xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/RegAllocGreedy.cpp (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AllocationOrder.h"
15 #include "InterferenceCache.h"
16 #include "LiveDebugVariables.h"
17 #include "RegAllocBase.h"
18 #include "SpillPlacement.h"
19 #include "SplitKit.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/IndexedMap.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/CodeGen/CalcSpillWeights.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LiveInterval.h"
36 #include "llvm/CodeGen/LiveIntervalUnion.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveRegMatrix.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RegAllocRegistry.h"
53 #include "llvm/CodeGen/RegisterClassInfo.h"
54 #include "llvm/CodeGen/SlotIndexes.h"
55 #include "llvm/CodeGen/Spiller.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/BlockFrequency.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/Timer.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include "llvm/IR/DebugInfoMetadata.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <memory>
77 #include <queue>
78 #include <tuple>
79 #include <utility>
80 
81 using namespace llvm;
82 
83 #define DEBUG_TYPE "regalloc"
84 
85 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
86 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
87 STATISTIC(NumEvicted,      "Number of interferences evicted");
88 
89 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
90     "split-spill-mode", cl::Hidden,
91     cl::desc("Spill mode for splitting live ranges"),
92     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
93                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
94                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
95     cl::init(SplitEditor::SM_Speed));
96 
97 static cl::opt<unsigned>
98 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
99                              cl::desc("Last chance recoloring max depth"),
100                              cl::init(5));
101 
102 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
103     "lcr-max-interf", cl::Hidden,
104     cl::desc("Last chance recoloring maximum number of considered"
105              " interference at a time"),
106     cl::init(8));
107 
108 static cl::opt<bool> ExhaustiveSearch(
109     "exhaustive-register-search", cl::NotHidden,
110     cl::desc("Exhaustive Search for registers bypassing the depth "
111              "and interference cutoffs of last chance recoloring"),
112     cl::Hidden);
113 
114 static cl::opt<bool> EnableLocalReassignment(
115     "enable-local-reassign", cl::Hidden,
116     cl::desc("Local reassignment can yield better allocation decisions, but "
117              "may be compile time intensive"),
118     cl::init(false));
119 
120 static cl::opt<bool> EnableDeferredSpilling(
121     "enable-deferred-spilling", cl::Hidden,
122     cl::desc("Instead of spilling a variable right away, defer the actual "
123              "code insertion to the end of the allocation. That way the "
124              "allocator might still find a suitable coloring for this "
125              "variable because of other evicted variables."),
126     cl::init(false));
127 
128 // FIXME: Find a good default for this flag and remove the flag.
129 static cl::opt<unsigned>
130 CSRFirstTimeCost("regalloc-csr-first-time-cost",
131               cl::desc("Cost for first time use of callee-saved register."),
132               cl::init(0), cl::Hidden);
133 
134 static cl::opt<bool> ConsiderLocalIntervalCost(
135     "consider-local-interval-cost", cl::Hidden,
136     cl::desc("Consider the cost of local intervals created by a split "
137              "candidate when choosing the best split candidate."),
138     cl::init(false));
139 
140 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
141                                        createGreedyRegisterAllocator);
142 
143 namespace {
144 
145 class RAGreedy : public MachineFunctionPass,
146                  public RegAllocBase,
147                  private LiveRangeEdit::Delegate {
148   // Convenient shortcuts.
149   using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>;
150   using SmallLISet = SmallPtrSet<LiveInterval *, 4>;
151   using SmallVirtRegSet = SmallSet<Register, 16>;
152 
153   // context
154   MachineFunction *MF;
155 
156   // Shortcuts to some useful interface.
157   const TargetInstrInfo *TII;
158   const TargetRegisterInfo *TRI;
159   RegisterClassInfo RCI;
160 
161   // analyses
162   SlotIndexes *Indexes;
163   MachineBlockFrequencyInfo *MBFI;
164   MachineDominatorTree *DomTree;
165   MachineLoopInfo *Loops;
166   MachineOptimizationRemarkEmitter *ORE;
167   EdgeBundles *Bundles;
168   SpillPlacement *SpillPlacer;
169   LiveDebugVariables *DebugVars;
170   AliasAnalysis *AA;
171 
172   // state
173   std::unique_ptr<Spiller> SpillerInstance;
174   PQueue Queue;
175   unsigned NextCascade;
176   std::unique_ptr<VirtRegAuxInfo> VRAI;
177 
178   // Live ranges pass through a number of stages as we try to allocate them.
179   // Some of the stages may also create new live ranges:
180   //
181   // - Region splitting.
182   // - Per-block splitting.
183   // - Local splitting.
184   // - Spilling.
185   //
186   // Ranges produced by one of the stages skip the previous stages when they are
187   // dequeued. This improves performance because we can skip interference checks
188   // that are unlikely to give any results. It also guarantees that the live
189   // range splitting algorithm terminates, something that is otherwise hard to
190   // ensure.
191   enum LiveRangeStage {
192     /// Newly created live range that has never been queued.
193     RS_New,
194 
195     /// Only attempt assignment and eviction. Then requeue as RS_Split.
196     RS_Assign,
197 
198     /// Attempt live range splitting if assignment is impossible.
199     RS_Split,
200 
201     /// Attempt more aggressive live range splitting that is guaranteed to make
202     /// progress.  This is used for split products that may not be making
203     /// progress.
204     RS_Split2,
205 
206     /// Live range will be spilled.  No more splitting will be attempted.
207     RS_Spill,
208 
209 
210     /// Live range is in memory. Because of other evictions, it might get moved
211     /// in a register in the end.
212     RS_Memory,
213 
214     /// There is nothing more we can do to this live range.  Abort compilation
215     /// if it can't be assigned.
216     RS_Done
217   };
218 
219   // Enum CutOffStage to keep a track whether the register allocation failed
220   // because of the cutoffs encountered in last chance recoloring.
221   // Note: This is used as bitmask. New value should be next power of 2.
222   enum CutOffStage {
223     // No cutoffs encountered
224     CO_None = 0,
225 
226     // lcr-max-depth cutoff encountered
227     CO_Depth = 1,
228 
229     // lcr-max-interf cutoff encountered
230     CO_Interf = 2
231   };
232 
233   uint8_t CutOffInfo;
234 
235 #ifndef NDEBUG
236   static const char *const StageName[];
237 #endif
238 
239   // RegInfo - Keep additional information about each live range.
240   struct RegInfo {
241     LiveRangeStage Stage = RS_New;
242 
243     // Cascade - Eviction loop prevention. See canEvictInterference().
244     unsigned Cascade = 0;
245 
246     RegInfo() = default;
247   };
248 
249   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
250 
251   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
252     return ExtraRegInfo[VirtReg.reg()].Stage;
253   }
254 
255   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
256     ExtraRegInfo.resize(MRI->getNumVirtRegs());
257     ExtraRegInfo[VirtReg.reg()].Stage = Stage;
258   }
259 
260   template<typename Iterator>
261   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
262     ExtraRegInfo.resize(MRI->getNumVirtRegs());
263     for (;Begin != End; ++Begin) {
264       Register Reg = *Begin;
265       if (ExtraRegInfo[Reg].Stage == RS_New)
266         ExtraRegInfo[Reg].Stage = NewStage;
267     }
268   }
269 
270   /// Cost of evicting interference.
271   struct EvictionCost {
272     unsigned BrokenHints = 0; ///< Total number of broken hints.
273     float MaxWeight = 0;      ///< Maximum spill weight evicted.
274 
275     EvictionCost() = default;
276 
277     bool isMax() const { return BrokenHints == ~0u; }
278 
279     void setMax() { BrokenHints = ~0u; }
280 
281     void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
282 
283     bool operator<(const EvictionCost &O) const {
284       return std::tie(BrokenHints, MaxWeight) <
285              std::tie(O.BrokenHints, O.MaxWeight);
286     }
287   };
288 
289   /// EvictionTrack - Keeps track of past evictions in order to optimize region
290   /// split decision.
291   class EvictionTrack {
292 
293   public:
294     using EvictorInfo =
295         std::pair<Register /* evictor */, MCRegister /* physreg */>;
296     using EvicteeInfo = llvm::DenseMap<Register /* evictee */, EvictorInfo>;
297 
298   private:
299     /// Each Vreg that has been evicted in the last stage of selectOrSplit will
300     /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
301     EvicteeInfo Evictees;
302 
303   public:
304     /// Clear all eviction information.
305     void clear() { Evictees.clear(); }
306 
307     ///  Clear eviction information for the given evictee Vreg.
308     /// E.g. when Vreg get's a new allocation, the old eviction info is no
309     /// longer relevant.
310     /// \param Evictee The evictee Vreg for whom we want to clear collected
311     /// eviction info.
312     void clearEvicteeInfo(Register Evictee) { Evictees.erase(Evictee); }
313 
314     /// Track new eviction.
315     /// The Evictor vreg has evicted the Evictee vreg from Physreg.
316     /// \param PhysReg The physical register Evictee was evicted from.
317     /// \param Evictor The evictor Vreg that evicted Evictee.
318     /// \param Evictee The evictee Vreg.
319     void addEviction(MCRegister PhysReg, Register Evictor, Register Evictee) {
320       Evictees[Evictee].first = Evictor;
321       Evictees[Evictee].second = PhysReg;
322     }
323 
324     /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
325     /// \param Evictee The evictee vreg.
326     /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
327     /// nobody has evicted Evictee from PhysReg.
328     EvictorInfo getEvictor(Register Evictee) {
329       if (Evictees.count(Evictee)) {
330         return Evictees[Evictee];
331       }
332 
333       return EvictorInfo(0, 0);
334     }
335   };
336 
337   // Keeps track of past evictions in order to optimize region split decision.
338   EvictionTrack LastEvicted;
339 
340   // splitting state.
341   std::unique_ptr<SplitAnalysis> SA;
342   std::unique_ptr<SplitEditor> SE;
343 
344   /// Cached per-block interference maps
345   InterferenceCache IntfCache;
346 
347   /// All basic blocks where the current register has uses.
348   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
349 
350   /// Global live range splitting candidate info.
351   struct GlobalSplitCandidate {
352     // Register intended for assignment, or 0.
353     MCRegister PhysReg;
354 
355     // SplitKit interval index for this candidate.
356     unsigned IntvIdx;
357 
358     // Interference for PhysReg.
359     InterferenceCache::Cursor Intf;
360 
361     // Bundles where this candidate should be live.
362     BitVector LiveBundles;
363     SmallVector<unsigned, 8> ActiveBlocks;
364 
365     void reset(InterferenceCache &Cache, MCRegister Reg) {
366       PhysReg = Reg;
367       IntvIdx = 0;
368       Intf.setPhysReg(Cache, Reg);
369       LiveBundles.clear();
370       ActiveBlocks.clear();
371     }
372 
373     // Set B[I] = C for every live bundle where B[I] was NoCand.
374     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
375       unsigned Count = 0;
376       for (unsigned I : LiveBundles.set_bits())
377         if (B[I] == NoCand) {
378           B[I] = C;
379           Count++;
380         }
381       return Count;
382     }
383   };
384 
385   /// Candidate info for each PhysReg in AllocationOrder.
386   /// This vector never shrinks, but grows to the size of the largest register
387   /// class.
388   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
389 
390   enum : unsigned { NoCand = ~0u };
391 
392   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
393   /// NoCand which indicates the stack interval.
394   SmallVector<unsigned, 32> BundleCand;
395 
396   /// Callee-save register cost, calculated once per machine function.
397   BlockFrequency CSRCost;
398 
399   /// Run or not the local reassignment heuristic. This information is
400   /// obtained from the TargetSubtargetInfo.
401   bool EnableLocalReassign;
402 
403   /// Enable or not the consideration of the cost of local intervals created
404   /// by a split candidate when choosing the best split candidate.
405   bool EnableAdvancedRASplitCost;
406 
407   /// Set of broken hints that may be reconciled later because of eviction.
408   SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
409 
410   /// The register cost values. This list will be recreated for each Machine
411   /// Function
412   ArrayRef<uint8_t> RegCosts;
413 
414 public:
415   RAGreedy(const RegClassFilterFunc F = allocateAllRegClasses);
416 
417   /// Return the pass name.
418   StringRef getPassName() const override { return "Greedy Register Allocator"; }
419 
420   /// RAGreedy analysis usage.
421   void getAnalysisUsage(AnalysisUsage &AU) const override;
422   void releaseMemory() override;
423   Spiller &spiller() override { return *SpillerInstance; }
424   void enqueueImpl(LiveInterval *LI) override;
425   LiveInterval *dequeue() override;
426   MCRegister selectOrSplit(LiveInterval &,
427                            SmallVectorImpl<Register> &) override;
428   void aboutToRemoveInterval(LiveInterval &) override;
429 
430   /// Perform register allocation.
431   bool runOnMachineFunction(MachineFunction &mf) override;
432 
433   MachineFunctionProperties getRequiredProperties() const override {
434     return MachineFunctionProperties().set(
435         MachineFunctionProperties::Property::NoPHIs);
436   }
437 
438   MachineFunctionProperties getClearedProperties() const override {
439     return MachineFunctionProperties().set(
440       MachineFunctionProperties::Property::IsSSA);
441   }
442 
443   static char ID;
444 
445 private:
446   MCRegister selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &,
447                                SmallVirtRegSet &, unsigned = 0);
448 
449   bool LRE_CanEraseVirtReg(Register) override;
450   void LRE_WillShrinkVirtReg(Register) override;
451   void LRE_DidCloneVirtReg(Register, Register) override;
452   void enqueue(PQueue &CurQueue, LiveInterval *LI);
453   LiveInterval *dequeue(PQueue &CurQueue);
454 
455   BlockFrequency calcSpillCost();
456   bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
457   bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
458   bool growRegion(GlobalSplitCandidate &Cand);
459   bool splitCanCauseEvictionChain(Register Evictee, GlobalSplitCandidate &Cand,
460                                   unsigned BBNumber,
461                                   const AllocationOrder &Order);
462   bool splitCanCauseLocalSpill(unsigned VirtRegToSplit,
463                                GlobalSplitCandidate &Cand, unsigned BBNumber,
464                                const AllocationOrder &Order);
465   BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &,
466                                      const AllocationOrder &Order,
467                                      bool *CanCauseEvictionChain);
468   bool calcCompactRegion(GlobalSplitCandidate&);
469   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
470   void calcGapWeights(MCRegister, SmallVectorImpl<float> &);
471   Register canReassign(LiveInterval &VirtReg, Register PrevReg) const;
472   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool) const;
473   bool canEvictInterference(LiveInterval &, MCRegister, bool, EvictionCost &,
474                             const SmallVirtRegSet &) const;
475   bool canEvictInterferenceInRange(const LiveInterval &VirtReg,
476                                    MCRegister PhysReg, SlotIndex Start,
477                                    SlotIndex End, EvictionCost &MaxCost) const;
478   MCRegister getCheapestEvicteeWeight(const AllocationOrder &Order,
479                                       const LiveInterval &VirtReg,
480                                       SlotIndex Start, SlotIndex End,
481                                       float *BestEvictWeight) const;
482   void evictInterference(LiveInterval &, MCRegister,
483                          SmallVectorImpl<Register> &);
484   bool mayRecolorAllInterferences(MCRegister PhysReg, LiveInterval &VirtReg,
485                                   SmallLISet &RecoloringCandidates,
486                                   const SmallVirtRegSet &FixedRegisters);
487 
488   MCRegister tryAssign(LiveInterval&, AllocationOrder&,
489                      SmallVectorImpl<Register>&,
490                      const SmallVirtRegSet&);
491   MCRegister tryEvict(LiveInterval &, AllocationOrder &,
492                     SmallVectorImpl<Register> &, uint8_t,
493                     const SmallVirtRegSet &);
494   MCRegister tryRegionSplit(LiveInterval &, AllocationOrder &,
495                             SmallVectorImpl<Register> &);
496   /// Calculate cost of region splitting.
