
543       return std::nullopt;
544     }
545 
546     // It is normal for register classes to have a long tail of registers with
547     // the same cost. We don't need to look at them if they're too expensive.
548     if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) {
549       OrderLimit = RegClassInfo.getLastCostChange(RC);
550       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
551                         << " regs.\n");
552     }
553   }
554   return OrderLimit;
555 }
556 
557 bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit,
558                                                  MCRegister PhysReg) const {
559   if (RegCosts[PhysReg] >= CostPerUseLimit)
560     return false;
561   // The first use of a callee-saved register in a function has cost 1.
562   // Don't start using a CSR when the CostPerUseLimit is low.
563   if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
564     LLVM_DEBUG(
565         dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
566                << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
567                << '\n');
568     return false;
569   }
570   return true;
571 }
572 
573 /// tryEvict - Try to evict all interferences for a physreg.
574 /// @param  VirtReg Currently unassigned virtual register.
575 /// @param  Order   Physregs to try.
576 /// @return         Physreg to assign VirtReg, or 0.
577 MCRegister RAGreedy::tryEvict(const LiveInterval &VirtReg,
578                               AllocationOrder &Order,
579                               SmallVectorImpl<Register> &NewVRegs,
580                               uint8_t CostPerUseLimit,
581                               const SmallVirtRegSet &FixedRegisters) {
582   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
583                      TimePassesIsEnabled);
584 
585   MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate(
586       VirtReg, Order, CostPerUseLimit, FixedRegisters);
587   if (BestPhys.isValid())
588     evictInterference(VirtReg, BestPhys, NewVRegs);
589   return BestPhys;
590 }
591 
592 //===----------------------------------------------------------------------===//
593 //                              Region Splitting
594 //===----------------------------------------------------------------------===//
595 
596 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
597 /// interference pattern in Physreg and its aliases. Add the constraints to
598 /// SpillPlacement and return the static cost of this split in Cost, assuming
599 /// that all preferences in SplitConstraints are met.
600 /// Return false if there are no bundles with positive bias.
601 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
602                                    BlockFrequency &Cost) {
603   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
604 
605   // Reset interference dependent info.
606   SplitConstraints.resize(UseBlocks.size());
607   BlockFrequency StaticCost = BlockFrequency(0);
608   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
609     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
610     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
611 
612     BC.Number = BI.MBB->getNumber();
613     Intf.moveToBlock(BC.Number);
614     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
615     BC.Exit = (BI.LiveOut &&
616                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
617                   ? SpillPlacement::PrefReg
618                   : SpillPlacement::DontCare;
619     BC.ChangesValue = BI.FirstDef.isValid();
620 
621     if (!Intf.hasInterference())
622       continue;
623 
624     // Number of spill code instructions to insert.
625     unsigned Ins = 0;
626 
627     // Interference for the live-in value.
628     if (BI.LiveIn) {
629       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
630         BC.Entry = SpillPlacement::MustSpill;
631         ++Ins;
632       } else if (Intf.first() < BI.FirstInstr) {
633         BC.Entry = SpillPlacement::PrefSpill;
634         ++Ins;
635       } else if (Intf.first() < BI.LastInstr) {
636         ++Ins;
637       }
638 
639       // Abort if the spill cannot be inserted at the MBB' start
640       if (((BC.Entry == SpillPlacement::MustSpill) ||
641            (BC.Entry == SpillPlacement::PrefSpill)) &&
642           SlotIndex::isEarlierInstr(BI.FirstInstr,
643                                     SA->getFirstSplitPoint(BC.Number)))
644         return false;
645     }
646 
647     // Interference for the live-out value.
648     if (BI.LiveOut) {
649       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
650         BC.Exit = SpillPlacement::MustSpill;
651         ++Ins;
652       } else if (Intf.last() > BI.LastInstr) {
653         BC.Exit = SpillPlacement::PrefSpill;
654         ++Ins;
655       } else if (Intf.last() > BI.FirstInstr) {
656         ++Ins;
657       }
658     }
659 
660     // Accumulate the total frequency of inserted spill code.
661     while (Ins--)
662       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
663   }
664   Cost = StaticCost;
665 
666   // Add constraints for use-blocks. Note that these are the only constraints
667   // that may add a positive bias, it is downhill from here.
668   SpillPlacer->addConstraints(SplitConstraints);
669   return SpillPlacer->scanActiveBundles();
670 }
671 
672 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
673 /// live-through blocks in Blocks.
674 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
675                                      ArrayRef<unsigned> Blocks) {
676   const unsigned GroupSize = 8;
677   SpillPlacement::BlockConstraint BCS[GroupSize];
678   unsigned TBS[GroupSize];
679   unsigned B = 0, T = 0;
680 
681   for (unsigned Number : Blocks) {
682     Intf.moveToBlock(Number);
683 
684     if (!Intf.hasInterference()) {
685       assert(T < GroupSize && "Array overflow");
686       TBS[T] = Number;
687       if (++T == GroupSize) {
688         SpillPlacer->addLinks(ArrayRef(TBS, T));
689         T = 0;
690       }
691       continue;
692     }
693 
694     assert(B < GroupSize && "Array overflow");
695     BCS[B].Number = Number;
696 
697     // Abort if the spill cannot be inserted at the MBB' start
698     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
699     auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr();
700     if (FirstNonDebugInstr != MBB->end() &&
701         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr),
702                                   SA->getFirstSplitPoint(Number)))
703       return false;
704     // Interference for the live-in value.
705     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
706       BCS[B].Entry = SpillPlacement::MustSpill;
707     else
708       BCS[B].Entry = SpillPlacement::PrefSpill;
709 
710     // Interference for the live-out value.
711     if (Intf.last() >= SA->getLastSplitPoint(Number))
712       BCS[B].Exit = SpillPlacement::MustSpill;
713     else
714       BCS[B].Exit = SpillPlacement::PrefSpill;
715 
716     if (++B == GroupSize) {
717       SpillPlacer->addConstraints(ArrayRef(BCS, B));
718       B = 0;
719     }
720   }
721 
722   SpillPlacer->addConstraints(ArrayRef(BCS, B));
723   SpillPlacer->addLinks(ArrayRef(TBS, T));
724   return true;
725 }
726 
727 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
728   // Keep track of through blocks that have not been added to SpillPlacer.
729   BitVector Todo = SA->getThroughBlocks();
730   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
731   unsigned AddedTo = 0;
732 #ifndef NDEBUG
733   unsigned Visited = 0;
734 #endif
735 
736   unsigned long Budget = GrowRegionComplexityBudget;
737   while (true) {
738     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
739     // Find new through blocks in the periphery of PrefRegBundles.
740     for (unsigned Bundle : NewBundles) {
741       // Look at all blocks connected to Bundle in the full graph.
742       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
743       // Limit compilation time by bailing out after we use all our budget.
744       if (Blocks.size() >= Budget)
745         return false;
746       Budget -= Blocks.size();
747       for (unsigned Block : Blocks) {
748         if (!Todo.test(Block))
749           continue;
750         Todo.reset(Block);
751         // This is a new through block. Add it to SpillPlacer later.
752         ActiveBlocks.push_back(Block);
753 #ifndef NDEBUG
754         ++Visited;
755 #endif
756       }
757     }
758     // Any new blocks to add?
759     if (ActiveBlocks.size() == AddedTo)
760       break;
761 
762     // Compute through constraints from the interference, or assume that all
763     // through blocks prefer spilling when forming compact regions.
764     auto NewBlocks = ArrayRef(ActiveBlocks).slice(AddedTo);
765     if (Cand.PhysReg) {
766       if (!addThroughConstraints(Cand.Intf, NewBlocks))
767         return false;
768     } else {
769       // Providing that the variable being spilled does not look like a loop
770       // induction variable, which is expensive to spill around and better
771       // pushed into a condition inside the loop if possible, provide a strong
772       // negative bias on through blocks to prevent unwanted liveness on loop
773       // backedges.
774       bool PrefSpill = true;
775       if (SA->looksLikeLoopIV() && NewBlocks.size() >= 2) {
776         // Check that the current bundle is adding a Header + start+end of
777         // loop-internal blocks. If the block is indeed a header, don't make
778         // the NewBlocks as PrefSpill to allow the variable to be live in
779         // Header<->Latch.
780         MachineLoop *L = Loops->getLoopFor(MF->getBlockNumbered(NewBlocks[0]));
781         if (L && L->getHeader()->getNumber() == (int)NewBlocks[0] &&
782             all_of(NewBlocks.drop_front(), [&](unsigned Block) {
783               return L == Loops->getLoopFor(MF->getBlockNumbered(Block));
784             }))
785           PrefSpill = false;
786       }
787       if (PrefSpill)
788         SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
789     }
790     AddedTo = ActiveBlocks.size();
791 
792     // Perhaps iterating can enable more bundles?
793     SpillPlacer->iterate();
794   }
795   LLVM_DEBUG(dbgs() << ", v=" << Visited);
796   return true;
797 }
798 
799 /// calcCompactRegion - Compute the set of edge bundles that should be live
800 /// when splitting the current live range into compact regions.  Compact
801 /// regions can be computed without looking at interference.  They are the
802 /// regions formed by removing all the live-through blocks from the live range.
803 ///
804 /// Returns false if the current live range is already compact, or if the
805 /// compact regions would form single block regions anyway.
806 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
807   // Without any through blocks, the live range is already compact.
808   if (!SA->getNumThroughBlocks())
809     return false;
810 
811   // Compact regions don't correspond to any physreg.
812   Cand.reset(IntfCache, MCRegister::NoRegister);
813 
814   LLVM_DEBUG(dbgs() << "Compact region bundles");
815 
816   // Use the spill placer to determine the live bundles. GrowRegion pretends
817   // that all the through blocks have interference when PhysReg is unset.
818   SpillPlacer->prepare(Cand.LiveBundles);
819 
820   // The static split cost will be zero since Cand.Intf reports no interference.
