1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AllocationOrder.h" 15 #include "InterferenceCache.h" 16 #include "LiveDebugVariables.h" 17 #include "RegAllocBase.h" 18 #include "SpillPlacement.h" 19 #include "SplitKit.h" 20 #include "llvm/ADT/ArrayRef.h" 21 #include "llvm/ADT/BitVector.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/IndexedMap.h" 24 #include "llvm/ADT/MapVector.h" 25 #include "llvm/ADT/SetVector.h" 26 #include "llvm/ADT/SmallPtrSet.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/Analysis/AliasAnalysis.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/CodeGen/CalcSpillWeights.h" 34 #include "llvm/CodeGen/EdgeBundles.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/LiveIntervalUnion.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveRangeEdit.h" 39 #include "llvm/CodeGen/LiveRegMatrix.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineLoopInfo.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RegAllocRegistry.h" 53 #include "llvm/CodeGen/RegisterClassInfo.h" 54 #include "llvm/CodeGen/SlotIndexes.h" 55 #include "llvm/CodeGen/Spiller.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetRegisterInfo.h" 58 #include "llvm/CodeGen/TargetSubtargetInfo.h" 59 #include "llvm/CodeGen/VirtRegMap.h" 60 #include "llvm/IR/Function.h" 61 #include "llvm/IR/LLVMContext.h" 62 #include "llvm/MC/MCRegisterInfo.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/BlockFrequency.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/Timer.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Target/TargetMachine.h" 72 #include "llvm/IR/DebugInfoMetadata.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstdint> 76 #include <memory> 77 #include <queue> 78 #include <tuple> 79 #include <utility> 80 81 using namespace llvm; 82 83 #define DEBUG_TYPE "regalloc" 84 85 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 86 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 87 STATISTIC(NumEvicted, "Number of interferences evicted"); 88 89 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 90 "split-spill-mode", cl::Hidden, 91 cl::desc("Spill mode for splitting live ranges"), 92 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 93 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 94 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 95 cl::init(SplitEditor::SM_Speed)); 96 97 static cl::opt<unsigned> 98 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 99 cl::desc("Last chance recoloring max depth"), 100 cl::init(5)); 101 102 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 103 "lcr-max-interf", cl::Hidden, 104 cl::desc("Last chance recoloring maximum number of considered" 105 " interference at a time"), 106 cl::init(8)); 107 108 static cl::opt<bool> ExhaustiveSearch( 109 "exhaustive-register-search", cl::NotHidden, 110 cl::desc("Exhaustive Search for registers bypassing the depth " 111 "and interference cutoffs of last chance recoloring"), 112 cl::Hidden); 113 114 static cl::opt<bool> EnableLocalReassignment( 115 "enable-local-reassign", cl::Hidden, 116 cl::desc("Local reassignment can yield better allocation decisions, but " 117 "may be compile time intensive"), 118 cl::init(false)); 119 120 static cl::opt<bool> EnableDeferredSpilling( 121 "enable-deferred-spilling", cl::Hidden, 122 cl::desc("Instead of spilling a variable right away, defer the actual " 123 "code insertion to the end of the allocation. That way the " 124 "allocator might still find a suitable coloring for this " 125 "variable because of other evicted variables."), 126 cl::init(false)); 127 128 // FIXME: Find a good default for this flag and remove the flag. 129 static cl::opt<unsigned> 130 CSRFirstTimeCost("regalloc-csr-first-time-cost", 131 cl::desc("Cost for first time use of callee-saved register."), 132 cl::init(0), cl::Hidden); 133 134 static cl::opt<bool> ConsiderLocalIntervalCost( 135 "consider-local-interval-cost", cl::Hidden, 136 cl::desc("Consider the cost of local intervals created by a split " 137 "candidate when choosing the best split candidate."), 138 cl::init(false)); 139 140 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 141 createGreedyRegisterAllocator); 142 143 namespace { 144 145 class RAGreedy : public MachineFunctionPass, 146 public RegAllocBase, 147 private LiveRangeEdit::Delegate { 148 // Convenient shortcuts. 