497   unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
498                                     AllocationOrder &Order,
499                                     BlockFrequency &BestCost,
500                                     unsigned &NumCands, bool IgnoreCSR,
501                                     bool *CanCauseEvictionChain = nullptr);
502   /// Perform region splitting.
503   unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
504                          bool HasCompact,
505                          SmallVectorImpl<Register> &NewVRegs);
506   /// Check other options before using a callee-saved register for the first
507   /// time.
508   MCRegister tryAssignCSRFirstTime(LiveInterval &VirtReg,
509                                    AllocationOrder &Order, MCRegister PhysReg,
510                                    uint8_t &CostPerUseLimit,
511                                    SmallVectorImpl<Register> &NewVRegs);
512   void initializeCSRCost();
513   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
514                          SmallVectorImpl<Register>&);
515   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
516                                SmallVectorImpl<Register>&);
517   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
518     SmallVectorImpl<Register>&);
519   unsigned trySplit(LiveInterval&, AllocationOrder&,
520                     SmallVectorImpl<Register>&,
521                     const SmallVirtRegSet&);
522   unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
523                                    SmallVectorImpl<Register> &,
524                                    SmallVirtRegSet &, unsigned);
525   bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &,
526                                SmallVirtRegSet &, unsigned);
527   void tryHintRecoloring(LiveInterval &);
528   void tryHintsRecoloring();
529 
530   /// Model the information carried by one end of a copy.
531   struct HintInfo {
532     /// The frequency of the copy.
533     BlockFrequency Freq;
534     /// The virtual register or physical register.
535     Register Reg;
536     /// Its currently assigned register.
537     /// In case of a physical register Reg == PhysReg.
538     MCRegister PhysReg;
539 
540     HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg)
541         : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
542   };
543   using HintsInfo = SmallVector<HintInfo, 4>;
544 
545   BlockFrequency getBrokenHintFreq(const HintsInfo &, MCRegister);
546   void collectHintInfo(Register, HintsInfo &);
547 
548   bool isUnusedCalleeSavedReg(MCRegister PhysReg) const;
549 
550   /// Greedy RA statistic to remark.
551   struct RAGreedyStats {
552     unsigned Reloads = 0;
553     unsigned FoldedReloads = 0;
554     unsigned ZeroCostFoldedReloads = 0;
555     unsigned Spills = 0;
556     unsigned FoldedSpills = 0;
557     unsigned Copies = 0;
558     float ReloadsCost = 0.0f;
559     float FoldedReloadsCost = 0.0f;
560     float SpillsCost = 0.0f;
561     float FoldedSpillsCost = 0.0f;
562     float CopiesCost = 0.0f;
563 
564     bool isEmpty() {
565       return !(Reloads || FoldedReloads || Spills || FoldedSpills ||
566                ZeroCostFoldedReloads || Copies);
567     }
568 
569     void add(RAGreedyStats other) {
570       Reloads += other.Reloads;
571       FoldedReloads += other.FoldedReloads;
572       ZeroCostFoldedReloads += other.ZeroCostFoldedReloads;
573       Spills += other.Spills;
574       FoldedSpills += other.FoldedSpills;
575       Copies += other.Copies;
576       ReloadsCost += other.ReloadsCost;
577       FoldedReloadsCost += other.FoldedReloadsCost;
578       SpillsCost += other.SpillsCost;
579       FoldedSpillsCost += other.FoldedSpillsCost;
580       CopiesCost += other.CopiesCost;
581     }
582 
583     void report(MachineOptimizationRemarkMissed &R);
584   };
585 
586   /// Compute statistic for a basic block.
587   RAGreedyStats computeStats(MachineBasicBlock &MBB);
588 
589   /// Compute and report statistic through a remark.
590   RAGreedyStats reportStats(MachineLoop *L);
591 
592   /// Report the statistic for each loop.
593   void reportStats();
594 };
595 
596 } // end anonymous namespace
597 
598 char RAGreedy::ID = 0;
599 char &llvm::RAGreedyID = RAGreedy::ID;
600 
601 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
602                 "Greedy Register Allocator", false, false)
603 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
604 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
605 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
606 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
607 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
608 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
609 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
610 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
611 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
612 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
613 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
614 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
615 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
616 INITIALIZE_PASS_END(RAGreedy, "greedy",
617                 "Greedy Register Allocator", false, false)
618 
619 #ifndef NDEBUG
620 const char *const RAGreedy::StageName[] = {
621     "RS_New",
622     "RS_Assign",
623     "RS_Split",
624     "RS_Split2",
625     "RS_Spill",
626     "RS_Memory",
627     "RS_Done"
628 };
629 #endif
630 
631 // Hysteresis to use when comparing floats.
632 // This helps stabilize decisions based on float comparisons.
633 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
634 
635 FunctionPass* llvm::createGreedyRegisterAllocator() {
636   return new RAGreedy();
637 }
638 
639 namespace llvm {
640 FunctionPass* createGreedyRegisterAllocator(
641   std::function<bool(const TargetRegisterInfo &TRI,
642                      const TargetRegisterClass &RC)> Ftor);
643 
644 }
645 
646 FunctionPass* llvm::createGreedyRegisterAllocator(
647   std::function<bool(const TargetRegisterInfo &TRI,
648                      const TargetRegisterClass &RC)> Ftor) {
649   return new RAGreedy(Ftor);
650 }
651 
652 RAGreedy::RAGreedy(RegClassFilterFunc F):
653   MachineFunctionPass(ID),
654   RegAllocBase(F) {
655 }
656 
657 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
658   AU.setPreservesCFG();
659   AU.addRequired<MachineBlockFrequencyInfo>();
660   AU.addPreserved<MachineBlockFrequencyInfo>();
661   AU.addRequired<AAResultsWrapperPass>();
662   AU.addPreserved<AAResultsWrapperPass>();
663   AU.addRequired<LiveIntervals>();
664   AU.addPreserved<LiveIntervals>();
665   AU.addRequired<SlotIndexes>();
666   AU.addPreserved<SlotIndexes>();
667   AU.addRequired<LiveDebugVariables>();
668   AU.addPreserved<LiveDebugVariables>();
669   AU.addRequired<LiveStacks>();
670   AU.addPreserved<LiveStacks>();
671   AU.addRequired<MachineDominatorTree>();
672   AU.addPreserved<MachineDominatorTree>();
673   AU.addRequired<MachineLoopInfo>();
674   AU.addPreserved<MachineLoopInfo>();
675   AU.addRequired<VirtRegMap>();
676   AU.addPreserved<VirtRegMap>();
677   AU.addRequired<LiveRegMatrix>();
678   AU.addPreserved<LiveRegMatrix>();
679   AU.addRequired<EdgeBundles>();
680   AU.addRequired<SpillPlacement>();
681   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
682   MachineFunctionPass::getAnalysisUsage(AU);
683 }
684 
685 //===----------------------------------------------------------------------===//
686 //                     LiveRangeEdit delegate methods
687 //===----------------------------------------------------------------------===//
688 
689 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
690   LiveInterval &LI = LIS->getInterval(VirtReg);
691   if (VRM->hasPhys(VirtReg)) {
692     Matrix->unassign(LI);
693     aboutToRemoveInterval(LI);
694     return true;
695   }
696   // Unassigned virtreg is probably in the priority queue.
697   // RegAllocBase will erase it after dequeueing.
698   // Nonetheless, clear the live-range so that the debug
699   // dump will show the right state for that VirtReg.
700   LI.clear();
701   return false;
702 }
703 
704 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
705   if (!VRM->hasPhys(VirtReg))
706     return;
707 
708   // Register is assigned, put it back on the queue for reassignment.
709   LiveInterval &LI = LIS->getInterval(VirtReg);
710   Matrix->unassign(LI);
711   RegAllocBase::enqueue(&LI);
712 }
713 
714 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
715   // Cloning a register we haven't even heard about yet?  Just ignore it.
716   if (!ExtraRegInfo.inBounds(Old))
717     return;
718 
719   // LRE may clone a virtual register because dead code elimination causes it to
720   // be split into connected components. The new components are much smaller
721   // than the original, so they should get a new chance at being assigned.
722   // same stage as the parent.
723   ExtraRegInfo[Old].Stage = RS_Assign;
724   ExtraRegInfo.grow(New);
725   ExtraRegInfo[New] = ExtraRegInfo[Old];
726 }
727 
728 void RAGreedy::releaseMemory() {
729   SpillerInstance.reset();
730   ExtraRegInfo.clear();
731   GlobalCand.clear();
732 }
733 
734 void RAGreedy::enqueueImpl(LiveInterval *LI) { enqueue(Queue, LI); }
735 
736 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
737   // Prioritize live ranges by size, assigning larger ranges first.
738   // The queue holds (size, reg) pairs.
739   const unsigned Size = LI->getSize();
740   const Register Reg = LI->reg();
741   assert(Reg.isVirtual() && "Can only enqueue virtual registers");
742   unsigned Prio;
743 
744   ExtraRegInfo.grow(Reg);
745   if (ExtraRegInfo[Reg].Stage == RS_New)
746     ExtraRegInfo[Reg].Stage = RS_Assign;
747 
748   if (ExtraRegInfo[Reg].Stage == RS_Split) {
749     // Unsplit ranges that couldn't be allocated immediately are deferred until
750     // everything else has been allocated.
751     Prio = Size;
752   } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
753     // Memory operand should be considered last.
754     // Change the priority such that Memory operand are assigned in
755     // the reverse order that they came in.
756     // TODO: Make this a member variable and probably do something about hints.
757     static unsigned MemOp = 0;
758     Prio = MemOp++;
759   } else {
760     // Giant live ranges fall back to the global assignment heuristic, which
761     // prevents excessive spilling in pathological cases.
762     bool ReverseLocal = TRI->reverseLocalAssignment();
763     bool AddPriorityToGlobal = TRI->addAllocPriorityToGlobalRanges();
764     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
765     bool ForceGlobal = !ReverseLocal &&
766       (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
767 
768     if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
769         LIS->intervalIsInOneMBB(*LI)) {
770       // Allocate original local ranges in linear instruction order. Since they
771       // are singly defined, this produces optimal coloring in the absence of
772       // global interference and other constraints.
773       if (!ReverseLocal)
774         Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
775       else {
776         // Allocating bottom up may allow many short LRGs to be assigned first
777         // to one of the cheap registers. This could be much faster for very
778         // large blocks on targets with many physical registers.
779         Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
780       }
781       Prio |= RC.AllocationPriority << 24;
782     } else {
783       // Allocate global and split ranges in long->short order. Long ranges that
784       // don't fit should be spilled (or split) ASAP so they don't create
785       // interference.  Mark a bit to prioritize global above local ranges.
786       Prio = (1u << 29) + Size;
787 
788       if (AddPriorityToGlobal)
789         Prio |= RC.AllocationPriority << 24;
790     }
791     // Mark a higher bit to prioritize global and local above RS_Split.
792     Prio |= (1u << 31);
793 
794     // Boost ranges that have a physical register hint.
795     if (VRM->hasKnownPreference(Reg))
796       Prio |= (1u << 30);
797   }
798   // The virtual register number is a tie breaker for same-sized ranges.
799   // Give lower vreg numbers higher priority to assign them first.
800   CurQueue.push(std::make_pair(Prio, ~Reg));
801 }
802 
803 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
804 
805 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
806   if (CurQueue.empty())
807     return nullptr;
808   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
809   CurQueue.pop();
810   return LI;
811 }
812 
813 //===----------------------------------------------------------------------===//
814 //                            Direct Assignment
815 //===----------------------------------------------------------------------===//
816 
817 /// tryAssign - Try to assign VirtReg to an available register.
818 MCRegister RAGreedy::tryAssign(LiveInterval &VirtReg,
819                              AllocationOrder &Order,
820                              SmallVectorImpl<Register> &NewVRegs,
821                              const SmallVirtRegSet &FixedRegisters) {
822   MCRegister PhysReg;
823   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
824     assert(*I);
825     if (!Matrix->checkInterference(VirtReg, *I)) {
826       if (I.isHint())
827         return *I;
828       else
829         PhysReg = *I;
830     }
831   }
832   if (!PhysReg.isValid())
833     return PhysReg;
834 
835   // PhysReg is available, but there may be a better choice.
836 
837   // If we missed a simple hint, try to cheaply evict interference from the
838   // preferred register.
839   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
840     if (Order.isHint(Hint)) {
841       MCRegister PhysHint = Hint.asMCReg();
842       LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
843       EvictionCost MaxCost;
844       MaxCost.setBrokenHints(1);
845       if (canEvictInterference(VirtReg, PhysHint, true, MaxCost,
846                                FixedRegisters)) {
847         evictInterference(VirtReg, PhysHint, NewVRegs);
848         return PhysHint;
849       }
850       // Record the missed hint, we may be able to recover
851       // at the end if the surrounding allocation changed.
852       SetOfBrokenHints.insert(&VirtReg);
853     }
854 
855   // Try to evict interference from a cheaper alternative.
856   uint8_t Cost = RegCosts[PhysReg];
857 
858   // Most registers have 0 additional cost.
859   if (!Cost)
860     return PhysReg;
861 
862   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
863                     << Cost << '\n');
864   MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
865   return CheapReg ? CheapReg : PhysReg;
866 }
867 
868 //===----------------------------------------------------------------------===//
869 //                         Interference eviction
870 //===----------------------------------------------------------------------===//
871 
872 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) const {
873   auto Order =
874       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
875   MCRegister PhysReg;
876   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
877     if ((*I).id() == PrevReg.id())
878       continue;
879 
880     MCRegUnitIterator Units(*I, TRI);
881     for (; Units.isValid(); ++Units) {
882       // Instantiate a "subquery", not to be confused with the Queries array.