821   BlockFrequency Cost;
822   if (!addSplitConstraints(Cand.Intf, Cost)) {
823     LLVM_DEBUG(dbgs() << ", none.\n");
824     return false;
825   }
826 
827   if (!growRegion(Cand)) {
828     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
829     return false;
830   }
831 
832   SpillPlacer->finish();
833 
834   if (!Cand.LiveBundles.any()) {
835     LLVM_DEBUG(dbgs() << ", none.\n");
836     return false;
837   }
838 
839   LLVM_DEBUG({
840     for (int I : Cand.LiveBundles.set_bits())
841       dbgs() << " EB#" << I;
842     dbgs() << ".\n";
843   });
844   return true;
845 }
846 
847 /// calcSpillCost - Compute how expensive it would be to split the live range in
848 /// SA around all use blocks instead of forming bundle regions.
849 BlockFrequency RAGreedy::calcSpillCost() {
850   BlockFrequency Cost = BlockFrequency(0);
851   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
852   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
853     unsigned Number = BI.MBB->getNumber();
854     // We normally only need one spill instruction - a load or a store.
855     Cost += SpillPlacer->getBlockFrequency(Number);
856 
857     // Unless the value is redefined in the block.
858     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
859       Cost += SpillPlacer->getBlockFrequency(Number);
860   }
861   return Cost;
862 }
863 
864 /// calcGlobalSplitCost - Return the global split cost of following the split
865 /// pattern in LiveBundles. This cost should be added to the local cost of the
866 /// interference pattern in SplitConstraints.
867 ///
868 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
869                                              const AllocationOrder &Order) {
870   BlockFrequency GlobalCost = BlockFrequency(0);
871   const BitVector &LiveBundles = Cand.LiveBundles;
872   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
873   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
874     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
875     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
876     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
877     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
878     unsigned Ins = 0;
879 
880     Cand.Intf.moveToBlock(BC.Number);
881 
882     if (BI.LiveIn)
883       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
884     if (BI.LiveOut)
885       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
886     while (Ins--)
887       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
888   }
889 
890   for (unsigned Number : Cand.ActiveBlocks) {
891     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
892     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
893     if (!RegIn && !RegOut)
894       continue;
895     if (RegIn && RegOut) {
896       // We need double spill code if this block has interference.
897       Cand.Intf.moveToBlock(Number);
898       if (Cand.Intf.hasInterference()) {
899         GlobalCost += SpillPlacer->getBlockFrequency(Number);
900         GlobalCost += SpillPlacer->getBlockFrequency(Number);
901       }
902       continue;
903     }
904     // live-in / stack-out or stack-in live-out.
905     GlobalCost += SpillPlacer->getBlockFrequency(Number);
906   }
907   return GlobalCost;
908 }
909 
910 /// splitAroundRegion - Split the current live range around the regions
911 /// determined by BundleCand and GlobalCand.
912 ///
913 /// Before calling this function, GlobalCand and BundleCand must be initialized
914 /// so each bundle is assigned to a valid candidate, or NoCand for the
915 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
916 /// objects must be initialized for the current live range, and intervals
917 /// created for the used candidates.
918 ///
919 /// @param LREdit    The LiveRangeEdit object handling the current split.
920 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
921 ///                  must appear in this list.
922 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
923                                  ArrayRef<unsigned> UsedCands) {
924   // These are the intervals created for new global ranges. We may create more
925   // intervals for local ranges.
926   const unsigned NumGlobalIntvs = LREdit.size();
927   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
928                     << " globals.\n");
929   assert(NumGlobalIntvs && "No global intervals configured");
930 
931   // Isolate even single instructions when dealing with a proper sub-class.
932   // That guarantees register class inflation for the stack interval because it
933   // is all copies.
934   Register Reg = SA->getParent().reg();
935   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
936 
937   // First handle all the blocks with uses.
938   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
939   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
940     unsigned Number = BI.MBB->getNumber();
941     unsigned IntvIn = 0, IntvOut = 0;
942     SlotIndex IntfIn, IntfOut;
943     if (BI.LiveIn) {
944       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
945       if (CandIn != NoCand) {
946         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
947         IntvIn = Cand.IntvIdx;
948         Cand.Intf.moveToBlock(Number);
949         IntfIn = Cand.Intf.first();
950       }
951     }
952     if (BI.LiveOut) {
953       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
954       if (CandOut != NoCand) {
955         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
956         IntvOut = Cand.IntvIdx;
957         Cand.Intf.moveToBlock(Number);
958         IntfOut = Cand.Intf.last();
959       }
960     }
961 
962     // Create separate intervals for isolated blocks with multiple uses.
963     if (!IntvIn && !IntvOut) {
964       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
965       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
966         SE->splitSingleBlock(BI);
967       continue;
968     }
969 
970     if (IntvIn && IntvOut)
971       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
972     else if (IntvIn)
973       SE->splitRegInBlock(BI, IntvIn, IntfIn);
974     else
975       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
976   }
977 
978   // Handle live-through blocks. The relevant live-through blocks are stored in
979   // the ActiveBlocks list with each candidate. We need to filter out
980   // duplicates.
981   BitVector Todo = SA->getThroughBlocks();
982   for (unsigned UsedCand : UsedCands) {
983     ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks;
984     for (unsigned Number : Blocks) {
985       if (!Todo.test(Number))
986         continue;
987       Todo.reset(Number);
988 
989       unsigned IntvIn = 0, IntvOut = 0;
990       SlotIndex IntfIn, IntfOut;
991 
992       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
993       if (CandIn != NoCand) {
994         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
995         IntvIn = Cand.IntvIdx;
996         Cand.Intf.moveToBlock(Number);
997         IntfIn = Cand.Intf.first();
998       }
999 
1000       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1001       if (CandOut != NoCand) {
1002         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1003         IntvOut = Cand.IntvIdx;
1004         Cand.Intf.moveToBlock(Number);
1005         IntfOut = Cand.Intf.last();
1006       }
1007       if (!IntvIn && !IntvOut)
1008         continue;
1009       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1010     }
1011   }
1012 
1013   ++NumGlobalSplits;
1014 
1015   SmallVector<unsigned, 8> IntvMap;
1016   SE->finish(&IntvMap);
1017   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1018 
1019   unsigned OrigBlocks = SA->getNumLiveBlocks();
1020 
1021   // Sort out the new intervals created by splitting. We get four kinds:
1022   // - Remainder intervals should not be split again.
1023   // - Candidate intervals can be assigned to Cand.PhysReg.
1024   // - Block-local splits are candidates for local splitting.
1025   // - DCE leftovers should go back on the queue.
1026   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1027     const LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1028 
1029     // Ignore old intervals from DCE.
1030     if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New)
1031       continue;
1032 
1033     // Remainder interval. Don't try splitting again, spill if it doesn't
1034     // allocate.
1035     if (IntvMap[I] == 0) {
1036       ExtraInfo->setStage(Reg, RS_Spill);
1037       continue;
1038     }
1039 
1040     // Global intervals. Allow repeated splitting as long as the number of live
1041     // blocks is strictly decreasing.
1042     if (IntvMap[I] < NumGlobalIntvs) {
1043       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1044         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1045                           << " blocks as original.\n");
1046         // Don't allow repeated splitting as a safe guard against looping.
1047         ExtraInfo->setStage(Reg, RS_Split2);
1048       }
1049       continue;
1050     }
1051 
1052     // Other intervals are treated as new. This includes local intervals created
1053     // for blocks with multiple uses, and anything created by DCE.
1054   }
1055 
1056   if (VerifyEnabled)
1057     MF->verify(this, "After splitting live range around region");
1058 }
1059 
1060 MCRegister RAGreedy::tryRegionSplit(const LiveInterval &VirtReg,
1061                                     AllocationOrder &Order,
1062                                     SmallVectorImpl<Register> &NewVRegs) {
1063   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1064     return MCRegister::NoRegister;
1065   unsigned NumCands = 0;
1066   BlockFrequency SpillCost = calcSpillCost();
1067   BlockFrequency BestCost;
1068 
1069   // Check if we can split this live range around a compact region.
1070   bool HasCompact = calcCompactRegion(GlobalCand.front());
1071   if (HasCompact) {
1072     // Yes, keep GlobalCand[0] as the compact region candidate.
1073     NumCands = 1;
1074     BestCost = BlockFrequency::max();
1075   } else {
1076     // No benefit from the compact region, our fallback will be per-block
1077     // splitting. Make sure we find a solution that is cheaper than spilling.
1078     BestCost = SpillCost;
1079     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "
1080                       << printBlockFreq(*MBFI, BestCost) << '\n');
1081   }
1082 
1083   unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
1084                                                NumCands, false /*IgnoreCSR*/);
1085 
1086   // No solutions found, fall back to single block splitting.
1087   if (!HasCompact && BestCand == NoCand)
1088     return MCRegister::NoRegister;
1089 
1090   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1091 }
1092 
1093 unsigned
1094 RAGreedy::calculateRegionSplitCostAroundReg(MCPhysReg PhysReg,
1095                                             AllocationOrder &Order,
1096                                             BlockFrequency &BestCost,
1097                                             unsigned &NumCands,
1098                                             unsigned &BestCand) {
1099   // Discard bad candidates before we run out of interference cache cursors.
1100   // This will only affect register classes with a lot of registers (>32).
1101   if (NumCands == IntfCache.getMaxCursors()) {
1102     unsigned WorstCount = ~0u;
1103     unsigned Worst = 0;
1104     for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1105       if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1106         continue;
1107       unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1108       if (Count < WorstCount) {
1109         Worst = CandIndex;
1110         WorstCount = Count;
1111       }
1112     }
1113     --NumCands;
1114     GlobalCand[Worst] = GlobalCand[NumCands];
1115     if (BestCand == NumCands)
1116       BestCand = Worst;
1117   }
1118 
1119   if (GlobalCand.size() <= NumCands)
1120     GlobalCand.resize(NumCands+1);
1121   GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1122   Cand.reset(IntfCache, PhysReg);
1123 
1124   SpillPlacer->prepare(Cand.LiveBundles);
1125   BlockFrequency Cost;
1126   if (!addSplitConstraints(Cand.Intf, Cost)) {
1127     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1128     return BestCand;
1129   }
1130   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI)
1131                     << "\tstatic = " << printBlockFreq(*MBFI, Cost));
1132   if (Cost >= BestCost) {
1133     LLVM_DEBUG({
1134       if (BestCand == NoCand)
1135         dbgs() << " worse than no bundles\n";
1136       else
1137         dbgs() << " worse than "
1138                << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1139     });
1140     return BestCand;
1141   }
1142   if (!growRegion(Cand)) {
1143     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1144     return BestCand;
1145   }
1146 
1147   SpillPlacer->finish();
1148 
1149   // No live bundles, defer to splitSingleBlocks().
