xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/RegAllocGreedy.cpp (revision 3a9a9c0ca44ec535dcf73fe8462bee458e54814b)
1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RegAllocGreedy.h"
15 #include "AllocationOrder.h"
16 #include "InterferenceCache.h"
17 #include "LiveDebugVariables.h"
18 #include "RegAllocBase.h"
19 #include "RegAllocEvictionAdvisor.h"
20 #include "SpillPlacement.h"
21 #include "SplitKit.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/IndexedMap.h"
26 #include "llvm/ADT/MapVector.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/CodeGen/CalcSpillWeights.h"
36 #include "llvm/CodeGen/EdgeBundles.h"
37 #include "llvm/CodeGen/LiveInterval.h"
38 #include "llvm/CodeGen/LiveIntervalUnion.h"
39 #include "llvm/CodeGen/LiveIntervals.h"
40 #include "llvm/CodeGen/LiveRangeEdit.h"
41 #include "llvm/CodeGen/LiveRegMatrix.h"
42 #include "llvm/CodeGen/LiveStacks.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
45 #include "llvm/CodeGen/MachineDominators.h"
46 #include "llvm/CodeGen/MachineFrameInfo.h"
47 #include "llvm/CodeGen/MachineFunction.h"
48 #include "llvm/CodeGen/MachineFunctionPass.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineLoopInfo.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/RegAllocRegistry.h"
55 #include "llvm/CodeGen/RegisterClassInfo.h"
56 #include "llvm/CodeGen/SlotIndexes.h"
57 #include "llvm/CodeGen/Spiller.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetRegisterInfo.h"
60 #include "llvm/CodeGen/TargetSubtargetInfo.h"
61 #include "llvm/CodeGen/VirtRegMap.h"
62 #include "llvm/IR/DebugInfoMetadata.h"
63 #include "llvm/IR/Function.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/Pass.h"
67 #include "llvm/Support/BlockFrequency.h"
68 #include "llvm/Support/BranchProbability.h"
69 #include "llvm/Support/CommandLine.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/Timer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstdint>
78 #include <memory>
79 #include <queue>
80 #include <tuple>
81 #include <utility>
82 
83 using namespace llvm;
84 
85 #define DEBUG_TYPE "regalloc"
86 
87 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
88 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
89 STATISTIC(NumEvicted,      "Number of interferences evicted");
90 
91 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
92     "split-spill-mode", cl::Hidden,
93     cl::desc("Spill mode for splitting live ranges"),
94     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
95                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
96                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
97     cl::init(SplitEditor::SM_Speed));
98 
99 static cl::opt<unsigned>
100 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
101                              cl::desc("Last chance recoloring max depth"),
102                              cl::init(5));
103 
104 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
105     "lcr-max-interf", cl::Hidden,
106     cl::desc("Last chance recoloring maximum number of considered"
107              " interference at a time"),
108     cl::init(8));
109 
110 static cl::opt<bool> ExhaustiveSearch(
111     "exhaustive-register-search", cl::NotHidden,
112     cl::desc("Exhaustive Search for registers bypassing the depth "
113              "and interference cutoffs of last chance recoloring"),
114     cl::Hidden);
115 
116 static cl::opt<bool> EnableDeferredSpilling(
117     "enable-deferred-spilling", cl::Hidden,
118     cl::desc("Instead of spilling a variable right away, defer the actual "
119              "code insertion to the end of the allocation. That way the "
120              "allocator might still find a suitable coloring for this "
121              "variable because of other evicted variables."),
122     cl::init(false));
123 
124 // FIXME: Find a good default for this flag and remove the flag.
125 static cl::opt<unsigned>
126 CSRFirstTimeCost("regalloc-csr-first-time-cost",
127               cl::desc("Cost for first time use of callee-saved register."),
128               cl::init(0), cl::Hidden);
129 
130 static cl::opt<bool> ConsiderLocalIntervalCost(
131     "consider-local-interval-cost", cl::Hidden,
132     cl::desc("Consider the cost of local intervals created by a split "
133              "candidate when choosing the best split candidate."),
134     cl::init(false));
135 
136 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
137                                        createGreedyRegisterAllocator);
138 
139 char RAGreedy::ID = 0;
140 char &llvm::RAGreedyID = RAGreedy::ID;
141 
142 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
143                 "Greedy Register Allocator", false, false)
144 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
145 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
146 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
147 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
148 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
149 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
150 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
151 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
152 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
153 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
154 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
155 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
156 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
157 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis)
158 INITIALIZE_PASS_END(RAGreedy, "greedy",
159                 "Greedy Register Allocator", false, false)
160 
161 #ifndef NDEBUG
162 const char *const RAGreedy::StageName[] = {
163     "RS_New",
164     "RS_Assign",
165     "RS_Split",
166     "RS_Split2",
167     "RS_Spill",
168     "RS_Memory",
169     "RS_Done"
170 };
171 #endif
172 
173 // Hysteresis to use when comparing floats.
174 // This helps stabilize decisions based on float comparisons.
175 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
176 
177 FunctionPass* llvm::createGreedyRegisterAllocator() {
178   return new RAGreedy();
179 }
180 
181 namespace llvm {
182 FunctionPass* createGreedyRegisterAllocator(
183   std::function<bool(const TargetRegisterInfo &TRI,
184                      const TargetRegisterClass &RC)> Ftor);
185 
186 }
187 
188 FunctionPass* llvm::createGreedyRegisterAllocator(
189   std::function<bool(const TargetRegisterInfo &TRI,
190                      const TargetRegisterClass &RC)> Ftor) {
191   return new RAGreedy(Ftor);
192 }
193 
194 RAGreedy::RAGreedy(RegClassFilterFunc F):
195   MachineFunctionPass(ID),
196   RegAllocBase(F) {
197 }
198 
199 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
200   AU.setPreservesCFG();
201   AU.addRequired<MachineBlockFrequencyInfo>();
202   AU.addPreserved<MachineBlockFrequencyInfo>();
203   AU.addRequired<AAResultsWrapperPass>();
204   AU.addPreserved<AAResultsWrapperPass>();
205   AU.addRequired<LiveIntervals>();
206   AU.addPreserved<LiveIntervals>();
207   AU.addRequired<SlotIndexes>();
208   AU.addPreserved<SlotIndexes>();
209   AU.addRequired<LiveDebugVariables>();
210   AU.addPreserved<LiveDebugVariables>();
211   AU.addRequired<LiveStacks>();
212   AU.addPreserved<LiveStacks>();
213   AU.addRequired<MachineDominatorTree>();
214   AU.addPreserved<MachineDominatorTree>();
215   AU.addRequired<MachineLoopInfo>();
216   AU.addPreserved<MachineLoopInfo>();
217   AU.addRequired<VirtRegMap>();
218   AU.addPreserved<VirtRegMap>();
219   AU.addRequired<LiveRegMatrix>();
220   AU.addPreserved<LiveRegMatrix>();
221   AU.addRequired<EdgeBundles>();
222   AU.addRequired<SpillPlacement>();
223   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
224   AU.addRequired<RegAllocEvictionAdvisorAnalysis>();
225   MachineFunctionPass::getAnalysisUsage(AU);
226 }
227 
228 //===----------------------------------------------------------------------===//
229 //                     LiveRangeEdit delegate methods
230 //===----------------------------------------------------------------------===//
231 
232 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
233   LiveInterval &LI = LIS->getInterval(VirtReg);
234   if (VRM->hasPhys(VirtReg)) {
235     Matrix->unassign(LI);
236     aboutToRemoveInterval(LI);
237     return true;
238   }
239   // Unassigned virtreg is probably in the priority queue.
240   // RegAllocBase will erase it after dequeueing.
241   // Nonetheless, clear the live-range so that the debug
242   // dump will show the right state for that VirtReg.
243   LI.clear();
244   return false;
245 }
246 
247 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
248   if (!VRM->hasPhys(VirtReg))
249     return;
250 
251   // Register is assigned, put it back on the queue for reassignment.
252   LiveInterval &LI = LIS->getInterval(VirtReg);
253   Matrix->unassign(LI);
254   RegAllocBase::enqueue(&LI);
255 }
256 
257 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
258   ExtraInfo->LRE_DidCloneVirtReg(New, Old);
259 }
260 
261 void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) {
262   // Cloning a register we haven't even heard about yet?  Just ignore it.
263   if (!Info.inBounds(Old))
264     return;
265 
266   // LRE may clone a virtual register because dead code elimination causes it to
267   // be split into connected components. The new components are much smaller
268   // than the original, so they should get a new chance at being assigned.
269   // same stage as the parent.
270   Info[Old].Stage = RS_Assign;
271   Info.grow(New.id());
272   Info[New] = Info[Old];
273 }
274 
275 void RAGreedy::releaseMemory() {
276   SpillerInstance.reset();
277   GlobalCand.clear();
278 }
279 
280 void RAGreedy::enqueueImpl(LiveInterval *LI) { enqueue(Queue, LI); }
281 
282 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
283   // Prioritize live ranges by size, assigning larger ranges first.
284   // The queue holds (size, reg) pairs.
285   const unsigned Size = LI->getSize();
286   const Register Reg = LI->reg();
287   assert(Reg.isVirtual() && "Can only enqueue virtual registers");
288   unsigned Prio;
289 
290   auto Stage = ExtraInfo->getOrInitStage(Reg);
291   if (Stage == RS_New) {
292     Stage = RS_Assign;
293     ExtraInfo->setStage(Reg, Stage);
294   }
295   if (Stage == RS_Split) {
296     // Unsplit ranges that couldn't be allocated immediately are deferred until
297     // everything else has been allocated.
298     Prio = Size;
299   } else if (Stage == RS_Memory) {
300     // Memory operand should be considered last.
301     // Change the priority such that Memory operand are assigned in
302     // the reverse order that they came in.
303     // TODO: Make this a member variable and probably do something about hints.
304     static unsigned MemOp = 0;
305     Prio = MemOp++;
306   } else {
307     // Giant live ranges fall back to the global assignment heuristic, which
308     // prevents excessive spilling in pathological cases.
309     bool ReverseLocal = TRI->reverseLocalAssignment();
310     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
311     bool ForceGlobal = !ReverseLocal &&
312       (Size / SlotIndex::InstrDist) > (2 * RCI.getNumAllocatableRegs(&RC));
313 
314     if (Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
315         LIS->intervalIsInOneMBB(*LI)) {
316       // Allocate original local ranges in linear instruction order. Since they
317       // are singly defined, this produces optimal coloring in the absence of
318       // global interference and other constraints.
319       if (!ReverseLocal)
320         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
321       else {
322         // Allocating bottom up may allow many short LRGs to be assigned first
323         // to one of the cheap registers. This could be much faster for very
324         // large blocks on targets with many physical registers.
325         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
326       }
327       Prio |= RC.AllocationPriority << 24;
328     } else {
329       // Allocate global and split ranges in long->short order. Long ranges that
330       // don't fit should be spilled (or split) ASAP so they don't create
331       // interference.  Mark a bit to prioritize global above local ranges.
332       Prio = (1u << 29) + Size;
333 
334       Prio |= RC.AllocationPriority << 24;
335     }
336     // Mark a higher bit to prioritize global and local above RS_Split.
337     Prio |= (1u << 31);
338 
339     // Boost ranges that have a physical register hint.
340     if (VRM->hasKnownPreference(Reg))
341       Prio |= (1u << 30);
342   }
343   // The virtual register number is a tie breaker for same-sized ranges.
344   // Give lower vreg numbers higher priority to assign them first.
345   CurQueue.push(std::make_pair(Prio, ~Reg));
346 }
347 
348 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
349 
350 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
351   if (CurQueue.empty())
352     return nullptr;
353   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
354   CurQueue.pop();
355   return LI;
356 }
357 
358 //===----------------------------------------------------------------------===//
359 //                            Direct Assignment
360 //===----------------------------------------------------------------------===//
361 
362 /// tryAssign - Try to assign VirtReg to an available register.