883       LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]);
884       if (subQ.checkInterference())
885         break;
886     }
887     // If no units have interference, break out with the current PhysReg.
888     if (!Units.isValid())
889       PhysReg = *I;
890   }
891   if (PhysReg)
892     LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
893                       << printReg(PrevReg, TRI) << " to "
894                       << printReg(PhysReg, TRI) << '\n');
895   return PhysReg;
896 }
897 
898 /// shouldEvict - determine if A should evict the assigned live range B. The
899 /// eviction policy defined by this function together with the allocation order
900 /// defined by enqueue() decides which registers ultimately end up being split
901 /// and spilled.
902 ///
903 /// Cascade numbers are used to prevent infinite loops if this function is a
904 /// cyclic relation.
905 ///
906 /// @param A          The live range to be assigned.
907 /// @param IsHint     True when A is about to be assigned to its preferred
908 ///                   register.
909 /// @param B          The live range to be evicted.
910 /// @param BreaksHint True when B is already assigned to its preferred register.
911 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
912                            LiveInterval &B, bool BreaksHint) const {
913   bool CanSplit = getStage(B) < RS_Spill;
914 
915   // Be fairly aggressive about following hints as long as the evictee can be
916   // split.
917   if (CanSplit && IsHint && !BreaksHint)
918     return true;
919 
920   if (A.weight() > B.weight()) {
921     LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n');
922     return true;
923   }
924   return false;
925 }
926 
927 /// canEvictInterference - Return true if all interferences between VirtReg and
928 /// PhysReg can be evicted.
929 ///
930 /// @param VirtReg Live range that is about to be assigned.
931 /// @param PhysReg Desired register for assignment.
932 /// @param IsHint  True when PhysReg is VirtReg's preferred register.
933 /// @param MaxCost Only look for cheaper candidates and update with new cost
934 ///                when returning true.
935 /// @returns True when interference can be evicted cheaper than MaxCost.
936 bool RAGreedy::canEvictInterference(
937     LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint,
938     EvictionCost &MaxCost, const SmallVirtRegSet &FixedRegisters) const {
939   // It is only possible to evict virtual register interference.
940   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
941     return false;
942 
943   bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
944 
945   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
946   // involved in an eviction before. If a cascade number was assigned, deny
947   // evicting anything with the same or a newer cascade number. This prevents
948   // infinite eviction loops.
949   //
950   // This works out so a register without a cascade number is allowed to evict
951   // anything, and it can be evicted by anything.
952   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
953   if (!Cascade)
954     Cascade = NextCascade;
955 
956   EvictionCost Cost;
957   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
958     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
959     // If there is 10 or more interferences, chances are one is heavier.
960     if (Q.collectInterferingVRegs(10) >= 10)
961       return false;
962 
963     // Check if any interfering live range is heavier than MaxWeight.
964     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
965       assert(Register::isVirtualRegister(Intf->reg()) &&
966              "Only expecting virtual register interference from query");
967 
968       // Do not allow eviction of a virtual register if we are in the middle
969       // of last-chance recoloring and this virtual register is one that we
970       // have scavenged a physical register for.
971       if (FixedRegisters.count(Intf->reg()))
972         return false;
973 
974       // Never evict spill products. They cannot split or spill.
975       if (getStage(*Intf) == RS_Done)
976         return false;
977       // Once a live range becomes small enough, it is urgent that we find a
978       // register for it. This is indicated by an infinite spill weight. These
979       // urgent live ranges get to evict almost anything.
980       //
981       // Also allow urgent evictions of unspillable ranges from a strictly
982       // larger allocation order.
983       bool Urgent =
984           !VirtReg.isSpillable() &&
985           (Intf->isSpillable() ||
986            RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) <
987                RegClassInfo.getNumAllocatableRegs(
988                    MRI->getRegClass(Intf->reg())));
989       // Only evict older cascades or live ranges without a cascade.
990       unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade;
991       if (Cascade <= IntfCascade) {
992         if (!Urgent)
993           return false;
994         // We permit breaking cascades for urgent evictions. It should be the
995         // last resort, though, so make it really expensive.
996         Cost.BrokenHints += 10;
997       }
998       // Would this break a satisfied hint?
999       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
1000       // Update eviction cost.
1001       Cost.BrokenHints += BreaksHint;
1002       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
1003       // Abort if this would be too expensive.
1004       if (!(Cost < MaxCost))
1005         return false;
1006       if (Urgent)
1007         continue;
1008       // Apply the eviction policy for non-urgent evictions.
1009       if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
1010         return false;
1011       // If !MaxCost.isMax(), then we're just looking for a cheap register.
1012       // Evicting another local live range in this case could lead to suboptimal
1013       // coloring.
1014       if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
1015           (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
1016         return false;
1017       }
1018     }
1019   }
1020   MaxCost = Cost;
1021   return true;
1022 }
1023 
1024 /// Return true if all interferences between VirtReg and PhysReg between
1025 /// Start and End can be evicted.
1026 ///
1027 /// \param VirtReg Live range that is about to be assigned.
1028 /// \param PhysReg Desired register for assignment.
1029 /// \param Start   Start of range to look for interferences.
1030 /// \param End     End of range to look for interferences.
1031 /// \param MaxCost Only look for cheaper candidates and update with new cost
1032 ///                when returning true.
1033 /// \return True when interference can be evicted cheaper than MaxCost.
1034 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg,
1035                                            MCRegister PhysReg, SlotIndex Start,
1036                                            SlotIndex End,
1037                                            EvictionCost &MaxCost) const {
1038   EvictionCost Cost;
1039 
1040   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1041     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1042     Q.collectInterferingVRegs();
1043 
1044     // Check if any interfering live range is heavier than MaxWeight.
1045     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
1046       // Check if interference overlast the segment in interest.
1047       if (!Intf->overlaps(Start, End))
1048         continue;
1049 
1050       // Cannot evict non virtual reg interference.
1051       if (!Register::isVirtualRegister(Intf->reg()))
1052         return false;
1053       // Never evict spill products. They cannot split or spill.
1054       if (getStage(*Intf) == RS_Done)
1055         return false;
1056 
1057       // Would this break a satisfied hint?
1058       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg());
1059       // Update eviction cost.
1060       Cost.BrokenHints += BreaksHint;
1061       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight());
1062       // Abort if this would be too expensive.
1063       if (!(Cost < MaxCost))
1064         return false;
1065     }
1066   }
1067 
1068   if (Cost.MaxWeight == 0)
1069     return false;
1070 
1071   MaxCost = Cost;
1072   return true;
1073 }
1074 
1075 /// Return the physical register that will be best
1076 /// candidate for eviction by a local split interval that will be created
1077 /// between Start and End.
1078 ///
1079 /// \param Order            The allocation order
1080 /// \param VirtReg          Live range that is about to be assigned.
1081 /// \param Start            Start of range to look for interferences
1082 /// \param End              End of range to look for interferences
1083 /// \param BestEvictweight  The eviction cost of that eviction
1084 /// \return The PhysReg which is the best candidate for eviction and the
1085 /// eviction cost in BestEvictweight
1086 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order,
1087                                               const LiveInterval &VirtReg,
1088                                               SlotIndex Start, SlotIndex End,
1089                                               float *BestEvictweight) const {
1090   EvictionCost BestEvictCost;
1091   BestEvictCost.setMax();
1092   BestEvictCost.MaxWeight = VirtReg.weight();
1093   MCRegister BestEvicteePhys;
1094 
1095   // Go over all physical registers and find the best candidate for eviction
1096   for (MCRegister PhysReg : Order.getOrder()) {
1097 
1098     if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End,
1099                                      BestEvictCost))
1100       continue;
1101 
1102     // Best so far.
1103     BestEvicteePhys = PhysReg;
1104   }
1105   *BestEvictweight = BestEvictCost.MaxWeight;
1106   return BestEvicteePhys;
1107 }
1108 
1109 /// evictInterference - Evict any interferring registers that prevent VirtReg
1110 /// from being assigned to Physreg. This assumes that canEvictInterference
1111 /// returned true.
1112 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg,
1113                                  SmallVectorImpl<Register> &NewVRegs) {
1114   // Make sure that VirtReg has a cascade number, and assign that cascade
1115   // number to every evicted register. These live ranges than then only be
1116   // evicted by a newer cascade, preventing infinite loops.
1117   unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade;
1118   if (!Cascade)
1119     Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++;
1120 
1121   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
1122                     << " interference: Cascade " << Cascade << '\n');
1123 
1124   // Collect all interfering virtregs first.
1125   SmallVector<LiveInterval*, 8> Intfs;
1126   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1127     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
1128     // We usually have the interfering VRegs cached so collectInterferingVRegs()
1129     // should be fast, we may need to recalculate if when different physregs
1130     // overlap the same register unit so we had different SubRanges queried
1131     // against it.
1132     Q.collectInterferingVRegs();
1133     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
1134     Intfs.append(IVR.begin(), IVR.end());
1135   }
1136 
1137   // Evict them second. This will invalidate the queries.
1138   for (LiveInterval *Intf : Intfs) {
1139     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1140     if (!VRM->hasPhys(Intf->reg()))
1141       continue;
1142 
1143     LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg());
1144 
1145     Matrix->unassign(*Intf);
1146     assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade ||
1147             VirtReg.isSpillable() < Intf->isSpillable()) &&
1148            "Cannot decrease cascade number, illegal eviction");
1149     ExtraRegInfo[Intf->reg()].Cascade = Cascade;
1150     ++NumEvicted;
1151     NewVRegs.push_back(Intf->reg());
1152   }
1153 }
1154 
1155 /// Returns true if the given \p PhysReg is a callee saved register and has not
1156 /// been used for allocation yet.
1157 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
1158   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
1159   if (!CSR)
1160     return false;
1161 
1162   return !Matrix->isPhysRegUsed(PhysReg);
1163 }
1164 
1165 /// tryEvict - Try to evict all interferences for a physreg.
1166 /// @param  VirtReg Currently unassigned virtual register.
1167 /// @param  Order   Physregs to try.
1168 /// @return         Physreg to assign VirtReg, or 0.
1169 MCRegister RAGreedy::tryEvict(LiveInterval &VirtReg, AllocationOrder &Order,
1170                             SmallVectorImpl<Register> &NewVRegs,
1171                             uint8_t CostPerUseLimit,
1172                             const SmallVirtRegSet &FixedRegisters) {
1173   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
1174                      TimePassesIsEnabled);
1175 
1176   // Keep track of the cheapest interference seen so far.
1177   EvictionCost BestCost;
1178   BestCost.setMax();
1179   MCRegister BestPhys;
1180   unsigned OrderLimit = Order.getOrder().size();
1181 
1182   // When we are just looking for a reduced cost per use, don't break any
1183   // hints, and only evict smaller spill weights.
1184   if (CostPerUseLimit < uint8_t(~0u)) {
1185     BestCost.BrokenHints = 0;
1186     BestCost.MaxWeight = VirtReg.weight();
1187 
1188     // Check of any registers in RC are below CostPerUseLimit.
1189     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
1190     uint8_t MinCost = RegClassInfo.getMinCost(RC);
1191     if (MinCost >= CostPerUseLimit) {
1192       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
1193                         << MinCost << ", no cheaper registers to be found.\n");
1194       return 0;
1195     }
1196 
1197     // It is normal for register classes to have a long tail of registers with
1198     // the same cost. We don't need to look at them if they're too expensive.
1199     if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) {
1200       OrderLimit = RegClassInfo.getLastCostChange(RC);
1201       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1202                         << " regs.\n");
1203     }
1204   }
1205 
1206   for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E;
1207        ++I) {
1208     MCRegister PhysReg = *I;
1209     assert(PhysReg);
1210     if (RegCosts[PhysReg] >= CostPerUseLimit)
1211       continue;
1212     // The first use of a callee-saved register in a function has cost 1.
1213     // Don't start using a CSR when the CostPerUseLimit is low.
1214     if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
1215       LLVM_DEBUG(
1216           dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
1217                  << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
1218                  << '\n');
1219       continue;
1220     }
1221 
1222     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost,
1223                               FixedRegisters))
1224       continue;
1225 
1226     // Best so far.
1227     BestPhys = PhysReg;
1228 
1229     // Stop if the hint can be used.
1230     if (I.isHint())
1231       break;
1232   }
1233 
1234   if (BestPhys.isValid())
1235     evictInterference(VirtReg, BestPhys, NewVRegs);
1236   return BestPhys;
1237 }
1238 
1239 //===----------------------------------------------------------------------===//
1240 //                              Region Splitting
1241 //===----------------------------------------------------------------------===//
1242 
1243 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1244 /// interference pattern in Physreg and its aliases. Add the constraints to
1245 /// SpillPlacement and return the static cost of this split in Cost, assuming
1246 /// that all preferences in SplitConstraints are met.
1247 /// Return false if there are no bundles with positive bias.
1248 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
1249                                    BlockFrequency &Cost) {
1250   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1251 
1252   // Reset interference dependent info.
1253   SplitConstraints.resize(UseBlocks.size());
1254   BlockFrequency StaticCost = 0;
1255   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1256     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1257     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1258 
1259     BC.Number = BI.MBB->getNumber();
1260     Intf.moveToBlock(BC.Number);
1261     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
1262     BC.Exit = (BI.LiveOut &&
1263                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
1264                   ? SpillPlacement::PrefReg
1265                   : SpillPlacement::DontCare;
1266     BC.ChangesValue = BI.FirstDef.isValid();
1267 
1268     if (!Intf.hasInterference())
1269       continue;
1270 
1271     // Number of spill code instructions to insert.
1272     unsigned Ins = 0;
1273 
1274     // Interference for the live-in value.
1275     if (BI.LiveIn) {
1276       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
1277         BC.Entry = SpillPlacement::MustSpill;
1278         ++Ins;
1279       } else if (Intf.first() < BI.FirstInstr) {
1280         BC.Entry = SpillPlacement::PrefSpill;
1281         ++Ins;
1282       } else if (Intf.first() < BI.LastInstr) {
1283         ++Ins;
1284       }
1285 
1286       // Abort if the spill cannot be inserted at the MBB' start
1287       if (((BC.Entry == SpillPlacement::MustSpill) ||
1288            (BC.Entry == SpillPlacement::PrefSpill)) &&
1289           SlotIndex::isEarlierInstr(BI.FirstInstr,
1290                                     SA->getFirstSplitPoint(BC.Number)))
1291         return false;
1292     }
1293 
1294     // Interference for the live-out value.
1295     if (BI.LiveOut) {
1296       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
1297         BC.Exit = SpillPlacement::MustSpill;
1298         ++Ins;
1299       } else if (Intf.last() > BI.LastInstr) {
1300         BC.Exit = SpillPlacement::PrefSpill;
1301         ++Ins;
1302       } else if (Intf.last() > BI.FirstInstr) {
1303         ++Ins;
1304       }
1305     }
1306 
1307     // Accumulate the total frequency of inserted spill code.
