xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/RegAllocGreedy.cpp (revision 2f513db72b034fd5ef7f080b11be5c711c15186a)
1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AllocationOrder.h"
15 #include "InterferenceCache.h"
16 #include "LiveDebugVariables.h"
17 #include "RegAllocBase.h"
18 #include "SpillPlacement.h"
19 #include "Spiller.h"
20 #include "SplitKit.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/BitVector.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/IndexedMap.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/SetVector.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/ADT/StringRef.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/CodeGen/CalcSpillWeights.h"
35 #include "llvm/CodeGen/EdgeBundles.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalUnion.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveRangeEdit.h"
40 #include "llvm/CodeGen/LiveRegMatrix.h"
41 #include "llvm/CodeGen/LiveStacks.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
44 #include "llvm/CodeGen/MachineDominators.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineFunctionPass.h"
48 #include "llvm/CodeGen/MachineInstr.h"
49 #include "llvm/CodeGen/MachineLoopInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/RegAllocRegistry.h"
54 #include "llvm/CodeGen/RegisterClassInfo.h"
55 #include "llvm/CodeGen/SlotIndexes.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/BlockFrequency.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/Timer.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <memory>
76 #include <queue>
77 #include <tuple>
78 #include <utility>
79 
80 using namespace llvm;
81 
82 #define DEBUG_TYPE "regalloc"
83 
84 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
85 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
86 STATISTIC(NumEvicted,      "Number of interferences evicted");
87 
88 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
89     "split-spill-mode", cl::Hidden,
90     cl::desc("Spill mode for splitting live ranges"),
91     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
92                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
93                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
94     cl::init(SplitEditor::SM_Speed));
95 
96 static cl::opt<unsigned>
97 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
98                              cl::desc("Last chance recoloring max depth"),
99                              cl::init(5));
100 
101 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
102     "lcr-max-interf", cl::Hidden,
103     cl::desc("Last chance recoloring maximum number of considered"
104              " interference at a time"),
105     cl::init(8));
106 
107 static cl::opt<bool> ExhaustiveSearch(
108     "exhaustive-register-search", cl::NotHidden,
109     cl::desc("Exhaustive Search for registers bypassing the depth "
110              "and interference cutoffs of last chance recoloring"),
111     cl::Hidden);
112 
113 static cl::opt<bool> EnableLocalReassignment(
114     "enable-local-reassign", cl::Hidden,
115     cl::desc("Local reassignment can yield better allocation decisions, but "
116              "may be compile time intensive"),
117     cl::init(false));
118 
119 static cl::opt<bool> EnableDeferredSpilling(
120     "enable-deferred-spilling", cl::Hidden,
121     cl::desc("Instead of spilling a variable right away, defer the actual "
122              "code insertion to the end of the allocation. That way the "
123              "allocator might still find a suitable coloring for this "
124              "variable because of other evicted variables."),
125     cl::init(false));
126 
127 static cl::opt<unsigned>
128     HugeSizeForSplit("huge-size-for-split", cl::Hidden,
129                      cl::desc("A threshold of live range size which may cause "
130                               "high compile time cost in global splitting."),
131                      cl::init(5000));
132 
133 // FIXME: Find a good default for this flag and remove the flag.
134 static cl::opt<unsigned>
135 CSRFirstTimeCost("regalloc-csr-first-time-cost",
136               cl::desc("Cost for first time use of callee-saved register."),
137               cl::init(0), cl::Hidden);
138 
139 static cl::opt<bool> ConsiderLocalIntervalCost(
140     "consider-local-interval-cost", cl::Hidden,
141     cl::desc("Consider the cost of local intervals created by a split "
142              "candidate when choosing the best split candidate."),
143     cl::init(false));
144 
145 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
146                                        createGreedyRegisterAllocator);
147 
148 namespace {
149 
150 class RAGreedy : public MachineFunctionPass,
151                  public RegAllocBase,
152                  private LiveRangeEdit::Delegate {
153   // Convenient shortcuts.
154   using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
155   using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
156   using SmallVirtRegSet = SmallSet<unsigned, 16>;
157 
158   // context
159   MachineFunction *MF;
160 
161   // Shortcuts to some useful interface.
162   const TargetInstrInfo *TII;
163   const TargetRegisterInfo *TRI;
164   RegisterClassInfo RCI;
165 
166   // analyses
167   SlotIndexes *Indexes;
168   MachineBlockFrequencyInfo *MBFI;
169   MachineDominatorTree *DomTree;
170   MachineLoopInfo *Loops;
171   MachineOptimizationRemarkEmitter *ORE;
172   EdgeBundles *Bundles;
173   SpillPlacement *SpillPlacer;
174   LiveDebugVariables *DebugVars;
175   AliasAnalysis *AA;
176 
177   // state
178   std::unique_ptr<Spiller> SpillerInstance;
179   PQueue Queue;
180   unsigned NextCascade;
181 
182   // Live ranges pass through a number of stages as we try to allocate them.
183   // Some of the stages may also create new live ranges:
184   //
185   // - Region splitting.
186   // - Per-block splitting.
187   // - Local splitting.
188   // - Spilling.
189   //
190   // Ranges produced by one of the stages skip the previous stages when they are
191   // dequeued. This improves performance because we can skip interference checks
192   // that are unlikely to give any results. It also guarantees that the live
193   // range splitting algorithm terminates, something that is otherwise hard to
194   // ensure.
195   enum LiveRangeStage {
196     /// Newly created live range that has never been queued.
197     RS_New,
198 
199     /// Only attempt assignment and eviction. Then requeue as RS_Split.
200     RS_Assign,
201 
202     /// Attempt live range splitting if assignment is impossible.
203     RS_Split,
204 
205     /// Attempt more aggressive live range splitting that is guaranteed to make
206     /// progress.  This is used for split products that may not be making
207     /// progress.
208     RS_Split2,
209 
210     /// Live range will be spilled.  No more splitting will be attempted.
211     RS_Spill,
212 
213 
214     /// Live range is in memory. Because of other evictions, it might get moved
215     /// in a register in the end.
216     RS_Memory,
217 
218     /// There is nothing more we can do to this live range.  Abort compilation
219     /// if it can't be assigned.
220     RS_Done
221   };
222 
223   // Enum CutOffStage to keep a track whether the register allocation failed
224   // because of the cutoffs encountered in last chance recoloring.
225   // Note: This is used as bitmask. New value should be next power of 2.
226   enum CutOffStage {
227     // No cutoffs encountered
228     CO_None = 0,
229 
230     // lcr-max-depth cutoff encountered
231     CO_Depth = 1,
232 
233     // lcr-max-interf cutoff encountered
234     CO_Interf = 2
235   };
236 
237   uint8_t CutOffInfo;
238 
239 #ifndef NDEBUG
240   static const char *const StageName[];
241 #endif
242 
243   // RegInfo - Keep additional information about each live range.
244   struct RegInfo {
245     LiveRangeStage Stage = RS_New;
246 
247     // Cascade - Eviction loop prevention. See canEvictInterference().
248     unsigned Cascade = 0;
249 
250     RegInfo() = default;
251   };
252 
253   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
254 
255   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
256     return ExtraRegInfo[VirtReg.reg].Stage;
257   }
258 
259   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
260     ExtraRegInfo.resize(MRI->getNumVirtRegs());
261     ExtraRegInfo[VirtReg.reg].Stage = Stage;
262   }
263 
264   template<typename Iterator>
265   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
266     ExtraRegInfo.resize(MRI->getNumVirtRegs());
267     for (;Begin != End; ++Begin) {
268       unsigned Reg = *Begin;
269       if (ExtraRegInfo[Reg].Stage == RS_New)
270         ExtraRegInfo[Reg].Stage = NewStage;
271     }
272   }
273 
274   /// Cost of evicting interference.
275   struct EvictionCost {
276     unsigned BrokenHints = 0; ///< Total number of broken hints.
277     float MaxWeight = 0;      ///< Maximum spill weight evicted.
278 
279     EvictionCost() = default;
280 
281     bool isMax() const { return BrokenHints == ~0u; }
282 
283     void setMax() { BrokenHints = ~0u; }
284 
285     void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
286 
287     bool operator<(const EvictionCost &O) const {
288       return std::tie(BrokenHints, MaxWeight) <
289              std::tie(O.BrokenHints, O.MaxWeight);
290     }
291   };
292 
293   /// EvictionTrack - Keeps track of past evictions in order to optimize region
294   /// split decision.
295   class EvictionTrack {
296 
297   public:
298     using EvictorInfo =
299         std::pair<unsigned /* evictor */, unsigned /* physreg */>;
300     using EvicteeInfo = llvm::DenseMap<unsigned /* evictee */, EvictorInfo>;
301 
302   private:
303     /// Each Vreg that has been evicted in the last stage of selectOrSplit will
304     /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
305     EvicteeInfo Evictees;
306 
307   public:
308     /// Clear all eviction information.
309     void clear() { Evictees.clear(); }
310 
311     ///  Clear eviction information for the given evictee Vreg.
312     /// E.g. when Vreg get's a new allocation, the old eviction info is no
313     /// longer relevant.
314     /// \param Evictee The evictee Vreg for whom we want to clear collected
315     /// eviction info.
316     void clearEvicteeInfo(unsigned Evictee) { Evictees.erase(Evictee); }
317 
318     /// Track new eviction.
319     /// The Evictor vreg has evicted the Evictee vreg from Physreg.
320     /// \param PhysReg The physical register Evictee was evicted from.
321     /// \param Evictor The evictor Vreg that evicted Evictee.
322     /// \param Evictee The evictee Vreg.
323     void addEviction(unsigned PhysReg, unsigned Evictor, unsigned Evictee) {
324       Evictees[Evictee].first = Evictor;
325       Evictees[Evictee].second = PhysReg;
326     }
327 
328     /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
329     /// \param Evictee The evictee vreg.
330     /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
331     /// nobody has evicted Evictee from PhysReg.
332     EvictorInfo getEvictor(unsigned Evictee) {
333       if (Evictees.count(Evictee)) {
334         return Evictees[Evictee];
335       }
336 
337       return EvictorInfo(0, 0);
338     }
339   };
340 
341   // Keeps track of past evictions in order to optimize region split decision.
342   EvictionTrack LastEvicted;
343 
344   // splitting state.
345   std::unique_ptr<SplitAnalysis> SA;
346   std::unique_ptr<SplitEditor> SE;
347 
348   /// Cached per-block interference maps
349   InterferenceCache IntfCache;
350 
351   /// All basic blocks where the current register has uses.
352   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
353 
354   /// Global live range splitting candidate info.
355   struct GlobalSplitCandidate {
356     // Register intended for assignment, or 0.
357     unsigned PhysReg;
358 
359     // SplitKit interval index for this candidate.
360     unsigned IntvIdx;
361 
362     // Interference for PhysReg.
363     InterferenceCache::Cursor Intf;
364 
365     // Bundles where this candidate should be live.
366     BitVector LiveBundles;
367     SmallVector<unsigned, 8> ActiveBlocks;
368 
369     void reset(InterferenceCache &Cache, unsigned Reg) {
370       PhysReg = Reg;
371       IntvIdx = 0;
372       Intf.setPhysReg(Cache, Reg);
373       LiveBundles.clear();
374       ActiveBlocks.clear();
375     }
376 
377     // Set B[i] = C for every live bundle where B[i] was NoCand.
378     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
379       unsigned Count = 0;
380       for (unsigned i : LiveBundles.set_bits())
381         if (B[i] == NoCand) {
382           B[i] = C;
383           Count++;
384         }
385       return Count;
386     }
387   };
388 
389   /// Candidate info for each PhysReg in AllocationOrder.
390   /// This vector never shrinks, but grows to the size of the largest register
391   /// class.
392   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
393 
394   enum : unsigned { NoCand = ~0u };
395 
396   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
397   /// NoCand which indicates the stack interval.
398   SmallVector<unsigned, 32> BundleCand;
399 
400   /// Callee-save register cost, calculated once per machine function.
401   BlockFrequency CSRCost;
402 
403   /// Run or not the local reassignment heuristic. This information is
404   /// obtained from the TargetSubtargetInfo.
405   bool EnableLocalReassign;
406 
407   /// Enable or not the consideration of the cost of local intervals created
408   /// by a split candidate when choosing the best split candidate.
409   bool EnableAdvancedRASplitCost;
410 
411   /// Set of broken hints that may be reconciled later because of eviction.
412   SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
413 
414 public:
415   RAGreedy();
416 
417   /// Return the pass name.
418   StringRef getPassName() const override { return "Greedy Register Allocator"; }
419 
420   /// RAGreedy analysis usage.
421   void getAnalysisUsage(AnalysisUsage &AU) const override;
422   void releaseMemory() override;
423   Spiller &spiller() override { return *SpillerInstance; }
424   void enqueue(LiveInterval *LI) override;
425   LiveInterval *dequeue() override;
426   unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override;
427   void aboutToRemoveInterval(LiveInterval &) override;
428 
429   /// Perform register allocation.