149 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>; 150 using SmallLISet = SmallPtrSet<LiveInterval *, 4>; 151 using SmallVirtRegSet = SmallSet<Register, 16>; 152 153 // context 154 MachineFunction *MF; 155 156 // Shortcuts to some useful interface. 157 const TargetInstrInfo *TII; 158 const TargetRegisterInfo *TRI; 159 RegisterClassInfo RCI; 160 161 // analyses 162 SlotIndexes *Indexes; 163 MachineBlockFrequencyInfo *MBFI; 164 MachineDominatorTree *DomTree; 165 MachineLoopInfo *Loops; 166 MachineOptimizationRemarkEmitter *ORE; 167 EdgeBundles *Bundles; 168 SpillPlacement *SpillPlacer; 169 LiveDebugVariables *DebugVars; 170 AliasAnalysis *AA; 171 172 // state 173 std::unique_ptr<Spiller> SpillerInstance; 174 PQueue Queue; 175 unsigned NextCascade; 176 std::unique_ptr<VirtRegAuxInfo> VRAI; 177 178 // Live ranges pass through a number of stages as we try to allocate them. 179 // Some of the stages may also create new live ranges: 180 // 181 // - Region splitting. 182 // - Per-block splitting. 183 // - Local splitting. 184 // - Spilling. 185 // 186 // Ranges produced by one of the stages skip the previous stages when they are 187 // dequeued. This improves performance because we can skip interference checks 188 // that are unlikely to give any results. It also guarantees that the live 189 // range splitting algorithm terminates, something that is otherwise hard to 190 // ensure. 191 enum LiveRangeStage { 192 /// Newly created live range that has never been queued. 193 RS_New, 194 195 /// Only attempt assignment and eviction. Then requeue as RS_Split. 196 RS_Assign, 197 198 /// Attempt live range splitting if assignment is impossible. 199 RS_Split, 200 201 /// Attempt more aggressive live range splitting that is guaranteed to make 202 /// progress. This is used for split products that may not be making 203 /// progress. 204 RS_Split2, 205 206 /// Live range will be spilled. No more splitting will be attempted. 207 RS_Spill, 208 209 210 /// Live range is in memory. Because of other evictions, it might get moved 211 /// in a register in the end. 212 RS_Memory, 213 214 /// There is nothing more we can do to this live range. Abort compilation 215 /// if it can't be assigned. 216 RS_Done 217 }; 218 219 // Enum CutOffStage to keep a track whether the register allocation failed 220 // because of the cutoffs encountered in last chance recoloring. 221 // Note: This is used as bitmask. New value should be next power of 2. 222 enum CutOffStage { 223 // No cutoffs encountered 224 CO_None = 0, 225 226 // lcr-max-depth cutoff encountered 227 CO_Depth = 1, 228 229 // lcr-max-interf cutoff encountered 230 CO_Interf = 2 231 }; 232 233 uint8_t CutOffInfo; 234 235 #ifndef NDEBUG 236 static const char *const StageName[]; 237 #endif 238 239 // RegInfo - Keep additional information about each live range. 240 struct RegInfo { 241 LiveRangeStage Stage = RS_New; 242 243 // Cascade - Eviction loop prevention. See canEvictInterference(). 244 unsigned Cascade = 0; 245 246 RegInfo() = default; 247 }; 248 249 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 250 251 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 252 return ExtraRegInfo[VirtReg.reg()].Stage; 253 } 254 255 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 256 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 257 ExtraRegInfo[VirtReg.reg()].Stage = Stage; 258 } 259 260 template<typename Iterator> 261 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 262 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 263 for (;Begin != End; ++Begin) { 264 Register Reg = *Begin; 265 if (ExtraRegInfo[Reg].Stage == RS_New) 266 ExtraRegInfo[Reg].Stage = NewStage; 267 } 268 } 269 270 /// Cost of evicting interference. 271 struct EvictionCost { 272 unsigned BrokenHints = 0; ///< Total number of broken hints. 273 float MaxWeight = 0; ///< Maximum spill weight evicted. 