1308     while (Ins--)
1309       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
1310   }
1311   Cost = StaticCost;
1312 
1313   // Add constraints for use-blocks. Note that these are the only constraints
1314   // that may add a positive bias, it is downhill from here.
1315   SpillPlacer->addConstraints(SplitConstraints);
1316   return SpillPlacer->scanActiveBundles();
1317 }
1318 
1319 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1320 /// live-through blocks in Blocks.
1321 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
1322                                      ArrayRef<unsigned> Blocks) {
1323   const unsigned GroupSize = 8;
1324   SpillPlacement::BlockConstraint BCS[GroupSize];
1325   unsigned TBS[GroupSize];
1326   unsigned B = 0, T = 0;
1327 
1328   for (unsigned Number : Blocks) {
1329     Intf.moveToBlock(Number);
1330 
1331     if (!Intf.hasInterference()) {
1332       assert(T < GroupSize && "Array overflow");
1333       TBS[T] = Number;
1334       if (++T == GroupSize) {
1335         SpillPlacer->addLinks(makeArrayRef(TBS, T));
1336         T = 0;
1337       }
1338       continue;
1339     }
1340 
1341     assert(B < GroupSize && "Array overflow");
1342     BCS[B].Number = Number;
1343 
1344     // Abort if the spill cannot be inserted at the MBB' start
1345     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
1346     auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr();
1347     if (FirstNonDebugInstr != MBB->end() &&
1348         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr),
1349                                   SA->getFirstSplitPoint(Number)))
1350       return false;
1351     // Interference for the live-in value.
1352     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1353       BCS[B].Entry = SpillPlacement::MustSpill;
1354     else
1355       BCS[B].Entry = SpillPlacement::PrefSpill;
1356 
1357     // Interference for the live-out value.
1358     if (Intf.last() >= SA->getLastSplitPoint(Number))
1359       BCS[B].Exit = SpillPlacement::MustSpill;
1360     else
1361       BCS[B].Exit = SpillPlacement::PrefSpill;
1362 
1363     if (++B == GroupSize) {
1364       SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1365       B = 0;
1366     }
1367   }
1368 
1369   SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1370   SpillPlacer->addLinks(makeArrayRef(TBS, T));
1371   return true;
1372 }
1373 
1374 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1375   // Keep track of through blocks that have not been added to SpillPlacer.
1376   BitVector Todo = SA->getThroughBlocks();
1377   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1378   unsigned AddedTo = 0;
1379 #ifndef NDEBUG
1380   unsigned Visited = 0;
1381 #endif
1382 
1383   while (true) {
1384     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1385     // Find new through blocks in the periphery of PrefRegBundles.
1386     for (unsigned Bundle : NewBundles) {
1387       // Look at all blocks connected to Bundle in the full graph.
1388       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1389       for (unsigned Block : Blocks) {
1390         if (!Todo.test(Block))
1391           continue;
1392         Todo.reset(Block);
1393         // This is a new through block. Add it to SpillPlacer later.
1394         ActiveBlocks.push_back(Block);
1395 #ifndef NDEBUG
1396         ++Visited;
1397 #endif
1398       }
1399     }
1400     // Any new blocks to add?
1401     if (ActiveBlocks.size() == AddedTo)
1402       break;
1403 
1404     // Compute through constraints from the interference, or assume that all
1405     // through blocks prefer spilling when forming compact regions.
1406     auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1407     if (Cand.PhysReg) {
1408       if (!addThroughConstraints(Cand.Intf, NewBlocks))
1409         return false;
1410     } else
1411       // Provide a strong negative bias on through blocks to prevent unwanted
1412       // liveness on loop backedges.
1413       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1414     AddedTo = ActiveBlocks.size();
1415 
1416     // Perhaps iterating can enable more bundles?
1417     SpillPlacer->iterate();
1418   }
1419   LLVM_DEBUG(dbgs() << ", v=" << Visited);
1420   return true;
1421 }
1422 
1423 /// calcCompactRegion - Compute the set of edge bundles that should be live
1424 /// when splitting the current live range into compact regions.  Compact
1425 /// regions can be computed without looking at interference.  They are the
1426 /// regions formed by removing all the live-through blocks from the live range.
1427 ///
1428 /// Returns false if the current live range is already compact, or if the
1429 /// compact regions would form single block regions anyway.
1430 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1431   // Without any through blocks, the live range is already compact.
1432   if (!SA->getNumThroughBlocks())
1433     return false;
1434 
1435   // Compact regions don't correspond to any physreg.
1436   Cand.reset(IntfCache, MCRegister::NoRegister);
1437 
1438   LLVM_DEBUG(dbgs() << "Compact region bundles");
1439 
1440   // Use the spill placer to determine the live bundles. GrowRegion pretends
1441   // that all the through blocks have interference when PhysReg is unset.
1442   SpillPlacer->prepare(Cand.LiveBundles);
1443 
1444   // The static split cost will be zero since Cand.Intf reports no interference.
1445   BlockFrequency Cost;
1446   if (!addSplitConstraints(Cand.Intf, Cost)) {
1447     LLVM_DEBUG(dbgs() << ", none.\n");
1448     return false;
1449   }
1450 
1451   if (!growRegion(Cand)) {
1452     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1453     return false;
1454   }
1455 
1456   SpillPlacer->finish();
1457 
1458   if (!Cand.LiveBundles.any()) {
1459     LLVM_DEBUG(dbgs() << ", none.\n");
1460     return false;
1461   }
1462 
1463   LLVM_DEBUG({
1464     for (int I : Cand.LiveBundles.set_bits())
1465       dbgs() << " EB#" << I;
1466     dbgs() << ".\n";
1467   });
1468   return true;
1469 }
1470 
1471 /// calcSpillCost - Compute how expensive it would be to split the live range in
1472 /// SA around all use blocks instead of forming bundle regions.
1473 BlockFrequency RAGreedy::calcSpillCost() {
1474   BlockFrequency Cost = 0;
1475   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1476   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1477     unsigned Number = BI.MBB->getNumber();
1478     // We normally only need one spill instruction - a load or a store.
1479     Cost += SpillPlacer->getBlockFrequency(Number);
1480 
1481     // Unless the value is redefined in the block.
1482     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1483       Cost += SpillPlacer->getBlockFrequency(Number);
1484   }
1485   return Cost;
1486 }
1487 
1488 /// Check if splitting Evictee will create a local split interval in
1489 /// basic block number BBNumber that may cause a bad eviction chain. This is
1490 /// intended to prevent bad eviction sequences like:
1491 /// movl	%ebp, 8(%esp)           # 4-byte Spill
1492 /// movl	%ecx, %ebp
1493 /// movl	%ebx, %ecx
1494 /// movl	%edi, %ebx
1495 /// movl	%edx, %edi
1496 /// cltd
1497 /// idivl	%esi
1498 /// movl	%edi, %edx
1499 /// movl	%ebx, %edi
1500 /// movl	%ecx, %ebx
1501 /// movl	%ebp, %ecx
1502 /// movl	16(%esp), %ebp          # 4 - byte Reload
1503 ///
1504 /// Such sequences are created in 2 scenarios:
1505 ///
1506 /// Scenario #1:
1507 /// %0 is evicted from physreg0 by %1.
1508 /// Evictee %0 is intended for region splitting with split candidate
1509 /// physreg0 (the reg %0 was evicted from).
1510 /// Region splitting creates a local interval because of interference with the
1511 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1512 /// and "by stack" intervals and local interval created when interference
1513 /// occurs).
1514 /// One of the split intervals ends up evicting %2 from physreg1.
1515 /// Evictee %2 is intended for region splitting with split candidate
1516 /// physreg1.
1517 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1518 ///
1519 /// Scenario #2
1520 /// %0 is evicted from physreg0 by %1.
1521 /// %2 is evicted from physreg2 by %3 etc.
1522 /// Evictee %0 is intended for region splitting with split candidate
1523 /// physreg1.
1524 /// Region splitting creates a local interval because of interference with the
1525 /// evictor %1.
1526 /// One of the split intervals ends up evicting back original evictor %1
1527 /// from physreg0 (the reg %0 was evicted from).
1528 /// Another evictee %2 is intended for region splitting with split candidate
1529 /// physreg1.
1530 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1531 ///
1532 /// \param Evictee  The register considered to be split.
1533 /// \param Cand     The split candidate that determines the physical register
1534 ///                 we are splitting for and the interferences.
1535 /// \param BBNumber The number of a BB for which the region split process will
1536 ///                 create a local split interval.
1537 /// \param Order    The physical registers that may get evicted by a split
1538 ///                 artifact of Evictee.
1539 /// \return True if splitting Evictee may cause a bad eviction chain, false
1540 /// otherwise.
1541 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee,
1542                                           GlobalSplitCandidate &Cand,
1543                                           unsigned BBNumber,
1544                                           const AllocationOrder &Order) {
1545   EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee);
1546   unsigned Evictor = VregEvictorInfo.first;
1547   MCRegister PhysReg = VregEvictorInfo.second;
1548 
1549   // No actual evictor.
1550   if (!Evictor || !PhysReg)
1551     return false;
1552 
1553   float MaxWeight = 0;
1554   MCRegister FutureEvictedPhysReg =
1555       getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee),
1556                                Cand.Intf.first(), Cand.Intf.last(), &MaxWeight);
1557 
1558   // The bad eviction chain occurs when either the split candidate is the
1559   // evicting reg or one of the split artifact will evict the evicting reg.
1560   if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg))
1561     return false;
1562 
1563   Cand.Intf.moveToBlock(BBNumber);
1564 
1565   // Check to see if the Evictor contains interference (with Evictee) in the
1566   // given BB. If so, this interference caused the eviction of Evictee from
1567   // PhysReg. This suggest that we will create a local interval during the
1568   // region split to avoid this interference This local interval may cause a bad
1569   // eviction chain.
1570   if (!LIS->hasInterval(Evictor))
1571     return false;
1572   LiveInterval &EvictorLI = LIS->getInterval(Evictor);
1573   if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end())
1574     return false;
1575 
1576   // Now, check to see if the local interval we will create is going to be
1577   // expensive enough to evict somebody If so, this may cause a bad eviction
1578   // chain.
1579   float splitArtifactWeight =
1580       VRAI->futureWeight(LIS->getInterval(Evictee),
1581                          Cand.Intf.first().getPrevIndex(), Cand.Intf.last());
1582   if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight)
1583     return false;
1584 
1585   return true;
1586 }
1587 
1588 /// Check if splitting VirtRegToSplit will create a local split interval
1589 /// in basic block number BBNumber that may cause a spill.
1590 ///
1591 /// \param VirtRegToSplit The register considered to be split.
1592 /// \param Cand           The split candidate that determines the physical
1593 ///                       register we are splitting for and the interferences.
1594 /// \param BBNumber       The number of a BB for which the region split process
1595 ///                       will create a local split interval.
1596 /// \param Order          The physical registers that may get evicted by a
1597 ///                       split artifact of VirtRegToSplit.
1598 /// \return True if splitting VirtRegToSplit may cause a spill, false
1599 /// otherwise.
1600 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit,
1601                                        GlobalSplitCandidate &Cand,
1602                                        unsigned BBNumber,
1603                                        const AllocationOrder &Order) {
1604   Cand.Intf.moveToBlock(BBNumber);
1605 
1606   // Check if the local interval will find a non interfereing assignment.
1607   for (auto PhysReg : Order.getOrder()) {
1608     if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(),
1609                                    Cand.Intf.last(), PhysReg))
1610       return false;
1611   }
1612 
1613   // The local interval is not able to find non interferencing assignment
1614   // and not able to evict a less worthy interval, therfore, it can cause a
1615   // spill.
1616   return true;
1617 }
1618 
1619 /// calcGlobalSplitCost - Return the global split cost of following the split
1620 /// pattern in LiveBundles. This cost should be added to the local cost of the
1621 /// interference pattern in SplitConstraints.
1622 ///
1623 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
1624                                              const AllocationOrder &Order,
1625                                              bool *CanCauseEvictionChain) {
1626   BlockFrequency GlobalCost = 0;
1627   const BitVector &LiveBundles = Cand.LiveBundles;
1628   Register VirtRegToSplit = SA->getParent().reg();
1629   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1630   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
1631     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
1632     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
1633     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
1634     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
1635     unsigned Ins = 0;
1636 
1637     Cand.Intf.moveToBlock(BC.Number);
1638     // Check wheather a local interval is going to be created during the region
1639     // split. Calculate adavanced spilt cost (cost of local intervals) if option
1640     // is enabled.
1641     if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn &&
1642         BI.LiveOut && RegIn && RegOut) {
1643 
1644       if (CanCauseEvictionChain &&
1645           splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) {
1646         // This interference causes our eviction from this assignment, we might
1647         // evict somebody else and eventually someone will spill, add that cost.
1648         // See splitCanCauseEvictionChain for detailed description of scenarios.
1649         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1650         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1651 
1652         *CanCauseEvictionChain = true;
1653 
1654       } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number,
1655                                          Order)) {
1656         // This interference causes local interval to spill, add that cost.
1657         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1658         GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1659       }
1660     }
1661 
1662     if (BI.LiveIn)
1663       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1664     if (BI.LiveOut)
1665       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1666     while (Ins--)
1667       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1668   }
1669 
1670   for (unsigned Number : Cand.ActiveBlocks) {
1671     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
1672     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
1673     if (!RegIn && !RegOut)
1674       continue;
1675     if (RegIn && RegOut) {
1676       // We need double spill code if this block has interference.
1677       Cand.Intf.moveToBlock(Number);
1678       if (Cand.Intf.hasInterference()) {
1679         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1680         GlobalCost += SpillPlacer->getBlockFrequency(Number);
1681 
1682         // Check wheather a local interval is going to be created during the
1683         // region split.
1684         if (EnableAdvancedRASplitCost && CanCauseEvictionChain &&
1685             splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) {
1686           // This interference cause our eviction from this assignment, we might
1687           // evict somebody else, add that cost.
1688           // See splitCanCauseEvictionChain for detailed description of
1689           // scenarios.
1690           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1691           GlobalCost += SpillPlacer->getBlockFrequency(Number);
1692 
1693           *CanCauseEvictionChain = true;
1694         }
1695       }
1696       continue;
1697     }
1698     // live-in / stack-out or stack-in live-out.
1699     GlobalCost += SpillPlacer->getBlockFrequency(Number);
1700   }
1701   return GlobalCost;
1702 }
1703 
1704 /// splitAroundRegion - Split the current live range around the regions
1705 /// determined by BundleCand and GlobalCand.
1706 ///
1707 /// Before calling this function, GlobalCand and BundleCand must be initialized
1708 /// so each bundle is assigned to a valid candidate, or NoCand for the
1709 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
1710 /// objects must be initialized for the current live range, and intervals
1711 /// created for the used candidates.