430   bool runOnMachineFunction(MachineFunction &mf) override;
431 
432   MachineFunctionProperties getRequiredProperties() const override {
433     return MachineFunctionProperties().set(
434         MachineFunctionProperties::Property::NoPHIs);
435   }
436 
437   static char ID;
438 
439 private:
440   unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &,
441                              SmallVirtRegSet &, unsigned = 0);
442 
443   bool LRE_CanEraseVirtReg(unsigned) override;
444   void LRE_WillShrinkVirtReg(unsigned) override;
445   void LRE_DidCloneVirtReg(unsigned, unsigned) override;
446   void enqueue(PQueue &CurQueue, LiveInterval *LI);
447   LiveInterval *dequeue(PQueue &CurQueue);
448 
449   BlockFrequency calcSpillCost();
450   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
451   bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
452   bool growRegion(GlobalSplitCandidate &Cand);
453   bool splitCanCauseEvictionChain(unsigned Evictee, GlobalSplitCandidate &Cand,
454                                   unsigned BBNumber,
455                                   const AllocationOrder &Order);
456   bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
457                                GlobalSplitCandidate &Cand, unsigned BBNumber,
458                                const AllocationOrder &Order);
459   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
460                                      const AllocationOrder &Order,
461                                      bool *CanCauseEvictionChain);
462   bool calcCompactRegion(GlobalSplitCandidate&);
463   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
464   void calcGapWeights(unsigned, SmallVectorImpl<float>&);
465   unsigned canReassign(LiveInterval &VirtReg, unsigned PrevReg);
466   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
467   bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&,
468                             const SmallVirtRegSet&);
469   bool canEvictInterferenceInRange(LiveInterval &VirtReg, unsigned PhysReg,
470                                    SlotIndex Start, SlotIndex End,
471                                    EvictionCost &MaxCost);
472   unsigned getCheapestEvicteeWeight(const AllocationOrder &Order,
473                                     LiveInterval &VirtReg, SlotIndex Start,
474                                     SlotIndex End, float *BestEvictWeight);
475   void evictInterference(LiveInterval&, unsigned,
476                          SmallVectorImpl<unsigned>&);
477   bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
478                                   SmallLISet &RecoloringCandidates,
479                                   const SmallVirtRegSet &FixedRegisters);
480 
481   unsigned tryAssign(LiveInterval&, AllocationOrder&,
482                      SmallVectorImpl<unsigned>&,
483                      const SmallVirtRegSet&);
484   unsigned tryEvict(LiveInterval&, AllocationOrder&,
485                     SmallVectorImpl<unsigned>&, unsigned,
486                     const SmallVirtRegSet&);
487   unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
488                           SmallVectorImpl<unsigned>&);
489   unsigned isSplitBenefitWorthCost(LiveInterval &VirtReg);
490   /// Calculate cost of region splitting.
491   unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
492                                     AllocationOrder &Order,
493                                     BlockFrequency &BestCost,
494                                     unsigned &NumCands, bool IgnoreCSR,
495                                     bool *CanCauseEvictionChain = nullptr);
496   /// Perform region splitting.
497   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
498                          bool HasCompact,
499                          SmallVectorImpl<unsigned> &NewVRegs);
500   /// Check other options before using a callee-saved register for the first
501   /// time.
502   unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
503                                  unsigned PhysReg, unsigned &CostPerUseLimit,
504                                  SmallVectorImpl<unsigned> &NewVRegs);
505   void initializeCSRCost();
506   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
507                          SmallVectorImpl<unsigned>&);
508   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
509                                SmallVectorImpl<unsigned>&);
510   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
511     SmallVectorImpl<unsigned>&);
512   unsigned trySplit(LiveInterval&, AllocationOrder&,
513                     SmallVectorImpl<unsigned>&,
514                     const SmallVirtRegSet&);
515   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
516                                    SmallVectorImpl<unsigned> &,
517                                    SmallVirtRegSet &, unsigned);
518   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &,
519                                SmallVirtRegSet &, unsigned);
520   void tryHintRecoloring(LiveInterval &);
521   void tryHintsRecoloring();
522 
523   /// Model the information carried by one end of a copy.
524   struct HintInfo {
525     /// The frequency of the copy.
526     BlockFrequency Freq;
527     /// The virtual register or physical register.
528     unsigned Reg;
529     /// Its currently assigned register.
530     /// In case of a physical register Reg == PhysReg.
531     unsigned PhysReg;
532 
533     HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg)
534         : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
535   };
536   using HintsInfo = SmallVector<HintInfo, 4>;
537 
538   BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
539   void collectHintInfo(unsigned, HintsInfo &);
540 
541   bool isUnusedCalleeSavedReg(unsigned PhysReg) const;
542 
543   /// Compute and report the number of spills and reloads for a loop.
544   void reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
545                                     unsigned &FoldedReloads, unsigned &Spills,
546                                     unsigned &FoldedSpills);
547 
548   /// Report the number of spills and reloads for each loop.
549   void reportNumberOfSplillsReloads() {
550     for (MachineLoop *L : *Loops) {
551       unsigned Reloads, FoldedReloads, Spills, FoldedSpills;
552       reportNumberOfSplillsReloads(L, Reloads, FoldedReloads, Spills,
553                                    FoldedSpills);
554     }
555   }
556 };
557 
558 } // end anonymous namespace
559 
560 char RAGreedy::ID = 0;
561 char &llvm::RAGreedyID = RAGreedy::ID;
562 
563 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
564                 "Greedy Register Allocator", false, false)
565 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
566 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
567 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
568 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
569 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
570 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
571 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
572 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
573 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
574 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
575 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
576 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
577 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
578 INITIALIZE_PASS_END(RAGreedy, "greedy",
579                 "Greedy Register Allocator", false, false)
580 
581 #ifndef NDEBUG
582 const char *const RAGreedy::StageName[] = {
583     "RS_New",
584     "RS_Assign",
585     "RS_Split",
586     "RS_Split2",
587     "RS_Spill",
588     "RS_Memory",
589     "RS_Done"
590 };
591 #endif
592 
593 // Hysteresis to use when comparing floats.
594 // This helps stabilize decisions based on float comparisons.
595 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
596 
597 FunctionPass* llvm::createGreedyRegisterAllocator() {
598   return new RAGreedy();
599 }
600 
601 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
602 }
603 
604 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
605   AU.setPreservesCFG();
606   AU.addRequired<MachineBlockFrequencyInfo>();
607   AU.addPreserved<MachineBlockFrequencyInfo>();
608   AU.addRequired<AAResultsWrapperPass>();
609   AU.addPreserved<AAResultsWrapperPass>();
610   AU.addRequired<LiveIntervals>();
611   AU.addPreserved<LiveIntervals>();
612   AU.addRequired<SlotIndexes>();
613   AU.addPreserved<SlotIndexes>();
614   AU.addRequired<LiveDebugVariables>();
615   AU.addPreserved<LiveDebugVariables>();
616   AU.addRequired<LiveStacks>();
617   AU.addPreserved<LiveStacks>();
618   AU.addRequired<MachineDominatorTree>();
619   AU.addPreserved<MachineDominatorTree>();
620   AU.addRequired<MachineLoopInfo>();
621   AU.addPreserved<MachineLoopInfo>();
622   AU.addRequired<VirtRegMap>();
623   AU.addPreserved<VirtRegMap>();
624   AU.addRequired<LiveRegMatrix>();
625   AU.addPreserved<LiveRegMatrix>();
626   AU.addRequired<EdgeBundles>();
627   AU.addRequired<SpillPlacement>();
628   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
629   MachineFunctionPass::getAnalysisUsage(AU);
630 }
631 
632 //===----------------------------------------------------------------------===//
633 //                     LiveRangeEdit delegate methods
634 //===----------------------------------------------------------------------===//
635 
636 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
637   LiveInterval &LI = LIS->getInterval(VirtReg);
638   if (VRM->hasPhys(VirtReg)) {
639     Matrix->unassign(LI);
640     aboutToRemoveInterval(LI);
641     return true;
642   }
643   // Unassigned virtreg is probably in the priority queue.
644   // RegAllocBase will erase it after dequeueing.
645   // Nonetheless, clear the live-range so that the debug
646   // dump will show the right state for that VirtReg.
647   LI.clear();
648   return false;
649 }
650 
651 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
652   if (!VRM->hasPhys(VirtReg))
653     return;
654 
655   // Register is assigned, put it back on the queue for reassignment.
656   LiveInterval &LI = LIS->getInterval(VirtReg);
657   Matrix->unassign(LI);
658   enqueue(&LI);
659 }
660 
661 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
662   // Cloning a register we haven't even heard about yet?  Just ignore it.
663   if (!ExtraRegInfo.inBounds(Old))
664     return;
665 
666   // LRE may clone a virtual register because dead code elimination causes it to
667   // be split into connected components. The new components are much smaller
668   // than the original, so they should get a new chance at being assigned.
669   // same stage as the parent.
670   ExtraRegInfo[Old].Stage = RS_Assign;
671   ExtraRegInfo.grow(New);
672   ExtraRegInfo[New] = ExtraRegInfo[Old];
673 }
674 
675 void RAGreedy::releaseMemory() {
676   SpillerInstance.reset();
677   ExtraRegInfo.clear();
678   GlobalCand.clear();
679 }
680 
681 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
682 
683 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
684   // Prioritize live ranges by size, assigning larger ranges first.
685   // The queue holds (size, reg) pairs.
686   const unsigned Size = LI->getSize();
687   const unsigned Reg = LI->reg;
688   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
689          "Can only enqueue virtual registers");
690   unsigned Prio;
691 
692   ExtraRegInfo.grow(Reg);
693   if (ExtraRegInfo[Reg].Stage == RS_New)
694     ExtraRegInfo[Reg].Stage = RS_Assign;
695 
696   if (ExtraRegInfo[Reg].Stage == RS_Split) {
697     // Unsplit ranges that couldn't be allocated immediately are deferred until
698     // everything else has been allocated.
699     Prio = Size;
700   } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
701     // Memory operand should be considered last.
702     // Change the priority such that Memory operand are assigned in
703     // the reverse order that they came in.
704     // TODO: Make this a member variable and probably do something about hints.
705     static unsigned MemOp = 0;
706     Prio = MemOp++;
707   } else {
708     // Giant live ranges fall back to the global assignment heuristic, which
709     // prevents excessive spilling in pathological cases.
710     bool ReverseLocal = TRI->reverseLocalAssignment();
711     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
712     bool ForceGlobal = !ReverseLocal &&
713       (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
714 
715     if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
716         LIS->intervalIsInOneMBB(*LI)) {
717       // Allocate original local ranges in linear instruction order. Since they
718       // are singly defined, this produces optimal coloring in the absence of
719       // global interference and other constraints.
720       if (!ReverseLocal)
721         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
722       else {
723         // Allocating bottom up may allow many short LRGs to be assigned first
724         // to one of the cheap registers. This could be much faster for very
725         // large blocks on targets with many physical registers.
726         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
727       }
728       Prio |= RC.AllocationPriority << 24;
729     } else {
730       // Allocate global and split ranges in long->short order. Long ranges that
731       // don't fit should be spilled (or split) ASAP so they don't create
732       // interference.  Mark a bit to prioritize global above local ranges.
733       Prio = (1u << 29) + Size;
734     }
735     // Mark a higher bit to prioritize global and local above RS_Split.
736     Prio |= (1u << 31);
737 
738     // Boost ranges that have a physical register hint.
739     if (VRM->hasKnownPreference(Reg))
740       Prio |= (1u << 30);
741   }
742   // The virtual register number is a tie breaker for same-sized ranges.
743   // Give lower vreg numbers higher priority to assign them first.
744   CurQueue.push(std::make_pair(Prio, ~Reg));
745 }
746 
747 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
748 
749 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
750   if (CurQueue.empty())
751     return nullptr;
752   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
753   CurQueue.pop();
754   return LI;
755 }
756 
757 //===----------------------------------------------------------------------===//
758 //                            Direct Assignment
759 //===----------------------------------------------------------------------===//
760 
761 /// tryAssign - Try to assign VirtReg to an available register.
762 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
763                              AllocationOrder &Order,
764                              SmallVectorImpl<unsigned> &NewVRegs,
765                              const SmallVirtRegSet &FixedRegisters) {
766   Order.rewind();
767   unsigned PhysReg;
768   while ((PhysReg = Order.next()))
769     if (!Matrix->checkInterference(VirtReg, PhysReg))
770       break;
771   if (!PhysReg || Order.isHint())
772     return PhysReg;
773 
774   // PhysReg is available, but there may be a better choice.
775 
776   // If we missed a simple hint, try to cheaply evict interference from the
777   // preferred register.
778   if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
779     if (Order.isHint(Hint)) {
780       LLVM_DEBUG(dbgs() << "missed hint " << printReg(Hint, TRI) << '\n');
781       EvictionCost MaxCost;
782       MaxCost.setBrokenHints(1);
783       if (canEvictInterference(VirtReg, Hint, true, MaxCost, FixedRegisters)) {
784         evictInterference(VirtReg, Hint, NewVRegs);
785         return Hint;
786       }
787       // Record the missed hint, we may be able to recover
788       // at the end if the surrounding allocation changed.
789       SetOfBrokenHints.insert(&VirtReg);
790     }
791 
792   // Try to evict interference from a cheaper alternative.
793   unsigned Cost = TRI->getCostPerUse(PhysReg);
794 
795   // Most registers have 0 additional cost.
796   if (!Cost)
797     return PhysReg;
798 
799   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
800                     << Cost << '\n');
801   unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
802   return CheapReg ? CheapReg : PhysReg;
803 }
804 
805 //===----------------------------------------------------------------------===//
806 //                         Interference eviction
807 //===----------------------------------------------------------------------===//
808 
809 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
810   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
811   unsigned PhysReg;
812   while ((PhysReg = Order.next())) {
813     if (PhysReg == PrevReg)
814       continue;
815 
816     MCRegUnitIterator Units(PhysReg, TRI);
817     for (; Units.isValid(); ++Units) {
818       // Instantiate a "subquery", not to be confused with the Queries array.
819       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
820       if (subQ.checkInterference())
821         break;
822     }
823     // If no units have interference, break out with the current PhysReg.
824     if (!Units.isValid())
825       break;
826   }
827   if (PhysReg)
828     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
829                       << printReg(PrevReg, TRI) << " to "
830                       << printReg(PhysReg, TRI) << '\n');
831   return PhysReg;
832 }
833 
834 /// shouldEvict - determine if A should evict the assigned live range B. The
835 /// eviction policy defined by this function together with the allocation order
836 /// defined by enqueue() decides which registers ultimately end up being split
837 /// and spilled.
838 ///
839 /// Cascade numbers are used to prevent infinite loops if this function is a
840 /// cyclic relation.
841 ///
842 /// @param A          The live range to be assigned.
843 /// @param IsHint     True when A is about to be assigned to its preferred
844 ///                   register.
845 /// @param B          The live range to be evicted.
846 /// @param BreaksHint True when B is already assigned to its preferred register.
847 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
848                            LiveInterval &B, bool BreaksHint) {
849   bool CanSplit = getStage(B) < RS_Spill;
850 
851   // Be fairly aggressive about following hints as long as the evictee can be
852   // split.