274 275 EvictionCost() = default; 276 277 bool isMax() const { return BrokenHints == ~0u; } 278 279 void setMax() { BrokenHints = ~0u; } 280 281 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; } 282 283 bool operator<(const EvictionCost &O) const { 284 return std::tie(BrokenHints, MaxWeight) < 285 std::tie(O.BrokenHints, O.MaxWeight); 286 } 287 }; 288 289 /// EvictionTrack - Keeps track of past evictions in order to optimize region 290 /// split decision. 291 class EvictionTrack { 292 293 public: 294 using EvictorInfo = 295 std::pair<Register /* evictor */, MCRegister /* physreg */>; 296 using EvicteeInfo = llvm::DenseMap<Register /* evictee */, EvictorInfo>; 297 298 private: 299 /// Each Vreg that has been evicted in the last stage of selectOrSplit will 300 /// be mapped to the evictor Vreg and the PhysReg it was evicted from. 301 EvicteeInfo Evictees; 302 303 public: 304 /// Clear all eviction information. 305 void clear() { Evictees.clear(); } 306 307 /// Clear eviction information for the given evictee Vreg. 308 /// E.g. when Vreg get's a new allocation, the old eviction info is no 309 /// longer relevant. 310 /// \param Evictee The evictee Vreg for whom we want to clear collected 311 /// eviction info. 312 void clearEvicteeInfo(Register Evictee) { Evictees.erase(Evictee); } 313 314 /// Track new eviction. 315 /// The Evictor vreg has evicted the Evictee vreg from Physreg. 316 /// \param PhysReg The physical register Evictee was evicted from. 317 /// \param Evictor The evictor Vreg that evicted Evictee. 318 /// \param Evictee The evictee Vreg. 319 void addEviction(MCRegister PhysReg, Register Evictor, Register Evictee) { 320 Evictees[Evictee].first = Evictor; 321 Evictees[Evictee].second = PhysReg; 322 } 323 324 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg. 325 /// \param Evictee The evictee vreg. 326 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if 327 /// nobody has evicted Evictee from PhysReg. 328 EvictorInfo getEvictor(Register Evictee) { 329 if (Evictees.count(Evictee)) { 330 return Evictees[Evictee]; 331 } 332 333 return EvictorInfo(0, 0); 334 } 335 }; 336 337 // Keeps track of past evictions in order to optimize region split decision. 338 EvictionTrack LastEvicted; 339 340 // splitting state. 341 std::unique_ptr<SplitAnalysis> SA; 342 std::unique_ptr<SplitEditor> SE; 343 344 /// Cached per-block interference maps 345 InterferenceCache IntfCache; 346 347 /// All basic blocks where the current register has uses. 348 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 349 350 /// Global live range splitting candidate info. 351 struct GlobalSplitCandidate { 352 // Register intended for assignment, or 0. 353 MCRegister PhysReg; 354 355 // SplitKit interval index for this candidate. 356 unsigned IntvIdx; 357 358 // Interference for PhysReg. 359 InterferenceCache::Cursor Intf; 360 361 // Bundles where this candidate should be live. 362 BitVector LiveBundles; 363 SmallVector<unsigned, 8> ActiveBlocks; 364 365 void reset(InterferenceCache &Cache, MCRegister Reg) { 366 PhysReg = Reg; 367 IntvIdx = 0; 368 Intf.setPhysReg(Cache, Reg); 369 LiveBundles.clear(); 370 ActiveBlocks.clear(); 371 } 372 373 // Set B[I] = C for every live bundle where B[I] was NoCand. 374 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 375 unsigned Count = 0; 376 for (unsigned I : LiveBundles.set_bits()) 377 if (B[I] == NoCand) { 378 B[I] = C; 379 Count++; 380 } 381 return Count; 382 } 383 }; 384 385 /// Candidate info for each PhysReg in AllocationOrder. 386 /// This vector never shrinks, but grows to the size of the largest register 387 /// class. 388 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 389 390 enum : unsigned { NoCand = ~0u }; 391 392 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 393 /// NoCand which indicates the stack interval. 394 SmallVector<unsigned, 32> BundleCand; 395 396 /// Callee-save register cost, calculated once per machine function. 397 BlockFrequency CSRCost; 398 399 /// Run or not the local reassignment heuristic. This information is 400 /// obtained from the TargetSubtargetInfo. 401 bool EnableLocalReassign; 402 403 /// Enable or not the consideration of the cost of local intervals created 404 /// by a split candidate when choosing the best split candidate. 405 bool EnableAdvancedRASplitCost; 406 407 /// Set of broken hints that may be reconciled later because of eviction. 