1150   if (!Cand.LiveBundles.any()) {
1151     LLVM_DEBUG(dbgs() << " no bundles.\n");
1152     return BestCand;
1153   }
1154 
1155   Cost += calcGlobalSplitCost(Cand, Order);
1156   LLVM_DEBUG({
1157     dbgs() << ", total = " << printBlockFreq(*MBFI, Cost) << " with bundles";
1158     for (int I : Cand.LiveBundles.set_bits())
1159       dbgs() << " EB#" << I;
1160     dbgs() << ".\n";
1161   });
1162   if (Cost < BestCost) {
1163     BestCand = NumCands;
1164     BestCost = Cost;
1165   }
1166   ++NumCands;
1167 
1168   return BestCand;
1169 }
1170 
1171 unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval &VirtReg,
1172                                             AllocationOrder &Order,
1173                                             BlockFrequency &BestCost,
1174                                             unsigned &NumCands,
1175                                             bool IgnoreCSR) {
1176   unsigned BestCand = NoCand;
1177   for (MCPhysReg PhysReg : Order) {
1178     assert(PhysReg);
1179     if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg))
1180       continue;
1181 
1182     calculateRegionSplitCostAroundReg(PhysReg, Order, BestCost, NumCands,
1183                                       BestCand);
1184   }
1185 
1186   return BestCand;
1187 }
1188 
1189 unsigned RAGreedy::doRegionSplit(const LiveInterval &VirtReg, unsigned BestCand,
1190                                  bool HasCompact,
1191                                  SmallVectorImpl<Register> &NewVRegs) {
1192   SmallVector<unsigned, 8> UsedCands;
1193   // Prepare split editor.
1194   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1195   SE->reset(LREdit, SplitSpillMode);
1196 
1197   // Assign all edge bundles to the preferred candidate, or NoCand.
1198   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1199 
1200   // Assign bundles for the best candidate region.
1201   if (BestCand != NoCand) {
1202     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1203     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1204       UsedCands.push_back(BestCand);
1205       Cand.IntvIdx = SE->openIntv();
1206       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1207                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1208       (void)B;
1209     }
1210   }
1211 
1212   // Assign bundles for the compact region.
1213   if (HasCompact) {
1214     GlobalSplitCandidate &Cand = GlobalCand.front();
1215     assert(!Cand.PhysReg && "Compact region has no physreg");
1216     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1217       UsedCands.push_back(0);
1218       Cand.IntvIdx = SE->openIntv();
1219       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1220                         << " bundles, intv " << Cand.IntvIdx << ".\n");
1221       (void)B;
1222     }
1223   }
1224 
1225   splitAroundRegion(LREdit, UsedCands);
1226   return 0;
1227 }
1228 
1229 // VirtReg has a physical Hint, this function tries to split VirtReg around
1230 // Hint if we can place new COPY instructions in cold blocks.
1231 bool RAGreedy::trySplitAroundHintReg(MCPhysReg Hint,
1232                                      const LiveInterval &VirtReg,
1233                                      SmallVectorImpl<Register> &NewVRegs,
1234                                      AllocationOrder &Order) {
1235   // Split the VirtReg may generate COPY instructions in multiple cold basic
1236   // blocks, and increase code size. So we avoid it when the function is
1237   // optimized for size.
1238   if (MF->getFunction().hasOptSize())
1239     return false;
1240 
1241   // Don't allow repeated splitting as a safe guard against looping.
1242   if (ExtraInfo->getStage(VirtReg) >= RS_Split2)
1243     return false;
1244 
1245   BlockFrequency Cost = BlockFrequency(0);
1246   Register Reg = VirtReg.reg();
1247 
1248   // Compute the cost of assigning a non Hint physical register to VirtReg.
1249   // We define it as the total frequency of broken COPY instructions to/from
1250   // Hint register, and after split, they can be deleted.
1251   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
1252     if (!TII->isFullCopyInstr(Instr))
1253       continue;
1254     Register OtherReg = Instr.getOperand(1).getReg();
1255     if (OtherReg == Reg) {
1256       OtherReg = Instr.getOperand(0).getReg();
1257       if (OtherReg == Reg)
1258         continue;
1259       // Check if VirtReg interferes with OtherReg after this COPY instruction.
1260       if (VirtReg.liveAt(LIS->getInstructionIndex(Instr).getRegSlot()))
1261         continue;
1262     }
1263     MCRegister OtherPhysReg =
1264         OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
1265     if (OtherPhysReg == Hint)
1266       Cost += MBFI->getBlockFreq(Instr.getParent());
1267   }
1268 
1269   // Decrease the cost so it will be split in colder blocks.
1270   BranchProbability Threshold(SplitThresholdForRegWithHint, 100);
1271   Cost *= Threshold;
1272   if (Cost == BlockFrequency(0))
1273     return false;
1274 
1275   unsigned NumCands = 0;
1276   unsigned BestCand = NoCand;
1277   SA->analyze(&VirtReg);
1278   calculateRegionSplitCostAroundReg(Hint, Order, Cost, NumCands, BestCand);
1279   if (BestCand == NoCand)
1280     return false;
1281 
1282   doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
1283   return true;
1284 }
1285 
1286 //===----------------------------------------------------------------------===//
1287 //                            Per-Block Splitting
1288 //===----------------------------------------------------------------------===//
1289 
1290 /// tryBlockSplit - Split a global live range around every block with uses. This
1291 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1292 /// they don't allocate.
1293 unsigned RAGreedy::tryBlockSplit(const LiveInterval &VirtReg,
1294                                  AllocationOrder &Order,
1295                                  SmallVectorImpl<Register> &NewVRegs) {
1296   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1297   Register Reg = VirtReg.reg();
1298   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1299   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1300   SE->reset(LREdit, SplitSpillMode);
1301   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1302   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1303     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1304       SE->splitSingleBlock(BI);
1305   }
1306   // No blocks were split.
1307   if (LREdit.empty())
1308     return 0;
1309 
1310   // We did split for some blocks.
1311   SmallVector<unsigned, 8> IntvMap;
1312   SE->finish(&IntvMap);
1313 
1314   // Tell LiveDebugVariables about the new ranges.
1315   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1316 
1317   // Sort out the new intervals created by splitting. The remainder interval
1318   // goes straight to spilling, the new local ranges get to stay RS_New.
1319   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1320     const LiveInterval &LI = LIS->getInterval(LREdit.get(I));
1321     if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0)
1322       ExtraInfo->setStage(LI, RS_Spill);
1323   }
1324 
1325   if (VerifyEnabled)
1326     MF->verify(this, "After splitting live range around basic blocks");
1327   return 0;
1328 }
1329 
1330 //===----------------------------------------------------------------------===//
1331 //                         Per-Instruction Splitting
1332 //===----------------------------------------------------------------------===//
1333 
1334 /// Get the number of allocatable registers that match the constraints of \p Reg
1335 /// on \p MI and that are also in \p SuperRC.
1336 static unsigned getNumAllocatableRegsForConstraints(
1337     const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC,
1338     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1339     const RegisterClassInfo &RCI) {
1340   assert(SuperRC && "Invalid register class");
1341 
1342   const TargetRegisterClass *ConstrainedRC =
1343       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
1344                                              /* ExploreBundle */ true);
1345   if (!ConstrainedRC)
1346     return 0;
1347   return RCI.getNumAllocatableRegs(ConstrainedRC);
1348 }
1349 
1350 static LaneBitmask getInstReadLaneMask(const MachineRegisterInfo &MRI,
1351                                        const TargetRegisterInfo &TRI,
1352                                        const MachineInstr &FirstMI,
1353                                        Register Reg) {
1354   LaneBitmask Mask;
1355   SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
1356   (void)AnalyzeVirtRegInBundle(const_cast<MachineInstr &>(FirstMI), Reg, &Ops);
1357 
1358   for (auto [MI, OpIdx] : Ops) {
1359     const MachineOperand &MO = MI->getOperand(OpIdx);
1360     assert(MO.isReg() && MO.getReg() == Reg);
1361     unsigned SubReg = MO.getSubReg();
1362     if (SubReg == 0 && MO.isUse()) {
1363       if (MO.isUndef())
1364         continue;
1365       return MRI.getMaxLaneMaskForVReg(Reg);
1366     }
1367 
1368     LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(SubReg);
1369     if (MO.isDef()) {
1370       if (!MO.isUndef())
1371         Mask |= ~SubRegMask;
1372     } else
1373       Mask |= SubRegMask;
1374   }
1375 
1376   return Mask;
1377 }
1378 
1379 /// Return true if \p MI at \P Use reads a subset of the lanes live in \p
1380 /// VirtReg.
1381 static bool readsLaneSubset(const MachineRegisterInfo &MRI,
1382                             const MachineInstr *MI, const LiveInterval &VirtReg,
1383                             const TargetRegisterInfo *TRI, SlotIndex Use,
1384                             const TargetInstrInfo *TII) {
1385   // Early check the common case. Beware of the semi-formed bundles SplitKit
1386   // creates by setting the bundle flag on copies without a matching BUNDLE.
1387 
1388   auto DestSrc = TII->isCopyInstr(*MI);
1389   if (DestSrc && !MI->isBundled() &&
1390       DestSrc->Destination->getSubReg() == DestSrc->Source->getSubReg())
1391     return false;
1392 
1393   // FIXME: We're only considering uses, but should be consider defs too?
1394   LaneBitmask ReadMask = getInstReadLaneMask(MRI, *TRI, *MI, VirtReg.reg());
1395 
1396   LaneBitmask LiveAtMask;
1397   for (const LiveInterval::SubRange &S : VirtReg.subranges()) {
1398     if (S.liveAt(Use))
1399       LiveAtMask |= S.LaneMask;
1400   }
1401 
1402   // If the live lanes aren't different from the lanes used by the instruction,
1403   // this doesn't help.
1404   return (ReadMask & ~(LiveAtMask & TRI->getCoveringLanes())).any();
1405 }
1406 
1407 /// tryInstructionSplit - Split a live range around individual instructions.