853   if (CanSplit && IsHint && !BreaksHint)
854     return true;
855 
856   if (A.weight > B.weight) {
857     LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n');
858     return true;
859   }
860   return false;
861 }
862 
863 /// canEvictInterference - Return true if all interferences between VirtReg and
864 /// PhysReg can be evicted.
865 ///
866 /// @param VirtReg Live range that is about to be assigned.
867 /// @param PhysReg Desired register for assignment.
868 /// @param IsHint  True when PhysReg is VirtReg's preferred register.
869 /// @param MaxCost Only look for cheaper candidates and update with new cost
870 ///                when returning true.
871 /// @returns True when interference can be evicted cheaper than MaxCost.
872 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
873                                     bool IsHint, EvictionCost &MaxCost,
874                                     const SmallVirtRegSet &FixedRegisters) {
875   // It is only possible to evict virtual register interference.
876   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
877     return false;
878 
879   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
880 
881   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
882   // involved in an eviction before. If a cascade number was assigned, deny
883   // evicting anything with the same or a newer cascade number. This prevents
884   // infinite eviction loops.
885   //
886   // This works out so a register without a cascade number is allowed to evict
887   // anything, and it can be evicted by anything.
888   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
889   if (!Cascade)
890     Cascade = NextCascade;
891 
892   EvictionCost Cost;
893   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
894     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
895     // If there is 10 or more interferences, chances are one is heavier.
896     if (Q.collectInterferingVRegs(10) >= 10)
897       return false;
898 
899     // Check if any interfering live range is heavier than MaxWeight.
900     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
901       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
902       assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
903              "Only expecting virtual register interference from query");
904 
905       // Do not allow eviction of a virtual register if we are in the middle
906       // of last-chance recoloring and this virtual register is one that we
907       // have scavenged a physical register for.
908       if (FixedRegisters.count(Intf->reg))
909         return false;
910 
911       // Never evict spill products. They cannot split or spill.
912       if (getStage(*Intf) == RS_Done)
913         return false;
914       // Once a live range becomes small enough, it is urgent that we find a
915       // register for it. This is indicated by an infinite spill weight. These
916       // urgent live ranges get to evict almost anything.
917       //
918       // Also allow urgent evictions of unspillable ranges from a strictly
919       // larger allocation order.
920       bool Urgent = !VirtReg.isSpillable() &&
921         (Intf->isSpillable() ||
922          RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
923          RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
924       // Only evict older cascades or live ranges without a cascade.
925       unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
926       if (Cascade <= IntfCascade) {
927         if (!Urgent)
928           return false;
929         // We permit breaking cascades for urgent evictions. It should be the
930         // last resort, though, so make it really expensive.
931         Cost.BrokenHints += 10;
932       }
933       // Would this break a satisfied hint?
934       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
935       // Update eviction cost.
936       Cost.BrokenHints += BreaksHint;
937       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
938       // Abort if this would be too expensive.
939       if (!(Cost < MaxCost))
940         return false;
941       if (Urgent)
942         continue;
943       // Apply the eviction policy for non-urgent evictions.
944       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
945         return false;
946       // If !MaxCost.isMax(), then we're just looking for a cheap register.
947       // Evicting another local live range in this case could lead to suboptimal
948       // coloring.
949       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
950           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
951         return false;
952       }
953     }
954   }
955   MaxCost = Cost;
956   return true;
957 }
958 
959 /// Return true if all interferences between VirtReg and PhysReg between
960 /// Start and End can be evicted.
961 ///
962 /// \param VirtReg Live range that is about to be assigned.
963 /// \param PhysReg Desired register for assignment.
964 /// \param Start   Start of range to look for interferences.
965 /// \param End     End of range to look for interferences.
966 /// \param MaxCost Only look for cheaper candidates and update with new cost
967 ///                when returning true.
968 /// \return True when interference can be evicted cheaper than MaxCost.
969 bool RAGreedy::canEvictInterferenceInRange(LiveInterval &VirtReg,
970                                            unsigned PhysReg, SlotIndex Start,
971                                            SlotIndex End,
972                                            EvictionCost &MaxCost) {
973   EvictionCost Cost;
974 
975   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
976     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
977 
978     // Check if any interfering live range is heavier than MaxWeight.
979     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
980       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
981 
982       // Check if interference overlast the segment in interest.
983       if (!Intf->overlaps(Start, End))
984         continue;
985 
986       // Cannot evict non virtual reg interference.
987       if (!TargetRegisterInfo::isVirtualRegister(Intf->reg))
988         return false;
989       // Never evict spill products. They cannot split or spill.
990       if (getStage(*Intf) == RS_Done)
991         return false;
992 
993       // Would this break a satisfied hint?
994       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
995       // Update eviction cost.
996       Cost.BrokenHints += BreaksHint;
997       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
998       // Abort if this would be too expensive.
999       if (!(Cost < MaxCost))
1000         return false;
1001     }
1002   }
1003 
1004   if (Cost.MaxWeight == 0)
1005     return false;
1006 
1007   MaxCost = Cost;
1008   return true;
1009 }
1010 
1011 /// Return the physical register that will be best
1012 /// candidate for eviction by a local split interval that will be created
1013 /// between Start and End.
1014 ///
1015 /// \param Order            The allocation order
1016 /// \param VirtReg          Live range that is about to be assigned.
1017 /// \param Start            Start of range to look for interferences
1018 /// \param End              End of range to look for interferences
1019 /// \param BestEvictweight  The eviction cost of that eviction
1020 /// \return The PhysReg which is the best candidate for eviction and the
1021 /// eviction cost in BestEvictweight
1022 unsigned RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
1023                                             LiveInterval &VirtReg,
1024                                             SlotIndex Start, SlotIndex End,
1025                                             float *BestEvictweight) {
1026   EvictionCost BestEvictCost;
1027   BestEvictCost.setMax();
1028   BestEvictCost.MaxWeight = VirtReg.weight;
1029   unsigned BestEvicteePhys = 0;
1030 
1031   // Go over all physical registers and find the best candidate for eviction
1032   for (auto PhysReg : Order.getOrder()) {
1033 
1034     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
1035                                      BestEvictCost))
1036       continue;
1037 
1038     // Best so far.
1039     BestEvicteePhys = PhysReg;
1040   }
1041   *BestEvictweight = BestEvictCost.MaxWeight;
1042   return BestEvicteePhys;
1043 }
1044 
1045 /// evictInterference - Evict any interferring registers that prevent VirtReg
1046 /// from being assigned to Physreg. This assumes that canEvictInterference
1047 /// returned true.
1048 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
1049                                  SmallVectorImpl<unsigned> &NewVRegs) {
1050   // Make sure that VirtReg has a cascade number, and assign that cascade
1051   // number to every evicted register. These live ranges than then only be
1052   // evicted by a newer cascade, preventing infinite loops.
1053   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
1054   if (!Cascade)
1055     Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
1056 
1057   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
1058                     << " interference: Cascade " << Cascade << '\n');
1059 
1060   // Collect all interfering virtregs first.
1061   SmallVector<LiveInterval*, 8> Intfs;
1062   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1063     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1064     // We usually have the interfering VRegs cached so collectInterferingVRegs()
1065     // should be fast, we may need to recalculate if when different physregs
1066     // overlap the same register unit so we had different SubRanges queried
1067     // against it.
1068     Q.collectInterferingVRegs();
1069     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
1070     Intfs.append(IVR.begin(), IVR.end());
1071   }
1072 
1073   // Evict them second. This will invalidate the queries.
1074   for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
1075     LiveInterval *Intf = Intfs[i];
1076     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1077     if (!VRM->hasPhys(Intf->reg))
1078       continue;
1079 
1080     LastEvicted.addEviction(PhysReg, VirtReg.reg, Intf->reg);
1081 
1082     Matrix->unassign(*Intf);
1083     assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
1084             VirtReg.isSpillable() < Intf->isSpillable()) &&
1085            "Cannot decrease cascade number, illegal eviction");
1086     ExtraRegInfo[Intf->reg].Cascade = Cascade;
1087     ++NumEvicted;
1088     NewVRegs.push_back(Intf->reg);
1089   }
1090 }
1091 
1092 /// Returns true if the given \p PhysReg is a callee saved register and has not
1093 /// been used for allocation yet.
1094 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const {
1095   unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
1096   if (CSR == 0)
1097     return false;
1098 
1099   return !Matrix->isPhysRegUsed(PhysReg);
1100 }
1101 
1102 /// tryEvict - Try to evict all interferences for a physreg.
1103 /// @param  VirtReg Currently unassigned virtual register.
1104 /// @param  Order   Physregs to try.
1105 /// @return         Physreg to assign VirtReg, or 0.
1106 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
1107                             AllocationOrder &Order,
1108                             SmallVectorImpl<unsigned> &NewVRegs,
1109                             unsigned CostPerUseLimit,
1110                             const SmallVirtRegSet &FixedRegisters) {
1111   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
1112                      TimePassesIsEnabled);
1113 
1114   // Keep track of the cheapest interference seen so far.
1115   EvictionCost BestCost;
1116   BestCost.setMax();
1117   unsigned BestPhys = 0;
1118   unsigned OrderLimit = Order.getOrder().size();
1119 
1120   // When we are just looking for a reduced cost per use, don't break any
1121   // hints, and only evict smaller spill weights.
1122   if (CostPerUseLimit < ~0u) {
1123     BestCost.BrokenHints = 0;
1124     BestCost.MaxWeight = VirtReg.weight;
1125 
1126     // Check of any registers in RC are below CostPerUseLimit.
1127     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
1128     unsigned MinCost = RegClassInfo.getMinCost(RC);
1129     if (MinCost >= CostPerUseLimit) {
1130       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
1131                         << MinCost << ", no cheaper registers to be found.\n");
1132       return 0;
1133     }
1134 
1135     // It is normal for register classes to have a long tail of registers with
1136     // the same cost. We don't need to look at them if they're too expensive.
1137     if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
1138       OrderLimit = RegClassInfo.getLastCostChange(RC);
1139       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1140                         << " regs.\n");
1141     }
1142   }
1143 
1144   Order.rewind();
1145   while (unsigned PhysReg = Order.next(OrderLimit)) {
1146     if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
1147       continue;
1148     // The first use of a callee-saved register in a function has cost 1.
1149     // Don't start using a CSR when the CostPerUseLimit is low.
1150     if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
1151       LLVM_DEBUG(
1152           dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
1153                  << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
1154                  << '\n');
1155       continue;
1156     }
1157 
1158     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost,
1159                               FixedRegisters))
1160       continue;
1161 
1162     // Best so far.
1163     BestPhys = PhysReg;
1164 
1165     // Stop if the hint can be used.
1166     if (Order.isHint())
1167       break;
1168   }
1169 
1170   if (!BestPhys)
1171     return 0;
1172 
1173   evictInterference(VirtReg, BestPhys, NewVRegs);
1174   return BestPhys;
1175 }
1176 
1177 //===----------------------------------------------------------------------===//
1178 //                              Region Splitting
1179 //===----------------------------------------------------------------------===//
1180 
1181 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1182 /// interference pattern in Physreg and its aliases. Add the constraints to
1183 /// SpillPlacement and return the static cost of this split in Cost, assuming
1184 /// that all preferences in SplitConstraints are met.
1185 /// Return false if there are no bundles with positive bias.
1186 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
1187                                    BlockFrequency &Cost) {
1188   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1189 
1190   // Reset interference dependent info.
1191   SplitConstraints.resize(UseBlocks.size());
1192   BlockFrequency StaticCost = 0;
1193   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1194     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1195     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1196 
1197     BC.Number = BI.MBB->getNumber();
1198     Intf.moveToBlock(BC.Number);
1199     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1200     BC.Exit = (BI.LiveOut &&
1201                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
1202                   ? SpillPlacement::PrefReg
1203                   : SpillPlacement::DontCare;
1204     BC.ChangesValue = BI.FirstDef.isValid();
1205 
1206     if (!Intf.hasInterference())
1207       continue;
1208 
1209     // Number of spill code instructions to insert.
1210     unsigned Ins = 0;
1211 
1212     // Interference for the live-in value.
1213     if (BI.LiveIn) {
1214       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
1215         BC.Entry = SpillPlacement::MustSpill;
1216         ++Ins;
1217       } else if (Intf.first() < BI.FirstInstr) {
1218         BC.Entry = SpillPlacement::PrefSpill;
1219         ++Ins;
1220       } else if (Intf.first() < BI.LastInstr) {
1221         ++Ins;
1222       }
1223 
1224       // Abort if the spill cannot be inserted at the MBB' start
1225       if (((BC.Entry == SpillPlacement::MustSpill) ||
1226            (BC.Entry == SpillPlacement::PrefSpill)) &&
1227           SlotIndex::isEarlierInstr(BI.FirstInstr,
1228                                     SA->getFirstSplitPoint(BC.Number)))
1229         return false;
1230     }
1231 
1232     // Interference for the live-out value.
1233     if (BI.LiveOut) {
1234       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1235         BC.Exit = SpillPlacement::MustSpill;
1236         ++Ins;
1237       } else if (Intf.last() > BI.LastInstr) {
1238         BC.Exit = SpillPlacement::PrefSpill;
1239         ++Ins;
1240       } else if (Intf.last() > BI.FirstInstr) {
1241         ++Ins;
1242       }
1243     }
1244 
1245     // Accumulate the total frequency of inserted spill code.
1246     while (Ins--)
1247       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1248   }
1249   Cost = StaticCost;
1250 
1251   // Add constraints for use-blocks. Note that these are the only constraints
1252   // that may add a positive bias, it is downhill from here.
1253   SpillPlacer->addConstraints(SplitConstraints);
1254   return SpillPlacer->scanActiveBundles();
1255 }
1256 
1257 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1258 /// live-through blocks in Blocks.