1712 ///
1713 /// @param LREdit    The LiveRangeEdit object handling the current split.
1714 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1715 ///                  must appear in this list.
1716 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1717                                  ArrayRef<unsigned> UsedCands) {
1718   // These are the intervals created for new global ranges. We may create more
1719   // intervals for local ranges.
1720   const unsigned NumGlobalIntvs = LREdit.size();
1721   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1722                     << " globals.\n");
1723   assert(NumGlobalIntvs && "No global intervals configured");
1724 
1725   // Isolate even single instructions when dealing with a proper sub-class.
1726   // That guarantees register class inflation for the stack interval because it
1727   // is all copies.
1728   Register Reg = SA->getParent().reg();
1729   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1730 
1731   // First handle all the blocks with uses.
1732   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1733   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1734     unsigned Number = BI.MBB->getNumber();
1735     unsigned IntvIn = 0, IntvOut = 0;
1736     SlotIndex IntfIn, IntfOut;
1737     if (BI.LiveIn) {
1738       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1739       if (CandIn != NoCand) {
1740         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1741         IntvIn = Cand.IntvIdx;
1742         Cand.Intf.moveToBlock(Number);
1743         IntfIn = Cand.Intf.first();
1744       }
1745     }
1746     if (BI.LiveOut) {
1747       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1748       if (CandOut != NoCand) {
1749         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1750         IntvOut = Cand.IntvIdx;
1751         Cand.Intf.moveToBlock(Number);
1752         IntfOut = Cand.Intf.last();
1753       }
1754     }
1755 
1756     // Create separate intervals for isolated blocks with multiple uses.
1757     if (!IntvIn && !IntvOut) {
1758       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
1759       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1760         SE->splitSingleBlock(BI);
1761       continue;
1762     }
1763 
1764     if (IntvIn && IntvOut)
1765       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1766     else if (IntvIn)
1767       SE->splitRegInBlock(BI, IntvIn, IntfIn);
1768     else
1769       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1770   }
1771 
1772   // Handle live-through blocks. The relevant live-through blocks are stored in
1773   // the ActiveBlocks list with each candidate. We need to filter out
1774   // duplicates.
1775   BitVector Todo = SA->getThroughBlocks();
1776   for (unsigned c = 0; c != UsedCands.size(); ++c) {
1777     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1778     for (unsigned Number : Blocks) {
1779       if (!Todo.test(Number))
1780         continue;
1781       Todo.reset(Number);
1782 
1783       unsigned IntvIn = 0, IntvOut = 0;
1784       SlotIndex IntfIn, IntfOut;
1785 
1786       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
1787       if (CandIn != NoCand) {
1788         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1789         IntvIn = Cand.IntvIdx;
1790         Cand.Intf.moveToBlock(Number);
1791         IntfIn = Cand.Intf.first();
1792       }
1793 
1794       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1795       if (CandOut != NoCand) {
1796         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1797         IntvOut = Cand.IntvIdx;
1798         Cand.Intf.moveToBlock(Number);
1799         IntfOut = Cand.Intf.last();
1800       }
1801       if (!IntvIn && !IntvOut)
1802         continue;
1803       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1804     }
1805   }
1806 
1807   ++NumGlobalSplits;
1808 
1809   SmallVector<unsigned, 8> IntvMap;
1810   SE->finish(&IntvMap);
1811   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1812 
1813   ExtraRegInfo.resize(MRI->getNumVirtRegs());
1814   unsigned OrigBlocks = SA->getNumLiveBlocks();
1815 
1816   // Sort out the new intervals created by splitting. We get four kinds:
1817   // - Remainder intervals should not be split again.
1818   // - Candidate intervals can be assigned to Cand.PhysReg.
1819   // - Block-local splits are candidates for local splitting.
1820   // - DCE leftovers should go back on the queue.
1821   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1822     LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1823 
1824     // Ignore old intervals from DCE.
1825     if (getStage(Reg) != RS_New)
1826       continue;
1827 
1828     // Remainder interval. Don't try splitting again, spill if it doesn't
1829     // allocate.
1830     if (IntvMap[I] == 0) {
1831       setStage(Reg, RS_Spill);
1832       continue;
1833     }
1834 
1835     // Global intervals. Allow repeated splitting as long as the number of live
1836     // blocks is strictly decreasing.
1837     if (IntvMap[I] < NumGlobalIntvs) {
1838       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1839         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1840                           << " blocks as original.\n");
1841         // Don't allow repeated splitting as a safe guard against looping.
1842         setStage(Reg, RS_Split2);
1843       }
1844       continue;
1845     }
1846 
1847     // Other intervals are treated as new. This includes local intervals created
1848     // for blocks with multiple uses, and anything created by DCE.
1849   }
1850 
1851   if (VerifyEnabled)
1852     MF->verify(this, "After splitting live range around region");
1853 }
1854 
1855 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg,
1856                                     AllocationOrder &Order,
1857                                     SmallVectorImpl<Register> &NewVRegs) {
1858   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1859     return MCRegister::NoRegister;
1860   unsigned NumCands = 0;
1861   BlockFrequency SpillCost = calcSpillCost();
1862   BlockFrequency BestCost;
1863 
1864   // Check if we can split this live range around a compact region.
1865   bool HasCompact = calcCompactRegion(GlobalCand.front());
1866   if (HasCompact) {
1867     // Yes, keep GlobalCand[0] as the compact region candidate.
1868     NumCands = 1;
1869     BestCost = BlockFrequency::getMaxFrequency();
1870   } else {
1871     // No benefit from the compact region, our fallback will be per-block
1872     // splitting. Make sure we find a solution that is cheaper than spilling.
1873     BestCost = SpillCost;
1874     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1875                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1876   }
1877 
1878   bool CanCauseEvictionChain = false;
1879   unsigned BestCand =
1880       calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1881                                false /*IgnoreCSR*/, &CanCauseEvictionChain);
1882 
1883   // Split candidates with compact regions can cause a bad eviction sequence.
1884   // See splitCanCauseEvictionChain for detailed description of scenarios.
1885   // To avoid it, we need to comapre the cost with the spill cost and not the
1886   // current max frequency.
1887   if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) &&
1888     CanCauseEvictionChain) {
1889     return MCRegister::NoRegister;
1890   }
1891 
1892   // No solutions found, fall back to single block splitting.
1893   if (!HasCompact && BestCand == NoCand)
1894     return MCRegister::NoRegister;
1895 
1896   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1897 }
1898 
1899 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1900                                             AllocationOrder &Order,
1901                                             BlockFrequency &BestCost,
1902                                             unsigned &NumCands, bool IgnoreCSR,
1903                                             bool *CanCauseEvictionChain) {
1904   unsigned BestCand = NoCand;
1905   for (MCPhysReg PhysReg : Order) {
1906     assert(PhysReg);
1907     if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1908       continue;
1909 
1910     // Discard bad candidates before we run out of interference cache cursors.
1911     // This will only affect register classes with a lot of registers (>32).
1912     if (NumCands == IntfCache.getMaxCursors()) {
1913       unsigned WorstCount = ~0u;
1914       unsigned Worst = 0;
1915       for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1916         if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1917           continue;
1918         unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1919         if (Count < WorstCount) {
1920           Worst = CandIndex;
1921           WorstCount = Count;
1922         }
1923       }
1924       --NumCands;
1925       GlobalCand[Worst] = GlobalCand[NumCands];
1926       if (BestCand == NumCands)
1927         BestCand = Worst;
1928     }
1929 
1930     if (GlobalCand.size() <= NumCands)
1931       GlobalCand.resize(NumCands+1);
1932     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1933     Cand.reset(IntfCache, PhysReg);
1934 
1935     SpillPlacer->prepare(Cand.LiveBundles);
1936     BlockFrequency Cost;
1937     if (!addSplitConstraints(Cand.Intf, Cost)) {
1938       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1939       continue;
1940     }
1941     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1942                MBFI->printBlockFreq(dbgs(), Cost));
1943     if (Cost >= BestCost) {
1944       LLVM_DEBUG({
1945         if (BestCand == NoCand)
1946           dbgs() << " worse than no bundles\n";
1947         else
1948           dbgs() << " worse than "
1949                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1950       });
1951       continue;
1952     }
1953     if (!growRegion(Cand)) {
1954       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1955       continue;
1956     }
1957 
1958     SpillPlacer->finish();
1959 
1960     // No live bundles, defer to splitSingleBlocks().
1961     if (!Cand.LiveBundles.any()) {
1962       LLVM_DEBUG(dbgs() << " no bundles.\n");
1963       continue;
1964     }
1965 
1966     bool HasEvictionChain = false;
1967     Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain);
1968     LLVM_DEBUG({
1969       dbgs() << ", total = ";
1970       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1971       for (int I : Cand.LiveBundles.set_bits())
1972         dbgs() << " EB#" << I;
1973       dbgs() << ".\n";
1974     });
1975     if (Cost < BestCost) {
1976       BestCand = NumCands;
1977       BestCost = Cost;
1978       // See splitCanCauseEvictionChain for detailed description of bad
1979       // eviction chain scenarios.
1980       if (CanCauseEvictionChain)
1981         *CanCauseEvictionChain = HasEvictionChain;
1982     }
1983     ++NumCands;
1984   }
1985 
1986   if (CanCauseEvictionChain && BestCand != NoCand) {
1987     // See splitCanCauseEvictionChain for detailed description of bad
1988     // eviction chain scenarios.
1989     LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1990                       << printReg(VirtReg.reg(), TRI) << "  may ");
1991     if (!(*CanCauseEvictionChain))
1992       LLVM_DEBUG(dbgs() << "not ");
1993     LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1994   }
1995 
1996   return BestCand;
1997 }
1998 
1999 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
2000                                  bool HasCompact,
2001                                  SmallVectorImpl<Register> &NewVRegs) {
2002   SmallVector<unsigned, 8> UsedCands;
2003   // Prepare split editor.
2004   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2005   SE->reset(LREdit, SplitSpillMode);
2006 
2007   // Assign all edge bundles to the preferred candidate, or NoCand.
2008   BundleCand.assign(Bundles->getNumBundles(), NoCand);
2009 
2010   // Assign bundles for the best candidate region.
2011   if (BestCand != NoCand) {
2012     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
2013     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
2014       UsedCands.push_back(BestCand);
2015       Cand.IntvIdx = SE->openIntv();
2016       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
2017                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
2018       (void)B;
2019     }
2020   }
2021 
2022   // Assign bundles for the compact region.
2023   if (HasCompact) {
2024     GlobalSplitCandidate &Cand = GlobalCand.front();
2025     assert(!Cand.PhysReg && "Compact region has no physreg");
2026     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
2027       UsedCands.push_back(0);
2028       Cand.IntvIdx = SE->openIntv();
2029       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
2030                         << " bundles, intv " << Cand.IntvIdx << ".\n");
2031       (void)B;
2032     }
2033   }
2034 
2035   splitAroundRegion(LREdit, UsedCands);
2036   return 0;
2037 }
2038 
2039 //===----------------------------------------------------------------------===//
2040 //                            Per-Block Splitting
2041 //===----------------------------------------------------------------------===//
2042 
2043 /// tryBlockSplit - Split a global live range around every block with uses. This
2044 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
2045 /// they don't allocate.
2046 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2047                                  SmallVectorImpl<Register> &NewVRegs) {
2048   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
2049   Register Reg = VirtReg.reg();
2050   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
2051   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2052   SE->reset(LREdit, SplitSpillMode);
2053   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
2054   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
2055     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
2056       SE->splitSingleBlock(BI);
2057   }
2058   // No blocks were split.
2059   if (LREdit.empty())
2060     return 0;
2061 
2062   // We did split for some blocks.
2063   SmallVector<unsigned, 8> IntvMap;
2064   SE->finish(&IntvMap);
2065 
2066   // Tell LiveDebugVariables about the new ranges.
2067   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
2068 
2069   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2070 
2071   // Sort out the new intervals created by splitting. The remainder interval
2072   // goes straight to spilling, the new local ranges get to stay RS_New.
2073   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
2074     LiveInterval &LI = LIS->getInterval(LREdit.get(I));
2075     if (getStage(LI) == RS_New && IntvMap[I] == 0)
2076       setStage(LI, RS_Spill);
2077   }
2078 
2079   if (VerifyEnabled)
2080     MF->verify(this, "After splitting live range around basic blocks");
2081   return 0;
2082 }
2083 
2084 //===----------------------------------------------------------------------===//
2085 //                         Per-Instruction Splitting
2086 //===----------------------------------------------------------------------===//
2087 
2088 /// Get the number of allocatable registers that match the constraints of \p Reg
2089 /// on \p MI and that are also in \p SuperRC.
2090 static unsigned getNumAllocatableRegsForConstraints(
2091     const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC,
2092     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
2093     const RegisterClassInfo &RCI) {
2094   assert(SuperRC && "Invalid register class");
2095 
2096   const TargetRegisterClass *ConstrainedRC =
2097       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
2098                                              /* ExploreBundle */ true);
2099   if (!ConstrainedRC)
2100     return 0;
2101   return RCI.getNumAllocatableRegs(ConstrainedRC);
2102 }
2103 
2104 /// tryInstructionSplit - Split a live range around individual instructions.
2105 /// This is normally not worthwhile since the spiller is doing essentially the
2106 /// same thing. However, when the live range is in a constrained register
2107 /// class, it may help to insert copies such that parts of the live range can
2108 /// be moved to a larger register class.
2109 ///
2110 /// This is similar to spilling to a larger register class.
2111 unsigned
2112 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2113                               SmallVectorImpl<Register> &NewVRegs) {
2114   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2115   // There is no point to this if there are no larger sub-classes.
2116   if (!RegClassInfo.isProperSubClass(CurRC))
2117     return 0;
2118 
2119   // Always enable split spill mode, since we're effectively spilling to a
2120   // register.
2121   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2122   SE->reset(LREdit, SplitEditor::SM_Size);
2123 
2124   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2125   if (Uses.size() <= 1)
2126     return 0;
2127 
2128   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
2129                     << " individual instrs.\n");
2130 
2131   const TargetRegisterClass *SuperRC =
2132       TRI->getLargestLegalSuperClass(CurRC, *MF);
2133   unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
2134   // Split around every non-copy instruction if this split will relax
2135   // the constraints on the virtual register.
2136   // Otherwise, splitting just inserts uncoalescable copies that do not help
2137   // the allocation.