1408 /// This is normally not worthwhile since the spiller is doing essentially the
1409 /// same thing. However, when the live range is in a constrained register
1410 /// class, it may help to insert copies such that parts of the live range can
1411 /// be moved to a larger register class.
1412 ///
1413 /// This is similar to spilling to a larger register class.
1414 unsigned RAGreedy::tryInstructionSplit(const LiveInterval &VirtReg,
1415                                        AllocationOrder &Order,
1416                                        SmallVectorImpl<Register> &NewVRegs) {
1417   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1418   // There is no point to this if there are no larger sub-classes.
1419 
1420   bool SplitSubClass = true;
1421   if (!RegClassInfo.isProperSubClass(CurRC)) {
1422     if (!VirtReg.hasSubRanges())
1423       return 0;
1424     SplitSubClass = false;
1425   }
1426 
1427   // Always enable split spill mode, since we're effectively spilling to a
1428   // register.
1429   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1430   SE->reset(LREdit, SplitEditor::SM_Size);
1431 
1432   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1433   if (Uses.size() <= 1)
1434     return 0;
1435 
1436   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
1437                     << " individual instrs.\n");
1438 
1439   const TargetRegisterClass *SuperRC =
1440       TRI->getLargestLegalSuperClass(CurRC, *MF);
1441   unsigned SuperRCNumAllocatableRegs =
1442       RegClassInfo.getNumAllocatableRegs(SuperRC);
1443   // Split around every non-copy instruction if this split will relax
1444   // the constraints on the virtual register.
1445   // Otherwise, splitting just inserts uncoalescable copies that do not help
1446   // the allocation.
1447   for (const SlotIndex Use : Uses) {
1448     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) {
1449       if (TII->isFullCopyInstr(*MI) ||
1450           (SplitSubClass &&
1451            SuperRCNumAllocatableRegs ==
1452                getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
1453                                                    TII, TRI, RegClassInfo)) ||
1454           // TODO: Handle split for subranges with subclass constraints?
1455           (!SplitSubClass && VirtReg.hasSubRanges() &&
1456            !readsLaneSubset(*MRI, MI, VirtReg, TRI, Use, TII))) {
1457         LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
1458         continue;
1459       }
1460     }
1461     SE->openIntv();
1462     SlotIndex SegStart = SE->enterIntvBefore(Use);
1463     SlotIndex SegStop = SE->leaveIntvAfter(Use);
1464     SE->useIntv(SegStart, SegStop);
1465   }
1466 
1467   if (LREdit.empty()) {
1468     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
1469     return 0;
1470   }
1471 
1472   SmallVector<unsigned, 8> IntvMap;
1473   SE->finish(&IntvMap);
1474   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1475   // Assign all new registers to RS_Spill. This was the last chance.
1476   ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1477   return 0;
1478 }
1479 
1480 //===----------------------------------------------------------------------===//
1481 //                             Local Splitting
1482 //===----------------------------------------------------------------------===//
1483 
1484 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1485 /// in order to use PhysReg between two entries in SA->UseSlots.
1486 ///
1487 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
1488 ///
1489 void RAGreedy::calcGapWeights(MCRegister PhysReg,
1490                               SmallVectorImpl<float> &GapWeight) {
1491   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1492   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1493   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1494   const unsigned NumGaps = Uses.size()-1;
1495 
1496   // Start and end points for the interference check.
1497   SlotIndex StartIdx =
1498     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1499   SlotIndex StopIdx =
1500     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1501 
1502   GapWeight.assign(NumGaps, 0.0f);
1503 
1504   // Add interference from each overlapping register.
1505   for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
1506     if (!Matrix->query(const_cast<LiveInterval &>(SA->getParent()), Unit)
1507              .checkInterference())
1508       continue;
1509 
1510     // We know that VirtReg is a continuous interval from FirstInstr to
1511     // LastInstr, so we don't need InterferenceQuery.
1512     //
1513     // Interference that overlaps an instruction is counted in both gaps
1514     // surrounding the instruction. The exception is interference before
1515     // StartIdx and after StopIdx.
1516     //
1517     LiveIntervalUnion::SegmentIter IntI =
1518         Matrix->getLiveUnions()[Unit].find(StartIdx);
1519     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1520       // Skip the gaps before IntI.
1521       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1522         if (++Gap == NumGaps)
1523           break;
1524       if (Gap == NumGaps)
1525         break;
1526 
1527       // Update the gaps covered by IntI.
1528       const float weight = IntI.value()->weight();
1529       for (; Gap != NumGaps; ++Gap) {
1530         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1531         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1532           break;
1533       }
1534       if (Gap == NumGaps)
1535         break;
1536     }
1537   }
1538 
1539   // Add fixed interference.
1540   for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
1541     const LiveRange &LR = LIS->getRegUnit(Unit);
1542     LiveRange::const_iterator I = LR.find(StartIdx);
1543     LiveRange::const_iterator E = LR.end();
1544 
1545     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1546     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1547       while (Uses[Gap+1].getBoundaryIndex() < I->start)
1548         if (++Gap == NumGaps)
1549           break;
1550       if (Gap == NumGaps)
1551         break;
1552 
1553       for (; Gap != NumGaps; ++Gap) {
1554         GapWeight[Gap] = huge_valf;
1555         if (Uses[Gap+1].getBaseIndex() >= I->end)
1556           break;
1557       }
1558       if (Gap == NumGaps)
1559         break;
1560     }
1561   }
1562 }
1563 
1564 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1565 /// basic block.
1566 ///
1567 unsigned RAGreedy::tryLocalSplit(const LiveInterval &VirtReg,
1568                                  AllocationOrder &Order,
1569                                  SmallVectorImpl<Register> &NewVRegs) {
1570   // TODO: the function currently only handles a single UseBlock; it should be
1571   // possible to generalize.
1572   if (SA->getUseBlocks().size() != 1)
1573     return 0;
1574 
1575   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1576 
1577   // Note that it is possible to have an interval that is live-in or live-out
1578   // while only covering a single block - A phi-def can use undef values from
1579   // predecessors, and the block could be a single-block loop.
1580   // We don't bother doing anything clever about such a case, we simply assume
1581   // that the interval is continuous from FirstInstr to LastInstr. We should
1582   // make sure that we don't do anything illegal to such an interval, though.
1583 
1584   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1585   if (Uses.size() <= 2)
1586     return 0;
1587   const unsigned NumGaps = Uses.size()-1;
1588 
1589   LLVM_DEBUG({
1590     dbgs() << "tryLocalSplit: ";
1591     for (const auto &Use : Uses)
1592       dbgs() << ' ' << Use;
1593     dbgs() << '\n';
1594   });
1595 
1596   // If VirtReg is live across any register mask operands, compute a list of
1597   // gaps with register masks.
1598   SmallVector<unsigned, 8> RegMaskGaps;
1599   if (Matrix->checkRegMaskInterference(VirtReg)) {
1600     // Get regmask slots for the whole block.
1601     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1602     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1603     // Constrain to VirtReg's live range.
1604     unsigned RI =
1605         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
1606     unsigned RE = RMS.size();
1607     for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
1608       // Look for Uses[I] <= RMS <= Uses[I + 1].
1609       assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
1610       if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
1611         continue;
1612       // Skip a regmask on the same instruction as the last use. It doesn't
1613       // overlap the live range.
1614       if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
1615         break;
1616       LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
1617                         << Uses[I + 1]);
1618       RegMaskGaps.push_back(I);
1619       // Advance ri to the next gap. A regmask on one of the uses counts in
1620       // both gaps.
1621       while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
1622         ++RI;
1623     }
1624     LLVM_DEBUG(dbgs() << '\n');
1625   }
1626 
1627   // Since we allow local split results to be split again, there is a risk of
1628   // creating infinite loops. It is tempting to require that the new live
1629   // ranges have less instructions than the original. That would guarantee
1630   // convergence, but it is too strict. A live range with 3 instructions can be
1631   // split 2+3 (including the COPY), and we want to allow that.
1632   //
1633   // Instead we use these rules:
1634   //
1635   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1636   //    noop split, of course).
1637   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1638   //    the new ranges must have fewer instructions than before the split.
1639   // 3. New ranges with the same number of instructions are marked RS_Split2,
1640   //    smaller ranges are marked RS_New.
1641   //
1642   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1643   // excessive splitting and infinite loops.
1644   //
1645   bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2;
1646 
1647   // Best split candidate.
1648   unsigned BestBefore = NumGaps;
1649   unsigned BestAfter = 0;
1650   float BestDiff = 0;
1651 
1652   const float blockFreq =
1653       SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1654       (1.0f / MBFI->getEntryFreq().getFrequency());
1655   SmallVector<float, 8> GapWeight;
1656 
1657   for (MCPhysReg PhysReg : Order) {
1658     assert(PhysReg);
1659     // Keep track of the largest spill weight that would need to be evicted in
1660     // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
1661     calcGapWeights(PhysReg, GapWeight);
1662 
1663     // Remove any gaps with regmask clobbers.
1664     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1665       for (unsigned Gap : RegMaskGaps)
1666         GapWeight[Gap] = huge_valf;
1667 
1668     // Try to find the best sequence of gaps to close.
1669     // The new spill weight must be larger than any gap interference.
1670 
1671     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1672     unsigned SplitBefore = 0, SplitAfter = 1;
1673 
1674     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1675     // It is the spill weight that needs to be evicted.
1676     float MaxGap = GapWeight[0];
1677 
1678     while (true) {
1679       // Live before/after split?
1680       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1681       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1682 
1683       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
1684                         << '-' << Uses[SplitAfter] << " I=" << MaxGap);
1685 
1686       // Stop before the interval gets so big we wouldn't be making progress.
1687       if (!LiveBefore && !LiveAfter) {
1688         LLVM_DEBUG(dbgs() << " all\n");
1689         break;
1690       }
1691       // Should the interval be extended or shrunk?
1692       bool Shrink = true;
1693 
1694       // How many gaps would the new range have?
1695       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1696 
1697       // Legally, without causing looping?
1698       bool Legal = !ProgressRequired || NewGaps < NumGaps;
1699 
1700       if (Legal && MaxGap < huge_valf) {
1701         // Estimate the new spill weight. Each instruction reads or writes the
1702         // register. Conservatively assume there are no read-modify-write
1703         // instructions.