363 MCRegister RAGreedy::tryAssign(LiveInterval &VirtReg,
364                              AllocationOrder &Order,
365                              SmallVectorImpl<Register> &NewVRegs,
366                              const SmallVirtRegSet &FixedRegisters) {
367   MCRegister PhysReg;
368   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
369     assert(*I);
370     if (!Matrix->checkInterference(VirtReg, *I)) {
371       if (I.isHint())
372         return *I;
373       else
374         PhysReg = *I;
375     }
376   }
377   if (!PhysReg.isValid())
378     return PhysReg;
379 
380   // PhysReg is available, but there may be a better choice.
381 
382   // If we missed a simple hint, try to cheaply evict interference from the
383   // preferred register.
384   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
385     if (Order.isHint(Hint)) {
386       MCRegister PhysHint = Hint.asMCReg();
387       LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
388 
389       if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint,
390                                                  FixedRegisters)) {
391         evictInterference(VirtReg, PhysHint, NewVRegs);
392         return PhysHint;
393       }
394       // Record the missed hint, we may be able to recover
395       // at the end if the surrounding allocation changed.
396       SetOfBrokenHints.insert(&VirtReg);
397     }
398 
399   // Try to evict interference from a cheaper alternative.
400   uint8_t Cost = RegCosts[PhysReg];
401 
402   // Most registers have 0 additional cost.
403   if (!Cost)
404     return PhysReg;
405 
406   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
407                     << (unsigned)Cost << '\n');
408   MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
409   return CheapReg ? CheapReg : PhysReg;
410 }
411 
412 //===----------------------------------------------------------------------===//
413 //                         Interference eviction
414 //===----------------------------------------------------------------------===//
415 
416 Register RegAllocEvictionAdvisor::canReassign(LiveInterval &VirtReg,
417                                               Register PrevReg) const {
418   auto Order =
419       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
420   MCRegister PhysReg;
421   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
422     if ((*I).id() == PrevReg.id())
423       continue;
424 
425     MCRegUnitIterator Units(*I, TRI);
426     for (; Units.isValid(); ++Units) {
427       // Instantiate a "subquery", not to be confused with the Queries array.
428       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
429       if (subQ.checkInterference())
430         break;
431     }
432     // If no units have interference, break out with the current PhysReg.
433     if (!Units.isValid())
434       PhysReg = *I;
435   }
436   if (PhysReg)
437     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
438                       << printReg(PrevReg, TRI) << " to "
439                       << printReg(PhysReg, TRI) << '\n');
440   return PhysReg;
441 }
442 
443 /// Return true if all interferences between VirtReg and PhysReg between
444 /// Start and End can be evicted.
445 ///
446 /// \param VirtReg Live range that is about to be assigned.
447 /// \param PhysReg Desired register for assignment.
448 /// \param Start   Start of range to look for interferences.
449 /// \param End     End of range to look for interferences.
450 /// \param MaxCost Only look for cheaper candidates and update with new cost
451 ///                when returning true.
452 /// \return True when interference can be evicted cheaper than MaxCost.
453 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg,
454                                            MCRegister PhysReg, SlotIndex Start,
455                                            SlotIndex End,
456                                            EvictionCost &MaxCost) const {
457   EvictionCost Cost;
458 
459   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
460     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
461 
462     // Check if any interfering live range is heavier than MaxWeight.
463     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
464       // Check if interference overlast the segment in interest.
465       if (!Intf->overlaps(Start, End))
466         continue;
467 
468       // Cannot evict non virtual reg interference.
469       if (!Register::isVirtualRegister(Intf->reg()))
470         return false;
471       // Never evict spill products. They cannot split or spill.
472       if (ExtraInfo->getStage(*Intf) == RS_Done)
473         return false;
474 
475       // Would this break a satisfied hint?
476       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
477       // Update eviction cost.
478       Cost.BrokenHints += BreaksHint;
479       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
480       // Abort if this would be too expensive.
481       if (!(Cost < MaxCost))
482         return false;
483     }
484   }
485 
486   if (Cost.MaxWeight == 0)
487     return false;
488 
489   MaxCost = Cost;
490   return true;
491 }
492 
493 /// Return the physical register that will be best
494 /// candidate for eviction by a local split interval that will be created
495 /// between Start and End.
496 ///
497 /// \param Order            The allocation order
498 /// \param VirtReg          Live range that is about to be assigned.
499 /// \param Start            Start of range to look for interferences
500 /// \param End              End of range to look for interferences
501 /// \param BestEvictweight  The eviction cost of that eviction
502 /// \return The PhysReg which is the best candidate for eviction and the
503 /// eviction cost in BestEvictweight
504 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
505                                               const LiveInterval &VirtReg,
506                                               SlotIndex Start, SlotIndex End,
507                                               float *BestEvictweight) const {
508   EvictionCost BestEvictCost;
509   BestEvictCost.setMax();
510   BestEvictCost.MaxWeight = VirtReg.weight();
511   MCRegister BestEvicteePhys;
512 
513   // Go over all physical registers and find the best candidate for eviction
514   for (MCRegister PhysReg : Order.getOrder()) {
515 
516     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
517                                      BestEvictCost))
518       continue;
519 
520     // Best so far.
521     BestEvicteePhys = PhysReg;
522   }
523   *BestEvictweight = BestEvictCost.MaxWeight;
524   return BestEvicteePhys;
525 }
526 
527 /// evictInterference - Evict any interferring registers that prevent VirtReg
528 /// from being assigned to Physreg. This assumes that canEvictInterference
529 /// returned true.
530 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg,
531                                  SmallVectorImpl<Register> &NewVRegs) {
532   // Make sure that VirtReg has a cascade number, and assign that cascade
533   // number to every evicted register. These live ranges than then only be
534   // evicted by a newer cascade, preventing infinite loops.
535   unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg());
536 
537   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
538                     << " interference: Cascade " << Cascade << '\n');
539 
540   // Collect all interfering virtregs first.
541   SmallVector<LiveInterval*, 8> Intfs;
542   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
543     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
544     // We usually have the interfering VRegs cached so collectInterferingVRegs()
545     // should be fast, we may need to recalculate if when different physregs
546     // overlap the same register unit so we had different SubRanges queried
547     // against it.
548     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
549     Intfs.append(IVR.begin(), IVR.end());
550   }
551 
552   // Evict them second. This will invalidate the queries.
553   for (LiveInterval *Intf : Intfs) {
554     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
555     if (!VRM->hasPhys(Intf->reg()))
556       continue;
557 
558     LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg());
559 
560     Matrix->unassign(*Intf);
561     assert((ExtraInfo->getCascade(Intf->reg()) < Cascade ||
562             VirtReg.isSpillable() < Intf->isSpillable()) &&
563            "Cannot decrease cascade number, illegal eviction");
564     ExtraInfo->setCascade(Intf->reg(), Cascade);
565     ++NumEvicted;
566     NewVRegs.push_back(Intf->reg());
567   }
568 }
569 
570 /// Returns true if the given \p PhysReg is a callee saved register and has not
571 /// been used for allocation yet.
572 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
573   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
574   if (!CSR)
575     return false;
576 
577   return !Matrix->isPhysRegUsed(PhysReg);
578 }
579 
580 Optional<unsigned>
581 RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg,
582                                        const AllocationOrder &Order,
583                                        unsigned CostPerUseLimit) const {
584   unsigned OrderLimit = Order.getOrder().size();
585 
586   if (CostPerUseLimit < uint8_t(~0u)) {
587     // Check of any registers in RC are below CostPerUseLimit.
588     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
589     uint8_t MinCost = RegClassInfo.getMinCost(RC);
590     if (MinCost >= CostPerUseLimit) {
591       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
592                         << MinCost << ", no cheaper registers to be found.\n");
593       return None;
594     }
595 
596     // It is normal for register classes to have a long tail of registers with
597     // the same cost. We don't need to look at them if they're too expensive.
598     if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) {
599       OrderLimit = RegClassInfo.getLastCostChange(RC);
600       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
601                         << " regs.\n");
602     }
603   }
604   return OrderLimit;
605 }
606 
607 bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit,
608                                                  MCRegister PhysReg) const {
609   if (RegCosts[PhysReg] >= CostPerUseLimit)
610     return false;
611   // The first use of a callee-saved register in a function has cost 1.
612   // Don't start using a CSR when the CostPerUseLimit is low.
613   if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
614     LLVM_DEBUG(
615         dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
616                << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
617                << '\n');
618     return false;
619   }
620   return true;
621 }
622 
623 /// tryEvict - Try to evict all interferences for a physreg.
624 /// @param  VirtReg Currently unassigned virtual register.
625 /// @param  Order   Physregs to try.
626 /// @return         Physreg to assign VirtReg, or 0.
627 MCRegister RAGreedy::tryEvict(LiveInterval &VirtReg, AllocationOrder &Order,
628                               SmallVectorImpl<Register> &NewVRegs,
629                               uint8_t CostPerUseLimit,
630                               const SmallVirtRegSet &FixedRegisters) {
631   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
632                      TimePassesIsEnabled);
633 
634   MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate(
635       VirtReg, Order, CostPerUseLimit, FixedRegisters);
636   if (BestPhys.isValid())
637     evictInterference(VirtReg, BestPhys, NewVRegs);
638   return BestPhys;
639 }
640 
641 //===----------------------------------------------------------------------===//
642 //                              Region Splitting
643 //===----------------------------------------------------------------------===//
644 
645 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
646 /// interference pattern in Physreg and its aliases. Add the constraints to
647 /// SpillPlacement and return the static cost of this split in Cost, assuming
648 /// that all preferences in SplitConstraints are met.
649 /// Return false if there are no bundles with positive bias.
650 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
651                                    BlockFrequency &Cost) {
652   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
653 
654   // Reset interference dependent info.
655   SplitConstraints.resize(UseBlocks.size());
656   BlockFrequency StaticCost = 0;
657   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
658     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
659     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
660 
661     BC.Number = BI.MBB->getNumber();
662     Intf.moveToBlock(BC.Number);
663     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
664     BC.Exit = (BI.LiveOut &&
665                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
666                   ? SpillPlacement::PrefReg
667                   : SpillPlacement::DontCare;
668     BC.ChangesValue = BI.FirstDef.isValid();
669 
670     if (!Intf.hasInterference())
671       continue;
672 
673     // Number of spill code instructions to insert.
674     unsigned Ins = 0;
675 
676     // Interference for the live-in value.
677     if (BI.LiveIn) {
678       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
679         BC.Entry = SpillPlacement::MustSpill;
680         ++Ins;
681       } else if (Intf.first() < BI.FirstInstr) {
682         BC.Entry = SpillPlacement::PrefSpill;
683         ++Ins;
684       } else if (Intf.first() < BI.LastInstr) {
685         ++Ins;
686       }
687 
688       // Abort if the spill cannot be inserted at the MBB' start
689       if (((BC.Entry == SpillPlacement::MustSpill) ||
690            (BC.Entry == SpillPlacement::PrefSpill)) &&
691           SlotIndex::isEarlierInstr(BI.FirstInstr,
692                                     SA->getFirstSplitPoint(BC.Number)))
693         return false;
694     }
695 
696     // Interference for the live-out value.
697     if (BI.LiveOut) {
698       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
699         BC.Exit = SpillPlacement::MustSpill;
700         ++Ins;
701       } else if (Intf.last() > BI.LastInstr) {
702         BC.Exit = SpillPlacement::PrefSpill;
703         ++Ins;
704       } else if (Intf.last() > BI.FirstInstr) {
705         ++Ins;
706       }
707     }
708 
709     // Accumulate the total frequency of inserted spill code.
710     while (Ins--)
711       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
712   }
713   Cost = StaticCost;
714 
715   // Add constraints for use-blocks. Note that these are the only constraints
716   // that may add a positive bias, it is downhill from here.
717   SpillPlacer->addConstraints(SplitConstraints);
718   return SpillPlacer->scanActiveBundles();
719 }
720 
721 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
722 /// live-through blocks in Blocks.