408 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 409 410 /// The register cost values. This list will be recreated for each Machine 411 /// Function 412 ArrayRef<uint8_t> RegCosts; 413 414 public: 415 RAGreedy(const RegClassFilterFunc F = allocateAllRegClasses); 416 417 /// Return the pass name. 418 StringRef getPassName() const override { return "Greedy Register Allocator"; } 419 420 /// RAGreedy analysis usage. 421 void getAnalysisUsage(AnalysisUsage &AU) const override; 422 void releaseMemory() override; 423 Spiller &spiller() override { return *SpillerInstance; } 424 void enqueueImpl(LiveInterval *LI) override; 425 LiveInterval *dequeue() override; 426 MCRegister selectOrSplit(LiveInterval &, 427 SmallVectorImpl<Register> &) override; 428 void aboutToRemoveInterval(LiveInterval &) override; 429 430 /// Perform register allocation. 431 bool runOnMachineFunction(MachineFunction &mf) override; 432 433 MachineFunctionProperties getRequiredProperties() const override { 434 return MachineFunctionProperties().set( 435 MachineFunctionProperties::Property::NoPHIs); 436 } 437 438 MachineFunctionProperties getClearedProperties() const override { 439 return MachineFunctionProperties().set( 440 MachineFunctionProperties::Property::IsSSA); 441 } 442 443 static char ID; 444 445 private: 446 MCRegister selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &, 447 SmallVirtRegSet &, unsigned = 0); 448 449 bool LRE_CanEraseVirtReg(Register) override; 450 void LRE_WillShrinkVirtReg(Register) override; 451 void LRE_DidCloneVirtReg(Register, Register) override; 452 void enqueue(PQueue &CurQueue, LiveInterval *LI); 453 LiveInterval *dequeue(PQueue &CurQueue); 454 455 BlockFrequency calcSpillCost(); 456 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 457 bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 458 bool growRegion(GlobalSplitCandidate &Cand); 459 bool splitCanCauseEvictionChain(Register Evictee, GlobalSplitCandidate &Cand, 460 unsigned BBNumber, 461 const AllocationOrder &Order); 462 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit, 463 GlobalSplitCandidate &Cand, unsigned BBNumber, 464 const AllocationOrder &Order); 465 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &, 466 const AllocationOrder &Order, 467 bool *CanCauseEvictionChain); 468 bool calcCompactRegion(GlobalSplitCandidate&); 469 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 470 void calcGapWeights(MCRegister, SmallVectorImpl<float> &); 471 Register canReassign(LiveInterval &VirtReg, Register PrevReg) const; 472 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool) const; 473 bool canEvictInterference(LiveInterval &, MCRegister, bool, EvictionCost &, 474 const SmallVirtRegSet &) const; 475 bool canEvictInterferenceInRange(const LiveInterval &VirtReg, 476 MCRegister PhysReg, SlotIndex Start, 477 SlotIndex End, EvictionCost &MaxCost) const; 478 MCRegister getCheapestEvicteeWeight(const AllocationOrder &Order, 479 const LiveInterval &VirtReg, 480 SlotIndex Start, SlotIndex End, 481 float *BestEvictWeight) const; 482 void evictInterference(LiveInterval &, MCRegister, 483 SmallVectorImpl<Register> &); 484 bool mayRecolorAllInterferences(MCRegister PhysReg, LiveInterval &VirtReg, 485 SmallLISet &RecoloringCandidates, 486 const SmallVirtRegSet &FixedRegisters); 487 488 MCRegister tryAssign(LiveInterval&, AllocationOrder&, 489 SmallVectorImpl<Register>&, 490 const SmallVirtRegSet&); 491 MCRegister tryEvict(LiveInterval &, AllocationOrder &, 492 SmallVectorImpl<Register> &, uint8_t, 493 const SmallVirtRegSet &); 494 MCRegister tryRegionSplit(LiveInterval &, AllocationOrder &, 495 SmallVectorImpl<Register> &); 496 /// Calculate cost of region splitting. 497 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 498 AllocationOrder &Order, 499 BlockFrequency &BestCost, 500 unsigned &NumCands, bool IgnoreCSR, 501 bool *CanCauseEvictionChain = nullptr); 502 /// Perform region splitting. 