1704         //
1705         // Try to guess the size of the new interval.
1706         const float EstWeight = normalizeSpillWeight(
1707             blockFreq * (NewGaps + 1),
1708             Uses[SplitBefore].distance(Uses[SplitAfter]) +
1709                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
1710             1);
1711         // Would this split be possible to allocate?
1712         // Never allocate all gaps, we wouldn't be making progress.
1713         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
1714         if (EstWeight * Hysteresis >= MaxGap) {
1715           Shrink = false;
1716           float Diff = EstWeight - MaxGap;
1717           if (Diff > BestDiff) {
1718             LLVM_DEBUG(dbgs() << " (best)");
1719             BestDiff = Hysteresis * Diff;
1720             BestBefore = SplitBefore;
1721             BestAfter = SplitAfter;
1722           }
1723         }
1724       }
1725 
1726       // Try to shrink.
1727       if (Shrink) {
1728         if (++SplitBefore < SplitAfter) {
1729           LLVM_DEBUG(dbgs() << " shrink\n");
1730           // Recompute the max when necessary.
1731           if (GapWeight[SplitBefore - 1] >= MaxGap) {
1732             MaxGap = GapWeight[SplitBefore];
1733             for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
1734               MaxGap = std::max(MaxGap, GapWeight[I]);
1735           }
1736           continue;
1737         }
1738         MaxGap = 0;
1739       }
1740 
1741       // Try to extend the interval.
1742       if (SplitAfter >= NumGaps) {
1743         LLVM_DEBUG(dbgs() << " end\n");
1744         break;
1745       }
1746 
1747       LLVM_DEBUG(dbgs() << " extend\n");
1748       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1749     }
1750   }
1751 
1752   // Didn't find any candidates?
1753   if (BestBefore == NumGaps)
1754     return 0;
1755 
1756   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
1757                     << Uses[BestAfter] << ", " << BestDiff << ", "
1758                     << (BestAfter - BestBefore + 1) << " instrs\n");
1759 
1760   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1761   SE->reset(LREdit);
1762 
1763   SE->openIntv();
1764   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1765   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1766   SE->useIntv(SegStart, SegStop);
1767   SmallVector<unsigned, 8> IntvMap;
1768   SE->finish(&IntvMap);
1769   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1770   // If the new range has the same number of instructions as before, mark it as
1771   // RS_Split2 so the next split will be forced to make progress. Otherwise,
1772   // leave the new intervals as RS_New so they can compete.
1773   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1774   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1775   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1776   if (NewGaps >= NumGaps) {
1777     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:");
1778     assert(!ProgressRequired && "Didn't make progress when it was required.");
1779     for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
1780       if (IntvMap[I] == 1) {
1781         ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
1782         LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I)));
1783       }
1784     LLVM_DEBUG(dbgs() << '\n');
1785   }
1786   ++NumLocalSplits;
1787 
1788   return 0;
1789 }
1790 
1791 //===----------------------------------------------------------------------===//
1792 //                          Live Range Splitting
1793 //===----------------------------------------------------------------------===//
1794 
1795 /// trySplit - Try to split VirtReg or one of its interferences, making it
1796 /// assignable.
1797 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1798 unsigned RAGreedy::trySplit(const LiveInterval &VirtReg, AllocationOrder &Order,
1799                             SmallVectorImpl<Register> &NewVRegs,
1800                             const SmallVirtRegSet &FixedRegisters) {
1801   // Ranges must be Split2 or less.
1802   if (ExtraInfo->getStage(VirtReg) >= RS_Spill)
1803     return 0;
1804 
1805   // Local intervals are handled separately.
1806   if (LIS->intervalIsInOneMBB(VirtReg)) {
1807     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
1808                        TimerGroupDescription, TimePassesIsEnabled);
1809     SA->analyze(&VirtReg);
1810     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1811     if (PhysReg || !NewVRegs.empty())
1812       return PhysReg;
1813     return tryInstructionSplit(VirtReg, Order, NewVRegs);
1814   }
1815 
1816   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
1817                      TimerGroupDescription, TimePassesIsEnabled);
1818 
1819   SA->analyze(&VirtReg);
1820 
1821   // First try to split around a region spanning multiple blocks. RS_Split2
1822   // ranges already made dubious progress with region splitting, so they go
1823   // straight to single block splitting.
1824   if (ExtraInfo->getStage(VirtReg) < RS_Split2) {
1825     MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1826     if (PhysReg || !NewVRegs.empty())
1827       return PhysReg;
1828   }
1829 
1830   // Then isolate blocks.
1831   return tryBlockSplit(VirtReg, Order, NewVRegs);
1832 }
1833 
1834 //===----------------------------------------------------------------------===//
1835 //                          Last Chance Recoloring
1836 //===----------------------------------------------------------------------===//
1837 
1838 /// Return true if \p reg has any tied def operand.
1839 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
1840   for (const MachineOperand &MO : MRI->def_operands(reg))
1841     if (MO.isTied())
1842       return true;
1843 
1844   return false;
1845 }
1846 
1847 /// Return true if the existing assignment of \p Intf overlaps, but is not the
1848 /// same, as \p PhysReg.
1849 static bool assignedRegPartiallyOverlaps(const TargetRegisterInfo &TRI,
1850                                          const VirtRegMap &VRM,
1851                                          MCRegister PhysReg,
1852                                          const LiveInterval &Intf) {
1853   MCRegister AssignedReg = VRM.getPhys(Intf.reg());
1854   if (PhysReg == AssignedReg)
1855     return false;
1856   return TRI.regsOverlap(PhysReg, AssignedReg);
1857 }
1858 
1859 /// mayRecolorAllInterferences - Check if the virtual registers that
1860 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
1861 /// recolored to free \p PhysReg.
1862 /// When true is returned, \p RecoloringCandidates has been augmented with all
1863 /// the live intervals that need to be recolored in order to free \p PhysReg
1864 /// for \p VirtReg.
1865 /// \p FixedRegisters contains all the virtual registers that cannot be
1866 /// recolored.
1867 bool RAGreedy::mayRecolorAllInterferences(
1868     MCRegister PhysReg, const LiveInterval &VirtReg,
1869     SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters) {
1870   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1871 
1872   for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
1873     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, Unit);
1874     // If there is LastChanceRecoloringMaxInterference or more interferences,
1875     // chances are one would not be recolorable.
1876     if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >=
1877             LastChanceRecoloringMaxInterference &&
1878         !ExhaustiveSearch) {
1879       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
1880       CutOffInfo |= CO_Interf;
1881       return false;
1882     }
1883     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
1884       // If Intf is done and sits on the same register class as VirtReg, it
1885       // would not be recolorable as it is in the same state as
1886       // VirtReg. However there are at least two exceptions.
1887       //
1888       // If VirtReg has tied defs and Intf doesn't, then
1889       // there is still a point in examining if it can be recolorable.
1890       //
1891       // Additionally, if the register class has overlapping tuple members, it
1892       // may still be recolorable using a different tuple. This is more likely
1893       // if the existing assignment aliases with the candidate.
1894       //
1895       if (((ExtraInfo->getStage(*Intf) == RS_Done &&
1896             MRI->getRegClass(Intf->reg()) == CurRC &&
1897             !assignedRegPartiallyOverlaps(*TRI, *VRM, PhysReg, *Intf)) &&
1898            !(hasTiedDef(MRI, VirtReg.reg()) &&
1899              !hasTiedDef(MRI, Intf->reg()))) ||
1900           FixedRegisters.count(Intf->reg())) {
1901         LLVM_DEBUG(
1902             dbgs() << "Early abort: the interference is not recolorable.\n");
1903         return false;
1904       }
1905       RecoloringCandidates.insert(Intf);
1906     }
1907   }
1908   return true;
1909 }
1910 
1911 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
1912 /// its interferences.
1913 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
1914 /// virtual register that was using it. The recoloring process may recursively
1915 /// use the last chance recoloring. Therefore, when a virtual register has been
1916 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
1917 /// be last-chance-recolored again during this recoloring "session".
1918 /// E.g.,
1919 /// Let
1920 /// vA can use {R1, R2    }
1921 /// vB can use {    R2, R3}
1922 /// vC can use {R1        }
1923 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
1924 /// instance) and they all interfere.
1925 ///
1926 /// vA is assigned R1
1927 /// vB is assigned R2
1928 /// vC tries to evict vA but vA is already done.
1929 /// Regular register allocation fails.
1930 ///
1931 /// Last chance recoloring kicks in:
1932 /// vC does as if vA was evicted => vC uses R1.
1933 /// vC is marked as fixed.
1934 /// vA needs to find a color.
1935 /// None are available.
1936 /// vA cannot evict vC: vC is a fixed virtual register now.
1937 /// vA does as if vB was evicted => vA uses R2.
1938 /// vB needs to find a color.
1939 /// R3 is available.
1940 /// Recoloring => vC = R1, vA = R2, vB = R3
1941 ///
1942 /// \p Order defines the preferred allocation order for \p VirtReg.
1943 /// \p NewRegs will contain any new virtual register that have been created
1944 /// (split, spill) during the process and that must be assigned.
1945 /// \p FixedRegisters contains all the virtual registers that cannot be
1946 /// recolored.
1947 ///
1948 /// \p RecolorStack tracks the original assignments of successfully recolored
1949 /// registers.
1950 ///
1951 /// \p Depth gives the current depth of the last chance recoloring.
1952 /// \return a physical register that can be used for VirtReg or ~0u if none
1953 /// exists.
1954 unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval &VirtReg,
1955                                            AllocationOrder &Order,
1956                                            SmallVectorImpl<Register> &NewVRegs,
1957                                            SmallVirtRegSet &FixedRegisters,
1958                                            RecoloringStack &RecolorStack,
1959                                            unsigned Depth) {
1960   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
1961     return ~0u;
1962 
1963   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
1964 
1965   const ssize_t EntryStackSize = RecolorStack.size();
1966 
1967   // Ranges must be Done.
1968   assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
1969          "Last chance recoloring should really be last chance");
1970   // Set the max depth to LastChanceRecoloringMaxDepth.
1971   // We may want to reconsider that if we end up with a too large search space
1972   // for target with hundreds of registers.
1973   // Indeed, in that case we may want to cut the search space earlier.