723 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
724                                      ArrayRef<unsigned> Blocks) {
725   const unsigned GroupSize = 8;
726   SpillPlacement::BlockConstraint BCS[GroupSize];
727   unsigned TBS[GroupSize];
728   unsigned B = 0, T = 0;
729 
730   for (unsigned Number : Blocks) {
731     Intf.moveToBlock(Number);
732 
733     if (!Intf.hasInterference()) {
734       assert(T < GroupSize && "Array overflow");
735       TBS[T] = Number;
736       if (++T == GroupSize) {
737         SpillPlacer->addLinks(makeArrayRef(TBS, T));
738         T = 0;
739       }
740       continue;
741     }
742 
743     assert(B < GroupSize && "Array overflow");
744     BCS[B].Number = Number;
745 
746     // Abort if the spill cannot be inserted at the MBB' start
747     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
748     auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr();
749     if (FirstNonDebugInstr != MBB->end() &&
750         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr),
751                                   SA->getFirstSplitPoint(Number)))
752       return false;
753     // Interference for the live-in value.
754     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
755       BCS[B].Entry = SpillPlacement::MustSpill;
756     else
757       BCS[B].Entry = SpillPlacement::PrefSpill;
758 
759     // Interference for the live-out value.
760     if (Intf.last() >= SA->getLastSplitPoint(Number))
761       BCS[B].Exit = SpillPlacement::MustSpill;
762     else
763       BCS[B].Exit = SpillPlacement::PrefSpill;
764 
765     if (++B == GroupSize) {
766       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
767       B = 0;
768     }
769   }
770 
771   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
772   SpillPlacer->addLinks(makeArrayRef(TBS, T));
773   return true;
774 }
775 
776 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
777   // Keep track of through blocks that have not been added to SpillPlacer.
778   BitVector Todo = SA->getThroughBlocks();
779   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
780   unsigned AddedTo = 0;
781 #ifndef NDEBUG
782   unsigned Visited = 0;
783 #endif
784 
785   while (true) {
786     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
787     // Find new through blocks in the periphery of PrefRegBundles.
788     for (unsigned Bundle : NewBundles) {
789       // Look at all blocks connected to Bundle in the full graph.
790       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
791       for (unsigned Block : Blocks) {
792         if (!Todo.test(Block))
793           continue;
794         Todo.reset(Block);
795         // This is a new through block. Add it to SpillPlacer later.
796         ActiveBlocks.push_back(Block);
797 #ifndef NDEBUG
798         ++Visited;
799 #endif
800       }
801     }
802     // Any new blocks to add?
803     if (ActiveBlocks.size() == AddedTo)
804       break;
805 
806     // Compute through constraints from the interference, or assume that all
807     // through blocks prefer spilling when forming compact regions.
808     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
809     if (Cand.PhysReg) {
810       if (!addThroughConstraints(Cand.Intf, NewBlocks))
811         return false;
812     } else
813       // Provide a strong negative bias on through blocks to prevent unwanted
814       // liveness on loop backedges.
815       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
816     AddedTo = ActiveBlocks.size();
817 
818     // Perhaps iterating can enable more bundles?
819     SpillPlacer->iterate();
820   }
821   LLVM_DEBUG(dbgs() << ", v=" << Visited);
822   return true;
823 }
824 
825 /// calcCompactRegion - Compute the set of edge bundles that should be live
826 /// when splitting the current live range into compact regions.  Compact
827 /// regions can be computed without looking at interference.  They are the
828 /// regions formed by removing all the live-through blocks from the live range.
829 ///
830 /// Returns false if the current live range is already compact, or if the
831 /// compact regions would form single block regions anyway.
832 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
833   // Without any through blocks, the live range is already compact.
834   if (!SA->getNumThroughBlocks())
835     return false;
836 
837   // Compact regions don't correspond to any physreg.
838   Cand.reset(IntfCache, MCRegister::NoRegister);
839 
840   LLVM_DEBUG(dbgs() << "Compact region bundles");
841 
842   // Use the spill placer to determine the live bundles. GrowRegion pretends
843   // that all the through blocks have interference when PhysReg is unset.
844   SpillPlacer->prepare(Cand.LiveBundles);
845 
846   // The static split cost will be zero since Cand.Intf reports no interference.
847   BlockFrequency Cost;
848   if (!addSplitConstraints(Cand.Intf, Cost)) {
849     LLVM_DEBUG(dbgs() << ", none.\n");
850     return false;
851   }
852 
853   if (!growRegion(Cand)) {
854     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
855     return false;
856   }
857 
858   SpillPlacer->finish();
859 
860   if (!Cand.LiveBundles.any()) {
861     LLVM_DEBUG(dbgs() << ", none.\n");
862     return false;
863   }
864 
865   LLVM_DEBUG({
866     for (int I : Cand.LiveBundles.set_bits())
867       dbgs() << " EB#" << I;
868     dbgs() << ".\n";
869   });
870   return true;
871 }
872 
873 /// calcSpillCost - Compute how expensive it would be to split the live range in
874 /// SA around all use blocks instead of forming bundle regions.
875 BlockFrequency RAGreedy::calcSpillCost() {
876   BlockFrequency Cost = 0;
877   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
878   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
879     unsigned Number = BI.MBB->getNumber();
880     // We normally only need one spill instruction - a load or a store.
881     Cost += SpillPlacer->getBlockFrequency(Number);
882 
883     // Unless the value is redefined in the block.
884     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
885       Cost += SpillPlacer->getBlockFrequency(Number);
886   }
887   return Cost;
888 }
889 
890 /// Check if splitting Evictee will create a local split interval in
891 /// basic block number BBNumber that may cause a bad eviction chain. This is
892 /// intended to prevent bad eviction sequences like:
893 /// movl	%ebp, 8(%esp)           # 4-byte Spill
894 /// movl	%ecx, %ebp
895 /// movl	%ebx, %ecx
896 /// movl	%edi, %ebx
897 /// movl	%edx, %edi
898 /// cltd
899 /// idivl	%esi
900 /// movl	%edi, %edx
901 /// movl	%ebx, %edi
902 /// movl	%ecx, %ebx
903 /// movl	%ebp, %ecx
904 /// movl	16(%esp), %ebp          # 4 - byte Reload
905 ///
906 /// Such sequences are created in 2 scenarios:
907 ///
908 /// Scenario #1:
909 /// %0 is evicted from physreg0 by %1.
910 /// Evictee %0 is intended for region splitting with split candidate
911 /// physreg0 (the reg %0 was evicted from).
912 /// Region splitting creates a local interval because of interference with the
913 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
914 /// and "by stack" intervals and local interval created when interference
915 /// occurs).
916 /// One of the split intervals ends up evicting %2 from physreg1.
917 /// Evictee %2 is intended for region splitting with split candidate
918 /// physreg1.
919 /// One of the split intervals ends up evicting %3 from physreg2, etc.
920 ///
921 /// Scenario #2
922 /// %0 is evicted from physreg0 by %1.
923 /// %2 is evicted from physreg2 by %3 etc.
924 /// Evictee %0 is intended for region splitting with split candidate
925 /// physreg1.
926 /// Region splitting creates a local interval because of interference with the
927 /// evictor %1.
928 /// One of the split intervals ends up evicting back original evictor %1
929 /// from physreg0 (the reg %0 was evicted from).
930 /// Another evictee %2 is intended for region splitting with split candidate
931 /// physreg1.
932 /// One of the split intervals ends up evicting %3 from physreg2, etc.
933 ///
934 /// \param Evictee  The register considered to be split.
935 /// \param Cand     The split candidate that determines the physical register
936 ///                 we are splitting for and the interferences.
937 /// \param BBNumber The number of a BB for which the region split process will
938 ///                 create a local split interval.
939 /// \param Order    The physical registers that may get evicted by a split
940 ///                 artifact of Evictee.
941 /// \return True if splitting Evictee may cause a bad eviction chain, false
942 /// otherwise.
943 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee,
944                                           GlobalSplitCandidate &Cand,
945                                           unsigned BBNumber,
946                                           const AllocationOrder &Order) {
947   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
948   unsigned Evictor = VregEvictorInfo.first;
949   MCRegister PhysReg = VregEvictorInfo.second;
950 
951   // No actual evictor.
952   if (!Evictor || !PhysReg)
953     return false;
954 
955   float MaxWeight = 0;
956   MCRegister FutureEvictedPhysReg =
957       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
958                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
959 
960   // The bad eviction chain occurs when either the split candidate is the
961   // evicting reg or one of the split artifact will evict the evicting reg.
962   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
963     return false;
964 
965   Cand.Intf.moveToBlock(BBNumber);
966 
967   // Check to see if the Evictor contains interference (with Evictee) in the
968   // given BB. If so, this interference caused the eviction of Evictee from
969   // PhysReg. This suggest that we will create a local interval during the
970   // region split to avoid this interference This local interval may cause a bad
971   // eviction chain.
972   if (!LIS->hasInterval(Evictor))
973     return false;
974   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
975   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
976     return false;
977 
978   // Now, check to see if the local interval we will create is going to be
979   // expensive enough to evict somebody If so, this may cause a bad eviction
980   // chain.
981   float splitArtifactWeight =
982       VRAI->futureWeight(LIS->getInterval(Evictee),
983                          Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
984   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
985     return false;
986 
987   return true;
988 }
989 
990 /// Check if splitting VirtRegToSplit will create a local split interval
991 /// in basic block number BBNumber that may cause a spill.
992 ///
993 /// \param VirtRegToSplit The register considered to be split.
994 /// \param Cand           The split candidate that determines the physical
995 ///                       register we are splitting for and the interferences.
996 /// \param BBNumber       The number of a BB for which the region split process
997 ///                       will create a local split interval.
998 /// \param Order          The physical registers that may get evicted by a
999 ///                       split artifact of VirtRegToSplit.
1000 /// \return True if splitting VirtRegToSplit may cause a spill, false
1001 /// otherwise.
1002 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1003                                        GlobalSplitCandidate &Cand,
1004                                        unsigned BBNumber,
1005                                        const AllocationOrder &Order) {
1006   Cand.Intf.moveToBlock(BBNumber);
1007 
1008   // Check if the local interval will find a non interfereing assignment.
1009   for (auto PhysReg : Order.getOrder()) {
1010     if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1011                                    Cand.Intf.last(), PhysReg))
1012       return false;
1013   }
1014 
1015   // The local interval is not able to find non interferencing assignment
1016   // and not able to evict a less worthy interval, therfore, it can cause a
1017   // spill.
1018   return true;
1019 }
1020 
1021 /// calcGlobalSplitCost - Return the global split cost of following the split
1022 /// pattern in LiveBundles. This cost should be added to the local cost of the
1023 /// interference pattern in SplitConstraints.
1024 ///
1025 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1026                                              const AllocationOrder &Order,
1027                                              bool *CanCauseEvictionChain) {
1028   BlockFrequency GlobalCost = 0;
1029   const BitVector &LiveBundles = Cand.LiveBundles;
1030   Register VirtRegToSplit = SA->getParent().reg();
1031   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1032   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1033     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1034     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1035     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1036     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1037     unsigned Ins = 0;
1038 
1039     Cand.Intf.moveToBlock(BC.Number);
1040     // Check wheather a local interval is going to be created during the region
1041     // split. Calculate adavanced spilt cost (cost of local intervals) if option
1042     // is enabled.
1043     if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1044         BI.LiveOut && RegIn && RegOut) {
1045 
1046       if (CanCauseEvictionChain &&
1047           splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1048         // This interference causes our eviction from this assignment, we might
1049         // evict somebody else and eventually someone will spill, add that cost.
1050         // See splitCanCauseEvictionChain for detailed description of scenarios.
1051         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1052         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1053 
1054         *CanCauseEvictionChain = true;
1055 
1056       } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1057                                          Order)) {
1058         // This interference causes local interval to spill, add that cost.