2138   for (const auto &Use : Uses) {
2139     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use))
2140       if (MI->isFullCopy() ||
2141           SuperRCNumAllocatableRegs ==
2142               getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
2143                                                   TII, TRI, RCI)) {
2144         LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
2145         continue;
2146       }
2147     SE->openIntv();
2148     SlotIndex SegStart = SE->enterIntvBefore(Use);
2149     SlotIndex SegStop = SE->leaveIntvAfter(Use);
2150     SE->useIntv(SegStart, SegStop);
2151   }
2152 
2153   if (LREdit.empty()) {
2154     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2155     return 0;
2156   }
2157 
2158   SmallVector<unsigned, 8> IntvMap;
2159   SE->finish(&IntvMap);
2160   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2161   ExtraRegInfo.resize(MRI->getNumVirtRegs());
2162 
2163   // Assign all new registers to RS_Spill. This was the last chance.
2164   setStage(LREdit.begin(), LREdit.end(), RS_Spill);
2165   return 0;
2166 }
2167 
2168 //===----------------------------------------------------------------------===//
2169 //                             Local Splitting
2170 //===----------------------------------------------------------------------===//
2171 
2172 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2173 /// in order to use PhysReg between two entries in SA->UseSlots.
2174 ///
2175 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
2176 ///
2177 void RAGreedy::calcGapWeights(MCRegister PhysReg,
2178                               SmallVectorImpl<float> &GapWeight) {
2179   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
2180   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2181   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2182   const unsigned NumGaps = Uses.size()-1;
2183 
2184   // Start and end points for the interference check.
2185   SlotIndex StartIdx =
2186     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
2187   SlotIndex StopIdx =
2188     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
2189 
2190   GapWeight.assign(NumGaps, 0.0f);
2191 
2192   // Add interference from each overlapping register.
2193   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2194     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
2195           .checkInterference())
2196       continue;
2197 
2198     // We know that VirtReg is a continuous interval from FirstInstr to
2199     // LastInstr, so we don't need InterferenceQuery.
2200     //
2201     // Interference that overlaps an instruction is counted in both gaps
2202     // surrounding the instruction. The exception is interference before
2203     // StartIdx and after StopIdx.
2204     //
2205     LiveIntervalUnion::SegmentIter IntI =
2206       Matrix->getLiveUnions()[*Units] .find(StartIdx);
2207     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
2208       // Skip the gaps before IntI.
2209       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
2210         if (++Gap == NumGaps)
2211           break;
2212       if (Gap == NumGaps)
2213         break;
2214 
2215       // Update the gaps covered by IntI.
2216       const float weight = IntI.value()->weight();
2217       for (; Gap != NumGaps; ++Gap) {
2218         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
2219         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
2220           break;
2221       }
2222       if (Gap == NumGaps)
2223         break;
2224     }
2225   }
2226 
2227   // Add fixed interference.
2228   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2229     const LiveRange &LR = LIS->getRegUnit(*Units);
2230     LiveRange::const_iterator I = LR.find(StartIdx);
2231     LiveRange::const_iterator E = LR.end();
2232 
2233     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2234     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
2235       while (Uses[Gap+1].getBoundaryIndex() < I->start)
2236         if (++Gap == NumGaps)
2237           break;
2238       if (Gap == NumGaps)
2239         break;
2240 
2241       for (; Gap != NumGaps; ++Gap) {
2242         GapWeight[Gap] = huge_valf;
2243         if (Uses[Gap+1].getBaseIndex() >= I->end)
2244           break;
2245       }
2246       if (Gap == NumGaps)
2247         break;
2248     }
2249   }
2250 }
2251 
2252 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2253 /// basic block.
2254 ///
2255 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
2256                                  SmallVectorImpl<Register> &NewVRegs) {
2257   // TODO: the function currently only handles a single UseBlock; it should be
2258   // possible to generalize.
2259   if (SA->getUseBlocks().size() != 1)
2260     return 0;
2261 
2262   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
2263 
2264   // Note that it is possible to have an interval that is live-in or live-out
2265   // while only covering a single block - A phi-def can use undef values from
2266   // predecessors, and the block could be a single-block loop.
2267   // We don't bother doing anything clever about such a case, we simply assume
2268   // that the interval is continuous from FirstInstr to LastInstr. We should
2269   // make sure that we don't do anything illegal to such an interval, though.
2270 
2271   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
2272   if (Uses.size() <= 2)
2273     return 0;
2274   const unsigned NumGaps = Uses.size()-1;
2275 
2276   LLVM_DEBUG({
2277     dbgs() << "tryLocalSplit: ";
2278     for (const auto &Use : Uses)
2279       dbgs() << ' ' << Use;
2280     dbgs() << '\n';
2281   });
2282 
2283   // If VirtReg is live across any register mask operands, compute a list of
2284   // gaps with register masks.
2285   SmallVector<unsigned, 8> RegMaskGaps;
2286   if (Matrix->checkRegMaskInterference(VirtReg)) {
2287     // Get regmask slots for the whole block.
2288     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
2289     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
2290     // Constrain to VirtReg's live range.
2291     unsigned RI =
2292         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
2293     unsigned RE = RMS.size();
2294     for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
2295       // Look for Uses[I] <= RMS <= Uses[I + 1].
2296       assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
2297       if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
2298         continue;
2299       // Skip a regmask on the same instruction as the last use. It doesn't
2300       // overlap the live range.
2301       if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
2302         break;
2303       LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
2304                         << Uses[I + 1]);
2305       RegMaskGaps.push_back(I);
2306       // Advance ri to the next gap. A regmask on one of the uses counts in
2307       // both gaps.
2308       while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
2309         ++RI;
2310     }
2311     LLVM_DEBUG(dbgs() << '\n');
2312   }
2313 
2314   // Since we allow local split results to be split again, there is a risk of
2315   // creating infinite loops. It is tempting to require that the new live
2316   // ranges have less instructions than the original. That would guarantee
2317   // convergence, but it is too strict. A live range with 3 instructions can be
2318   // split 2+3 (including the COPY), and we want to allow that.
2319   //
2320   // Instead we use these rules:
2321   //
2322   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2323   //    noop split, of course).
2324   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2325   //    the new ranges must have fewer instructions than before the split.
2326   // 3. New ranges with the same number of instructions are marked RS_Split2,
2327   //    smaller ranges are marked RS_New.
2328   //
2329   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2330   // excessive splitting and infinite loops.
2331   //
2332   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
2333 
2334   // Best split candidate.
2335   unsigned BestBefore = NumGaps;
2336   unsigned BestAfter = 0;
2337   float BestDiff = 0;
2338 
2339   const float blockFreq =
2340     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
2341     (1.0f / MBFI->getEntryFreq());
2342   SmallVector<float, 8> GapWeight;
2343 
2344   for (MCPhysReg PhysReg : Order) {
2345     assert(PhysReg);
2346     // Keep track of the largest spill weight that would need to be evicted in
2347     // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
2348     calcGapWeights(PhysReg, GapWeight);
2349 
2350     // Remove any gaps with regmask clobbers.
2351     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
2352       for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
2353         GapWeight[RegMaskGaps[I]] = huge_valf;
2354 
2355     // Try to find the best sequence of gaps to close.
2356     // The new spill weight must be larger than any gap interference.
2357 
2358     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2359     unsigned SplitBefore = 0, SplitAfter = 1;
2360 
2361     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2362     // It is the spill weight that needs to be evicted.
2363     float MaxGap = GapWeight[0];
2364 
2365     while (true) {
2366       // Live before/after split?
2367       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
2368       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
2369 
2370       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
2371                         << '-' << Uses[SplitAfter] << " I=" << MaxGap);
2372 
2373       // Stop before the interval gets so big we wouldn't be making progress.
2374       if (!LiveBefore && !LiveAfter) {
2375         LLVM_DEBUG(dbgs() << " all\n");
2376         break;
2377       }
2378       // Should the interval be extended or shrunk?
2379       bool Shrink = true;
2380 
2381       // How many gaps would the new range have?
2382       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
2383 
2384       // Legally, without causing looping?
2385       bool Legal = !ProgressRequired || NewGaps < NumGaps;
2386 
2387       if (Legal && MaxGap < huge_valf) {
2388         // Estimate the new spill weight. Each instruction reads or writes the
2389         // register. Conservatively assume there are no read-modify-write
2390         // instructions.
2391         //
2392         // Try to guess the size of the new interval.
2393         const float EstWeight = normalizeSpillWeight(
2394             blockFreq * (NewGaps + 1),
2395             Uses[SplitBefore].distance(Uses[SplitAfter]) +
2396                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
2397             1);
2398         // Would this split be possible to allocate?
2399         // Never allocate all gaps, we wouldn't be making progress.
2400         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
2401         if (EstWeight * Hysteresis >= MaxGap) {
2402           Shrink = false;
2403           float Diff = EstWeight - MaxGap;
2404           if (Diff > BestDiff) {
2405             LLVM_DEBUG(dbgs() << " (best)");
2406             BestDiff = Hysteresis * Diff;
2407             BestBefore = SplitBefore;
2408             BestAfter = SplitAfter;
2409           }
2410         }
2411       }
2412 
2413       // Try to shrink.
2414       if (Shrink) {
2415         if (++SplitBefore < SplitAfter) {
2416           LLVM_DEBUG(dbgs() << " shrink\n");
2417           // Recompute the max when necessary.
2418           if (GapWeight[SplitBefore - 1] >= MaxGap) {
2419             MaxGap = GapWeight[SplitBefore];
2420             for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
2421               MaxGap = std::max(MaxGap, GapWeight[I]);
2422           }
2423           continue;
2424         }
2425         MaxGap = 0;
2426       }
2427 
2428       // Try to extend the interval.
2429       if (SplitAfter >= NumGaps) {
2430         LLVM_DEBUG(dbgs() << " end\n");
2431         break;
2432       }
2433 
2434       LLVM_DEBUG(dbgs() << " extend\n");
2435       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
2436     }
2437   }
2438 
2439   // Didn't find any candidates?
2440   if (BestBefore == NumGaps)
2441     return 0;
2442 
2443   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
2444                     << Uses[BestAfter] << ", " << BestDiff << ", "
2445                     << (BestAfter - BestBefore + 1) << " instrs\n");
2446 
2447   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2448   SE->reset(LREdit);
2449 
2450   SE->openIntv();
2451   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
2452   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
2453   SE->useIntv(SegStart, SegStop);
2454   SmallVector<unsigned, 8> IntvMap;
2455   SE->finish(&IntvMap);
2456   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
2457 
2458   // If the new range has the same number of instructions as before, mark it as
2459   // RS_Split2 so the next split will be forced to make progress. Otherwise,
2460   // leave the new intervals as RS_New so they can compete.
2461   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
2462   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
2463   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
2464   if (NewGaps >= NumGaps) {
2465     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: ");
2466     assert(!ProgressRequired && "Didn't make progress when it was required.");
2467     for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
2468       if (IntvMap[I] == 1) {
2469         setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
2470         LLVM_DEBUG(dbgs() << printReg(LREdit.get(I)));
2471       }
2472     LLVM_DEBUG(dbgs() << '\n');
2473   }
2474   ++NumLocalSplits;
2475 
2476   return 0;
2477 }
2478 
2479 //===----------------------------------------------------------------------===//
2480 //                          Live Range Splitting
2481 //===----------------------------------------------------------------------===//
2482 
2483 /// trySplit - Try to split VirtReg or one of its interferences, making it
2484 /// assignable.
2485 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2486 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
2487                             SmallVectorImpl<Register> &NewVRegs,
2488                             const SmallVirtRegSet &FixedRegisters) {
2489   // Ranges must be Split2 or less.
2490   if (getStage(VirtReg) >= RS_Spill)
2491     return 0;
2492 
2493   // Local intervals are handled separately.
2494   if (LIS->intervalIsInOneMBB(VirtReg)) {
2495     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
2496                        TimerGroupDescription, TimePassesIsEnabled);
2497     SA->analyze(&VirtReg);
2498     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
2499     if (PhysReg || !NewVRegs.empty())
2500       return PhysReg;
2501     return tryInstructionSplit(VirtReg, Order, NewVRegs);
2502   }
2503 
2504   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
2505                      TimerGroupDescription, TimePassesIsEnabled);
2506 
2507   SA->analyze(&VirtReg);
2508 
2509   // FIXME: SplitAnalysis may repair broken live ranges coming from the
2510   // coalescer. That may cause the range to become allocatable which means that
2511   // tryRegionSplit won't be making progress. This check should be replaced with
2512   // an assertion when the coalescer is fixed.
2513   if (SA->didRepairRange()) {
2514     // VirtReg has changed, so all cached queries are invalid.
2515     Matrix->invalidateVirtRegs();
2516     if (Register PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters))
2517       return PhysReg;
2518   }
2519 
2520   // First try to split around a region spanning multiple blocks. RS_Split2
2521   // ranges already made dubious progress with region splitting, so they go
2522   // straight to single block splitting.
2523   if (getStage(VirtReg) < RS_Split2) {
2524     MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
2525     if (PhysReg || !NewVRegs.empty())
2526       return PhysReg;
2527   }
2528 
2529   // Then isolate blocks.
2530   return tryBlockSplit(VirtReg, Order, NewVRegs);
2531 }
2532 
2533 //===----------------------------------------------------------------------===//
2534 //                          Last Chance Recoloring
2535 //===----------------------------------------------------------------------===//
2536 
2537 /// Return true if \p reg has any tied def operand.
2538 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
2539   for (const MachineOperand &MO : MRI->def_operands(reg))
2540     if (MO.isTied())
2541       return true;
2542 
2543   return false;
2544 }
2545 
2546 /// mayRecolorAllInterferences - Check if the virtual registers that
2547 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2548 /// recolored to free \p PhysReg.
2549 /// When true is returned, \p RecoloringCandidates has been augmented with all
2550 /// the live intervals that need to be recolored in order to free \p PhysReg
2551 /// for \p VirtReg.
2552 /// \p FixedRegisters contains all the virtual registers that cannot be
2553 /// recolored.
2554 bool RAGreedy::mayRecolorAllInterferences(
2555     MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates,
2556     const SmallVirtRegSet &FixedRegisters) {
2557   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
2558 
2559   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2560     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2561     // If there is LastChanceRecoloringMaxInterference or more interferences,
2562     // chances are one would not be recolorable.
2563     if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2564         LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2565       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2566       CutOffInfo |= CO_Interf;
2567       return false;
2568     }
2569     for (LiveInterval *Intf : reverse(Q.interferingVRegs())) {
2570       // If Intf is done and sit on the same register class as VirtReg,
2571       // it would not be recolorable as it is in the same state as VirtReg.
2572       // However, if VirtReg has tied defs and Intf doesn't, then
2573       // there is still a point in examining if it can be recolorable.
2574       if (((getStage(*Intf) == RS_Done &&
2575             MRI->getRegClass(Intf->reg()) == CurRC) &&
2576            !(hasTiedDef(MRI, VirtReg.reg()) &&
2577              !hasTiedDef(MRI, Intf->reg()))) ||
2578           FixedRegisters.count(Intf->reg())) {
2579         LLVM_DEBUG(
2580             dbgs() << "Early abort: the interference is not recolorable.\n");
2581         return false;
2582       }
2583       RecoloringCandidates.insert(Intf);
2584     }
2585   }
2586   return true;
2587 }
2588 
2589 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2590 /// its interferences.