503 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 504 bool HasCompact, 505 SmallVectorImpl<Register> &NewVRegs); 506 /// Check other options before using a callee-saved register for the first 507 /// time. 508 MCRegister tryAssignCSRFirstTime(LiveInterval &VirtReg, 509 AllocationOrder &Order, MCRegister PhysReg, 510 uint8_t &CostPerUseLimit, 511 SmallVectorImpl<Register> &NewVRegs); 512 void initializeCSRCost(); 513 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 514 SmallVectorImpl<Register>&); 515 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 516 SmallVectorImpl<Register>&); 517 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 518 SmallVectorImpl<Register>&); 519 unsigned trySplit(LiveInterval&, AllocationOrder&, 520 SmallVectorImpl<Register>&, 521 const SmallVirtRegSet&); 522 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 523 SmallVectorImpl<Register> &, 524 SmallVirtRegSet &, unsigned); 525 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &, 526 SmallVirtRegSet &, unsigned); 527 void tryHintRecoloring(LiveInterval &); 528 void tryHintsRecoloring(); 529 530 /// Model the information carried by one end of a copy. 531 struct HintInfo { 532 /// The frequency of the copy. 533 BlockFrequency Freq; 534 /// The virtual register or physical register. 535 Register Reg; 536 /// Its currently assigned register. 537 /// In case of a physical register Reg == PhysReg. 538 MCRegister PhysReg; 539 540 HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg) 541 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 542 }; 543 using HintsInfo = SmallVector<HintInfo, 4>; 544 545 BlockFrequency getBrokenHintFreq(const HintsInfo &, MCRegister); 546 void collectHintInfo(Register, HintsInfo &); 547 548 bool isUnusedCalleeSavedReg(MCRegister PhysReg) const; 549 550 /// Greedy RA statistic to remark. 551 struct RAGreedyStats { 552 unsigned Reloads = 0; 553 unsigned FoldedReloads = 0; 554 unsigned ZeroCostFoldedReloads = 0; 555 unsigned Spills = 0; 556 unsigned FoldedSpills = 0; 557 unsigned Copies = 0; 558 float ReloadsCost = 0.0f; 559 float FoldedReloadsCost = 0.0f; 560 float SpillsCost = 0.0f; 561 float FoldedSpillsCost = 0.0f; 562 float CopiesCost = 0.0f; 563 564 bool isEmpty() { 565 return !(Reloads || FoldedReloads || Spills || FoldedSpills || 566 ZeroCostFoldedReloads || Copies); 567 } 568 569 void add(RAGreedyStats other) { 570 Reloads += other.Reloads; 571 FoldedReloads += other.FoldedReloads; 572 ZeroCostFoldedReloads += other.ZeroCostFoldedReloads; 573 Spills += other.Spills; 574 FoldedSpills += other.FoldedSpills; 575 Copies += other.Copies; 576 ReloadsCost += other.ReloadsCost; 577 FoldedReloadsCost += other.FoldedReloadsCost; 578 SpillsCost += other.SpillsCost; 579 FoldedSpillsCost += other.FoldedSpillsCost; 580 CopiesCost += other.CopiesCost; 581 } 582 583 void report(MachineOptimizationRemarkMissed &R); 584 }; 585 586 /// Compute statistic for a basic block. 587 RAGreedyStats computeStats(MachineBasicBlock &MBB); 588 589 /// Compute and report statistic through a remark. 590 RAGreedyStats reportStats(MachineLoop *L); 591 592 /// Report the statistic for each loop. 593 void reportStats(); 594 }; 595 596 } // end anonymous namespace 597 598 char RAGreedy::ID = 0; 599 char &llvm::RAGreedyID = RAGreedy::ID; 600 601 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 602 "Greedy Register Allocator", false, false) 603 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 604 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 605 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 606 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 607 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 608 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 609 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 610 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 611 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 612 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 613 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 614 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 615 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 616 INITIALIZE_PASS_END(RAGreedy, "greedy", 617 "Greedy Register Allocator", false, false) 618 619 #ifndef NDEBUG 620 const char *const RAGreedy::StageName[] = { 621 "RS_New", 622 "RS_Assign", 623 "RS_Split", 624 "RS_Split2", 625 "RS_Spill", 626 "RS_Memory", 627 "RS_Done" 628 }; 629 #endif 630 631 // Hysteresis to use when comparing floats. 