1059         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1060         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1061       }
1062     }
1063 
1064     if (BI.LiveIn)
1065       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1066     if (BI.LiveOut)
1067       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1068     while (Ins--)
1069       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1070   }
1071 
1072   for (unsigned Number : Cand.ActiveBlocks) {
1073     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1074     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1075     if (!RegIn && !RegOut)
1076       continue;
1077     if (RegIn && RegOut) {
1078       // We need double spill code if this block has interference.
1079       Cand.Intf.moveToBlock(Number);
1080       if (Cand.Intf.hasInterference()) {
1081         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1082         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1083 
1084         // Check wheather a local interval is going to be created during the
1085         // region split.
1086         if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1087             splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1088           // This interference cause our eviction from this assignment, we might
1089           // evict somebody else, add that cost.
1090           // See splitCanCauseEvictionChain for detailed description of
1091           // scenarios.
1092           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1093           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1094 
1095           *CanCauseEvictionChain = true;
1096         }
1097       }
1098       continue;
1099     }
1100     // live-in / stack-out or stack-in live-out.
1101     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1102   }
1103   return GlobalCost;
1104 }
1105 
1106 /// splitAroundRegion - Split the current live range around the regions
1107 /// determined by BundleCand and GlobalCand.
1108 ///
1109 /// Before calling this function, GlobalCand and BundleCand must be initialized
1110 /// so each bundle is assigned to a valid candidate, or NoCand for the
1111 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1112 /// objects must be initialized for the current live range, and intervals
1113 /// created for the used candidates.
1114 ///
1115 /// @param LREdit    The LiveRangeEdit object handling the current split.
1116 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1117 ///                  must appear in this list.
1118 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1119                                  ArrayRef<unsigned> UsedCands) {
1120   // These are the intervals created for new global ranges. We may create more
1121   // intervals for local ranges.
1122   const unsigned NumGlobalIntvs = LREdit.size();
1123   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1124                     << " globals.\n");
1125   assert(NumGlobalIntvs && "No global intervals configured");
1126 
1127   // Isolate even single instructions when dealing with a proper sub-class.
1128   // That guarantees register class inflation for the stack interval because it
1129   // is all copies.
1130   Register Reg = SA->getParent().reg();
1131   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1132 
1133   // First handle all the blocks with uses.
1134   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1135   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1136     unsigned Number = BI.MBB->getNumber();
1137     unsigned IntvIn = 0, IntvOut = 0;
1138     SlotIndex IntfIn, IntfOut;
1139     if (BI.LiveIn) {
1140       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1141       if (CandIn != NoCand) {
1142         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1143         IntvIn = Cand.IntvIdx;
1144         Cand.Intf.moveToBlock(Number);
1145         IntfIn = Cand.Intf.first();
1146       }
1147     }
1148     if (BI.LiveOut) {
1149       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1150       if (CandOut != NoCand) {
1151         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1152         IntvOut = Cand.IntvIdx;
1153         Cand.Intf.moveToBlock(Number);
1154         IntfOut = Cand.Intf.last();
1155       }
1156     }
1157 
1158     // Create separate intervals for isolated blocks with multiple uses.
1159     if (!IntvIn && !IntvOut) {
1160       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1161       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1162         SE->splitSingleBlock(BI);
1163       continue;
1164     }
1165 
1166     if (IntvIn && IntvOut)
1167       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1168     else if (IntvIn)
1169       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1170     else
1171       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1172   }
1173 
1174   // Handle live-through blocks. The relevant live-through blocks are stored in
1175   // the ActiveBlocks list with each candidate. We need to filter out
1176   // duplicates.
1177   BitVector Todo = SA->getThroughBlocks();
1178   for (unsigned UsedCand : UsedCands) {
1179     ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks;
1180     for (unsigned Number : Blocks) {
1181       if (!Todo.test(Number))
1182         continue;
1183       Todo.reset(Number);
1184 
1185       unsigned IntvIn = 0, IntvOut = 0;
1186       SlotIndex IntfIn, IntfOut;
1187 
1188       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1189       if (CandIn != NoCand) {
1190         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1191         IntvIn = Cand.IntvIdx;
1192         Cand.Intf.moveToBlock(Number);
1193         IntfIn = Cand.Intf.first();
1194       }
1195 
1196       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1197       if (CandOut != NoCand) {
1198         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1199         IntvOut = Cand.IntvIdx;
1200         Cand.Intf.moveToBlock(Number);
1201         IntfOut = Cand.Intf.last();
1202       }
1203       if (!IntvIn && !IntvOut)
1204         continue;
1205       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1206     }
1207   }
1208 
1209   ++NumGlobalSplits;
1210 
1211   SmallVector<unsigned, 8> IntvMap;
1212   SE->finish(&IntvMap);
1213   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1214 
1215   unsigned OrigBlocks = SA->getNumLiveBlocks();
1216 
1217   // Sort out the new intervals created by splitting. We get four kinds:
1218   // - Remainder intervals should not be split again.
1219   // - Candidate intervals can be assigned to Cand.PhysReg.
1220   // - Block-local splits are candidates for local splitting.
1221   // - DCE leftovers should go back on the queue.
1222   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1223     const LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1224 
1225     // Ignore old intervals from DCE.
1226     if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New)
1227       continue;
1228 
1229     // Remainder interval. Don't try splitting again, spill if it doesn't
1230     // allocate.
1231     if (IntvMap[I] == 0) {
1232       ExtraInfo->setStage(Reg, RS_Spill);
1233       continue;
1234     }
1235 
1236     // Global intervals. Allow repeated splitting as long as the number of live
1237     // blocks is strictly decreasing.
1238     if (IntvMap[I] < NumGlobalIntvs) {
1239       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1240         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1241                           << " blocks as original.\n");
1242         // Don't allow repeated splitting as a safe guard against looping.
1243         ExtraInfo->setStage(Reg, RS_Split2);
1244       }
1245       continue;
1246     }
1247 
1248     // Other intervals are treated as new. This includes local intervals created
1249     // for blocks with multiple uses, and anything created by DCE.
1250   }
1251 
1252   if (VerifyEnabled)
1253     MF->verify(this, "After splitting live range around region");
1254 }
1255 
1256 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg,
1257                                     AllocationOrder &Order,
1258                                     SmallVectorImpl<Register> &NewVRegs) {
1259   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1260     return MCRegister::NoRegister;
1261   unsigned NumCands = 0;
1262   BlockFrequency SpillCost = calcSpillCost();
1263   BlockFrequency BestCost;
1264 
1265   // Check if we can split this live range around a compact region.
1266   bool HasCompact = calcCompactRegion(GlobalCand.front());
1267   if (HasCompact) {
1268     // Yes, keep GlobalCand[0] as the compact region candidate.
1269     NumCands = 1;
1270     BestCost = BlockFrequency::getMaxFrequency();
1271   } else {
1272     // No benefit from the compact region, our fallback will be per-block
1273     // splitting. Make sure we find a solution that is cheaper than spilling.
1274     BestCost = SpillCost;
1275     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1276                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1277   }
1278 
1279   bool CanCauseEvictionChain = false;
1280   unsigned BestCand =
1281       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1282                                false /*IgnoreCSR*/, &CanCauseEvictionChain);
1283 
1284   // Split candidates with compact regions can cause a bad eviction sequence.
1285   // See splitCanCauseEvictionChain for detailed description of scenarios.
1286   // To avoid it, we need to comapre the cost with the spill cost and not the
1287   // current max frequency.
1288   if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1289     CanCauseEvictionChain) {
1290     return MCRegister::NoRegister;
1291   }
1292 
1293   // No solutions found, fall back to single block splitting.
1294   if (!HasCompact && BestCand == NoCand)
1295     return MCRegister::NoRegister;
1296 
1297   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1298 }
1299 
1300 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1301                                             AllocationOrder &Order,
1302                                             BlockFrequency &BestCost,
1303                                             unsigned &NumCands, bool IgnoreCSR,
1304                                             bool *CanCauseEvictionChain) {
1305   unsigned BestCand = NoCand;
1306   for (MCPhysReg PhysReg : Order) {
1307     assert(PhysReg);
1308     if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg))
1309       continue;
1310 
1311     // Discard bad candidates before we run out of interference cache cursors.
1312     // This will only affect register classes with a lot of registers (>32).
1313     if (NumCands == IntfCache.getMaxCursors()) {
1314       unsigned WorstCount = ~0u;
1315       unsigned Worst = 0;
1316       for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1317         if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1318           continue;
1319         unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1320         if (Count < WorstCount) {
1321           Worst = CandIndex;
1322           WorstCount = Count;
1323         }
1324       }
1325       --NumCands;
1326       GlobalCand[Worst] = GlobalCand[NumCands];
1327       if (BestCand == NumCands)
1328         BestCand = Worst;
1329     }
1330 
1331     if (GlobalCand.size() <= NumCands)
1332       GlobalCand.resize(NumCands+1);
1333     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1334     Cand.reset(IntfCache, PhysReg);
1335 
1336     SpillPlacer->prepare(Cand.LiveBundles);
1337     BlockFrequency Cost;
1338     if (!addSplitConstraints(Cand.Intf, Cost)) {
1339       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1340       continue;
1341     }
1342     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1343                MBFI->printBlockFreq(dbgs(), Cost));
1344     if (Cost >= BestCost) {
1345       LLVM_DEBUG({
1346         if (BestCand == NoCand)
1347           dbgs() << " worse than no bundles\n";
1348         else
1349           dbgs() << " worse than "
1350                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1351       });
1352       continue;
1353     }
1354     if (!growRegion(Cand)) {
1355       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1356       continue;
1357     }
1358 
1359     SpillPlacer->finish();
1360 
1361     // No live bundles, defer to splitSingleBlocks().
1362     if (!Cand.LiveBundles.any()) {
1363       LLVM_DEBUG(dbgs() << " no bundles.\n");
1364       continue;
1365     }
1366 
1367     bool HasEvictionChain = false;
1368     Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1369     LLVM_DEBUG({
1370       dbgs() << ", total = ";
1371       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1372       for (int I : Cand.LiveBundles.set_bits())
1373         dbgs() << " EB#" << I;
1374       dbgs() << ".\n";
1375     });
1376     if (Cost < BestCost) {
1377       BestCand = NumCands;
1378       BestCost = Cost;
1379       // See splitCanCauseEvictionChain for detailed description of bad
1380       // eviction chain scenarios.
1381       if (CanCauseEvictionChain)
1382         *CanCauseEvictionChain = HasEvictionChain;
1383     }
1384     ++NumCands;
1385   }
1386 
1387   if (CanCauseEvictionChain && BestCand != NoCand) {
1388     // See splitCanCauseEvictionChain for detailed description of bad
1389     // eviction chain scenarios.
1390     LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1391                       << printReg(VirtReg.reg(), TRI) << "  may ");
1392     if (!(*CanCauseEvictionChain))
1393       LLVM_DEBUG(dbgs() << "not ");
1394     LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1395   }
1396 
1397   return BestCand;
1398 }
1399 
1400 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1401                                  bool HasCompact,
1402                                  SmallVectorImpl<Register> &NewVRegs) {
1403   SmallVector<unsigned, 8> UsedCands;
1404   // Prepare split editor.
1405   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1406   SE->reset(LREdit, SplitSpillMode);
1407 
1408   // Assign all edge bundles to the preferred candidate, or NoCand.
1409   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1410 
1411   // Assign bundles for the best candidate region.
1412   if (BestCand != NoCand) {
1413     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1414     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1415       UsedCands.push_back(BestCand);
1416       Cand.IntvIdx = SE->openIntv();
1417       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1418                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1419       (void)B;
1420     }
1421   }
1422 
1423   // Assign bundles for the compact region.