2591 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2592 /// virtual register that was using it. The recoloring process may recursively
2593 /// use the last chance recoloring. Therefore, when a virtual register has been
2594 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2595 /// be last-chance-recolored again during this recoloring "session".
2596 /// E.g.,
2597 /// Let
2598 /// vA can use {R1, R2    }
2599 /// vB can use {    R2, R3}
2600 /// vC can use {R1        }
2601 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2602 /// instance) and they all interfere.
2603 ///
2604 /// vA is assigned R1
2605 /// vB is assigned R2
2606 /// vC tries to evict vA but vA is already done.
2607 /// Regular register allocation fails.
2608 ///
2609 /// Last chance recoloring kicks in:
2610 /// vC does as if vA was evicted => vC uses R1.
2611 /// vC is marked as fixed.
2612 /// vA needs to find a color.
2613 /// None are available.
2614 /// vA cannot evict vC: vC is a fixed virtual register now.
2615 /// vA does as if vB was evicted => vA uses R2.
2616 /// vB needs to find a color.
2617 /// R3 is available.
2618 /// Recoloring => vC = R1, vA = R2, vB = R3
2619 ///
2620 /// \p Order defines the preferred allocation order for \p VirtReg.
2621 /// \p NewRegs will contain any new virtual register that have been created
2622 /// (split, spill) during the process and that must be assigned.
2623 /// \p FixedRegisters contains all the virtual registers that cannot be
2624 /// recolored.
2625 /// \p Depth gives the current depth of the last chance recoloring.
2626 /// \return a physical register that can be used for VirtReg or ~0u if none
2627 /// exists.
2628 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2629                                            AllocationOrder &Order,
2630                                            SmallVectorImpl<Register> &NewVRegs,
2631                                            SmallVirtRegSet &FixedRegisters,
2632                                            unsigned Depth) {
2633   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
2634     return ~0u;
2635 
2636   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2637   // Ranges must be Done.
2638   assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2639          "Last chance recoloring should really be last chance");
2640   // Set the max depth to LastChanceRecoloringMaxDepth.
2641   // We may want to reconsider that if we end up with a too large search space
2642   // for target with hundreds of registers.
2643   // Indeed, in that case we may want to cut the search space earlier.
2644   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2645     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2646     CutOffInfo |= CO_Depth;
2647     return ~0u;
2648   }
2649 
2650   // Set of Live intervals that will need to be recolored.
2651   SmallLISet RecoloringCandidates;
2652   // Record the original mapping virtual register to physical register in case
2653   // the recoloring fails.
2654   DenseMap<Register, MCRegister> VirtRegToPhysReg;
2655   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2656   // this recoloring "session".
2657   assert(!FixedRegisters.count(VirtReg.reg()));
2658   FixedRegisters.insert(VirtReg.reg());
2659   SmallVector<Register, 4> CurrentNewVRegs;
2660 
2661   for (MCRegister PhysReg : Order) {
2662     assert(PhysReg.isValid());
2663     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2664                       << printReg(PhysReg, TRI) << '\n');
2665     RecoloringCandidates.clear();
2666     VirtRegToPhysReg.clear();
2667     CurrentNewVRegs.clear();
2668 
2669     // It is only possible to recolor virtual register interference.
2670     if (Matrix->checkInterference(VirtReg, PhysReg) >
2671         LiveRegMatrix::IK_VirtReg) {
2672       LLVM_DEBUG(
2673           dbgs() << "Some interferences are not with virtual registers.\n");
2674 
2675       continue;
2676     }
2677 
2678     // Early give up on this PhysReg if it is obvious we cannot recolor all
2679     // the interferences.
2680     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2681                                     FixedRegisters)) {
2682       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2683       continue;
2684     }
2685 
2686     // RecoloringCandidates contains all the virtual registers that interfer
2687     // with VirtReg on PhysReg (or one of its aliases).
2688     // Enqueue them for recoloring and perform the actual recoloring.
2689     PQueue RecoloringQueue;
2690     for (LiveInterval *RC : RecoloringCandidates) {
2691       Register ItVirtReg = RC->reg();
2692       enqueue(RecoloringQueue, RC);
2693       assert(VRM->hasPhys(ItVirtReg) &&
2694              "Interferences are supposed to be with allocated variables");
2695 
2696       // Record the current allocation.
2697       VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2698       // unset the related struct.
2699       Matrix->unassign(*RC);
2700     }
2701 
2702     // Do as if VirtReg was assigned to PhysReg so that the underlying
2703     // recoloring has the right information about the interferes and
2704     // available colors.
2705     Matrix->assign(VirtReg, PhysReg);
2706 
2707     // Save the current recoloring state.
2708     // If we cannot recolor all the interferences, we will have to start again
2709     // at this point for the next physical register.
2710     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2711     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2712                                 FixedRegisters, Depth)) {
2713       // Push the queued vregs into the main queue.
2714       for (Register NewVReg : CurrentNewVRegs)
2715         NewVRegs.push_back(NewVReg);
2716       // Do not mess up with the global assignment process.
2717       // I.e., VirtReg must be unassigned.
2718       Matrix->unassign(VirtReg);
2719       return PhysReg;
2720     }
2721 
2722     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2723                       << printReg(PhysReg, TRI) << '\n');
2724 
2725     // The recoloring attempt failed, undo the changes.
2726     FixedRegisters = SaveFixedRegisters;
2727     Matrix->unassign(VirtReg);
2728 
2729     // For a newly created vreg which is also in RecoloringCandidates,
2730     // don't add it to NewVRegs because its physical register will be restored
2731     // below. Other vregs in CurrentNewVRegs are created by calling
2732     // selectOrSplit and should be added into NewVRegs.
2733     for (Register &R : CurrentNewVRegs) {
2734       if (RecoloringCandidates.count(&LIS->getInterval(R)))
2735         continue;
2736       NewVRegs.push_back(R);
2737     }
2738 
2739     for (LiveInterval *RC : RecoloringCandidates) {
2740       Register ItVirtReg = RC->reg();
2741       if (VRM->hasPhys(ItVirtReg))
2742         Matrix->unassign(*RC);
2743       MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2744       Matrix->assign(*RC, ItPhysReg);
2745     }
2746   }
2747 
2748   // Last chance recoloring did not worked either, give up.
2749   return ~0u;
2750 }
2751 
2752 /// tryRecoloringCandidates - Try to assign a new color to every register
2753 /// in \RecoloringQueue.
2754 /// \p NewRegs will contain any new virtual register created during the
2755 /// recoloring process.
2756 /// \p FixedRegisters[in/out] contains all the registers that have been
2757 /// recolored.
2758 /// \return true if all virtual registers in RecoloringQueue were successfully
2759 /// recolored, false otherwise.
2760 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2761                                        SmallVectorImpl<Register> &NewVRegs,
2762                                        SmallVirtRegSet &FixedRegisters,
2763                                        unsigned Depth) {
2764   while (!RecoloringQueue.empty()) {
2765     LiveInterval *LI = dequeue(RecoloringQueue);
2766     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2767     MCRegister PhysReg =
2768         selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2769     // When splitting happens, the live-range may actually be empty.
2770     // In that case, this is okay to continue the recoloring even
2771     // if we did not find an alternative color for it. Indeed,
2772     // there will not be anything to color for LI in the end.
2773     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2774       return false;
2775 
2776     if (!PhysReg) {
2777       assert(LI->empty() && "Only empty live-range do not require a register");
2778       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2779                         << " succeeded. Empty LI.\n");
2780       continue;
2781     }
2782     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2783                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2784 
2785     Matrix->assign(*LI, PhysReg);
2786     FixedRegisters.insert(LI->reg());
2787   }
2788   return true;
2789 }
2790 
2791 //===----------------------------------------------------------------------===//
2792 //                            Main Entry Point
2793 //===----------------------------------------------------------------------===//
2794 
2795 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2796                                    SmallVectorImpl<Register> &NewVRegs) {
2797   CutOffInfo = CO_None;
2798   LLVMContext &Ctx = MF->getFunction().getContext();
2799   SmallVirtRegSet FixedRegisters;
2800   MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2801   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2802     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2803     if (CutOffEncountered == CO_Depth)
2804       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2805                     "reached. Use -fexhaustive-register-search to skip "
2806                     "cutoffs");
2807     else if (CutOffEncountered == CO_Interf)
2808       Ctx.emitError("register allocation failed: maximum interference for "
2809                     "recoloring reached. Use -fexhaustive-register-search "
2810                     "to skip cutoffs");
2811     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2812       Ctx.emitError("register allocation failed: maximum interference and "
2813                     "depth for recoloring reached. Use "
2814                     "-fexhaustive-register-search to skip cutoffs");
2815   }
2816   return Reg;
2817 }
2818 
2819 /// Using a CSR for the first time has a cost because it causes push|pop
2820 /// to be added to prologue|epilogue. Splitting a cold section of the live
2821 /// range can have lower cost than using the CSR for the first time;
2822 /// Spilling a live range in the cold path can have lower cost than using
2823 /// the CSR for the first time. Returns the physical register if we decide
2824 /// to use the CSR; otherwise return 0.
2825 MCRegister
2826 RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
2827                                 MCRegister PhysReg, uint8_t &CostPerUseLimit,
2828                                 SmallVectorImpl<Register> &NewVRegs) {
2829   if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2830     // We choose spill over using the CSR for the first time if the spill cost
2831     // is lower than CSRCost.
2832     SA->analyze(&VirtReg);
2833     if (calcSpillCost() >= CSRCost)
2834       return PhysReg;
2835 
2836     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2837     // we will not use a callee-saved register in tryEvict.
2838     CostPerUseLimit = 1;
2839     return 0;
2840   }
2841   if (getStage(VirtReg) < RS_Split) {
2842     // We choose pre-splitting over using the CSR for the first time if
2843     // the cost of splitting is lower than CSRCost.
2844     SA->analyze(&VirtReg);
2845     unsigned NumCands = 0;
2846     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2847     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2848                                                  NumCands, true /*IgnoreCSR*/);
2849     if (BestCand == NoCand)
2850       // Use the CSR if we can't find a region split below CSRCost.
2851       return PhysReg;
2852 
2853     // Perform the actual pre-splitting.
2854     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2855     return 0;
2856   }
2857   return PhysReg;
2858 }
2859 
2860 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2861   // Do not keep invalid information around.
2862   SetOfBrokenHints.remove(&LI);
2863 }
2864 
2865 void RAGreedy::initializeCSRCost() {
2866   // We use the larger one out of the command-line option and the value report
2867   // by TRI.
2868   CSRCost = BlockFrequency(
2869       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2870   if (!CSRCost.getFrequency())
2871     return;
2872 
2873   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2874   uint64_t ActualEntry = MBFI->getEntryFreq();
2875   if (!ActualEntry) {
2876     CSRCost = 0;
2877     return;
2878   }
2879   uint64_t FixedEntry = 1 << 14;
2880   if (ActualEntry < FixedEntry)
2881     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2882   else if (ActualEntry <= UINT32_MAX)
2883     // Invert the fraction and divide.
2884     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2885   else
2886     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2887     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2888 }
2889 
2890 /// Collect the hint info for \p Reg.
2891 /// The results are stored into \p Out.
2892 /// \p Out is not cleared before being populated.
2893 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
2894   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2895     if (!Instr.isFullCopy())
2896       continue;
2897     // Look for the other end of the copy.
2898     Register OtherReg = Instr.getOperand(0).getReg();
2899     if (OtherReg == Reg) {
2900       OtherReg = Instr.getOperand(1).getReg();
2901       if (OtherReg == Reg)
2902         continue;
2903     }
2904     // Get the current assignment.
2905     MCRegister OtherPhysReg =
2906         OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
2907     // Push the collected information.
2908     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2909                            OtherPhysReg));
2910   }
2911 }
2912 
2913 /// Using the given \p List, compute the cost of the broken hints if
2914 /// \p PhysReg was used.
2915 /// \return The cost of \p List for \p PhysReg.
2916 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2917                                            MCRegister PhysReg) {
2918   BlockFrequency Cost = 0;
2919   for (const HintInfo &Info : List) {
2920     if (Info.PhysReg != PhysReg)
2921       Cost += Info.Freq;
2922   }
2923   return Cost;
2924 }
2925 
2926 /// Using the register assigned to \p VirtReg, try to recolor
2927 /// all the live ranges that are copy-related with \p VirtReg.
2928 /// The recoloring is then propagated to all the live-ranges that have
2929 /// been recolored and so on, until no more copies can be coalesced or
2930 /// it is not profitable.
2931 /// For a given live range, profitability is determined by the sum of the
2932 /// frequencies of the non-identity copies it would introduce with the old
2933 /// and new register.
2934 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2935   // We have a broken hint, check if it is possible to fix it by
2936   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2937   // some register and PhysReg may be available for the other live-ranges.
2938   SmallSet<Register, 4> Visited;
2939   SmallVector<unsigned, 2> RecoloringCandidates;
2940   HintsInfo Info;
2941   Register Reg = VirtReg.reg();
2942   MCRegister PhysReg = VRM->getPhys(Reg);
2943   // Start the recoloring algorithm from the input live-interval, then
2944   // it will propagate to the ones that are copy-related with it.
2945   Visited.insert(Reg);
2946   RecoloringCandidates.push_back(Reg);
2947 
2948   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2949                     << '(' << printReg(PhysReg, TRI) << ")\n");
2950 
2951   do {
2952     Reg = RecoloringCandidates.pop_back_val();
2953 
2954     // We cannot recolor physical register.
2955     if (Register::isPhysicalRegister(Reg))
2956       continue;
2957 
2958     // This may be a skipped class
2959     if (!VRM->hasPhys(Reg)) {
2960       assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) &&
2961              "We have an unallocated variable which should have been handled");
2962       continue;
2963     }
2964 
2965     // Get the live interval mapped with this virtual register to be able
2966     // to check for the interference with the new color.
2967     LiveInterval &LI = LIS->getInterval(Reg);
2968     MCRegister CurrPhys = VRM->getPhys(Reg);
2969     // Check that the new color matches the register class constraints and
2970     // that it is free for this live range.
2971     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2972                                 Matrix->checkInterference(LI, PhysReg)))
2973       continue;
2974 
2975     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2976                       << ") is recolorable.\n");
2977 
2978     // Gather the hint info.
2979     Info.clear();
2980     collectHintInfo(Reg, Info);
2981     // Check if recoloring the live-range will increase the cost of the
2982     // non-identity copies.