1974   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
1975     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
1976     CutOffInfo |= CO_Depth;
1977     return ~0u;
1978   }
1979 
1980   // Set of Live intervals that will need to be recolored.
1981   SmallLISet RecoloringCandidates;
1982 
1983   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
1984   // this recoloring "session".
1985   assert(!FixedRegisters.count(VirtReg.reg()));
1986   FixedRegisters.insert(VirtReg.reg());
1987   SmallVector<Register, 4> CurrentNewVRegs;
1988 
1989   for (MCRegister PhysReg : Order) {
1990     assert(PhysReg.isValid());
1991     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
1992                       << printReg(PhysReg, TRI) << '\n');
1993     RecoloringCandidates.clear();
1994     CurrentNewVRegs.clear();
1995 
1996     // It is only possible to recolor virtual register interference.
1997     if (Matrix->checkInterference(VirtReg, PhysReg) >
1998         LiveRegMatrix::IK_VirtReg) {
1999       LLVM_DEBUG(
2000           dbgs() << "Some interferences are not with virtual registers.\n");
2001 
2002       continue;
2003     }
2004 
2005     // Early give up on this PhysReg if it is obvious we cannot recolor all
2006     // the interferences.
2007     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2008                                     FixedRegisters)) {
2009       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2010       continue;
2011     }
2012 
2013     // RecoloringCandidates contains all the virtual registers that interfere
2014     // with VirtReg on PhysReg (or one of its aliases). Enqueue them for
2015     // recoloring and perform the actual recoloring.
2016     PQueue RecoloringQueue;
2017     for (const LiveInterval *RC : RecoloringCandidates) {
2018       Register ItVirtReg = RC->reg();
2019       enqueue(RecoloringQueue, RC);
2020       assert(VRM->hasPhys(ItVirtReg) &&
2021              "Interferences are supposed to be with allocated variables");
2022 
2023       // Record the current allocation.
2024       RecolorStack.push_back(std::make_pair(RC, VRM->getPhys(ItVirtReg)));
2025 
2026       // unset the related struct.
2027       Matrix->unassign(*RC);
2028     }
2029 
2030     // Do as if VirtReg was assigned to PhysReg so that the underlying
2031     // recoloring has the right information about the interferes and
2032     // available colors.
2033     Matrix->assign(VirtReg, PhysReg);
2034 
2035     // Save the current recoloring state.
2036     // If we cannot recolor all the interferences, we will have to start again
2037     // at this point for the next physical register.
2038     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2039     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2040                                 FixedRegisters, RecolorStack, Depth)) {
2041       // Push the queued vregs into the main queue.
2042       for (Register NewVReg : CurrentNewVRegs)
2043         NewVRegs.push_back(NewVReg);
2044       // Do not mess up with the global assignment process.
2045       // I.e., VirtReg must be unassigned.
2046       Matrix->unassign(VirtReg);
2047       return PhysReg;
2048     }
2049 
2050     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2051                       << printReg(PhysReg, TRI) << '\n');
2052 
2053     // The recoloring attempt failed, undo the changes.
2054     FixedRegisters = SaveFixedRegisters;
2055     Matrix->unassign(VirtReg);
2056 
2057     // For a newly created vreg which is also in RecoloringCandidates,
2058     // don't add it to NewVRegs because its physical register will be restored
2059     // below. Other vregs in CurrentNewVRegs are created by calling
2060     // selectOrSplit and should be added into NewVRegs.
2061     for (Register R : CurrentNewVRegs) {
2062       if (RecoloringCandidates.count(&LIS->getInterval(R)))
2063         continue;
2064       NewVRegs.push_back(R);
2065     }
2066 
2067     // Roll back our unsuccessful recoloring. Also roll back any successful
2068     // recolorings in any recursive recoloring attempts, since it's possible
2069     // they would have introduced conflicts with assignments we will be
2070     // restoring further up the stack. Perform all unassignments prior to
2071     // reassigning, since sub-recolorings may have conflicted with the registers
2072     // we are going to restore to their original assignments.
2073     for (ssize_t I = RecolorStack.size() - 1; I >= EntryStackSize; --I) {
2074       const LiveInterval *LI;
2075       MCRegister PhysReg;
2076       std::tie(LI, PhysReg) = RecolorStack[I];
2077 
2078       if (VRM->hasPhys(LI->reg()))
2079         Matrix->unassign(*LI);
2080     }
2081 
2082     for (size_t I = EntryStackSize; I != RecolorStack.size(); ++I) {
2083       const LiveInterval *LI;
2084       MCRegister PhysReg;
2085       std::tie(LI, PhysReg) = RecolorStack[I];
2086       if (!LI->empty() && !MRI->reg_nodbg_empty(LI->reg()))
2087         Matrix->assign(*LI, PhysReg);
2088     }
2089 
2090     // Pop the stack of recoloring attempts.
2091     RecolorStack.resize(EntryStackSize);
2092   }
2093 
2094   // Last chance recoloring did not worked either, give up.
2095   return ~0u;
2096 }
2097 
2098 /// tryRecoloringCandidates - Try to assign a new color to every register
2099 /// in \RecoloringQueue.
2100 /// \p NewRegs will contain any new virtual register created during the
2101 /// recoloring process.
2102 /// \p FixedRegisters[in/out] contains all the registers that have been
2103 /// recolored.
2104 /// \return true if all virtual registers in RecoloringQueue were successfully
2105 /// recolored, false otherwise.
2106 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2107                                        SmallVectorImpl<Register> &NewVRegs,
2108                                        SmallVirtRegSet &FixedRegisters,
2109                                        RecoloringStack &RecolorStack,
2110                                        unsigned Depth) {
2111   while (!RecoloringQueue.empty()) {
2112     const LiveInterval *LI = dequeue(RecoloringQueue);
2113     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2114     MCRegister PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters,
2115                                            RecolorStack, Depth + 1);
2116     // When splitting happens, the live-range may actually be empty.
2117     // In that case, this is okay to continue the recoloring even
2118     // if we did not find an alternative color for it. Indeed,
2119     // there will not be anything to color for LI in the end.
2120     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2121       return false;
2122 
2123     if (!PhysReg) {
2124       assert(LI->empty() && "Only empty live-range do not require a register");
2125       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2126                         << " succeeded. Empty LI.\n");
2127       continue;
2128     }
2129     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2130                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2131 
2132     Matrix->assign(*LI, PhysReg);
2133     FixedRegisters.insert(LI->reg());
2134   }
2135   return true;
2136 }
2137 
2138 //===----------------------------------------------------------------------===//
2139 //                            Main Entry Point
2140 //===----------------------------------------------------------------------===//
2141 
2142 MCRegister RAGreedy::selectOrSplit(const LiveInterval &VirtReg,
2143                                    SmallVectorImpl<Register> &NewVRegs) {
2144   CutOffInfo = CO_None;
2145   LLVMContext &Ctx = MF->getFunction().getContext();
2146   SmallVirtRegSet FixedRegisters;
2147   RecoloringStack RecolorStack;
2148   MCRegister Reg =
2149       selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters, RecolorStack);
2150   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2151     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2152     if (CutOffEncountered == CO_Depth)
2153       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2154                     "reached. Use -fexhaustive-register-search to skip "
2155                     "cutoffs");
2156     else if (CutOffEncountered == CO_Interf)
2157       Ctx.emitError("register allocation failed: maximum interference for "
2158                     "recoloring reached. Use -fexhaustive-register-search "
2159                     "to skip cutoffs");
2160     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2161       Ctx.emitError("register allocation failed: maximum interference and "
2162                     "depth for recoloring reached. Use "
2163                     "-fexhaustive-register-search to skip cutoffs");
2164   }
2165   return Reg;
2166 }
2167 
2168 /// Using a CSR for the first time has a cost because it causes push|pop
2169 /// to be added to prologue|epilogue. Splitting a cold section of the live
2170 /// range can have lower cost than using the CSR for the first time;
2171 /// Spilling a live range in the cold path can have lower cost than using
2172 /// the CSR for the first time. Returns the physical register if we decide
2173 /// to use the CSR; otherwise return 0.
2174 MCRegister RAGreedy::tryAssignCSRFirstTime(
2175     const LiveInterval &VirtReg, AllocationOrder &Order, MCRegister PhysReg,
2176     uint8_t &CostPerUseLimit, SmallVectorImpl<Register> &NewVRegs) {
2177   if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2178     // We choose spill over using the CSR for the first time if the spill cost
2179     // is lower than CSRCost.
2180     SA->analyze(&VirtReg);
2181     if (calcSpillCost() >= CSRCost)
2182       return PhysReg;
2183 
2184     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2185     // we will not use a callee-saved register in tryEvict.
2186     CostPerUseLimit = 1;
2187     return 0;
2188   }
2189   if (ExtraInfo->getStage(VirtReg) < RS_Split) {
2190     // We choose pre-splitting over using the CSR for the first time if
2191     // the cost of splitting is lower than CSRCost.
2192     SA->analyze(&VirtReg);
2193     unsigned NumCands = 0;
2194     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2195     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2196                                                  NumCands, true /*IgnoreCSR*/);
2197     if (BestCand == NoCand)
2198       // Use the CSR if we can't find a region split below CSRCost.
2199       return PhysReg;
2200 
2201     // Perform the actual pre-splitting.
2202     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2203     return 0;
2204   }
2205   return PhysReg;
2206 }
2207 
2208 void RAGreedy::aboutToRemoveInterval(const LiveInterval &LI) {
2209   // Do not keep invalid information around.
2210   SetOfBrokenHints.remove(&LI);
2211 }
2212 
2213 void RAGreedy::initializeCSRCost() {
2214   // We use the larger one out of the command-line option and the value report
2215   // by TRI.
2216   CSRCost = BlockFrequency(
2217       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2218   if (!CSRCost.getFrequency())
2219     return;
2220 
2221   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2222   uint64_t ActualEntry = MBFI->getEntryFreq().getFrequency();
2223   if (!ActualEntry) {
2224     CSRCost = BlockFrequency(0);
2225     return;
2226   }
2227   uint64_t FixedEntry = 1 << 14;
2228   if (ActualEntry < FixedEntry)
2229     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2230   else if (ActualEntry <= UINT32_MAX)
2231     // Invert the fraction and divide.