1424   if (HasCompact) {
1425     GlobalSplitCandidate &Cand = GlobalCand.front();
1426     assert(!Cand.PhysReg && "Compact region has no physreg");
1427     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1428       UsedCands.push_back(0);
1429       Cand.IntvIdx = SE->openIntv();
1430       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1431                         << " bundles, intv " << Cand.IntvIdx << ".\n");
1432       (void)B;
1433     }
1434   }
1435 
1436   splitAroundRegion(LREdit, UsedCands);
1437   return 0;
1438 }
1439 
1440 //===----------------------------------------------------------------------===//
1441 //                            Per-Block Splitting
1442 //===----------------------------------------------------------------------===//
1443 
1444 /// tryBlockSplit - Split a global live range around every block with uses. This
1445 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1446 /// they don't allocate.
1447 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1448                                  SmallVectorImpl<Register> &NewVRegs) {
1449   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1450   Register Reg = VirtReg.reg();
1451   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1452   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1453   SE->reset(LREdit, SplitSpillMode);
1454   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1455   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1456     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1457       SE->splitSingleBlock(BI);
1458   }
1459   // No blocks were split.
1460   if (LREdit.empty())
1461     return 0;
1462 
1463   // We did split for some blocks.
1464   SmallVector<unsigned, 8> IntvMap;
1465   SE->finish(&IntvMap);
1466 
1467   // Tell LiveDebugVariables about the new ranges.
1468   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1469 
1470   // Sort out the new intervals created by splitting. The remainder interval
1471   // goes straight to spilling, the new local ranges get to stay RS_New.
1472   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1473     const LiveInterval &LI = LIS->getInterval(LREdit.get(I));
1474     if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0)
1475       ExtraInfo->setStage(LI, RS_Spill);
1476   }
1477 
1478   if (VerifyEnabled)
1479     MF->verify(this, "After splitting live range around basic blocks");
1480   return 0;
1481 }
1482 
1483 //===----------------------------------------------------------------------===//
1484 //                         Per-Instruction Splitting
1485 //===----------------------------------------------------------------------===//
1486 
1487 /// Get the number of allocatable registers that match the constraints of \p Reg
1488 /// on \p MI and that are also in \p SuperRC.
1489 static unsigned getNumAllocatableRegsForConstraints(
1490     const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC,
1491     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1492     const RegisterClassInfo &RCI) {
1493   assert(SuperRC && "Invalid register class");
1494 
1495   const TargetRegisterClass *ConstrainedRC =
1496       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
1497                                              /* ExploreBundle */ true);
1498   if (!ConstrainedRC)
1499     return 0;
1500   return RCI.getNumAllocatableRegs(ConstrainedRC);
1501 }
1502 
1503 /// tryInstructionSplit - Split a live range around individual instructions.
1504 /// This is normally not worthwhile since the spiller is doing essentially the
1505 /// same thing. However, when the live range is in a constrained register
1506 /// class, it may help to insert copies such that parts of the live range can
1507 /// be moved to a larger register class.
1508 ///
1509 /// This is similar to spilling to a larger register class.
1510 unsigned
1511 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1512                               SmallVectorImpl<Register> &NewVRegs) {
1513   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1514   // There is no point to this if there are no larger sub-classes.
1515   if (!RegClassInfo.isProperSubClass(CurRC))
1516     return 0;
1517 
1518   // Always enable split spill mode, since we're effectively spilling to a
1519   // register.
1520   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1521   SE->reset(LREdit, SplitEditor::SM_Size);
1522 
1523   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1524   if (Uses.size() <= 1)
1525     return 0;
1526 
1527   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
1528                     << " individual instrs.\n");
1529 
1530   const TargetRegisterClass *SuperRC =
1531       TRI->getLargestLegalSuperClass(CurRC, *MF);
1532   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
1533   // Split around every non-copy instruction if this split will relax
1534   // the constraints on the virtual register.
1535   // Otherwise, splitting just inserts uncoalescable copies that do not help
1536   // the allocation.
1537   for (const SlotIndex Use : Uses) {
1538     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use))
1539       if (MI->isFullCopy() ||
1540           SuperRCNumAllocatableRegs ==
1541               getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
1542                                                   TII, TRI, RCI)) {
1543         LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
1544         continue;
1545       }
1546     SE->openIntv();
1547     SlotIndex SegStart = SE->enterIntvBefore(Use);
1548     SlotIndex SegStop = SE->leaveIntvAfter(Use);
1549     SE->useIntv(SegStart, SegStop);
1550   }
1551 
1552   if (LREdit.empty()) {
1553     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
1554     return 0;
1555   }
1556 
1557   SmallVector<unsigned, 8> IntvMap;
1558   SE->finish(&IntvMap);
1559   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1560   // Assign all new registers to RS_Spill. This was the last chance.
1561   ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1562   return 0;
1563 }
1564 
1565 //===----------------------------------------------------------------------===//
1566 //                             Local Splitting
1567 //===----------------------------------------------------------------------===//
1568 
1569 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1570 /// in order to use PhysReg between two entries in SA->UseSlots.
1571 ///
1572 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
1573 ///
1574 void RAGreedy::calcGapWeights(MCRegister PhysReg,
1575                               SmallVectorImpl<float> &GapWeight) {
1576   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1577   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1578   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1579   const unsigned NumGaps = Uses.size()-1;
1580 
1581   // Start and end points for the interference check.
1582   SlotIndex StartIdx =
1583     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1584   SlotIndex StopIdx =
1585     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1586 
1587   GapWeight.assign(NumGaps, 0.0f);
1588 
1589   // Add interference from each overlapping register.
1590   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1591     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
1592           .checkInterference())
1593       continue;
1594 
1595     // We know that VirtReg is a continuous interval from FirstInstr to
1596     // LastInstr, so we don't need InterferenceQuery.
1597     //
1598     // Interference that overlaps an instruction is counted in both gaps
1599     // surrounding the instruction. The exception is interference before
1600     // StartIdx and after StopIdx.
1601     //
1602     LiveIntervalUnion::SegmentIter IntI =
1603       Matrix->getLiveUnions()[*Units] .find(StartIdx);
1604     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1605       // Skip the gaps before IntI.
1606       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1607         if (++Gap == NumGaps)
1608           break;
1609       if (Gap == NumGaps)
1610         break;
1611 
1612       // Update the gaps covered by IntI.
1613       const float weight = IntI.value()->weight();
1614       for (; Gap != NumGaps; ++Gap) {
1615         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1616         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1617           break;
1618       }
1619       if (Gap == NumGaps)
1620         break;
1621     }
1622   }
1623 
1624   // Add fixed interference.
1625   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1626     const LiveRange &LR = LIS->getRegUnit(*Units);
1627     LiveRange::const_iterator I = LR.find(StartIdx);
1628     LiveRange::const_iterator E = LR.end();
1629 
1630     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1631     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1632       while (Uses[Gap+1].getBoundaryIndex() < I->start)
1633         if (++Gap == NumGaps)
1634           break;
1635       if (Gap == NumGaps)
1636         break;
1637 
1638       for (; Gap != NumGaps; ++Gap) {
1639         GapWeight[Gap] = huge_valf;
1640         if (Uses[Gap+1].getBaseIndex() >= I->end)
1641           break;
1642       }
1643       if (Gap == NumGaps)
1644         break;
1645     }
1646   }
1647 }
1648 
1649 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1650 /// basic block.
1651 ///
1652 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1653                                  SmallVectorImpl<Register> &NewVRegs) {
1654   // TODO: the function currently only handles a single UseBlock; it should be
1655   // possible to generalize.
1656   if (SA->getUseBlocks().size() != 1)
1657     return 0;
1658 
1659   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1660 
1661   // Note that it is possible to have an interval that is live-in or live-out
1662   // while only covering a single block - A phi-def can use undef values from
1663   // predecessors, and the block could be a single-block loop.
1664   // We don't bother doing anything clever about such a case, we simply assume
1665   // that the interval is continuous from FirstInstr to LastInstr. We should
1666   // make sure that we don't do anything illegal to such an interval, though.
1667 
1668   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1669   if (Uses.size() <= 2)
1670     return 0;
1671   const unsigned NumGaps = Uses.size()-1;
1672 
1673   LLVM_DEBUG({
1674     dbgs() << "tryLocalSplit: ";
1675     for (const auto &Use : Uses)
1676       dbgs() << ' ' << Use;
1677     dbgs() << '\n';
1678   });
1679 
1680   // If VirtReg is live across any register mask operands, compute a list of
1681   // gaps with register masks.
1682   SmallVector<unsigned, 8> RegMaskGaps;
1683   if (Matrix->checkRegMaskInterference(VirtReg)) {
1684     // Get regmask slots for the whole block.
1685     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1686     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1687     // Constrain to VirtReg's live range.
1688     unsigned RI =
1689         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
1690     unsigned RE = RMS.size();
1691     for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
1692       // Look for Uses[I] <= RMS <= Uses[I + 1].
1693       assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
1694       if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
1695         continue;
1696       // Skip a regmask on the same instruction as the last use. It doesn't
1697       // overlap the live range.
1698       if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
1699         break;
1700       LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
1701                         << Uses[I + 1]);
1702       RegMaskGaps.push_back(I);
1703       // Advance ri to the next gap. A regmask on one of the uses counts in
1704       // both gaps.
1705       while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
1706         ++RI;
1707     }
1708     LLVM_DEBUG(dbgs() << '\n');
1709   }
1710 
1711   // Since we allow local split results to be split again, there is a risk of
1712   // creating infinite loops. It is tempting to require that the new live
1713   // ranges have less instructions than the original. That would guarantee
1714   // convergence, but it is too strict. A live range with 3 instructions can be
1715   // split 2+3 (including the COPY), and we want to allow that.
1716   //
1717   // Instead we use these rules:
1718   //
1719   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1720   //    noop split, of course).
1721   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1722   //    the new ranges must have fewer instructions than before the split.
1723   // 3. New ranges with the same number of instructions are marked RS_Split2,
1724   //    smaller ranges are marked RS_New.
1725   //
1726   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1727   // excessive splitting and infinite loops.
1728   //
1729   bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2;
1730 
1731   // Best split candidate.
1732   unsigned BestBefore = NumGaps;
1733   unsigned BestAfter = 0;
1734   float BestDiff = 0;
1735 
1736   const float blockFreq =
1737     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1738     (1.0f / MBFI->getEntryFreq());
1739   SmallVector<float, 8> GapWeight;
1740 
1741   for (MCPhysReg PhysReg : Order) {
1742     assert(PhysReg);
1743     // Keep track of the largest spill weight that would need to be evicted in
1744     // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
1745     calcGapWeights(PhysReg, GapWeight);
1746 
1747     // Remove any gaps with regmask clobbers.
1748     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1749       for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
1750         GapWeight[RegMaskGaps[I]] = huge_valf;
1751 
1752     // Try to find the best sequence of gaps to close.
1753     // The new spill weight must be larger than any gap interference.
1754 
1755     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1756     unsigned SplitBefore = 0, SplitAfter = 1;
1757 
1758     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1759     // It is the spill weight that needs to be evicted.
1760     float MaxGap = GapWeight[0];
1761 
1762     while (true) {
1763       // Live before/after split?
1764       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1765       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1766 
1767       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
1768                         << '-' << Uses[SplitAfter] << " I=" << MaxGap);
1769 
1770       // Stop before the interval gets so big we wouldn't be making progress.
1771       if (!LiveBefore && !LiveAfter) {
1772         LLVM_DEBUG(dbgs() << " all\n");
1773         break;
1774       }
1775       // Should the interval be extended or shrunk?
1776       bool Shrink = true;
1777 
1778       // How many gaps would the new range have?
1779       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1780 
1781       // Legally, without causing looping?
1782       bool Legal = !ProgressRequired || NewGaps < NumGaps;
1783 
1784       if (Legal && MaxGap < huge_valf) {
1785         // Estimate the new spill weight. Each instruction reads or writes the
1786         // register. Conservatively assume there are no read-modify-write
1787         // instructions.
1788         //
1789         // Try to guess the size of the new interval.
1790         const float EstWeight = normalizeSpillWeight(
1791             blockFreq * (NewGaps + 1),
1792             Uses[SplitBefore].distance(Uses[SplitAfter]) +
1793                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
1794             1);
1795         // Would this split be possible to allocate?