1259 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1260                                      ArrayRef<unsigned> Blocks) {
1261   const unsigned GroupSize = 8;
1262   SpillPlacement::BlockConstraint BCS[GroupSize];
1263   unsigned TBS[GroupSize];
1264   unsigned B = 0, T = 0;
1265 
1266   for (unsigned i = 0; i != Blocks.size(); ++i) {
1267     unsigned Number = Blocks[i];
1268     Intf.moveToBlock(Number);
1269 
1270     if (!Intf.hasInterference()) {
1271       assert(T < GroupSize && "Array overflow");
1272       TBS[T] = Number;
1273       if (++T == GroupSize) {
1274         SpillPlacer->addLinks(makeArrayRef(TBS, T));
1275         T = 0;
1276       }
1277       continue;
1278     }
1279 
1280     assert(B < GroupSize && "Array overflow");
1281     BCS[B].Number = Number;
1282 
1283     // Abort if the spill cannot be inserted at the MBB' start
1284     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
1285     if (!MBB->empty() &&
1286         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(MBB->instr_front()),
1287                                   SA->getFirstSplitPoint(Number)))
1288       return false;
1289     // Interference for the live-in value.
1290     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1291       BCS[B].Entry = SpillPlacement::MustSpill;
1292     else
1293       BCS[B].Entry = SpillPlacement::PrefSpill;
1294 
1295     // Interference for the live-out value.
1296     if (Intf.last() >= SA->getLastSplitPoint(Number))
1297       BCS[B].Exit = SpillPlacement::MustSpill;
1298     else
1299       BCS[B].Exit = SpillPlacement::PrefSpill;
1300 
1301     if (++B == GroupSize) {
1302       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1303       B = 0;
1304     }
1305   }
1306 
1307   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1308   SpillPlacer->addLinks(makeArrayRef(TBS, T));
1309   return true;
1310 }
1311 
1312 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1313   // Keep track of through blocks that have not been added to SpillPlacer.
1314   BitVector Todo = SA->getThroughBlocks();
1315   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1316   unsigned AddedTo = 0;
1317 #ifndef NDEBUG
1318   unsigned Visited = 0;
1319 #endif
1320 
1321   while (true) {
1322     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1323     // Find new through blocks in the periphery of PrefRegBundles.
1324     for (int i = 0, e = NewBundles.size(); i != e; ++i) {
1325       unsigned Bundle = NewBundles[i];
1326       // Look at all blocks connected to Bundle in the full graph.
1327       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1328       for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
1329            I != E; ++I) {
1330         unsigned Block = *I;
1331         if (!Todo.test(Block))
1332           continue;
1333         Todo.reset(Block);
1334         // This is a new through block. Add it to SpillPlacer later.
1335         ActiveBlocks.push_back(Block);
1336 #ifndef NDEBUG
1337         ++Visited;
1338 #endif
1339       }
1340     }
1341     // Any new blocks to add?
1342     if (ActiveBlocks.size() == AddedTo)
1343       break;
1344 
1345     // Compute through constraints from the interference, or assume that all
1346     // through blocks prefer spilling when forming compact regions.
1347     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1348     if (Cand.PhysReg) {
1349       if (!addThroughConstraints(Cand.Intf, NewBlocks))
1350         return false;
1351     } else
1352       // Provide a strong negative bias on through blocks to prevent unwanted
1353       // liveness on loop backedges.
1354       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1355     AddedTo = ActiveBlocks.size();
1356 
1357     // Perhaps iterating can enable more bundles?
1358     SpillPlacer->iterate();
1359   }
1360   LLVM_DEBUG(dbgs() << ", v=" << Visited);
1361   return true;
1362 }
1363 
1364 /// calcCompactRegion - Compute the set of edge bundles that should be live
1365 /// when splitting the current live range into compact regions.  Compact
1366 /// regions can be computed without looking at interference.  They are the
1367 /// regions formed by removing all the live-through blocks from the live range.
1368 ///
1369 /// Returns false if the current live range is already compact, or if the
1370 /// compact regions would form single block regions anyway.
1371 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1372   // Without any through blocks, the live range is already compact.
1373   if (!SA->getNumThroughBlocks())
1374     return false;
1375 
1376   // Compact regions don't correspond to any physreg.
1377   Cand.reset(IntfCache, 0);
1378 
1379   LLVM_DEBUG(dbgs() << "Compact region bundles");
1380 
1381   // Use the spill placer to determine the live bundles. GrowRegion pretends
1382   // that all the through blocks have interference when PhysReg is unset.
1383   SpillPlacer->prepare(Cand.LiveBundles);
1384 
1385   // The static split cost will be zero since Cand.Intf reports no interference.
1386   BlockFrequency Cost;
1387   if (!addSplitConstraints(Cand.Intf, Cost)) {
1388     LLVM_DEBUG(dbgs() << ", none.\n");
1389     return false;
1390   }
1391 
1392   if (!growRegion(Cand)) {
1393     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1394     return false;
1395   }
1396 
1397   SpillPlacer->finish();
1398 
1399   if (!Cand.LiveBundles.any()) {
1400     LLVM_DEBUG(dbgs() << ", none.\n");
1401     return false;
1402   }
1403 
1404   LLVM_DEBUG({
1405     for (int i : Cand.LiveBundles.set_bits())
1406       dbgs() << " EB#" << i;
1407     dbgs() << ".\n";
1408   });
1409   return true;
1410 }
1411 
1412 /// calcSpillCost - Compute how expensive it would be to split the live range in
1413 /// SA around all use blocks instead of forming bundle regions.
1414 BlockFrequency RAGreedy::calcSpillCost() {
1415   BlockFrequency Cost = 0;
1416   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1417   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1418     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1419     unsigned Number = BI.MBB->getNumber();
1420     // We normally only need one spill instruction - a load or a store.
1421     Cost += SpillPlacer->getBlockFrequency(Number);
1422 
1423     // Unless the value is redefined in the block.
1424     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1425       Cost += SpillPlacer->getBlockFrequency(Number);
1426   }
1427   return Cost;
1428 }
1429 
1430 /// Check if splitting Evictee will create a local split interval in
1431 /// basic block number BBNumber that may cause a bad eviction chain. This is
1432 /// intended to prevent bad eviction sequences like:
1433 /// movl	%ebp, 8(%esp)           # 4-byte Spill
1434 /// movl	%ecx, %ebp
1435 /// movl	%ebx, %ecx
1436 /// movl	%edi, %ebx
1437 /// movl	%edx, %edi
1438 /// cltd
1439 /// idivl	%esi
1440 /// movl	%edi, %edx
1441 /// movl	%ebx, %edi
1442 /// movl	%ecx, %ebx
1443 /// movl	%ebp, %ecx
1444 /// movl	16(%esp), %ebp          # 4 - byte Reload
1445 ///
1446 /// Such sequences are created in 2 scenarios:
1447 ///
1448 /// Scenario #1:
1449 /// %0 is evicted from physreg0 by %1.
1450 /// Evictee %0 is intended for region splitting with split candidate
1451 /// physreg0 (the reg %0 was evicted from).
1452 /// Region splitting creates a local interval because of interference with the
1453 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1454 /// and "by stack" intervals and local interval created when interference
1455 /// occurs).
1456 /// One of the split intervals ends up evicting %2 from physreg1.
1457 /// Evictee %2 is intended for region splitting with split candidate
1458 /// physreg1.
1459 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1460 ///
1461 /// Scenario #2
1462 /// %0 is evicted from physreg0 by %1.
1463 /// %2 is evicted from physreg2 by %3 etc.
1464 /// Evictee %0 is intended for region splitting with split candidate
1465 /// physreg1.
1466 /// Region splitting creates a local interval because of interference with the
1467 /// evictor %1.
1468 /// One of the split intervals ends up evicting back original evictor %1
1469 /// from physreg0 (the reg %0 was evicted from).
1470 /// Another evictee %2 is intended for region splitting with split candidate
1471 /// physreg1.
1472 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1473 ///
1474 /// \param Evictee  The register considered to be split.
1475 /// \param Cand     The split candidate that determines the physical register
1476 ///                 we are splitting for and the interferences.
1477 /// \param BBNumber The number of a BB for which the region split process will
1478 ///                 create a local split interval.
1479 /// \param Order    The physical registers that may get evicted by a split
1480 ///                 artifact of Evictee.
1481 /// \return True if splitting Evictee may cause a bad eviction chain, false
1482 /// otherwise.
1483 bool RAGreedy::splitCanCauseEvictionChain(unsigned Evictee,
1484                                           GlobalSplitCandidate &Cand,
1485                                           unsigned BBNumber,
1486                                           const AllocationOrder &Order) {
1487   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
1488   unsigned Evictor = VregEvictorInfo.first;
1489   unsigned PhysReg = VregEvictorInfo.second;
1490 
1491   // No actual evictor.
1492   if (!Evictor || !PhysReg)
1493     return false;
1494 
1495   float MaxWeight = 0;
1496   unsigned FutureEvictedPhysReg =
1497       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
1498                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
1499 
1500   // The bad eviction chain occurs when either the split candidate is the
1501   // evicting reg or one of the split artifact will evict the evicting reg.
1502   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
1503     return false;
1504 
1505   Cand.Intf.moveToBlock(BBNumber);
1506 
1507   // Check to see if the Evictor contains interference (with Evictee) in the
1508   // given BB. If so, this interference caused the eviction of Evictee from
1509   // PhysReg. This suggest that we will create a local interval during the
1510   // region split to avoid this interference This local interval may cause a bad
1511   // eviction chain.
1512   if (!LIS->hasInterval(Evictor))
1513     return false;
1514   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
1515   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
1516     return false;
1517 
1518   // Now, check to see if the local interval we will create is going to be
1519   // expensive enough to evict somebody If so, this may cause a bad eviction
1520   // chain.
1521   VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
1522   float splitArtifactWeight =
1523       VRAI.futureWeight(LIS->getInterval(Evictee),
1524                         Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1525   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
1526     return false;
1527 
1528   return true;
1529 }
1530 
1531 /// Check if splitting VirtRegToSplit will create a local split interval
1532 /// in basic block number BBNumber that may cause a spill.
1533 ///
1534 /// \param VirtRegToSplit The register considered to be split.
1535 /// \param Cand           The split candidate that determines the physical
1536 ///                       register we are splitting for and the interferences.
1537 /// \param BBNumber       The number of a BB for which the region split process
1538 ///                       will create a local split interval.
1539 /// \param Order          The physical registers that may get evicted by a
1540 ///                       split artifact of VirtRegToSplit.
1541 /// \return True if splitting VirtRegToSplit may cause a spill, false
1542 /// otherwise.
1543 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1544                                        GlobalSplitCandidate &Cand,
1545                                        unsigned BBNumber,
1546                                        const AllocationOrder &Order) {
1547   Cand.Intf.moveToBlock(BBNumber);
1548 
1549   // Check if the local interval will find a non interfereing assignment.
1550   for (auto PhysReg : Order.getOrder()) {
1551     if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1552                                    Cand.Intf.last(), PhysReg))
1553       return false;
1554   }
1555 
1556   // Check if the local interval will evict a cheaper interval.
1557   float CheapestEvictWeight = 0;
1558   unsigned FutureEvictedPhysReg = getCheapestEvicteeWeight(
1559       Order, LIS->getInterval(VirtRegToSplit), Cand.Intf.first(),
1560       Cand.Intf.last(), &CheapestEvictWeight);
1561 
1562   // Have we found an interval that can be evicted?
1563   if (FutureEvictedPhysReg) {
1564     VirtRegAuxInfo VRAI(*MF, *LIS, VRM, getAnalysis<MachineLoopInfo>(), *MBFI);
1565     float splitArtifactWeight =
1566         VRAI.futureWeight(LIS->getInterval(VirtRegToSplit),
1567                           Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1568     // Will the weight of the local interval be higher than the cheapest evictee
1569     // weight? If so it will evict it and will not cause a spill.
1570     if (splitArtifactWeight >= 0 && splitArtifactWeight > CheapestEvictWeight)
1571       return false;
1572   }
1573 
1574   // The local interval is not able to find non interferencing assignment and
1575   // not able to evict a less worthy interval, therfore, it can cause a spill.
1576   return true;
1577 }
1578 
1579 /// calcGlobalSplitCost - Return the global split cost of following the split
1580 /// pattern in LiveBundles. This cost should be added to the local cost of the
1581 /// interference pattern in SplitConstraints.
1582 ///
1583 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1584                                              const AllocationOrder &Order,
1585                                              bool *CanCauseEvictionChain) {
1586   BlockFrequency GlobalCost = 0;
1587   const BitVector &LiveBundles = Cand.LiveBundles;
1588   unsigned VirtRegToSplit = SA->getParent().reg;
1589   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1590   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1591     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1592     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1593     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1594     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1595     unsigned Ins = 0;
1596 
1597     Cand.Intf.moveToBlock(BC.Number);
1598     // Check wheather a local interval is going to be created during the region
1599     // split. Calculate adavanced spilt cost (cost of local intervals) if option
1600     // is enabled.
1601     if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1602         BI.LiveOut && RegIn && RegOut) {
1603 
1604       if (CanCauseEvictionChain &&
1605           splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1606         // This interference causes our eviction from this assignment, we might
1607         // evict somebody else and eventually someone will spill, add that cost.
1608         // See splitCanCauseEvictionChain for detailed description of scenarios.
1609         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1610         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1611 
1612         *CanCauseEvictionChain = true;
1613 
1614       } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1615                                          Order)) {
1616         // This interference causes local interval to spill, add that cost.
1617         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1618         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1619       }
1620     }
1621 
1622     if (BI.LiveIn)
1623       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1624     if (BI.LiveOut)
1625       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1626     while (Ins--)
1627       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1628   }
1629 
1630   for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
1631     unsigned Number = Cand.ActiveBlocks[i];
1632     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1633     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1634     if (!RegIn && !RegOut)
1635       continue;
1636     if (RegIn && RegOut) {
1637       // We need double spill code if this block has interference.
1638       Cand.Intf.moveToBlock(Number);
1639       if (Cand.Intf.hasInterference()) {
1640         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1641         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1642 
1643         // Check wheather a local interval is going to be created during the
1644         // region split.
1645         if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1646             splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1647           // This interference cause our eviction from this assignment, we might
1648           // evict somebody else, add that cost.
1649           // See splitCanCauseEvictionChain for detailed description of
1650           // scenarios.
1651           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1652           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1653 
1654           *CanCauseEvictionChain = true;
1655         }
1656       }
1657       continue;
1658     }
1659     // live-in / stack-out or stack-in live-out.