2232     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2233   else
2234     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2235     CSRCost =
2236         BlockFrequency(CSRCost.getFrequency() * (ActualEntry / FixedEntry));
2237 }
2238 
2239 /// Collect the hint info for \p Reg.
2240 /// The results are stored into \p Out.
2241 /// \p Out is not cleared before being populated.
2242 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
2243   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2244     if (!TII->isFullCopyInstr(Instr))
2245       continue;
2246     // Look for the other end of the copy.
2247     Register OtherReg = Instr.getOperand(0).getReg();
2248     if (OtherReg == Reg) {
2249       OtherReg = Instr.getOperand(1).getReg();
2250       if (OtherReg == Reg)
2251         continue;
2252     }
2253     // Get the current assignment.
2254     MCRegister OtherPhysReg =
2255         OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
2256     // Push the collected information.
2257     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2258                            OtherPhysReg));
2259   }
2260 }
2261 
2262 /// Using the given \p List, compute the cost of the broken hints if
2263 /// \p PhysReg was used.
2264 /// \return The cost of \p List for \p PhysReg.
2265 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2266                                            MCRegister PhysReg) {
2267   BlockFrequency Cost = BlockFrequency(0);
2268   for (const HintInfo &Info : List) {
2269     if (Info.PhysReg != PhysReg)
2270       Cost += Info.Freq;
2271   }
2272   return Cost;
2273 }
2274 
2275 /// Using the register assigned to \p VirtReg, try to recolor
2276 /// all the live ranges that are copy-related with \p VirtReg.
2277 /// The recoloring is then propagated to all the live-ranges that have
2278 /// been recolored and so on, until no more copies can be coalesced or
2279 /// it is not profitable.
2280 /// For a given live range, profitability is determined by the sum of the
2281 /// frequencies of the non-identity copies it would introduce with the old
2282 /// and new register.
2283 void RAGreedy::tryHintRecoloring(const LiveInterval &VirtReg) {
2284   // We have a broken hint, check if it is possible to fix it by
2285   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2286   // some register and PhysReg may be available for the other live-ranges.
2287   SmallSet<Register, 4> Visited;
2288   SmallVector<unsigned, 2> RecoloringCandidates;
2289   HintsInfo Info;
2290   Register Reg = VirtReg.reg();
2291   MCRegister PhysReg = VRM->getPhys(Reg);
2292   // Start the recoloring algorithm from the input live-interval, then
2293   // it will propagate to the ones that are copy-related with it.
2294   Visited.insert(Reg);
2295   RecoloringCandidates.push_back(Reg);
2296 
2297   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2298                     << '(' << printReg(PhysReg, TRI) << ")\n");
2299 
2300   do {
2301     Reg = RecoloringCandidates.pop_back_val();
2302 
2303     // We cannot recolor physical register.
2304     if (Reg.isPhysical())
2305       continue;
2306 
2307     // This may be a skipped register.
2308     if (!VRM->hasPhys(Reg)) {
2309       assert(!shouldAllocateRegister(Reg) &&
2310              "We have an unallocated variable which should have been handled");
2311       continue;
2312     }
2313 
2314     // Get the live interval mapped with this virtual register to be able
2315     // to check for the interference with the new color.
2316     LiveInterval &LI = LIS->getInterval(Reg);
2317     MCRegister CurrPhys = VRM->getPhys(Reg);
2318     // Check that the new color matches the register class constraints and
2319     // that it is free for this live range.
2320     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2321                                 Matrix->checkInterference(LI, PhysReg)))
2322       continue;
2323 
2324     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2325                       << ") is recolorable.\n");
2326 
2327     // Gather the hint info.
2328     Info.clear();
2329     collectHintInfo(Reg, Info);
2330     // Check if recoloring the live-range will increase the cost of the
2331     // non-identity copies.
2332     if (CurrPhys != PhysReg) {
2333       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2334       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2335       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2336       LLVM_DEBUG(dbgs() << "Old Cost: " << printBlockFreq(*MBFI, OldCopiesCost)
2337                         << "\nNew Cost: "
2338                         << printBlockFreq(*MBFI, NewCopiesCost) << '\n');
2339       if (OldCopiesCost < NewCopiesCost) {
2340         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2341         continue;
2342       }
2343       // At this point, the cost is either cheaper or equal. If it is
2344       // equal, we consider this is profitable because it may expose
2345       // more recoloring opportunities.
2346       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2347       // Recolor the live-range.
2348       Matrix->unassign(LI);
2349       Matrix->assign(LI, PhysReg);
2350     }
2351     // Push all copy-related live-ranges to keep reconciling the broken
2352     // hints.
2353     for (const HintInfo &HI : Info) {
2354       if (Visited.insert(HI.Reg).second)
2355         RecoloringCandidates.push_back(HI.Reg);
2356     }
2357   } while (!RecoloringCandidates.empty());
2358 }
2359 
2360 /// Try to recolor broken hints.
2361 /// Broken hints may be repaired by recoloring when an evicted variable
2362 /// freed up a register for a larger live-range.
2363 /// Consider the following example:
2364 /// BB1:
2365 ///   a =
2366 ///   b =
2367 /// BB2:
2368 ///   ...
2369 ///   = b
2370 ///   = a
2371 /// Let us assume b gets split:
2372 /// BB1:
2373 ///   a =
2374 ///   b =
2375 /// BB2:
2376 ///   c = b
2377 ///   ...
2378 ///   d = c
2379 ///   = d
2380 ///   = a
2381 /// Because of how the allocation work, b, c, and d may be assigned different
2382 /// colors. Now, if a gets evicted later:
2383 /// BB1:
2384 ///   a =
2385 ///   st a, SpillSlot
2386 ///   b =
2387 /// BB2:
2388 ///   c = b
2389 ///   ...
2390 ///   d = c
2391 ///   = d
2392 ///   e = ld SpillSlot
2393 ///   = e
2394 /// This is likely that we can assign the same register for b, c, and d,
2395 /// getting rid of 2 copies.
2396 void RAGreedy::tryHintsRecoloring() {
2397   for (const LiveInterval *LI : SetOfBrokenHints) {
2398     assert(LI->reg().isVirtual() &&
2399            "Recoloring is possible only for virtual registers");
2400     // Some dead defs may be around (e.g., because of debug uses).
2401     // Ignore those.
2402     if (!VRM->hasPhys(LI->reg()))
2403       continue;
2404     tryHintRecoloring(*LI);
2405   }
2406 }
2407 
2408 MCRegister RAGreedy::selectOrSplitImpl(const LiveInterval &VirtReg,
2409                                        SmallVectorImpl<Register> &NewVRegs,
2410                                        SmallVirtRegSet &FixedRegisters,
2411                                        RecoloringStack &RecolorStack,
2412                                        unsigned Depth) {
2413   uint8_t CostPerUseLimit = uint8_t(~0u);
2414   // First try assigning a free register.
2415   auto Order =
2416       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
2417   if (MCRegister PhysReg =
2418           tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
2419     // When NewVRegs is not empty, we may have made decisions such as evicting
2420     // a virtual register, go with the earlier decisions and use the physical
2421     // register.
2422     if (CSRCost.getFrequency() &&
2423         EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) {
2424       MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2425                                                 CostPerUseLimit, NewVRegs);
2426       if (CSRReg || !NewVRegs.empty())
2427         // Return now if we decide to use a CSR or create new vregs due to
2428         // pre-splitting.
2429         return CSRReg;
2430     } else
2431       return PhysReg;
2432   }
2433   // Non emtpy NewVRegs means VirtReg has been split.
2434   if (!NewVRegs.empty())
2435     return 0;
2436 
2437   LiveRangeStage Stage = ExtraInfo->getStage(VirtReg);
2438   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
2439                     << ExtraInfo->getCascade(VirtReg.reg()) << '\n');
2440 
2441   // Try to evict a less worthy live range, but only for ranges from the primary
2442   // queue. The RS_Split ranges already failed to do this, and they should not
2443   // get a second chance until they have been split.
2444   if (Stage != RS_Split)
2445     if (Register PhysReg =
2446             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
2447                      FixedRegisters)) {
2448       Register Hint = MRI->getSimpleHint(VirtReg.reg());
2449       // If VirtReg has a hint and that hint is broken record this
2450       // virtual register as a recoloring candidate for broken hint.
2451       // Indeed, since we evicted a variable in its neighborhood it is
2452       // likely we can at least partially recolor some of the
2453       // copy-related live-ranges.
2454       if (Hint && Hint != PhysReg)
2455         SetOfBrokenHints.insert(&VirtReg);
2456       return PhysReg;
2457     }
2458 
2459   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
2460 
2461   // The first time we see a live range, don't try to split or spill.
2462   // Wait until the second time, when all smaller ranges have been allocated.
2463   // This gives a better picture of the interference to split around.
2464   if (Stage < RS_Split) {
2465     ExtraInfo->setStage(VirtReg, RS_Split);
2466     LLVM_DEBUG(dbgs() << "wait for second round\n");
2467     NewVRegs.push_back(VirtReg.reg());
2468     return 0;
2469   }
2470 
2471   if (Stage < RS_Spill) {
2472     // Try splitting VirtReg or interferences.
2473     unsigned NewVRegSizeBefore = NewVRegs.size();
2474     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
2475     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore))
2476       return PhysReg;
2477   }
2478 
2479   // If we couldn't allocate a register from spilling, there is probably some
2480   // invalid inline assembly. The base class will report it.
2481   if (Stage >= RS_Done || !VirtReg.isSpillable()) {
2482     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
2483                                    RecolorStack, Depth);
2484   }
2485 
2486   // Finally spill VirtReg itself.
2487   if ((EnableDeferredSpilling ||
2488        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
2489       ExtraInfo->getStage(VirtReg) < RS_Memory) {
2490     // TODO: This is experimental and in particular, we do not model
2491     // the live range splitting done by spilling correctly.
2492     // We would need a deep integration with the spiller to do the
2493     // right thing here. Anyway, that is still good for early testing.
2494     ExtraInfo->setStage(VirtReg, RS_Memory);
2495     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
2496     NewVRegs.push_back(VirtReg.reg());
2497   } else {
2498     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
2499                        TimerGroupDescription, TimePassesIsEnabled);
2500     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2501     spiller().spill(LRE);
2502     ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
2503 
2504     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
2505     // the new regs are kept in LDV (still mapping to the old register), until
2506     // we rewrite spilled locations in LDV at a later stage.