1796         // Never allocate all gaps, we wouldn't be making progress.
1797         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
1798         if (EstWeight * Hysteresis >= MaxGap) {
1799           Shrink = false;
1800           float Diff = EstWeight - MaxGap;
1801           if (Diff > BestDiff) {
1802             LLVM_DEBUG(dbgs() << " (best)");
1803             BestDiff = Hysteresis * Diff;
1804             BestBefore = SplitBefore;
1805             BestAfter = SplitAfter;
1806           }
1807         }
1808       }
1809 
1810       // Try to shrink.
1811       if (Shrink) {
1812         if (++SplitBefore < SplitAfter) {
1813           LLVM_DEBUG(dbgs() << " shrink\n");
1814           // Recompute the max when necessary.
1815           if (GapWeight[SplitBefore - 1] >= MaxGap) {
1816             MaxGap = GapWeight[SplitBefore];
1817             for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
1818               MaxGap = std::max(MaxGap, GapWeight[I]);
1819           }
1820           continue;
1821         }
1822         MaxGap = 0;
1823       }
1824 
1825       // Try to extend the interval.
1826       if (SplitAfter >= NumGaps) {
1827         LLVM_DEBUG(dbgs() << " end\n");
1828         break;
1829       }
1830 
1831       LLVM_DEBUG(dbgs() << " extend\n");
1832       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1833     }
1834   }
1835 
1836   // Didn't find any candidates?
1837   if (BestBefore == NumGaps)
1838     return 0;
1839 
1840   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
1841                     << Uses[BestAfter] << ", " << BestDiff << ", "
1842                     << (BestAfter - BestBefore + 1) << " instrs\n");
1843 
1844   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1845   SE->reset(LREdit);
1846 
1847   SE->openIntv();
1848   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1849   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1850   SE->useIntv(SegStart, SegStop);
1851   SmallVector<unsigned, 8> IntvMap;
1852   SE->finish(&IntvMap);
1853   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1854   // If the new range has the same number of instructions as before, mark it as
1855   // RS_Split2 so the next split will be forced to make progress. Otherwise,
1856   // leave the new intervals as RS_New so they can compete.
1857   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1858   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1859   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1860   if (NewGaps >= NumGaps) {
1861     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:");
1862     assert(!ProgressRequired && "Didn't make progress when it was required.");
1863     for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
1864       if (IntvMap[I] == 1) {
1865         ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
1866         LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I)));
1867       }
1868     LLVM_DEBUG(dbgs() << '\n');
1869   }
1870   ++NumLocalSplits;
1871 
1872   return 0;
1873 }
1874 
1875 //===----------------------------------------------------------------------===//
1876 //                          Live Range Splitting
1877 //===----------------------------------------------------------------------===//
1878 
1879 /// trySplit - Try to split VirtReg or one of its interferences, making it
1880 /// assignable.
1881 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1882 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1883                             SmallVectorImpl<Register> &NewVRegs,
1884                             const SmallVirtRegSet &FixedRegisters) {
1885   // Ranges must be Split2 or less.
1886   if (ExtraInfo->getStage(VirtReg) >= RS_Spill)
1887     return 0;
1888 
1889   // Local intervals are handled separately.
1890   if (LIS->intervalIsInOneMBB(VirtReg)) {
1891     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
1892                        TimerGroupDescription, TimePassesIsEnabled);
1893     SA->analyze(&VirtReg);
1894     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1895     if (PhysReg || !NewVRegs.empty())
1896       return PhysReg;
1897     return tryInstructionSplit(VirtReg, Order, NewVRegs);
1898   }
1899 
1900   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
1901                      TimerGroupDescription, TimePassesIsEnabled);
1902 
1903   SA->analyze(&VirtReg);
1904 
1905   // First try to split around a region spanning multiple blocks. RS_Split2
1906   // ranges already made dubious progress with region splitting, so they go
1907   // straight to single block splitting.
1908   if (ExtraInfo->getStage(VirtReg) < RS_Split2) {
1909     MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1910     if (PhysReg || !NewVRegs.empty())
1911       return PhysReg;
1912   }
1913 
1914   // Then isolate blocks.
1915   return tryBlockSplit(VirtReg, Order, NewVRegs);
1916 }
1917 
1918 //===----------------------------------------------------------------------===//
1919 //                          Last Chance Recoloring
1920 //===----------------------------------------------------------------------===//
1921 
1922 /// Return true if \p reg has any tied def operand.
1923 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
1924   for (const MachineOperand &MO : MRI->def_operands(reg))
1925     if (MO.isTied())
1926       return true;
1927 
1928   return false;
1929 }
1930 
1931 /// mayRecolorAllInterferences - Check if the virtual registers that
1932 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
1933 /// recolored to free \p PhysReg.
1934 /// When true is returned, \p RecoloringCandidates has been augmented with all
1935 /// the live intervals that need to be recolored in order to free \p PhysReg
1936 /// for \p VirtReg.
1937 /// \p FixedRegisters contains all the virtual registers that cannot be
1938 /// recolored.
1939 bool RAGreedy::mayRecolorAllInterferences(
1940     MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates,
1941     const SmallVirtRegSet &FixedRegisters) {
1942   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1943 
1944   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1945     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1946     // If there is LastChanceRecoloringMaxInterference or more interferences,
1947     // chances are one would not be recolorable.
1948     if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >=
1949             LastChanceRecoloringMaxInterference &&
1950         !ExhaustiveSearch) {
1951       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
1952       CutOffInfo |= CO_Interf;
1953       return false;
1954     }
1955     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
1956       // If Intf is done and sit on the same register class as VirtReg,
1957       // it would not be recolorable as it is in the same state as VirtReg.
1958       // However, if VirtReg has tied defs and Intf doesn't, then
1959       // there is still a point in examining if it can be recolorable.
1960       if (((ExtraInfo->getStage(*Intf) == RS_Done &&
1961             MRI->getRegClass(Intf->reg()) == CurRC) &&
1962            !(hasTiedDef(MRI, VirtReg.reg()) &&
1963              !hasTiedDef(MRI, Intf->reg()))) ||
1964           FixedRegisters.count(Intf->reg())) {
1965         LLVM_DEBUG(
1966             dbgs() << "Early abort: the interference is not recolorable.\n");
1967         return false;
1968       }
1969       RecoloringCandidates.insert(Intf);
1970     }
1971   }
1972   return true;
1973 }
1974 
1975 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
1976 /// its interferences.
1977 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
1978 /// virtual register that was using it. The recoloring process may recursively
1979 /// use the last chance recoloring. Therefore, when a virtual register has been
1980 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
1981 /// be last-chance-recolored again during this recoloring "session".
1982 /// E.g.,
1983 /// Let
1984 /// vA can use {R1, R2    }
1985 /// vB can use {    R2, R3}
1986 /// vC can use {R1        }
1987 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
1988 /// instance) and they all interfere.
1989 ///
1990 /// vA is assigned R1
1991 /// vB is assigned R2
1992 /// vC tries to evict vA but vA is already done.
1993 /// Regular register allocation fails.
1994 ///
1995 /// Last chance recoloring kicks in:
1996 /// vC does as if vA was evicted => vC uses R1.
1997 /// vC is marked as fixed.
1998 /// vA needs to find a color.
1999 /// None are available.
2000 /// vA cannot evict vC: vC is a fixed virtual register now.
2001 /// vA does as if vB was evicted => vA uses R2.
2002 /// vB needs to find a color.
2003 /// R3 is available.
2004 /// Recoloring => vC = R1, vA = R2, vB = R3
2005 ///
2006 /// \p Order defines the preferred allocation order for \p VirtReg.
2007 /// \p NewRegs will contain any new virtual register that have been created
2008 /// (split, spill) during the process and that must be assigned.
2009 /// \p FixedRegisters contains all the virtual registers that cannot be
2010 /// recolored.
2011 /// \p Depth gives the current depth of the last chance recoloring.
2012 /// \return a physical register that can be used for VirtReg or ~0u if none
2013 /// exists.
2014 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2015                                            AllocationOrder &Order,
2016                                            SmallVectorImpl<Register> &NewVRegs,
2017                                            SmallVirtRegSet &FixedRegisters,
2018                                            unsigned Depth) {
2019   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
2020     return ~0u;
2021 
2022   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2023   // Ranges must be Done.
2024   assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2025          "Last chance recoloring should really be last chance");
2026   // Set the max depth to LastChanceRecoloringMaxDepth.
2027   // We may want to reconsider that if we end up with a too large search space
2028   // for target with hundreds of registers.
2029   // Indeed, in that case we may want to cut the search space earlier.
2030   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2031     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2032     CutOffInfo |= CO_Depth;
2033     return ~0u;
2034   }
2035 
2036   // Set of Live intervals that will need to be recolored.
2037   SmallLISet RecoloringCandidates;
2038   // Record the original mapping virtual register to physical register in case
2039   // the recoloring fails.
2040   DenseMap<Register, MCRegister> VirtRegToPhysReg;
2041   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2042   // this recoloring "session".
2043   assert(!FixedRegisters.count(VirtReg.reg()));
2044   FixedRegisters.insert(VirtReg.reg());
2045   SmallVector<Register, 4> CurrentNewVRegs;
2046 
2047   for (MCRegister PhysReg : Order) {
2048     assert(PhysReg.isValid());
2049     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2050                       << printReg(PhysReg, TRI) << '\n');
2051     RecoloringCandidates.clear();
2052     VirtRegToPhysReg.clear();
2053     CurrentNewVRegs.clear();
2054 
2055     // It is only possible to recolor virtual register interference.
2056     if (Matrix->checkInterference(VirtReg, PhysReg) >
2057         LiveRegMatrix::IK_VirtReg) {
2058       LLVM_DEBUG(
2059           dbgs() << "Some interferences are not with virtual registers.\n");
2060 
2061       continue;
2062     }
2063 
2064     // Early give up on this PhysReg if it is obvious we cannot recolor all
2065     // the interferences.
2066     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2067                                     FixedRegisters)) {
2068       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2069       continue;
2070     }
2071 
2072     // RecoloringCandidates contains all the virtual registers that interfer
2073     // with VirtReg on PhysReg (or one of its aliases).
2074     // Enqueue them for recoloring and perform the actual recoloring.
2075     PQueue RecoloringQueue;
2076     for (LiveInterval *RC : RecoloringCandidates) {
2077       Register ItVirtReg = RC->reg();
2078       enqueue(RecoloringQueue, RC);
2079       assert(VRM->hasPhys(ItVirtReg) &&
2080              "Interferences are supposed to be with allocated variables");
2081 
2082       // Record the current allocation.
2083       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2084       // unset the related struct.
2085       Matrix->unassign(*RC);
2086     }
2087 
2088     // Do as if VirtReg was assigned to PhysReg so that the underlying
2089     // recoloring has the right information about the interferes and
2090     // available colors.
2091     Matrix->assign(VirtReg, PhysReg);
2092 
2093     // Save the current recoloring state.
2094     // If we cannot recolor all the interferences, we will have to start again
2095     // at this point for the next physical register.
2096     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2097     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2098                                 FixedRegisters, Depth)) {
2099       // Push the queued vregs into the main queue.
2100       for (Register NewVReg : CurrentNewVRegs)
2101         NewVRegs.push_back(NewVReg);
2102       // Do not mess up with the global assignment process.
2103       // I.e., VirtReg must be unassigned.
2104       Matrix->unassign(VirtReg);
2105       return PhysReg;
2106     }
2107 
2108     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2109                       << printReg(PhysReg, TRI) << '\n');
2110 
2111     // The recoloring attempt failed, undo the changes.
2112     FixedRegisters = SaveFixedRegisters;
2113     Matrix->unassign(VirtReg);
2114 
2115     // For a newly created vreg which is also in RecoloringCandidates,
2116     // don't add it to NewVRegs because its physical register will be restored
2117     // below. Other vregs in CurrentNewVRegs are created by calling
2118     // selectOrSplit and should be added into NewVRegs.