1660     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1661   }
1662   return GlobalCost;
1663 }
1664 
1665 /// splitAroundRegion - Split the current live range around the regions
1666 /// determined by BundleCand and GlobalCand.
1667 ///
1668 /// Before calling this function, GlobalCand and BundleCand must be initialized
1669 /// so each bundle is assigned to a valid candidate, or NoCand for the
1670 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1671 /// objects must be initialized for the current live range, and intervals
1672 /// created for the used candidates.
1673 ///
1674 /// @param LREdit    The LiveRangeEdit object handling the current split.
1675 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1676 ///                  must appear in this list.
1677 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1678                                  ArrayRef<unsigned> UsedCands) {
1679   // These are the intervals created for new global ranges. We may create more
1680   // intervals for local ranges.
1681   const unsigned NumGlobalIntvs = LREdit.size();
1682   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1683                     << " globals.\n");
1684   assert(NumGlobalIntvs && "No global intervals configured");
1685 
1686   // Isolate even single instructions when dealing with a proper sub-class.
1687   // That guarantees register class inflation for the stack interval because it
1688   // is all copies.
1689   unsigned Reg = SA->getParent().reg;
1690   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1691 
1692   // First handle all the blocks with uses.
1693   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1694   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1695     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1696     unsigned Number = BI.MBB->getNumber();
1697     unsigned IntvIn = 0, IntvOut = 0;
1698     SlotIndex IntfIn, IntfOut;
1699     if (BI.LiveIn) {
1700       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1701       if (CandIn != NoCand) {
1702         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1703         IntvIn = Cand.IntvIdx;
1704         Cand.Intf.moveToBlock(Number);
1705         IntfIn = Cand.Intf.first();
1706       }
1707     }
1708     if (BI.LiveOut) {
1709       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1710       if (CandOut != NoCand) {
1711         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1712         IntvOut = Cand.IntvIdx;
1713         Cand.Intf.moveToBlock(Number);
1714         IntfOut = Cand.Intf.last();
1715       }
1716     }
1717 
1718     // Create separate intervals for isolated blocks with multiple uses.
1719     if (!IntvIn && !IntvOut) {
1720       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1721       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1722         SE->splitSingleBlock(BI);
1723       continue;
1724     }
1725 
1726     if (IntvIn && IntvOut)
1727       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1728     else if (IntvIn)
1729       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1730     else
1731       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1732   }
1733 
1734   // Handle live-through blocks. The relevant live-through blocks are stored in
1735   // the ActiveBlocks list with each candidate. We need to filter out
1736   // duplicates.
1737   BitVector Todo = SA->getThroughBlocks();
1738   for (unsigned c = 0; c != UsedCands.size(); ++c) {
1739     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1740     for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1741       unsigned Number = Blocks[i];
1742       if (!Todo.test(Number))
1743         continue;
1744       Todo.reset(Number);
1745 
1746       unsigned IntvIn = 0, IntvOut = 0;
1747       SlotIndex IntfIn, IntfOut;
1748 
1749       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1750       if (CandIn != NoCand) {
1751         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1752         IntvIn = Cand.IntvIdx;
1753         Cand.Intf.moveToBlock(Number);
1754         IntfIn = Cand.Intf.first();
1755       }
1756 
1757       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1758       if (CandOut != NoCand) {
1759         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1760         IntvOut = Cand.IntvIdx;
1761         Cand.Intf.moveToBlock(Number);
1762         IntfOut = Cand.Intf.last();
1763       }
1764       if (!IntvIn && !IntvOut)
1765         continue;
1766       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1767     }
1768   }
1769 
1770   ++NumGlobalSplits;
1771 
1772   SmallVector<unsigned, 8> IntvMap;
1773   SE->finish(&IntvMap);
1774   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1775 
1776   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1777   unsigned OrigBlocks = SA->getNumLiveBlocks();
1778 
1779   // Sort out the new intervals created by splitting. We get four kinds:
1780   // - Remainder intervals should not be split again.
1781   // - Candidate intervals can be assigned to Cand.PhysReg.
1782   // - Block-local splits are candidates for local splitting.
1783   // - DCE leftovers should go back on the queue.
1784   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1785     LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
1786 
1787     // Ignore old intervals from DCE.
1788     if (getStage(Reg) != RS_New)
1789       continue;
1790 
1791     // Remainder interval. Don't try splitting again, spill if it doesn't
1792     // allocate.
1793     if (IntvMap[i] == 0) {
1794       setStage(Reg, RS_Spill);
1795       continue;
1796     }
1797 
1798     // Global intervals. Allow repeated splitting as long as the number of live
1799     // blocks is strictly decreasing.
1800     if (IntvMap[i] < NumGlobalIntvs) {
1801       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1802         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1803                           << " blocks as original.\n");
1804         // Don't allow repeated splitting as a safe guard against looping.
1805         setStage(Reg, RS_Split2);
1806       }
1807       continue;
1808     }
1809 
1810     // Other intervals are treated as new. This includes local intervals created
1811     // for blocks with multiple uses, and anything created by DCE.
1812   }
1813 
1814   if (VerifyEnabled)
1815     MF->verify(this, "After splitting live range around region");
1816 }
1817 
1818 // Global split has high compile time cost especially for large live range.
1819 // Return false for the case here where the potential benefit will never
1820 // worth the cost.
1821 unsigned RAGreedy::isSplitBenefitWorthCost(LiveInterval &VirtReg) {
1822   MachineInstr *MI = MRI->getUniqueVRegDef(VirtReg.reg);
1823   if (MI && TII->isTriviallyReMaterializable(*MI, AA) &&
1824       VirtReg.size() > HugeSizeForSplit)
1825     return false;
1826   return true;
1827 }
1828 
1829 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1830                                   SmallVectorImpl<unsigned> &NewVRegs) {
1831   if (!isSplitBenefitWorthCost(VirtReg))
1832     return 0;
1833   unsigned NumCands = 0;
1834   BlockFrequency SpillCost = calcSpillCost();
1835   BlockFrequency BestCost;
1836 
1837   // Check if we can split this live range around a compact region.
1838   bool HasCompact = calcCompactRegion(GlobalCand.front());
1839   if (HasCompact) {
1840     // Yes, keep GlobalCand[0] as the compact region candidate.
1841     NumCands = 1;
1842     BestCost = BlockFrequency::getMaxFrequency();
1843   } else {
1844     // No benefit from the compact region, our fallback will be per-block
1845     // splitting. Make sure we find a solution that is cheaper than spilling.
1846     BestCost = SpillCost;
1847     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1848                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1849   }
1850 
1851   bool CanCauseEvictionChain = false;
1852   unsigned BestCand =
1853       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1854                                false /*IgnoreCSR*/, &CanCauseEvictionChain);
1855 
1856   // Split candidates with compact regions can cause a bad eviction sequence.
1857   // See splitCanCauseEvictionChain for detailed description of scenarios.
1858   // To avoid it, we need to comapre the cost with the spill cost and not the
1859   // current max frequency.
1860   if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1861     CanCauseEvictionChain) {
1862     return 0;
1863   }
1864 
1865   // No solutions found, fall back to single block splitting.
1866   if (!HasCompact && BestCand == NoCand)
1867     return 0;
1868 
1869   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1870 }
1871 
1872 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1873                                             AllocationOrder &Order,
1874                                             BlockFrequency &BestCost,
1875                                             unsigned &NumCands, bool IgnoreCSR,
1876                                             bool *CanCauseEvictionChain) {
1877   unsigned BestCand = NoCand;
1878   Order.rewind();
1879   while (unsigned PhysReg = Order.next()) {
1880     if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1881       continue;
1882 
1883     // Discard bad candidates before we run out of interference cache cursors.
1884     // This will only affect register classes with a lot of registers (>32).
1885     if (NumCands == IntfCache.getMaxCursors()) {
1886       unsigned WorstCount = ~0u;
1887       unsigned Worst = 0;
1888       for (unsigned i = 0; i != NumCands; ++i) {
1889         if (i == BestCand || !GlobalCand[i].PhysReg)
1890           continue;
1891         unsigned Count = GlobalCand[i].LiveBundles.count();
1892         if (Count < WorstCount) {
1893           Worst = i;
1894           WorstCount = Count;
1895         }
1896       }
1897       --NumCands;
1898       GlobalCand[Worst] = GlobalCand[NumCands];
1899       if (BestCand == NumCands)
1900         BestCand = Worst;
1901     }
1902 
1903     if (GlobalCand.size() <= NumCands)
1904       GlobalCand.resize(NumCands+1);
1905     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1906     Cand.reset(IntfCache, PhysReg);
1907 
1908     SpillPlacer->prepare(Cand.LiveBundles);
1909     BlockFrequency Cost;
1910     if (!addSplitConstraints(Cand.Intf, Cost)) {
1911       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1912       continue;
1913     }
1914     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1915                MBFI->printBlockFreq(dbgs(), Cost));
1916     if (Cost >= BestCost) {
1917       LLVM_DEBUG({
1918         if (BestCand == NoCand)
1919           dbgs() << " worse than no bundles\n";
1920         else
1921           dbgs() << " worse than "
1922                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1923       });
1924       continue;
1925     }
1926     if (!growRegion(Cand)) {
1927       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1928       continue;
1929     }
1930 
1931     SpillPlacer->finish();
1932 
1933     // No live bundles, defer to splitSingleBlocks().
1934     if (!Cand.LiveBundles.any()) {
1935       LLVM_DEBUG(dbgs() << " no bundles.\n");
1936       continue;
1937     }
1938 
1939     bool HasEvictionChain = false;
1940     Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1941     LLVM_DEBUG({
1942       dbgs() << ", total = ";
1943       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1944       for (int i : Cand.LiveBundles.set_bits())
1945         dbgs() << " EB#" << i;
1946       dbgs() << ".\n";
1947     });
1948     if (Cost < BestCost) {
1949       BestCand = NumCands;
1950       BestCost = Cost;
1951       // See splitCanCauseEvictionChain for detailed description of bad
1952       // eviction chain scenarios.
1953       if (CanCauseEvictionChain)
1954         *CanCauseEvictionChain = HasEvictionChain;
1955     }
1956     ++NumCands;
1957   }
1958 
1959   if (CanCauseEvictionChain && BestCand != NoCand) {
1960     // See splitCanCauseEvictionChain for detailed description of bad
1961     // eviction chain scenarios.
1962     LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1963                       << printReg(VirtReg.reg, TRI) << "  may ");
1964     if (!(*CanCauseEvictionChain))
1965       LLVM_DEBUG(dbgs() << "not ");
1966     LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1967   }
1968 
1969   return BestCand;
1970 }
1971 
1972 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1973                                  bool HasCompact,
1974                                  SmallVectorImpl<unsigned> &NewVRegs) {
1975   SmallVector<unsigned, 8> UsedCands;
1976   // Prepare split editor.
1977   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1978   SE->reset(LREdit, SplitSpillMode);
1979 
1980   // Assign all edge bundles to the preferred candidate, or NoCand.
1981   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1982 
1983   // Assign bundles for the best candidate region.
1984   if (BestCand != NoCand) {
1985     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1986     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1987       UsedCands.push_back(BestCand);
1988       Cand.IntvIdx = SE->openIntv();
1989       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1990                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1991       (void)B;
1992     }
1993   }
1994 
1995   // Assign bundles for the compact region.
1996   if (HasCompact) {
1997     GlobalSplitCandidate &Cand = GlobalCand.front();
1998     assert(!Cand.PhysReg && "Compact region has no physreg");
1999     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
2000       UsedCands.push_back(0);
2001       Cand.IntvIdx = SE->openIntv();
2002       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
2003                         << " bundles, intv " << Cand.IntvIdx << ".\n");
2004       (void)B;
2005     }
2006   }
2007 
2008   splitAroundRegion(LREdit, UsedCands);
2009   return 0;
2010 }
2011 
2012 //===----------------------------------------------------------------------===//
2013 //                            Per-Block Splitting
2014 //===----------------------------------------------------------------------===//
2015 
2016 /// tryBlockSplit - Split a global live range around every block with uses. This
2017 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
2018 /// they don't allocate.
2019 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2020                                  SmallVectorImpl<unsigned> &NewVRegs) {
2021   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
2022   unsigned Reg = VirtReg.reg;
2023   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
2024   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2025   SE->reset(LREdit, SplitSpillMode);
2026   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
2027   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
2028     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
2029     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
2030       SE->splitSingleBlock(BI);
2031   }
2032   // No blocks were split.
2033   if (LREdit.empty())
2034     return 0;
2035 
2036   // We did split for some blocks.
2037   SmallVector<unsigned, 8> IntvMap;
2038   SE->finish(&IntvMap);
2039 
2040   // Tell LiveDebugVariables about the new ranges.
2041   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
2042 
2043   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2044 
2045   // Sort out the new intervals created by splitting. The remainder interval
2046   // goes straight to spilling, the new local ranges get to stay RS_New.
2047   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
2048     LiveInterval &LI = LIS->getInterval(LREdit.get(i));
2049     if (getStage(LI) == RS_New && IntvMap[i] == 0)
2050       setStage(LI, RS_Spill);
2051   }
2052 
2053   if (VerifyEnabled)
2054     MF->verify(this, "After splitting live range around basic blocks");
2055   return 0;
2056 }
2057 
2058 //===----------------------------------------------------------------------===//
2059 //                         Per-Instruction Splitting
2060 //===----------------------------------------------------------------------===//
2061 
2062 /// Get the number of allocatable registers that match the constraints of \p Reg
2063 /// on \p MI and that are also in \p SuperRC.
2064 static unsigned getNumAllocatableRegsForConstraints(
2065     const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
2066     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
2067     const RegisterClassInfo &RCI) {
2068   assert(SuperRC && "Invalid register class");
2069 
2070   const TargetRegisterClass *ConstrainedRC =
2071       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
2072                                              /* ExploreBundle */ true);
2073   if (!ConstrainedRC)
2074     return 0;
2075   return RCI.getNumAllocatableRegs(ConstrainedRC);
2076 }
2077 
2078 /// tryInstructionSplit - Split a live range around individual instructions.