2507     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
2508 
2509     if (VerifyEnabled)
2510       MF->verify(this, "After spilling");
2511   }
2512 
2513   // The live virtual register requesting allocation was spilled, so tell
2514   // the caller not to allocate anything during this round.
2515   return 0;
2516 }
2517 
2518 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) {
2519   using namespace ore;
2520   if (Spills) {
2521     R << NV("NumSpills", Spills) << " spills ";
2522     R << NV("TotalSpillsCost", SpillsCost) << " total spills cost ";
2523   }
2524   if (FoldedSpills) {
2525     R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
2526     R << NV("TotalFoldedSpillsCost", FoldedSpillsCost)
2527       << " total folded spills cost ";
2528   }
2529   if (Reloads) {
2530     R << NV("NumReloads", Reloads) << " reloads ";
2531     R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost ";
2532   }
2533   if (FoldedReloads) {
2534     R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
2535     R << NV("TotalFoldedReloadsCost", FoldedReloadsCost)
2536       << " total folded reloads cost ";
2537   }
2538   if (ZeroCostFoldedReloads)
2539     R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads)
2540       << " zero cost folded reloads ";
2541   if (Copies) {
2542     R << NV("NumVRCopies", Copies) << " virtual registers copies ";
2543     R << NV("TotalCopiesCost", CopiesCost) << " total copies cost ";
2544   }
2545 }
2546 
2547 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) {
2548   RAGreedyStats Stats;
2549   const MachineFrameInfo &MFI = MF->getFrameInfo();
2550   int FI;
2551 
2552   auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
2553     return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>(
2554         A->getPseudoValue())->getFrameIndex());
2555   };
2556   auto isPatchpointInstr = [](const MachineInstr &MI) {
2557     return MI.getOpcode() == TargetOpcode::PATCHPOINT ||
2558            MI.getOpcode() == TargetOpcode::STACKMAP ||
2559            MI.getOpcode() == TargetOpcode::STATEPOINT;
2560   };
2561   for (MachineInstr &MI : MBB) {
2562     auto DestSrc = TII->isCopyInstr(MI);
2563     if (DestSrc) {
2564       const MachineOperand &Dest = *DestSrc->Destination;
2565       const MachineOperand &Src = *DestSrc->Source;
2566       Register SrcReg = Src.getReg();
2567       Register DestReg = Dest.getReg();
2568       // Only count `COPY`s with a virtual register as source or destination.
2569       if (SrcReg.isVirtual() || DestReg.isVirtual()) {
2570         if (SrcReg.isVirtual()) {
2571           SrcReg = VRM->getPhys(SrcReg);
2572           if (SrcReg && Src.getSubReg())
2573             SrcReg = TRI->getSubReg(SrcReg, Src.getSubReg());
2574         }
2575         if (DestReg.isVirtual()) {
2576           DestReg = VRM->getPhys(DestReg);
2577           if (DestReg && Dest.getSubReg())
2578             DestReg = TRI->getSubReg(DestReg, Dest.getSubReg());
2579         }
2580         if (SrcReg != DestReg)
2581           ++Stats.Copies;
2582       }
2583       continue;
2584     }
2585 
2586     SmallVector<const MachineMemOperand *, 2> Accesses;
2587     if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2588       ++Stats.Reloads;
2589       continue;
2590     }
2591     if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2592       ++Stats.Spills;
2593       continue;
2594     }
2595     if (TII->hasLoadFromStackSlot(MI, Accesses) &&
2596         llvm::any_of(Accesses, isSpillSlotAccess)) {
2597       if (!isPatchpointInstr(MI)) {
2598         Stats.FoldedReloads += Accesses.size();
2599         continue;
2600       }
2601       // For statepoint there may be folded and zero cost folded stack reloads.
2602       std::pair<unsigned, unsigned> NonZeroCostRange =
2603           TII->getPatchpointUnfoldableRange(MI);
2604       SmallSet<unsigned, 16> FoldedReloads;
2605       SmallSet<unsigned, 16> ZeroCostFoldedReloads;
2606       for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) {
2607         MachineOperand &MO = MI.getOperand(Idx);
2608         if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex()))
2609           continue;
2610         if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second)
2611           FoldedReloads.insert(MO.getIndex());
2612         else
2613           ZeroCostFoldedReloads.insert(MO.getIndex());
2614       }
2615       // If stack slot is used in folded reload it is not zero cost then.
2616       for (unsigned Slot : FoldedReloads)
2617         ZeroCostFoldedReloads.erase(Slot);
2618       Stats.FoldedReloads += FoldedReloads.size();
2619       Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size();
2620       continue;
2621     }
2622     Accesses.clear();
2623     if (TII->hasStoreToStackSlot(MI, Accesses) &&
2624         llvm::any_of(Accesses, isSpillSlotAccess)) {
2625       Stats.FoldedSpills += Accesses.size();
2626     }
2627   }
2628   // Set cost of collected statistic by multiplication to relative frequency of
2629   // this basic block.
2630   float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB);
2631   Stats.ReloadsCost = RelFreq * Stats.Reloads;
2632   Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads;
2633   Stats.SpillsCost = RelFreq * Stats.Spills;
2634   Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills;
2635   Stats.CopiesCost = RelFreq * Stats.Copies;
2636   return Stats;
2637 }
2638 
2639 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) {
2640   RAGreedyStats Stats;
2641 
2642   // Sum up the spill and reloads in subloops.
2643   for (MachineLoop *SubLoop : *L)
2644     Stats.add(reportStats(SubLoop));
2645 
2646   for (MachineBasicBlock *MBB : L->getBlocks())
2647     // Handle blocks that were not included in subloops.
2648     if (Loops->getLoopFor(MBB) == L)
2649       Stats.add(computeStats(*MBB));
2650 
2651   if (!Stats.isEmpty()) {
2652     using namespace ore;
2653 
2654     ORE->emit([&]() {
2655       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies",
2656                                         L->getStartLoc(), L->getHeader());
2657       Stats.report(R);
2658       R << "generated in loop";
2659       return R;
2660     });
2661   }
2662   return Stats;
2663 }
2664 
2665 void RAGreedy::reportStats() {
2666   if (!ORE->allowExtraAnalysis(DEBUG_TYPE))
2667     return;
2668   RAGreedyStats Stats;
2669   for (MachineLoop *L : *Loops)
2670     Stats.add(reportStats(L));
2671   // Process non-loop blocks.
2672   for (MachineBasicBlock &MBB : *MF)
2673     if (!Loops->getLoopFor(&MBB))
2674       Stats.add(computeStats(MBB));
2675   if (!Stats.isEmpty()) {
2676     using namespace ore;
2677 
2678     ORE->emit([&]() {
2679       DebugLoc Loc;
2680       if (auto *SP = MF->getFunction().getSubprogram())
2681         Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
2682       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc,
2683                                         &MF->front());
2684       Stats.report(R);
2685       R << "generated in function";
2686       return R;
2687     });
2688   }
2689 }
2690 
2691 bool RAGreedy::hasVirtRegAlloc() {
2692   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2693     Register Reg = Register::index2VirtReg(I);
2694     if (MRI->reg_nodbg_empty(Reg))
2695       continue;
2696     const TargetRegisterClass *RC = MRI->getRegClass(Reg);
2697     if (!RC)
2698       continue;
2699     if (shouldAllocateRegister(Reg))
2700       return true;
2701   }
2702 
2703   return false;
2704 }
2705 
2706 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
2707   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2708                     << "********** Function: " << mf.getName() << '\n');
2709 
2710   MF = &mf;
2711   TII = MF->getSubtarget().getInstrInfo();
2712 
2713   if (VerifyEnabled)
2714     MF->verify(this, "Before greedy register allocator");
2715 
2716   RegAllocBase::init(getAnalysis<VirtRegMap>(),
2717                      getAnalysis<LiveIntervalsWrapperPass>().getLIS(),
2718                      getAnalysis<LiveRegMatrix>());
2719 
2720   // Early return if there is no virtual register to be allocated to a
2721   // physical register.
2722   if (!hasVirtRegAlloc())
2723     return false;
2724 
2725   Indexes = &getAnalysis<SlotIndexesWrapperPass>().getSI();
2726   // Renumber to get accurate and consistent results from
2727   // SlotIndexes::getApproxInstrDistance.
2728   Indexes->packIndexes();
2729   MBFI = &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI();
2730   DomTree = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
2731   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
2732   Loops = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
2733   Bundles = &getAnalysis<EdgeBundles>();
2734   SpillPlacer = &getAnalysis<SpillPlacement>();
2735   DebugVars = &getAnalysis<LiveDebugVariables>();
2736 
2737   initializeCSRCost();
2738 
2739   RegCosts = TRI->getRegisterCosts(*MF);
2740   RegClassPriorityTrumpsGlobalness =
2741       GreedyRegClassPriorityTrumpsGlobalness.getNumOccurrences()
2742           ? GreedyRegClassPriorityTrumpsGlobalness
2743           : TRI->regClassPriorityTrumpsGlobalness(*MF);
2744 
2745   ReverseLocalAssignment = GreedyReverseLocalAssignment.getNumOccurrences()
2746                                ? GreedyReverseLocalAssignment
2747                                : TRI->reverseLocalAssignment();
2748 
2749   ExtraInfo.emplace();
2750   EvictAdvisor =
2751       getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this);
2752   PriorityAdvisor =
2753       getAnalysis<RegAllocPriorityAdvisorAnalysis>().getAdvisor(*MF, *this);
2754 
2755   VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
2756   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI));
2757 
2758   VRAI->calculateSpillWeightsAndHints();
2759 
2760   LLVM_DEBUG(LIS->dump());
2761 
2762   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
2763   SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI, *VRAI));
2764 
2765   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
2766   GlobalCand.resize(32);  // This will grow as needed.
2767   SetOfBrokenHints.clear();
2768 
2769   allocatePhysRegs();
2770   tryHintsRecoloring();
2771 
2772   if (VerifyEnabled)
2773     MF->verify(this, "Before post optimization");
2774   postOptimization();
2775   reportStats();
2776 
2777   releaseMemory();
2778   return true;
2779 }
2780