2119     for (Register &R : CurrentNewVRegs) {
2120       if (RecoloringCandidates.count(&LIS->getInterval(R)))
2121         continue;
2122       NewVRegs.push_back(R);
2123     }
2124 
2125     for (LiveInterval *RC : RecoloringCandidates) {
2126       Register ItVirtReg = RC->reg();
2127       if (VRM->hasPhys(ItVirtReg))
2128         Matrix->unassign(*RC);
2129       MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2130       Matrix->assign(*RC, ItPhysReg);
2131     }
2132   }
2133 
2134   // Last chance recoloring did not worked either, give up.
2135   return ~0u;
2136 }
2137 
2138 /// tryRecoloringCandidates - Try to assign a new color to every register
2139 /// in \RecoloringQueue.
2140 /// \p NewRegs will contain any new virtual register created during the
2141 /// recoloring process.
2142 /// \p FixedRegisters[in/out] contains all the registers that have been
2143 /// recolored.
2144 /// \return true if all virtual registers in RecoloringQueue were successfully
2145 /// recolored, false otherwise.
2146 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2147                                        SmallVectorImpl<Register> &NewVRegs,
2148                                        SmallVirtRegSet &FixedRegisters,
2149                                        unsigned Depth) {
2150   while (!RecoloringQueue.empty()) {
2151     LiveInterval *LI = dequeue(RecoloringQueue);
2152     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2153     MCRegister PhysReg =
2154         selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2155     // When splitting happens, the live-range may actually be empty.
2156     // In that case, this is okay to continue the recoloring even
2157     // if we did not find an alternative color for it. Indeed,
2158     // there will not be anything to color for LI in the end.
2159     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2160       return false;
2161 
2162     if (!PhysReg) {
2163       assert(LI->empty() && "Only empty live-range do not require a register");
2164       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2165                         << " succeeded. Empty LI.\n");
2166       continue;
2167     }
2168     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2169                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2170 
2171     Matrix->assign(*LI, PhysReg);
2172     FixedRegisters.insert(LI->reg());
2173   }
2174   return true;
2175 }
2176 
2177 //===----------------------------------------------------------------------===//
2178 //                            Main Entry Point
2179 //===----------------------------------------------------------------------===//
2180 
2181 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2182                                    SmallVectorImpl<Register> &NewVRegs) {
2183   CutOffInfo = CO_None;
2184   LLVMContext &Ctx = MF->getFunction().getContext();
2185   SmallVirtRegSet FixedRegisters;
2186   MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2187   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2188     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2189     if (CutOffEncountered == CO_Depth)
2190       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2191                     "reached. Use -fexhaustive-register-search to skip "
2192                     "cutoffs");
2193     else if (CutOffEncountered == CO_Interf)
2194       Ctx.emitError("register allocation failed: maximum interference for "
2195                     "recoloring reached. Use -fexhaustive-register-search "
2196                     "to skip cutoffs");
2197     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2198       Ctx.emitError("register allocation failed: maximum interference and "
2199                     "depth for recoloring reached. Use "
2200                     "-fexhaustive-register-search to skip cutoffs");
2201   }
2202   return Reg;
2203 }
2204 
2205 /// Using a CSR for the first time has a cost because it causes push|pop
2206 /// to be added to prologue|epilogue. Splitting a cold section of the live
2207 /// range can have lower cost than using the CSR for the first time;
2208 /// Spilling a live range in the cold path can have lower cost than using
2209 /// the CSR for the first time. Returns the physical register if we decide
2210 /// to use the CSR; otherwise return 0.
2211 MCRegister
2212 RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
2213                                 MCRegister PhysReg, uint8_t &CostPerUseLimit,
2214                                 SmallVectorImpl<Register> &NewVRegs) {
2215   if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2216     // We choose spill over using the CSR for the first time if the spill cost
2217     // is lower than CSRCost.
2218     SA->analyze(&VirtReg);
2219     if (calcSpillCost() >= CSRCost)
2220       return PhysReg;
2221 
2222     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2223     // we will not use a callee-saved register in tryEvict.
2224     CostPerUseLimit = 1;
2225     return 0;
2226   }
2227   if (ExtraInfo->getStage(VirtReg) < RS_Split) {
2228     // We choose pre-splitting over using the CSR for the first time if
2229     // the cost of splitting is lower than CSRCost.
2230     SA->analyze(&VirtReg);
2231     unsigned NumCands = 0;
2232     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2233     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2234                                                  NumCands, true /*IgnoreCSR*/);
2235     if (BestCand == NoCand)
2236       // Use the CSR if we can't find a region split below CSRCost.
2237       return PhysReg;
2238 
2239     // Perform the actual pre-splitting.
2240     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2241     return 0;
2242   }
2243   return PhysReg;
2244 }
2245 
2246 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2247   // Do not keep invalid information around.
2248   SetOfBrokenHints.remove(&LI);
2249 }
2250 
2251 void RAGreedy::initializeCSRCost() {
2252   // We use the larger one out of the command-line option and the value report
2253   // by TRI.
2254   CSRCost = BlockFrequency(
2255       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2256   if (!CSRCost.getFrequency())
2257     return;
2258 
2259   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2260   uint64_t ActualEntry = MBFI->getEntryFreq();
2261   if (!ActualEntry) {
2262     CSRCost = 0;
2263     return;
2264   }
2265   uint64_t FixedEntry = 1 << 14;
2266   if (ActualEntry < FixedEntry)
2267     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2268   else if (ActualEntry <= UINT32_MAX)
2269     // Invert the fraction and divide.
2270     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2271   else
2272     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2273     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2274 }
2275 
2276 /// Collect the hint info for \p Reg.
2277 /// The results are stored into \p Out.
2278 /// \p Out is not cleared before being populated.
2279 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
2280   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2281     if (!Instr.isFullCopy())
2282       continue;
2283     // Look for the other end of the copy.
2284     Register OtherReg = Instr.getOperand(0).getReg();
2285     if (OtherReg == Reg) {
2286       OtherReg = Instr.getOperand(1).getReg();
2287       if (OtherReg == Reg)
2288         continue;
2289     }
2290     // Get the current assignment.
2291     MCRegister OtherPhysReg =
2292         OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
2293     // Push the collected information.
2294     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2295                            OtherPhysReg));
2296   }
2297 }
2298 
2299 /// Using the given \p List, compute the cost of the broken hints if
2300 /// \p PhysReg was used.
2301 /// \return The cost of \p List for \p PhysReg.
2302 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2303                                            MCRegister PhysReg) {
2304   BlockFrequency Cost = 0;
2305   for (const HintInfo &Info : List) {
2306     if (Info.PhysReg != PhysReg)
2307       Cost += Info.Freq;
2308   }
2309   return Cost;
2310 }
2311 
2312 /// Using the register assigned to \p VirtReg, try to recolor
2313 /// all the live ranges that are copy-related with \p VirtReg.
2314 /// The recoloring is then propagated to all the live-ranges that have
2315 /// been recolored and so on, until no more copies can be coalesced or
2316 /// it is not profitable.
2317 /// For a given live range, profitability is determined by the sum of the
2318 /// frequencies of the non-identity copies it would introduce with the old
2319 /// and new register.
2320 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2321   // We have a broken hint, check if it is possible to fix it by
2322   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2323   // some register and PhysReg may be available for the other live-ranges.
2324   SmallSet<Register, 4> Visited;
2325   SmallVector<unsigned, 2> RecoloringCandidates;
2326   HintsInfo Info;
2327   Register Reg = VirtReg.reg();
2328   MCRegister PhysReg = VRM->getPhys(Reg);
2329   // Start the recoloring algorithm from the input live-interval, then
2330   // it will propagate to the ones that are copy-related with it.
2331   Visited.insert(Reg);
2332   RecoloringCandidates.push_back(Reg);
2333 
2334   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2335                     << '(' << printReg(PhysReg, TRI) << ")\n");
2336 
2337   do {
2338     Reg = RecoloringCandidates.pop_back_val();
2339 
2340     // We cannot recolor physical register.
2341     if (Register::isPhysicalRegister(Reg))
2342       continue;
2343 
2344     // This may be a skipped class
2345     if (!VRM->hasPhys(Reg)) {
2346       assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) &&
2347              "We have an unallocated variable which should have been handled");
2348       continue;
2349     }
2350 
2351     // Get the live interval mapped with this virtual register to be able
2352     // to check for the interference with the new color.
2353     LiveInterval &LI = LIS->getInterval(Reg);
2354     MCRegister CurrPhys = VRM->getPhys(Reg);
2355     // Check that the new color matches the register class constraints and
2356     // that it is free for this live range.
2357     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2358                                 Matrix->checkInterference(LI, PhysReg)))
2359       continue;
2360 
2361     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2362                       << ") is recolorable.\n");
2363 
2364     // Gather the hint info.
2365     Info.clear();
2366     collectHintInfo(Reg, Info);
2367     // Check if recoloring the live-range will increase the cost of the
2368     // non-identity copies.
2369     if (CurrPhys != PhysReg) {
2370       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2371       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2372       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2373       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2374                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2375                         << '\n');
2376       if (OldCopiesCost < NewCopiesCost) {
2377         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2378         continue;
2379       }
2380       // At this point, the cost is either cheaper or equal. If it is
2381       // equal, we consider this is profitable because it may expose
2382       // more recoloring opportunities.
2383       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2384       // Recolor the live-range.
2385       Matrix->unassign(LI);
2386       Matrix->assign(LI, PhysReg);
2387     }
2388     // Push all copy-related live-ranges to keep reconciling the broken
2389     // hints.
2390     for (const HintInfo &HI : Info) {
2391       if (Visited.insert(HI.Reg).second)
2392         RecoloringCandidates.push_back(HI.Reg);
2393     }
2394   } while (!RecoloringCandidates.empty());
2395 }
2396 
2397 /// Try to recolor broken hints.
2398 /// Broken hints may be repaired by recoloring when an evicted variable
2399 /// freed up a register for a larger live-range.
2400 /// Consider the following example:
2401 /// BB1:
2402 ///   a =
2403 ///   b =
2404 /// BB2:
2405 ///   ...
2406 ///   = b
2407 ///   = a
2408 /// Let us assume b gets split:
2409 /// BB1:
2410 ///   a =
2411 ///   b =
2412 /// BB2:
2413 ///   c = b
2414 ///   ...
2415 ///   d = c
2416 ///   = d
2417 ///   = a
2418 /// Because of how the allocation work, b, c, and d may be assigned different
2419 /// colors. Now, if a gets evicted later:
2420 /// BB1:
2421 ///   a =
2422 ///   st a, SpillSlot
2423 ///   b =
2424 /// BB2:
2425 ///   c = b
2426 ///   ...
2427 ///   d = c
2428 ///   = d
2429 ///   e = ld SpillSlot
2430 ///   = e
2431 /// This is likely that we can assign the same register for b, c, and d,
2432 /// getting rid of 2 copies.
2433 void RAGreedy::tryHintsRecoloring() {
2434   for (LiveInterval *LI : SetOfBrokenHints) {
2435     assert(Register::isVirtualRegister(LI->reg()) &&
2436            "Recoloring is possible only for virtual registers");
2437     // Some dead defs may be around (e.g., because of debug uses).
2438     // Ignore those.
2439     if (!VRM->hasPhys(LI->reg()))
2440       continue;
2441     tryHintRecoloring(*LI);
2442   }
2443 }
2444 
2445 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
2446                                        SmallVectorImpl<Register> &NewVRegs,
2447                                        SmallVirtRegSet &FixedRegisters,
2448                                        unsigned Depth) {
2449   uint8_t CostPerUseLimit = uint8_t(~0u);
2450   // First try assigning a free register.
2451   auto Order =
2452       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
2453   if (MCRegister PhysReg =
2454           tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
2455     // If VirtReg got an assignment, the eviction info is no longer relevant.