2983     if (CurrPhys != PhysReg) {
2984       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2985       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2986       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2987       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2988                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2989                         << '\n');
2990       if (OldCopiesCost < NewCopiesCost) {
2991         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2992         continue;
2993       }
2994       // At this point, the cost is either cheaper or equal. If it is
2995       // equal, we consider this is profitable because it may expose
2996       // more recoloring opportunities.
2997       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2998       // Recolor the live-range.
2999       Matrix->unassign(LI);
3000       Matrix->assign(LI, PhysReg);
3001     }
3002     // Push all copy-related live-ranges to keep reconciling the broken
3003     // hints.
3004     for (const HintInfo &HI : Info) {
3005       if (Visited.insert(HI.Reg).second)
3006         RecoloringCandidates.push_back(HI.Reg);
3007     }
3008   } while (!RecoloringCandidates.empty());
3009 }
3010 
3011 /// Try to recolor broken hints.
3012 /// Broken hints may be repaired by recoloring when an evicted variable
3013 /// freed up a register for a larger live-range.
3014 /// Consider the following example:
3015 /// BB1:
3016 ///   a =
3017 ///   b =
3018 /// BB2:
3019 ///   ...
3020 ///   = b
3021 ///   = a
3022 /// Let us assume b gets split:
3023 /// BB1:
3024 ///   a =
3025 ///   b =
3026 /// BB2:
3027 ///   c = b
3028 ///   ...
3029 ///   d = c
3030 ///   = d
3031 ///   = a
3032 /// Because of how the allocation work, b, c, and d may be assigned different
3033 /// colors. Now, if a gets evicted later:
3034 /// BB1:
3035 ///   a =
3036 ///   st a, SpillSlot
3037 ///   b =
3038 /// BB2:
3039 ///   c = b
3040 ///   ...
3041 ///   d = c
3042 ///   = d
3043 ///   e = ld SpillSlot
3044 ///   = e
3045 /// This is likely that we can assign the same register for b, c, and d,
3046 /// getting rid of 2 copies.
3047 void RAGreedy::tryHintsRecoloring() {
3048   for (LiveInterval *LI : SetOfBrokenHints) {
3049     assert(Register::isVirtualRegister(LI->reg()) &&
3050            "Recoloring is possible only for virtual registers");
3051     // Some dead defs may be around (e.g., because of debug uses).
3052     // Ignore those.
3053     if (!VRM->hasPhys(LI->reg()))
3054       continue;
3055     tryHintRecoloring(*LI);
3056   }
3057 }
3058 
3059 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
3060                                        SmallVectorImpl<Register> &NewVRegs,
3061                                        SmallVirtRegSet &FixedRegisters,
3062                                        unsigned Depth) {
3063   uint8_t CostPerUseLimit = uint8_t(~0u);
3064   // First try assigning a free register.
3065   auto Order =
3066       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
3067   if (MCRegister PhysReg =
3068           tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
3069     // If VirtReg got an assignment, the eviction info is no longer relevant.
3070     LastEvicted.clearEvicteeInfo(VirtReg.reg());
3071     // When NewVRegs is not empty, we may have made decisions such as evicting
3072     // a virtual register, go with the earlier decisions and use the physical
3073     // register.
3074     if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
3075         NewVRegs.empty()) {
3076       MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
3077                                                 CostPerUseLimit, NewVRegs);
3078       if (CSRReg || !NewVRegs.empty())
3079         // Return now if we decide to use a CSR or create new vregs due to
3080         // pre-splitting.
3081         return CSRReg;
3082     } else
3083       return PhysReg;
3084   }
3085 
3086   LiveRangeStage Stage = getStage(VirtReg);
3087   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
3088                     << ExtraRegInfo[VirtReg.reg()].Cascade << '\n');
3089 
3090   // Try to evict a less worthy live range, but only for ranges from the primary
3091   // queue. The RS_Split ranges already failed to do this, and they should not
3092   // get a second chance until they have been split.
3093   if (Stage != RS_Split)
3094     if (Register PhysReg =
3095             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
3096                      FixedRegisters)) {
3097       Register Hint = MRI->getSimpleHint(VirtReg.reg());
3098       // If VirtReg has a hint and that hint is broken record this
3099       // virtual register as a recoloring candidate for broken hint.
3100       // Indeed, since we evicted a variable in its neighborhood it is
3101       // likely we can at least partially recolor some of the
3102       // copy-related live-ranges.
3103       if (Hint && Hint != PhysReg)
3104         SetOfBrokenHints.insert(&VirtReg);
3105       // If VirtReg eviction someone, the eviction info for it as an evictee is
3106       // no longer relevant.
3107       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3108       return PhysReg;
3109     }
3110 
3111   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
3112 
3113   // The first time we see a live range, don't try to split or spill.
3114   // Wait until the second time, when all smaller ranges have been allocated.
3115   // This gives a better picture of the interference to split around.
3116   if (Stage < RS_Split) {
3117     setStage(VirtReg, RS_Split);
3118     LLVM_DEBUG(dbgs() << "wait for second round\n");
3119     NewVRegs.push_back(VirtReg.reg());
3120     return 0;
3121   }
3122 
3123   if (Stage < RS_Spill) {
3124     // Try splitting VirtReg or interferences.
3125     unsigned NewVRegSizeBefore = NewVRegs.size();
3126     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
3127     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) {
3128       // If VirtReg got split, the eviction info is no longer relevant.
3129       LastEvicted.clearEvicteeInfo(VirtReg.reg());
3130       return PhysReg;
3131     }
3132   }
3133 
3134   // If we couldn't allocate a register from spilling, there is probably some
3135   // invalid inline assembly. The base class will report it.
3136   if (Stage >= RS_Done || !VirtReg.isSpillable())
3137     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
3138                                    Depth);
3139 
3140   // Finally spill VirtReg itself.
3141   if ((EnableDeferredSpilling ||
3142        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
3143       getStage(VirtReg) < RS_Memory) {
3144     // TODO: This is experimental and in particular, we do not model
3145     // the live range splitting done by spilling correctly.
3146     // We would need a deep integration with the spiller to do the
3147     // right thing here. Anyway, that is still good for early testing.
3148     setStage(VirtReg, RS_Memory);
3149     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3150     NewVRegs.push_back(VirtReg.reg());
3151   } else {
3152     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
3153                        TimerGroupDescription, TimePassesIsEnabled);
3154     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
3155     spiller().spill(LRE);
3156     setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
3157 
3158     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
3159     // the new regs are kept in LDV (still mapping to the old register), until
3160     // we rewrite spilled locations in LDV at a later stage.
3161     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
3162 
3163     if (VerifyEnabled)
3164       MF->verify(this, "After spilling");
3165   }
3166 
3167   // The live virtual register requesting allocation was spilled, so tell
3168   // the caller not to allocate anything during this round.
3169   return 0;
3170 }
3171 
3172 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) {
3173   using namespace ore;
3174   if (Spills) {
3175     R << NV("NumSpills", Spills) << " spills ";
3176     R << NV("TotalSpillsCost", SpillsCost) << " total spills cost ";
3177   }
3178   if (FoldedSpills) {
3179     R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
3180     R << NV("TotalFoldedSpillsCost", FoldedSpillsCost)
3181       << " total folded spills cost ";
3182   }
3183   if (Reloads) {
3184     R << NV("NumReloads", Reloads) << " reloads ";
3185     R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost ";
3186   }
3187   if (FoldedReloads) {
3188     R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
3189     R << NV("TotalFoldedReloadsCost", FoldedReloadsCost)
3190       << " total folded reloads cost ";
3191   }
3192   if (ZeroCostFoldedReloads)
3193     R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads)
3194       << " zero cost folded reloads ";
3195   if (Copies) {
3196     R << NV("NumVRCopies", Copies) << " virtual registers copies ";
3197     R << NV("TotalCopiesCost", CopiesCost) << " total copies cost ";
3198   }
3199 }
3200 
3201 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) {
3202   RAGreedyStats Stats;
3203   const MachineFrameInfo &MFI = MF->getFrameInfo();
3204   int FI;
3205 
3206   auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
3207     return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>(
3208         A->getPseudoValue())->getFrameIndex());
3209   };
3210   auto isPatchpointInstr = [](const MachineInstr &MI) {
3211     return MI.getOpcode() == TargetOpcode::PATCHPOINT ||
3212            MI.getOpcode() == TargetOpcode::STACKMAP ||
3213            MI.getOpcode() == TargetOpcode::STATEPOINT;
3214   };
3215   for (MachineInstr &MI : MBB) {
3216     if (MI.isCopy()) {
3217       MachineOperand &Dest = MI.getOperand(0);
3218       MachineOperand &Src = MI.getOperand(1);
3219       if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() &&
3220           Src.getReg().isVirtual())
3221         ++Stats.Copies;
3222       continue;
3223     }
3224 
3225     SmallVector<const MachineMemOperand *, 2> Accesses;
3226     if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
3227       ++Stats.Reloads;
3228       continue;
3229     }
3230     if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
3231       ++Stats.Spills;
3232       continue;
3233     }
3234     if (TII->hasLoadFromStackSlot(MI, Accesses) &&
3235         llvm::any_of(Accesses, isSpillSlotAccess)) {
3236       if (!isPatchpointInstr(MI)) {
3237         Stats.FoldedReloads += Accesses.size();
3238         continue;
3239       }
3240       // For statepoint there may be folded and zero cost folded stack reloads.
3241       std::pair<unsigned, unsigned> NonZeroCostRange =
3242           TII->getPatchpointUnfoldableRange(MI);
3243       SmallSet<unsigned, 16> FoldedReloads;
3244       SmallSet<unsigned, 16> ZeroCostFoldedReloads;
3245       for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) {
3246         MachineOperand &MO = MI.getOperand(Idx);
3247         if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex()))
3248           continue;
3249         if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second)
3250           FoldedReloads.insert(MO.getIndex());
3251         else
3252           ZeroCostFoldedReloads.insert(MO.getIndex());
3253       }
3254       // If stack slot is used in folded reload it is not zero cost then.
3255       for (unsigned Slot : FoldedReloads)
3256         ZeroCostFoldedReloads.erase(Slot);
3257       Stats.FoldedReloads += FoldedReloads.size();
3258       Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size();
3259       continue;
3260     }
3261     Accesses.clear();
3262     if (TII->hasStoreToStackSlot(MI, Accesses) &&
3263         llvm::any_of(Accesses, isSpillSlotAccess)) {
3264       Stats.FoldedSpills += Accesses.size();
3265     }
3266   }
3267   // Set cost of collected statistic by multiplication to relative frequency of
3268   // this basic block.
3269   float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB);
3270   Stats.ReloadsCost = RelFreq * Stats.Reloads;
3271   Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads;
3272   Stats.SpillsCost = RelFreq * Stats.Spills;
3273   Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills;
3274   Stats.CopiesCost = RelFreq * Stats.Copies;
3275   return Stats;
3276 }
3277 
3278 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) {
3279   RAGreedyStats Stats;
3280 
3281   // Sum up the spill and reloads in subloops.
3282   for (MachineLoop *SubLoop : *L)
3283     Stats.add(reportStats(SubLoop));
3284 
3285   for (MachineBasicBlock *MBB : L->getBlocks())
3286     // Handle blocks that were not included in subloops.
3287     if (Loops->getLoopFor(MBB) == L)
3288       Stats.add(computeStats(*MBB));
3289 
3290   if (!Stats.isEmpty()) {
3291     using namespace ore;
3292 
3293     ORE->emit([&]() {
3294       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies",
3295                                         L->getStartLoc(), L->getHeader());
3296       Stats.report(R);
3297       R << "generated in loop";
3298       return R;
3299     });
3300   }
3301   return Stats;
3302 }
3303 
3304 void RAGreedy::reportStats() {
3305   if (!ORE->allowExtraAnalysis(DEBUG_TYPE))
3306     return;
3307   RAGreedyStats Stats;
3308   for (MachineLoop *L : *Loops)
3309     Stats.add(reportStats(L));
3310   // Process non-loop blocks.
3311   for (MachineBasicBlock &MBB : *MF)
3312     if (!Loops->getLoopFor(&MBB))
3313       Stats.add(computeStats(MBB));
3314   if (!Stats.isEmpty()) {
3315     using namespace ore;
3316 
3317     ORE->emit([&]() {
3318       DebugLoc Loc;
3319       if (auto *SP = MF->getFunction().getSubprogram())
3320         Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
3321       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc,
3322                                         &MF->front());
3323       Stats.report(R);
3324       R << "generated in function";
3325       return R;
3326     });
3327   }
3328 }
3329 
3330 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
3331   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3332                     << "********** Function: " << mf.getName() << '\n');
3333 
3334   MF = &mf;
3335   TRI = MF->getSubtarget().getRegisterInfo();
3336   TII = MF->getSubtarget().getInstrInfo();
3337   RCI.runOnMachineFunction(mf);
3338 
3339   EnableLocalReassign = EnableLocalReassignment ||
3340                         MF->getSubtarget().enableRALocalReassignment(
3341                             MF->getTarget().getOptLevel());
3342 
3343   EnableAdvancedRASplitCost =
3344       ConsiderLocalIntervalCost.getNumOccurrences()
3345           ? ConsiderLocalIntervalCost
3346           : MF->getSubtarget().enableAdvancedRASplitCost();
3347 
3348   if (VerifyEnabled)
3349     MF->verify(this, "Before greedy register allocator");
3350 
3351   RegAllocBase::init(getAnalysis<VirtRegMap>(),
3352                      getAnalysis<LiveIntervals>(),
3353                      getAnalysis<LiveRegMatrix>());
3354   Indexes = &getAnalysis<SlotIndexes>();
3355   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3356   DomTree = &getAnalysis<MachineDominatorTree>();
3357   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
3358   Loops = &getAnalysis<MachineLoopInfo>();
3359   Bundles = &getAnalysis<EdgeBundles>();
3360   SpillPlacer = &getAnalysis<SpillPlacement>();
3361   DebugVars = &getAnalysis<LiveDebugVariables>();
3362   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3363 
3364   initializeCSRCost();
3365 
3366   RegCosts = TRI->getRegisterCosts(*MF);
3367 
3368   VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
3369   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI));
3370 
3371   VRAI->calculateSpillWeightsAndHints();
3372 
3373   LLVM_DEBUG(LIS->dump());
3374 
3375   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
3376   SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI));
3377   ExtraRegInfo.clear();
3378   ExtraRegInfo.resize(MRI->getNumVirtRegs());
3379   NextCascade = 1;
3380   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
3381   GlobalCand.resize(32);  // This will grow as needed.
3382   SetOfBrokenHints.clear();
3383   LastEvicted.clear();
3384 
3385   allocatePhysRegs();
3386   tryHintsRecoloring();
3387 
3388   if (VerifyEnabled)
3389     MF->verify(this, "Before post optimization");
3390   postOptimization();
3391   reportStats();
3392 
3393   releaseMemory();
3394   return true;
3395 }
3396