2079 /// This is normally not worthwhile since the spiller is doing essentially the
2080 /// same thing. However, when the live range is in a constrained register
2081 /// class, it may help to insert copies such that parts of the live range can
2082 /// be moved to a larger register class.
2083 ///
2084 /// This is similar to spilling to a larger register class.
2085 unsigned
2086 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2087                               SmallVectorImpl<unsigned> &NewVRegs) {
2088   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
2089   // There is no point to this if there are no larger sub-classes.
2090   if (!RegClassInfo.isProperSubClass(CurRC))
2091     return 0;
2092 
2093   // Always enable split spill mode, since we're effectively spilling to a
2094   // register.
2095   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2096   SE->reset(LREdit, SplitEditor::SM_Size);
2097 
2098   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2099   if (Uses.size() <= 1)
2100     return 0;
2101 
2102   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
2103                     << " individual instrs.\n");
2104 
2105   const TargetRegisterClass *SuperRC =
2106       TRI->getLargestLegalSuperClass(CurRC, *MF);
2107   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
2108   // Split around every non-copy instruction if this split will relax
2109   // the constraints on the virtual register.
2110   // Otherwise, splitting just inserts uncoalescable copies that do not help
2111   // the allocation.
2112   for (unsigned i = 0; i != Uses.size(); ++i) {
2113     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
2114       if (MI->isFullCopy() ||
2115           SuperRCNumAllocatableRegs ==
2116               getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII,
2117                                                   TRI, RCI)) {
2118         LLVM_DEBUG(dbgs() << "    skip:\t" << Uses[i] << '\t' << *MI);
2119         continue;
2120       }
2121     SE->openIntv();
2122     SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
2123     SlotIndex SegStop  = SE->leaveIntvAfter(Uses[i]);
2124     SE->useIntv(SegStart, SegStop);
2125   }
2126 
2127   if (LREdit.empty()) {
2128     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2129     return 0;
2130   }
2131 
2132   SmallVector<unsigned, 8> IntvMap;
2133   SE->finish(&IntvMap);
2134   DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
2135   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2136 
2137   // Assign all new registers to RS_Spill. This was the last chance.
2138   setStage(LREdit.begin(), LREdit.end(), RS_Spill);
2139   return 0;
2140 }
2141 
2142 //===----------------------------------------------------------------------===//
2143 //                             Local Splitting
2144 //===----------------------------------------------------------------------===//
2145 
2146 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2147 /// in order to use PhysReg between two entries in SA->UseSlots.
2148 ///
2149 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
2150 ///
2151 void RAGreedy::calcGapWeights(unsigned PhysReg,
2152                               SmallVectorImpl<float> &GapWeight) {
2153   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
2154   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2155   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2156   const unsigned NumGaps = Uses.size()-1;
2157 
2158   // Start and end points for the interference check.
2159   SlotIndex StartIdx =
2160     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
2161   SlotIndex StopIdx =
2162     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
2163 
2164   GapWeight.assign(NumGaps, 0.0f);
2165 
2166   // Add interference from each overlapping register.
2167   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2168     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
2169           .checkInterference())
2170       continue;
2171 
2172     // We know that VirtReg is a continuous interval from FirstInstr to
2173     // LastInstr, so we don't need InterferenceQuery.
2174     //
2175     // Interference that overlaps an instruction is counted in both gaps
2176     // surrounding the instruction. The exception is interference before
2177     // StartIdx and after StopIdx.
2178     //
2179     LiveIntervalUnion::SegmentIter IntI =
2180       Matrix->getLiveUnions()[*Units] .find(StartIdx);
2181     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
2182       // Skip the gaps before IntI.
2183       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
2184         if (++Gap == NumGaps)
2185           break;
2186       if (Gap == NumGaps)
2187         break;
2188 
2189       // Update the gaps covered by IntI.
2190       const float weight = IntI.value()->weight;
2191       for (; Gap != NumGaps; ++Gap) {
2192         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
2193         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
2194           break;
2195       }
2196       if (Gap == NumGaps)
2197         break;
2198     }
2199   }
2200 
2201   // Add fixed interference.
2202   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2203     const LiveRange &LR = LIS->getRegUnit(*Units);
2204     LiveRange::const_iterator I = LR.find(StartIdx);
2205     LiveRange::const_iterator E = LR.end();
2206 
2207     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2208     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
2209       while (Uses[Gap+1].getBoundaryIndex() < I->start)
2210         if (++Gap == NumGaps)
2211           break;
2212       if (Gap == NumGaps)
2213         break;
2214 
2215       for (; Gap != NumGaps; ++Gap) {
2216         GapWeight[Gap] = huge_valf;
2217         if (Uses[Gap+1].getBaseIndex() >= I->end)
2218           break;
2219       }
2220       if (Gap == NumGaps)
2221         break;
2222     }
2223   }
2224 }
2225 
2226 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2227 /// basic block.
2228 ///
2229 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2230                                  SmallVectorImpl<unsigned> &NewVRegs) {
2231   // TODO: the function currently only handles a single UseBlock; it should be
2232   // possible to generalize.
2233   if (SA->getUseBlocks().size() != 1)
2234     return 0;
2235 
2236   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2237 
2238   // Note that it is possible to have an interval that is live-in or live-out
2239   // while only covering a single block - A phi-def can use undef values from
2240   // predecessors, and the block could be a single-block loop.
2241   // We don't bother doing anything clever about such a case, we simply assume
2242   // that the interval is continuous from FirstInstr to LastInstr. We should
2243   // make sure that we don't do anything illegal to such an interval, though.
2244 
2245   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2246   if (Uses.size() <= 2)
2247     return 0;
2248   const unsigned NumGaps = Uses.size()-1;
2249 
2250   LLVM_DEBUG({
2251     dbgs() << "tryLocalSplit: ";
2252     for (unsigned i = 0, e = Uses.size(); i != e; ++i)
2253       dbgs() << ' ' << Uses[i];
2254     dbgs() << '\n';
2255   });
2256 
2257   // If VirtReg is live across any register mask operands, compute a list of
2258   // gaps with register masks.
2259   SmallVector<unsigned, 8> RegMaskGaps;
2260   if (Matrix->checkRegMaskInterference(VirtReg)) {
2261     // Get regmask slots for the whole block.
2262     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
2263     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
2264     // Constrain to VirtReg's live range.
2265     unsigned ri =
2266         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
2267     unsigned re = RMS.size();
2268     for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
2269       // Look for Uses[i] <= RMS <= Uses[i+1].
2270       assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
2271       if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
2272         continue;
2273       // Skip a regmask on the same instruction as the last use. It doesn't
2274       // overlap the live range.
2275       if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
2276         break;
2277       LLVM_DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-'
2278                         << Uses[i + 1]);
2279       RegMaskGaps.push_back(i);
2280       // Advance ri to the next gap. A regmask on one of the uses counts in
2281       // both gaps.
2282       while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
2283         ++ri;
2284     }
2285     LLVM_DEBUG(dbgs() << '\n');
2286   }
2287 
2288   // Since we allow local split results to be split again, there is a risk of
2289   // creating infinite loops. It is tempting to require that the new live
2290   // ranges have less instructions than the original. That would guarantee
2291   // convergence, but it is too strict. A live range with 3 instructions can be
2292   // split 2+3 (including the COPY), and we want to allow that.
2293   //
2294   // Instead we use these rules:
2295   //
2296   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2297   //    noop split, of course).
2298   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2299   //    the new ranges must have fewer instructions than before the split.
2300   // 3. New ranges with the same number of instructions are marked RS_Split2,
2301   //    smaller ranges are marked RS_New.
2302   //
2303   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2304   // excessive splitting and infinite loops.
2305   //
2306   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
2307 
2308   // Best split candidate.
2309   unsigned BestBefore = NumGaps;
2310   unsigned BestAfter = 0;
2311   float BestDiff = 0;
2312 
2313   const float blockFreq =
2314     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
2315     (1.0f / MBFI->getEntryFreq());
2316   SmallVector<float, 8> GapWeight;
2317 
2318   Order.rewind();
2319   while (unsigned PhysReg = Order.next()) {
2320     // Keep track of the largest spill weight that would need to be evicted in
2321     // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
2322     calcGapWeights(PhysReg, GapWeight);
2323 
2324     // Remove any gaps with regmask clobbers.
2325     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
2326       for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
2327         GapWeight[RegMaskGaps[i]] = huge_valf;
2328 
2329     // Try to find the best sequence of gaps to close.
2330     // The new spill weight must be larger than any gap interference.
2331 
2332     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2333     unsigned SplitBefore = 0, SplitAfter = 1;
2334 
2335     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2336     // It is the spill weight that needs to be evicted.
2337     float MaxGap = GapWeight[0];
2338 
2339     while (true) {
2340       // Live before/after split?
2341       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
2342       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
2343 
2344       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
2345                         << '-' << Uses[SplitAfter] << " i=" << MaxGap);
2346 
2347       // Stop before the interval gets so big we wouldn't be making progress.
2348       if (!LiveBefore && !LiveAfter) {
2349         LLVM_DEBUG(dbgs() << " all\n");
2350         break;
2351       }
2352       // Should the interval be extended or shrunk?
2353       bool Shrink = true;
2354 
2355       // How many gaps would the new range have?
2356       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
2357 
2358       // Legally, without causing looping?
2359       bool Legal = !ProgressRequired || NewGaps < NumGaps;
2360 
2361       if (Legal && MaxGap < huge_valf) {
2362         // Estimate the new spill weight. Each instruction reads or writes the
2363         // register. Conservatively assume there are no read-modify-write
2364         // instructions.
2365         //
2366         // Try to guess the size of the new interval.
2367         const float EstWeight = normalizeSpillWeight(
2368             blockFreq * (NewGaps + 1),
2369             Uses[SplitBefore].distance(Uses[SplitAfter]) +
2370                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
2371             1);
2372         // Would this split be possible to allocate?
2373         // Never allocate all gaps, we wouldn't be making progress.
2374         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
2375         if (EstWeight * Hysteresis >= MaxGap) {
2376           Shrink = false;
2377           float Diff = EstWeight - MaxGap;
2378           if (Diff > BestDiff) {
2379             LLVM_DEBUG(dbgs() << " (best)");
2380             BestDiff = Hysteresis * Diff;
2381             BestBefore = SplitBefore;
2382             BestAfter = SplitAfter;
2383           }
2384         }
2385       }
2386 
2387       // Try to shrink.
2388       if (Shrink) {
2389         if (++SplitBefore < SplitAfter) {
2390           LLVM_DEBUG(dbgs() << " shrink\n");
2391           // Recompute the max when necessary.
2392           if (GapWeight[SplitBefore - 1] >= MaxGap) {
2393             MaxGap = GapWeight[SplitBefore];
2394             for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
2395               MaxGap = std::max(MaxGap, GapWeight[i]);
2396           }
2397           continue;
2398         }
2399         MaxGap = 0;
2400       }
2401 
2402       // Try to extend the interval.
2403       if (SplitAfter >= NumGaps) {
2404         LLVM_DEBUG(dbgs() << " end\n");
2405         break;
2406       }
2407 
2408       LLVM_DEBUG(dbgs() << " extend\n");
2409       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
2410     }
2411   }
2412 
2413   // Didn't find any candidates?
2414   if (BestBefore == NumGaps)
2415     return 0;
2416 
2417   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
2418                     << Uses[BestAfter] << ", " << BestDiff << ", "
2419                     << (BestAfter - BestBefore + 1) << " instrs\n");
2420 
2421   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2422   SE->reset(LREdit);
2423 
2424   SE->openIntv();
2425   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
2426   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
2427   SE->useIntv(SegStart, SegStop);
2428   SmallVector<unsigned, 8> IntvMap;
2429   SE->finish(&IntvMap);
2430   DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
2431 
2432   // If the new range has the same number of instructions as before, mark it as
2433   // RS_Split2 so the next split will be forced to make progress. Otherwise,
2434   // leave the new intervals as RS_New so they can compete.
2435   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
2436   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
2437   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
2438   if (NewGaps >= NumGaps) {
2439     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: ");
2440     assert(!ProgressRequired && "Didn't make progress when it was required.");
2441     for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
2442       if (IntvMap[i] == 1) {
2443         setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
2444         LLVM_DEBUG(dbgs() << printReg(LREdit.get(i)));
2445       }
2446     LLVM_DEBUG(dbgs() << '\n');
2447   }
2448   ++NumLocalSplits;
2449 
2450   return 0;
2451 }
2452 
2453 //===----------------------------------------------------------------------===//
2454 //                          Live Range Splitting
2455 //===----------------------------------------------------------------------===//
2456 
2457 /// trySplit - Try to split VirtReg or one of its interferences, making it
2458 /// assignable.
2459 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2460 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
2461                             SmallVectorImpl<unsigned>&NewVRegs,
2462                             const SmallVirtRegSet &FixedRegisters) {
2463   // Ranges must be Split2 or less.
2464   if (getStage(VirtReg) >= RS_Spill)
2465     return 0;
2466 
2467   // Local intervals are handled separately.
2468   if (LIS->intervalIsInOneMBB(VirtReg)) {
2469     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
2470                        TimerGroupDescription, TimePassesIsEnabled);
2471     SA->analyze(&VirtReg);
2472     unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
2473     if (PhysReg || !NewVRegs.empty())
2474       return PhysReg;
2475     return tryInstructionSplit(VirtReg, Order, NewVRegs);
2476   }
2477 
2478   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2479                      TimerGroupDescription, TimePassesIsEnabled);
2480 
2481   SA->analyze(&VirtReg);
2482 
2483   // FIXME: SplitAnalysis may repair broken live ranges coming from the
2484   // coalescer. That may cause the range to become allocatable which means that
2485   // tryRegionSplit won't be making progress. This check should be replaced with
2486   // an assertion when the coalescer is fixed.
2487   if (SA->didRepairRange()) {
2488     // VirtReg has changed, so all cached queries are invalid.
2489     Matrix->invalidateVirtRegs();
2490     if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters))
2491       return PhysReg;
2492   }
2493 
2494   // First try to split around a region spanning multiple blocks. RS_Split2
2495   // ranges already made dubious progress with region splitting, so they go
2496   // straight to single block splitting.