2456     LastEvicted.clearEvicteeInfo(VirtReg.reg());
2457     // When NewVRegs is not empty, we may have made decisions such as evicting
2458     // a virtual register, go with the earlier decisions and use the physical
2459     // register.
2460     if (CSRCost.getFrequency() &&
2461         EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) {
2462       MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2463                                                 CostPerUseLimit, NewVRegs);
2464       if (CSRReg || !NewVRegs.empty())
2465         // Return now if we decide to use a CSR or create new vregs due to
2466         // pre-splitting.
2467         return CSRReg;
2468     } else
2469       return PhysReg;
2470   }
2471 
2472   LiveRangeStage Stage = ExtraInfo->getStage(VirtReg);
2473   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
2474                     << ExtraInfo->getCascade(VirtReg.reg()) << '\n');
2475 
2476   // Try to evict a less worthy live range, but only for ranges from the primary
2477   // queue. The RS_Split ranges already failed to do this, and they should not
2478   // get a second chance until they have been split.
2479   if (Stage != RS_Split)
2480     if (Register PhysReg =
2481             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
2482                      FixedRegisters)) {
2483       Register Hint = MRI->getSimpleHint(VirtReg.reg());
2484       // If VirtReg has a hint and that hint is broken record this
2485       // virtual register as a recoloring candidate for broken hint.
2486       // Indeed, since we evicted a variable in its neighborhood it is
2487       // likely we can at least partially recolor some of the
2488       // copy-related live-ranges.
2489       if (Hint && Hint != PhysReg)
2490         SetOfBrokenHints.insert(&VirtReg);
2491       // If VirtReg eviction someone, the eviction info for it as an evictee is
2492       // no longer relevant.
2493       LastEvicted.clearEvicteeInfo(VirtReg.reg());
2494       return PhysReg;
2495     }
2496 
2497   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
2498 
2499   // The first time we see a live range, don't try to split or spill.
2500   // Wait until the second time, when all smaller ranges have been allocated.
2501   // This gives a better picture of the interference to split around.
2502   if (Stage < RS_Split) {
2503     ExtraInfo->setStage(VirtReg, RS_Split);
2504     LLVM_DEBUG(dbgs() << "wait for second round\n");
2505     NewVRegs.push_back(VirtReg.reg());
2506     return 0;
2507   }
2508 
2509   if (Stage < RS_Spill) {
2510     // Try splitting VirtReg or interferences.
2511     unsigned NewVRegSizeBefore = NewVRegs.size();
2512     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
2513     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
2514       // If VirtReg got split, the eviction info is no longer relevant.
2515       LastEvicted.clearEvicteeInfo(VirtReg.reg());
2516       return PhysReg;
2517     }
2518   }
2519 
2520   // If we couldn't allocate a register from spilling, there is probably some
2521   // invalid inline assembly. The base class will report it.
2522   if (Stage >= RS_Done || !VirtReg.isSpillable())
2523     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
2524                                    Depth);
2525 
2526   // Finally spill VirtReg itself.
2527   if ((EnableDeferredSpilling ||
2528        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
2529       ExtraInfo->getStage(VirtReg) < RS_Memory) {
2530     // TODO: This is experimental and in particular, we do not model
2531     // the live range splitting done by spilling correctly.
2532     // We would need a deep integration with the spiller to do the
2533     // right thing here. Anyway, that is still good for early testing.
2534     ExtraInfo->setStage(VirtReg, RS_Memory);
2535     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
2536     NewVRegs.push_back(VirtReg.reg());
2537   } else {
2538     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
2539                        TimerGroupDescription, TimePassesIsEnabled);
2540     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2541     spiller().spill(LRE);
2542     ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
2543 
2544     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
2545     // the new regs are kept in LDV (still mapping to the old register), until
2546     // we rewrite spilled locations in LDV at a later stage.
2547     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
2548 
2549     if (VerifyEnabled)
2550       MF->verify(this, "After spilling");
2551   }
2552 
2553   // The live virtual register requesting allocation was spilled, so tell
2554   // the caller not to allocate anything during this round.
2555   return 0;
2556 }
2557 
2558 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) {
2559   using namespace ore;
2560   if (Spills) {
2561     R << NV("NumSpills", Spills) << " spills ";
2562     R << NV("TotalSpillsCost", SpillsCost) << " total spills cost ";
2563   }
2564   if (FoldedSpills) {
2565     R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
2566     R << NV("TotalFoldedSpillsCost", FoldedSpillsCost)
2567       << " total folded spills cost ";
2568   }
2569   if (Reloads) {
2570     R << NV("NumReloads", Reloads) << " reloads ";
2571     R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost ";
2572   }
2573   if (FoldedReloads) {
2574     R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
2575     R << NV("TotalFoldedReloadsCost", FoldedReloadsCost)
2576       << " total folded reloads cost ";
2577   }
2578   if (ZeroCostFoldedReloads)
2579     R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads)
2580       << " zero cost folded reloads ";
2581   if (Copies) {
2582     R << NV("NumVRCopies", Copies) << " virtual registers copies ";
2583     R << NV("TotalCopiesCost", CopiesCost) << " total copies cost ";
2584   }
2585 }
2586 
2587 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) {
2588   RAGreedyStats Stats;
2589   const MachineFrameInfo &MFI = MF->getFrameInfo();
2590   int FI;
2591 
2592   auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
2593     return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>(
2594         A->getPseudoValue())->getFrameIndex());
2595   };
2596   auto isPatchpointInstr = [](const MachineInstr &MI) {
2597     return MI.getOpcode() == TargetOpcode::PATCHPOINT ||
2598            MI.getOpcode() == TargetOpcode::STACKMAP ||
2599            MI.getOpcode() == TargetOpcode::STATEPOINT;
2600   };
2601   for (MachineInstr &MI : MBB) {
2602     if (MI.isCopy()) {
2603       MachineOperand &Dest = MI.getOperand(0);
2604       MachineOperand &Src = MI.getOperand(1);
2605       if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() &&
2606           Src.getReg().isVirtual())
2607         ++Stats.Copies;
2608       continue;
2609     }
2610 
2611     SmallVector<const MachineMemOperand *, 2> Accesses;
2612     if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2613       ++Stats.Reloads;
2614       continue;
2615     }
2616     if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2617       ++Stats.Spills;
2618       continue;
2619     }
2620     if (TII->hasLoadFromStackSlot(MI, Accesses) &&
2621         llvm::any_of(Accesses, isSpillSlotAccess)) {
2622       if (!isPatchpointInstr(MI)) {
2623         Stats.FoldedReloads += Accesses.size();
2624         continue;
2625       }
2626       // For statepoint there may be folded and zero cost folded stack reloads.
2627       std::pair<unsigned, unsigned> NonZeroCostRange =
2628           TII->getPatchpointUnfoldableRange(MI);
2629       SmallSet<unsigned, 16> FoldedReloads;
2630       SmallSet<unsigned, 16> ZeroCostFoldedReloads;
2631       for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) {
2632         MachineOperand &MO = MI.getOperand(Idx);
2633         if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex()))
2634           continue;
2635         if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second)
2636           FoldedReloads.insert(MO.getIndex());
2637         else
2638           ZeroCostFoldedReloads.insert(MO.getIndex());
2639       }
2640       // If stack slot is used in folded reload it is not zero cost then.
2641       for (unsigned Slot : FoldedReloads)
2642         ZeroCostFoldedReloads.erase(Slot);
2643       Stats.FoldedReloads += FoldedReloads.size();
2644       Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size();
2645       continue;
2646     }
2647     Accesses.clear();
2648     if (TII->hasStoreToStackSlot(MI, Accesses) &&
2649         llvm::any_of(Accesses, isSpillSlotAccess)) {
2650       Stats.FoldedSpills += Accesses.size();
2651     }
2652   }
2653   // Set cost of collected statistic by multiplication to relative frequency of
2654   // this basic block.
2655   float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB);
2656   Stats.ReloadsCost = RelFreq * Stats.Reloads;
2657   Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads;
2658   Stats.SpillsCost = RelFreq * Stats.Spills;
2659   Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills;
2660   Stats.CopiesCost = RelFreq * Stats.Copies;
2661   return Stats;
2662 }
2663 
2664 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) {
2665   RAGreedyStats Stats;
2666 
2667   // Sum up the spill and reloads in subloops.
2668   for (MachineLoop *SubLoop : *L)
2669     Stats.add(reportStats(SubLoop));
2670 
2671   for (MachineBasicBlock *MBB : L->getBlocks())
2672     // Handle blocks that were not included in subloops.
2673     if (Loops->getLoopFor(MBB) == L)
2674       Stats.add(computeStats(*MBB));
2675 
2676   if (!Stats.isEmpty()) {
2677     using namespace ore;
2678 
2679     ORE->emit([&]() {
2680       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies",
2681                                         L->getStartLoc(), L->getHeader());
2682       Stats.report(R);
2683       R << "generated in loop";
2684       return R;
2685     });
2686   }
2687   return Stats;
2688 }
2689 
2690 void RAGreedy::reportStats() {
2691   if (!ORE->allowExtraAnalysis(DEBUG_TYPE))
2692     return;
2693   RAGreedyStats Stats;
2694   for (MachineLoop *L : *Loops)
2695     Stats.add(reportStats(L));
2696   // Process non-loop blocks.
2697   for (MachineBasicBlock &MBB : *MF)
2698     if (!Loops->getLoopFor(&MBB))
2699       Stats.add(computeStats(MBB));
2700   if (!Stats.isEmpty()) {
2701     using namespace ore;
2702 
2703     ORE->emit([&]() {
2704       DebugLoc Loc;
2705       if (auto *SP = MF->getFunction().getSubprogram())
2706         Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
2707       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc,
2708                                         &MF->front());
2709       Stats.report(R);
2710       R << "generated in function";
2711       return R;
2712     });
2713   }
2714 }
2715 
2716 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
2717   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2718                     << "********** Function: " << mf.getName() << '\n');
2719 
2720   MF = &mf;
2721   TRI = MF->getSubtarget().getRegisterInfo();
2722   TII = MF->getSubtarget().getInstrInfo();
2723   RCI.runOnMachineFunction(mf);
2724 
2725   EnableAdvancedRASplitCost =
2726       ConsiderLocalIntervalCost.getNumOccurrences()
2727           ? ConsiderLocalIntervalCost
2728           : MF->getSubtarget().enableAdvancedRASplitCost();
2729 
2730   if (VerifyEnabled)
2731     MF->verify(this, "Before greedy register allocator");
2732 
2733   RegAllocBase::init(getAnalysis<VirtRegMap>(),
2734                      getAnalysis<LiveIntervals>(),
2735                      getAnalysis<LiveRegMatrix>());
2736   Indexes = &getAnalysis<SlotIndexes>();
2737   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2738   DomTree = &getAnalysis<MachineDominatorTree>();
2739   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
2740   Loops = &getAnalysis<MachineLoopInfo>();
2741   Bundles = &getAnalysis<EdgeBundles>();
2742   SpillPlacer = &getAnalysis<SpillPlacement>();
2743   DebugVars = &getAnalysis<LiveDebugVariables>();
2744   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2745 
2746   initializeCSRCost();
2747 
2748   RegCosts = TRI->getRegisterCosts(*MF);
2749 
2750   ExtraInfo.emplace();
2751   EvictAdvisor =
2752       getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this);
2753 
2754   VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
2755   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI));
2756 
2757   VRAI->calculateSpillWeightsAndHints();
2758 
2759   LLVM_DEBUG(LIS->dump());
2760 
2761   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
2762   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI));
2763 
2764   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
2765   GlobalCand.resize(32);  // This will grow as needed.
2766   SetOfBrokenHints.clear();
2767   LastEvicted.clear();
2768 
2769   allocatePhysRegs();
2770   tryHintsRecoloring();
2771 
2772   if (VerifyEnabled)
2773     MF->verify(this, "Before post optimization");
2774   postOptimization();
2775   reportStats();
2776 
2777   releaseMemory();
2778   return true;
2779 }
2780