2497   if (getStage(VirtReg) < RS_Split2) {
2498     unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2499     if (PhysReg || !NewVRegs.empty())
2500       return PhysReg;
2501   }
2502 
2503   // Then isolate blocks.
2504   return tryBlockSplit(VirtReg, Order, NewVRegs);
2505 }
2506 
2507 //===----------------------------------------------------------------------===//
2508 //                          Last Chance Recoloring
2509 //===----------------------------------------------------------------------===//
2510 
2511 /// Return true if \p reg has any tied def operand.
2512 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
2513   for (const MachineOperand &MO : MRI->def_operands(reg))
2514     if (MO.isTied())
2515       return true;
2516 
2517   return false;
2518 }
2519 
2520 /// mayRecolorAllInterferences - Check if the virtual registers that
2521 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2522 /// recolored to free \p PhysReg.
2523 /// When true is returned, \p RecoloringCandidates has been augmented with all
2524 /// the live intervals that need to be recolored in order to free \p PhysReg
2525 /// for \p VirtReg.
2526 /// \p FixedRegisters contains all the virtual registers that cannot be
2527 /// recolored.
2528 bool
2529 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
2530                                      SmallLISet &RecoloringCandidates,
2531                                      const SmallVirtRegSet &FixedRegisters) {
2532   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
2533 
2534   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2535     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2536     // If there is LastChanceRecoloringMaxInterference or more interferences,
2537     // chances are one would not be recolorable.
2538     if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2539         LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2540       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2541       CutOffInfo |= CO_Interf;
2542       return false;
2543     }
2544     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
2545       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
2546       // If Intf is done and sit on the same register class as VirtReg,
2547       // it would not be recolorable as it is in the same state as VirtReg.
2548       // However, if VirtReg has tied defs and Intf doesn't, then
2549       // there is still a point in examining if it can be recolorable.
2550       if (((getStage(*Intf) == RS_Done &&
2551             MRI->getRegClass(Intf->reg) == CurRC) &&
2552            !(hasTiedDef(MRI, VirtReg.reg) && !hasTiedDef(MRI, Intf->reg))) ||
2553           FixedRegisters.count(Intf->reg)) {
2554         LLVM_DEBUG(
2555             dbgs() << "Early abort: the interference is not recolorable.\n");
2556         return false;
2557       }
2558       RecoloringCandidates.insert(Intf);
2559     }
2560   }
2561   return true;
2562 }
2563 
2564 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2565 /// its interferences.
2566 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2567 /// virtual register that was using it. The recoloring process may recursively
2568 /// use the last chance recoloring. Therefore, when a virtual register has been
2569 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2570 /// be last-chance-recolored again during this recoloring "session".
2571 /// E.g.,
2572 /// Let
2573 /// vA can use {R1, R2    }
2574 /// vB can use {    R2, R3}
2575 /// vC can use {R1        }
2576 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2577 /// instance) and they all interfere.
2578 ///
2579 /// vA is assigned R1
2580 /// vB is assigned R2
2581 /// vC tries to evict vA but vA is already done.
2582 /// Regular register allocation fails.
2583 ///
2584 /// Last chance recoloring kicks in:
2585 /// vC does as if vA was evicted => vC uses R1.
2586 /// vC is marked as fixed.
2587 /// vA needs to find a color.
2588 /// None are available.
2589 /// vA cannot evict vC: vC is a fixed virtual register now.
2590 /// vA does as if vB was evicted => vA uses R2.
2591 /// vB needs to find a color.
2592 /// R3 is available.
2593 /// Recoloring => vC = R1, vA = R2, vB = R3
2594 ///
2595 /// \p Order defines the preferred allocation order for \p VirtReg.
2596 /// \p NewRegs will contain any new virtual register that have been created
2597 /// (split, spill) during the process and that must be assigned.
2598 /// \p FixedRegisters contains all the virtual registers that cannot be
2599 /// recolored.
2600 /// \p Depth gives the current depth of the last chance recoloring.
2601 /// \return a physical register that can be used for VirtReg or ~0u if none
2602 /// exists.
2603 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2604                                            AllocationOrder &Order,
2605                                            SmallVectorImpl<unsigned> &NewVRegs,
2606                                            SmallVirtRegSet &FixedRegisters,
2607                                            unsigned Depth) {
2608   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2609   // Ranges must be Done.
2610   assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2611          "Last chance recoloring should really be last chance");
2612   // Set the max depth to LastChanceRecoloringMaxDepth.
2613   // We may want to reconsider that if we end up with a too large search space
2614   // for target with hundreds of registers.
2615   // Indeed, in that case we may want to cut the search space earlier.
2616   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2617     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2618     CutOffInfo |= CO_Depth;
2619     return ~0u;
2620   }
2621 
2622   // Set of Live intervals that will need to be recolored.
2623   SmallLISet RecoloringCandidates;
2624   // Record the original mapping virtual register to physical register in case
2625   // the recoloring fails.
2626   DenseMap<unsigned, unsigned> VirtRegToPhysReg;
2627   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2628   // this recoloring "session".
2629   assert(!FixedRegisters.count(VirtReg.reg));
2630   FixedRegisters.insert(VirtReg.reg);
2631   SmallVector<unsigned, 4> CurrentNewVRegs;
2632 
2633   Order.rewind();
2634   while (unsigned PhysReg = Order.next()) {
2635     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2636                       << printReg(PhysReg, TRI) << '\n');
2637     RecoloringCandidates.clear();
2638     VirtRegToPhysReg.clear();
2639     CurrentNewVRegs.clear();
2640 
2641     // It is only possible to recolor virtual register interference.
2642     if (Matrix->checkInterference(VirtReg, PhysReg) >
2643         LiveRegMatrix::IK_VirtReg) {
2644       LLVM_DEBUG(
2645           dbgs() << "Some interferences are not with virtual registers.\n");
2646 
2647       continue;
2648     }
2649 
2650     // Early give up on this PhysReg if it is obvious we cannot recolor all
2651     // the interferences.
2652     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2653                                     FixedRegisters)) {
2654       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2655       continue;
2656     }
2657 
2658     // RecoloringCandidates contains all the virtual registers that interfer
2659     // with VirtReg on PhysReg (or one of its aliases).
2660     // Enqueue them for recoloring and perform the actual recoloring.
2661     PQueue RecoloringQueue;
2662     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2663                               EndIt = RecoloringCandidates.end();
2664          It != EndIt; ++It) {
2665       unsigned ItVirtReg = (*It)->reg;
2666       enqueue(RecoloringQueue, *It);
2667       assert(VRM->hasPhys(ItVirtReg) &&
2668              "Interferences are supposed to be with allocated variables");
2669 
2670       // Record the current allocation.
2671       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2672       // unset the related struct.
2673       Matrix->unassign(**It);
2674     }
2675 
2676     // Do as if VirtReg was assigned to PhysReg so that the underlying
2677     // recoloring has the right information about the interferes and
2678     // available colors.
2679     Matrix->assign(VirtReg, PhysReg);
2680 
2681     // Save the current recoloring state.
2682     // If we cannot recolor all the interferences, we will have to start again
2683     // at this point for the next physical register.
2684     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2685     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2686                                 FixedRegisters, Depth)) {
2687       // Push the queued vregs into the main queue.
2688       for (unsigned NewVReg : CurrentNewVRegs)
2689         NewVRegs.push_back(NewVReg);
2690       // Do not mess up with the global assignment process.
2691       // I.e., VirtReg must be unassigned.
2692       Matrix->unassign(VirtReg);
2693       return PhysReg;
2694     }
2695 
2696     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2697                       << printReg(PhysReg, TRI) << '\n');
2698 
2699     // The recoloring attempt failed, undo the changes.
2700     FixedRegisters = SaveFixedRegisters;
2701     Matrix->unassign(VirtReg);
2702 
2703     // For a newly created vreg which is also in RecoloringCandidates,
2704     // don't add it to NewVRegs because its physical register will be restored
2705     // below. Other vregs in CurrentNewVRegs are created by calling
2706     // selectOrSplit and should be added into NewVRegs.
2707     for (SmallVectorImpl<unsigned>::iterator Next = CurrentNewVRegs.begin(),
2708                                              End = CurrentNewVRegs.end();
2709          Next != End; ++Next) {
2710       if (RecoloringCandidates.count(&LIS->getInterval(*Next)))
2711         continue;
2712       NewVRegs.push_back(*Next);
2713     }
2714 
2715     for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2716                               EndIt = RecoloringCandidates.end();
2717          It != EndIt; ++It) {
2718       unsigned ItVirtReg = (*It)->reg;
2719       if (VRM->hasPhys(ItVirtReg))
2720         Matrix->unassign(**It);
2721       unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2722       Matrix->assign(**It, ItPhysReg);
2723     }
2724   }
2725 
2726   // Last chance recoloring did not worked either, give up.
2727   return ~0u;
2728 }
2729 
2730 /// tryRecoloringCandidates - Try to assign a new color to every register
2731 /// in \RecoloringQueue.
2732 /// \p NewRegs will contain any new virtual register created during the
2733 /// recoloring process.
2734 /// \p FixedRegisters[in/out] contains all the registers that have been
2735 /// recolored.
2736 /// \return true if all virtual registers in RecoloringQueue were successfully
2737 /// recolored, false otherwise.
2738 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2739                                        SmallVectorImpl<unsigned> &NewVRegs,
2740                                        SmallVirtRegSet &FixedRegisters,
2741                                        unsigned Depth) {
2742   while (!RecoloringQueue.empty()) {
2743     LiveInterval *LI = dequeue(RecoloringQueue);
2744     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2745     unsigned PhysReg;
2746     PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2747     // When splitting happens, the live-range may actually be empty.
2748     // In that case, this is okay to continue the recoloring even
2749     // if we did not find an alternative color for it. Indeed,
2750     // there will not be anything to color for LI in the end.
2751     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2752       return false;
2753 
2754     if (!PhysReg) {
2755       assert(LI->empty() && "Only empty live-range do not require a register");
2756       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2757                         << " succeeded. Empty LI.\n");
2758       continue;
2759     }
2760     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2761                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2762 
2763     Matrix->assign(*LI, PhysReg);
2764     FixedRegisters.insert(LI->reg);
2765   }
2766   return true;
2767 }
2768 
2769 //===----------------------------------------------------------------------===//
2770 //                            Main Entry Point
2771 //===----------------------------------------------------------------------===//
2772 
2773 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2774                                  SmallVectorImpl<unsigned> &NewVRegs) {
2775   CutOffInfo = CO_None;
2776   LLVMContext &Ctx = MF->getFunction().getContext();
2777   SmallVirtRegSet FixedRegisters;
2778   unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2779   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2780     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2781     if (CutOffEncountered == CO_Depth)
2782       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2783                     "reached. Use -fexhaustive-register-search to skip "
2784                     "cutoffs");
2785     else if (CutOffEncountered == CO_Interf)
2786       Ctx.emitError("register allocation failed: maximum interference for "
2787                     "recoloring reached. Use -fexhaustive-register-search "
2788                     "to skip cutoffs");
2789     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2790       Ctx.emitError("register allocation failed: maximum interference and "
2791                     "depth for recoloring reached. Use "
2792                     "-fexhaustive-register-search to skip cutoffs");
2793   }
2794   return Reg;
2795 }
2796 
2797 /// Using a CSR for the first time has a cost because it causes push|pop
2798 /// to be added to prologue|epilogue. Splitting a cold section of the live
2799 /// range can have lower cost than using the CSR for the first time;
2800 /// Spilling a live range in the cold path can have lower cost than using
2801 /// the CSR for the first time. Returns the physical register if we decide
2802 /// to use the CSR; otherwise return 0.
2803 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
2804                                          AllocationOrder &Order,
2805                                          unsigned PhysReg,
2806                                          unsigned &CostPerUseLimit,
2807                                          SmallVectorImpl<unsigned> &NewVRegs) {
2808   if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2809     // We choose spill over using the CSR for the first time if the spill cost
2810     // is lower than CSRCost.
2811     SA->analyze(&VirtReg);
2812     if (calcSpillCost() >= CSRCost)
2813       return PhysReg;
2814 
2815     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2816     // we will not use a callee-saved register in tryEvict.
2817     CostPerUseLimit = 1;
2818     return 0;
2819   }
2820   if (getStage(VirtReg) < RS_Split) {
2821     // We choose pre-splitting over using the CSR for the first time if
2822     // the cost of splitting is lower than CSRCost.
2823     SA->analyze(&VirtReg);
2824     unsigned NumCands = 0;
2825     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2826     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2827                                                  NumCands, true /*IgnoreCSR*/);
2828     if (BestCand == NoCand)
2829       // Use the CSR if we can't find a region split below CSRCost.
2830       return PhysReg;
2831 
2832     // Perform the actual pre-splitting.
2833     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2834     return 0;
2835   }
2836   return PhysReg;
2837 }
2838 
2839 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2840   // Do not keep invalid information around.
2841   SetOfBrokenHints.remove(&LI);
2842 }
2843 
2844 void RAGreedy::initializeCSRCost() {
2845   // We use the larger one out of the command-line option and the value report
2846   // by TRI.
2847   CSRCost = BlockFrequency(
2848       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2849   if (!CSRCost.getFrequency())
2850     return;
2851 
2852   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2853   uint64_t ActualEntry = MBFI->getEntryFreq();
2854   if (!ActualEntry) {
2855     CSRCost = 0;
2856     return;
2857   }
2858   uint64_t FixedEntry = 1 << 14;
2859   if (ActualEntry < FixedEntry)
2860     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2861   else if (ActualEntry <= UINT32_MAX)
2862     // Invert the fraction and divide.
2863     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2864   else
2865     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2866     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2867 }
2868 
2869 /// Collect the hint info for \p Reg.
2870 /// The results are stored into \p Out.
2871 /// \p Out is not cleared before being populated.
2872 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
2873   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2874     if (!Instr.isFullCopy())
2875       continue;
2876     // Look for the other end of the copy.
2877     Register OtherReg = Instr.getOperand(0).getReg();
2878     if (OtherReg == Reg) {
2879       OtherReg = Instr.getOperand(1).getReg();
2880       if (OtherReg == Reg)
2881         continue;
2882     }
2883     // Get the current assignment.
2884     Register OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg)
2885                                 ? OtherReg
2886                                 : VRM->getPhys(OtherReg);
2887     // Push the collected information.
2888     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2889                            OtherPhysReg));
2890   }
2891 }
2892 
2893 /// Using the given \p List, compute the cost of the broken hints if
2894 /// \p PhysReg was used.
2895 /// \return The cost of \p List for \p PhysReg.
2896 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2897                                            unsigned PhysReg) {
2898   BlockFrequency Cost = 0;
2899   for (const HintInfo &Info : List) {
2900     if (Info.PhysReg != PhysReg)
2901       Cost += Info.Freq;
2902   }
2903   return Cost;
2904 }
2905 
2906 /// Using the register assigned to \p VirtReg, try to recolor
2907 /// all the live ranges that are copy-related with \p VirtReg.
2908 /// The recoloring is then propagated to all the live-ranges that have
2909 /// been recolored and so on, until no more copies can be coalesced or
2910 /// it is not profitable.
2911 /// For a given live range, profitability is determined by the sum of the
2912 /// frequencies of the non-identity copies it would introduce with the old
2913 /// and new register.
2914 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2915   // We have a broken hint, check if it is possible to fix it by
2916   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2917   // some register and PhysReg may be available for the other live-ranges.
2918   SmallSet<unsigned, 4> Visited;
2919   SmallVector<unsigned, 2> RecoloringCandidates;
2920   HintsInfo Info;
2921   unsigned Reg = VirtReg.reg;
2922   unsigned PhysReg = VRM->getPhys(Reg);
2923   // Start the recoloring algorithm from the input live-interval, then
2924   // it will propagate to the ones that are copy-related with it.
2925   Visited.insert(Reg);
2926   RecoloringCandidates.push_back(Reg);
2927 
2928   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2929                     << '(' << printReg(PhysReg, TRI) << ")\n");
2930 
2931   do {
2932     Reg = RecoloringCandidates.pop_back_val();
2933 
2934     // We cannot recolor physical register.
2935     if (TargetRegisterInfo::isPhysicalRegister(Reg))
2936       continue;
2937 
2938     assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2939 
2940     // Get the live interval mapped with this virtual register to be able
2941     // to check for the interference with the new color.
2942     LiveInterval &LI = LIS->getInterval(Reg);
2943     unsigned CurrPhys = VRM->getPhys(Reg);
2944     // Check that the new color matches the register class constraints and
2945     // that it is free for this live range.
2946     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2947                                 Matrix->checkInterference(LI, PhysReg)))
2948       continue;
2949 
2950     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2951                       << ") is recolorable.\n");
2952 
2953     // Gather the hint info.
2954     Info.clear();
2955     collectHintInfo(Reg, Info);
2956     // Check if recoloring the live-range will increase the cost of the
2957     // non-identity copies.
2958     if (CurrPhys != PhysReg) {
2959       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2960       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2961       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2962       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2963                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2964                         << '\n');
2965       if (OldCopiesCost < NewCopiesCost) {
2966         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2967         continue;
2968       }
2969       // At this point, the cost is either cheaper or equal. If it is
2970       // equal, we consider this is profitable because it may expose
2971       // more recoloring opportunities.
2972       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2973       // Recolor the live-range.
2974       Matrix->unassign(LI);
2975       Matrix->assign(LI, PhysReg);
2976     }
2977     // Push all copy-related live-ranges to keep reconciling the broken
2978     // hints.
2979     for (const HintInfo &HI : Info) {
2980       if (Visited.insert(HI.Reg).second)
2981         RecoloringCandidates.push_back(HI.Reg);
2982     }
2983   } while (!RecoloringCandidates.empty());
2984 }
2985 
2986 /// Try to recolor broken hints.
2987 /// Broken hints may be repaired by recoloring when an evicted variable
2988 /// freed up a register for a larger live-range.
2989 /// Consider the following example:
2990 /// BB1:
2991 ///   a =
2992 ///   b =
2993 /// BB2:
2994 ///   ...
2995 ///   = b
2996 ///   = a
2997 /// Let us assume b gets split:
2998 /// BB1:
2999 ///   a =
3000 ///   b =
3001 /// BB2:
3002 ///   c = b
3003 ///   ...
3004 ///   d = c
3005 ///   = d
3006 ///   = a
3007 /// Because of how the allocation work, b, c, and d may be assigned different
3008 /// colors. Now, if a gets evicted later:
3009 /// BB1:
3010 ///   a =
3011 ///   st a, SpillSlot
3012 ///   b =
3013 /// BB2:
3014 ///   c = b
3015 ///   ...
3016 ///   d = c
3017 ///   = d
3018 ///   e = ld SpillSlot
3019 ///   = e
3020 /// This is likely that we can assign the same register for b, c, and d,
3021 /// getting rid of 2 copies.
3022 void RAGreedy::tryHintsRecoloring() {
3023   for (LiveInterval *LI : SetOfBrokenHints) {
3024     assert(TargetRegisterInfo::isVirtualRegister(LI->reg) &&
3025            "Recoloring is possible only for virtual registers");
3026     // Some dead defs may be around (e.g., because of debug uses).
3027     // Ignore those.
3028     if (!VRM->hasPhys(LI->reg))
3029       continue;
3030     tryHintRecoloring(*LI);
3031   }
3032 }
3033 
3034 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
3035                                      SmallVectorImpl<unsigned> &NewVRegs,
3036                                      SmallVirtRegSet &FixedRegisters,
3037                                      unsigned Depth) {
3038   unsigned CostPerUseLimit = ~0u;
3039   // First try assigning a free register.
3040   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
3041   if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
3042     // If VirtReg got an assignment, the eviction info is no longre relevant.
3043     LastEvicted.clearEvicteeInfo(VirtReg.reg);
3044     // When NewVRegs is not empty, we may have made decisions such as evicting
3045     // a virtual register, go with the earlier decisions and use the physical
3046     // register.
3047     if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
3048         NewVRegs.empty()) {
3049       unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
3050                                               CostPerUseLimit, NewVRegs);
3051       if (CSRReg || !NewVRegs.empty())
3052         // Return now if we decide to use a CSR or create new vregs due to
3053         // pre-splitting.
3054         return CSRReg;
3055     } else
3056       return PhysReg;
3057   }
3058 
3059   LiveRangeStage Stage = getStage(VirtReg);
3060   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
3061                     << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
3062 
3063   // Try to evict a less worthy live range, but only for ranges from the primary
3064   // queue. The RS_Split ranges already failed to do this, and they should not
3065   // get a second chance until they have been split.
3066   if (Stage != RS_Split)
3067     if (unsigned PhysReg =
3068             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
3069                      FixedRegisters)) {
3070       unsigned Hint = MRI->getSimpleHint(VirtReg.reg);
3071       // If VirtReg has a hint and that hint is broken record this
3072       // virtual register as a recoloring candidate for broken hint.
3073       // Indeed, since we evicted a variable in its neighborhood it is
3074       // likely we can at least partially recolor some of the
3075       // copy-related live-ranges.
3076       if (Hint && Hint != PhysReg)
3077         SetOfBrokenHints.insert(&VirtReg);
3078       // If VirtReg eviction someone, the eviction info for it as an evictee is
3079       // no longre relevant.
3080       LastEvicted.clearEvicteeInfo(VirtReg.reg);
3081       return PhysReg;
3082     }
3083 
3084   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
3085 
3086   // The first time we see a live range, don't try to split or spill.
3087   // Wait until the second time, when all smaller ranges have been allocated.
3088   // This gives a better picture of the interference to split around.
3089   if (Stage < RS_Split) {
3090     setStage(VirtReg, RS_Split);
3091     LLVM_DEBUG(dbgs() << "wait for second round\n");
3092     NewVRegs.push_back(VirtReg.reg);
3093     return 0;
3094   }
3095 
3096   if (Stage < RS_Spill) {
3097     // Try splitting VirtReg or interferences.
3098     unsigned NewVRegSizeBefore = NewVRegs.size();
3099     unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
3100     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
3101       // If VirtReg got split, the eviction info is no longre relevant.
3102       LastEvicted.clearEvicteeInfo(VirtReg.reg);
3103       return PhysReg;
3104     }
3105   }
3106 
3107   // If we couldn't allocate a register from spilling, there is probably some
3108   // invalid inline assembly. The base class will report it.
3109   if (Stage >= RS_Done || !VirtReg.isSpillable())
3110     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
3111                                    Depth);
3112 
3113   // Finally spill VirtReg itself.
3114   if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) {
3115     // TODO: This is experimental and in particular, we do not model
3116     // the live range splitting done by spilling correctly.
3117     // We would need a deep integration with the spiller to do the
3118     // right thing here. Anyway, that is still good for early testing.
3119     setStage(VirtReg, RS_Memory);
3120     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3121     NewVRegs.push_back(VirtReg.reg);
3122   } else {
3123     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
3124                        TimerGroupDescription, TimePassesIsEnabled);
3125     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
3126     spiller().spill(LRE);
3127     setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
3128 
3129     if (VerifyEnabled)
3130       MF->verify(this, "After spilling");
3131   }
3132 
3133   // The live virtual register requesting allocation was spilled, so tell
3134   // the caller not to allocate anything during this round.
3135   return 0;
3136 }
3137 
3138 void RAGreedy::reportNumberOfSplillsReloads(MachineLoop *L, unsigned &Reloads,
3139                                             unsigned &FoldedReloads,
3140                                             unsigned &Spills,
3141                                             unsigned &FoldedSpills) {
3142   Reloads = 0;
3143   FoldedReloads = 0;
3144   Spills = 0;
3145   FoldedSpills = 0;
3146 
3147   // Sum up the spill and reloads in subloops.
3148   for (MachineLoop *SubLoop : *L) {
3149     unsigned SubReloads;
3150     unsigned SubFoldedReloads;
3151     unsigned SubSpills;
3152     unsigned SubFoldedSpills;
3153 
3154     reportNumberOfSplillsReloads(SubLoop, SubReloads, SubFoldedReloads,
3155                                  SubSpills, SubFoldedSpills);
3156     Reloads += SubReloads;
3157     FoldedReloads += SubFoldedReloads;
3158     Spills += SubSpills;
3159     FoldedSpills += SubFoldedSpills;
3160   }
3161 
3162   const MachineFrameInfo &MFI = MF->getFrameInfo();
3163   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
3164   int FI;
3165 
3166   for (MachineBasicBlock *MBB : L->getBlocks())
3167     // Handle blocks that were not included in subloops.
3168     if (Loops->getLoopFor(MBB) == L)
3169       for (MachineInstr &MI : *MBB) {
3170         SmallVector<const MachineMemOperand *, 2> Accesses;
3171         auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
3172           return MFI.isSpillSlotObjectIndex(
3173               cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
3174                   ->getFrameIndex());
3175         };
3176 
3177         if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI))
3178           ++Reloads;
3179         else if (TII->hasLoadFromStackSlot(MI, Accesses) &&
3180                  llvm::any_of(Accesses, isSpillSlotAccess))
3181           ++FoldedReloads;
3182         else if (TII->isStoreToStackSlot(MI, FI) &&
3183                  MFI.isSpillSlotObjectIndex(FI))
3184           ++Spills;
3185         else if (TII->hasStoreToStackSlot(MI, Accesses) &&
3186                  llvm::any_of(Accesses, isSpillSlotAccess))
3187           ++FoldedSpills;
3188       }
3189 
3190   if (Reloads || FoldedReloads || Spills || FoldedSpills) {
3191     using namespace ore;
3192 
3193     ORE->emit([&]() {
3194       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReload",
3195                                         L->getStartLoc(), L->getHeader());
3196       if (Spills)
3197         R << NV("NumSpills", Spills) << " spills ";
3198       if (FoldedSpills)
3199         R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
3200       if (Reloads)
3201         R << NV("NumReloads", Reloads) << " reloads ";
3202       if (FoldedReloads)
3203         R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
3204       R << "generated in loop";
3205       return R;
3206     });
3207   }
3208 }
3209 
3210 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
3211   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3212                     << "********** Function: " << mf.getName() << '\n');
3213 
3214   MF = &mf;
3215   TRI = MF->getSubtarget().getRegisterInfo();
3216   TII = MF->getSubtarget().getInstrInfo();
3217   RCI.runOnMachineFunction(mf);
3218 
3219   EnableLocalReassign = EnableLocalReassignment ||
3220                         MF->getSubtarget().enableRALocalReassignment(
3221                             MF->getTarget().getOptLevel());
3222 
3223   EnableAdvancedRASplitCost = ConsiderLocalIntervalCost ||
3224                               MF->getSubtarget().enableAdvancedRASplitCost();
3225 
3226   if (VerifyEnabled)
3227     MF->verify(this, "Before greedy register allocator");
3228 
3229   RegAllocBase::init(getAnalysis<VirtRegMap>(),
3230                      getAnalysis<LiveIntervals>(),
3231                      getAnalysis<LiveRegMatrix>());
3232   Indexes = &getAnalysis<SlotIndexes>();
3233   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3234   DomTree = &getAnalysis<MachineDominatorTree>();
3235   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
3236   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
3237   Loops = &getAnalysis<MachineLoopInfo>();
3238   Bundles = &getAnalysis<EdgeBundles>();
3239   SpillPlacer = &getAnalysis<SpillPlacement>();
3240   DebugVars = &getAnalysis<LiveDebugVariables>();
3241   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3242 
3243   initializeCSRCost();
3244 
3245   calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI);
3246 
3247   LLVM_DEBUG(LIS->dump());
3248 
3249   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
3250   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI));
3251   ExtraRegInfo.clear();
3252   ExtraRegInfo.resize(MRI->getNumVirtRegs());
3253   NextCascade = 1;
3254   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
3255   GlobalCand.resize(32);  // This will grow as needed.
3256   SetOfBrokenHints.clear();
3257   LastEvicted.clear();
3258 
3259   allocatePhysRegs();
3260   tryHintsRecoloring();
3261   postOptimization();
3262   reportNumberOfSplillsReloads();
3263 
3264   releaseMemory();
3265   return true;
3266 }
3267