632 // This helps stabilize decisions based on float comparisons. 633 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 634 635 FunctionPass* llvm::createGreedyRegisterAllocator() { 636 return new RAGreedy(); 637 } 638 639 namespace llvm { 640 FunctionPass* createGreedyRegisterAllocator( 641 std::function<bool(const TargetRegisterInfo &TRI, 642 const TargetRegisterClass &RC)> Ftor); 643 644 } 645 646 FunctionPass* llvm::createGreedyRegisterAllocator( 647 std::function<bool(const TargetRegisterInfo &TRI, 648 const TargetRegisterClass &RC)> Ftor) { 649 return new RAGreedy(Ftor); 650 } 651 652 RAGreedy::RAGreedy(RegClassFilterFunc F): 653 MachineFunctionPass(ID), 654 RegAllocBase(F) { 655 } 656 657 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 658 AU.setPreservesCFG(); 659 AU.addRequired<MachineBlockFrequencyInfo>(); 660 AU.addPreserved<MachineBlockFrequencyInfo>(); 661 AU.addRequired<AAResultsWrapperPass>(); 662 AU.addPreserved<AAResultsWrapperPass>(); 663 AU.addRequired<LiveIntervals>(); 664 AU.addPreserved<LiveIntervals>(); 665 AU.addRequired<SlotIndexes>(); 666 AU.addPreserved<SlotIndexes>(); 667 AU.addRequired<LiveDebugVariables>(); 668 AU.addPreserved<LiveDebugVariables>(); 669 AU.addRequired<LiveStacks>(); 670 AU.addPreserved<LiveStacks>(); 671 AU.addRequired<MachineDominatorTree>(); 672 AU.addPreserved<MachineDominatorTree>(); 673 AU.addRequired<MachineLoopInfo>(); 674 AU.addPreserved<MachineLoopInfo>(); 675 AU.addRequired<VirtRegMap>(); 676 AU.addPreserved<VirtRegMap>(); 677 AU.addRequired<LiveRegMatrix>(); 678 AU.addPreserved<LiveRegMatrix>(); 679 AU.addRequired<EdgeBundles>(); 680 AU.addRequired<SpillPlacement>(); 681 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 682 MachineFunctionPass::getAnalysisUsage(AU); 683 } 684 685 //===----------------------------------------------------------------------===// 686 // LiveRangeEdit delegate methods 687 //===----------------------------------------------------------------------===// 688 689 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) { 690 LiveInterval &LI = LIS->getInterval(VirtReg); 691 if (VRM->hasPhys(VirtReg)) { 692 Matrix->unassign(LI); 693 aboutToRemoveInterval(LI); 694 return true; 695 } 696 // Unassigned virtreg is probably in the priority queue. 697 // RegAllocBase will erase it after dequeueing. 698 // Nonetheless, clear the live-range so that the debug 699 // dump will show the right state for that VirtReg. 700 LI.clear(); 701 return false; 702 } 703 704 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) { 705 if (!VRM->hasPhys(VirtReg)) 706 return; 707 708 // Register is assigned, put it back on the queue for reassignment. 709 LiveInterval &LI = LIS->getInterval(VirtReg); 710 Matrix->unassign(LI); 711 RegAllocBase::enqueue(&LI); 712 } 713 714 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) { 715 // Cloning a register we haven't even heard about yet? Just ignore it. 716 if (!ExtraRegInfo.inBounds(Old)) 717 return; 718 719 // LRE may clone a virtual register because dead code elimination causes it to 720 // be split into connected components. The new components are much smaller 721 // than the original, so they should get a new chance at being assigned. 722 // same stage as the parent. 723 ExtraRegInfo[Old].Stage = RS_Assign; 724 ExtraRegInfo.grow(New); 725 ExtraRegInfo[New] = ExtraRegInfo[Old]; 726 } 727 728 void RAGreedy::releaseMemory() { 729 SpillerInstance.reset(); 730 ExtraRegInfo.clear(); 731 GlobalCand.clear(); 732 } 733 734 void RAGreedy::enqueueImpl(LiveInterval *LI) { enqueue(Queue, LI); } 735 736 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 737 // Prioritize live ranges by size, assigning larger ranges first. 738 // The queue holds (size, reg) pairs. 739 const unsigned Size = LI->getSize(); 740 const Register Reg = LI->reg(); 741 assert(Reg.isVirtual() && "Can only enqueue virtual registers"); 742 unsigned Prio; 743 744 ExtraRegInfo.grow(Reg); 745 if (ExtraRegInfo[Reg].Stage == RS_New) 746 ExtraRegInfo[Reg].Stage = RS_Assign; 747 748 if (ExtraRegInfo[Reg].Stage == RS_Split) { 749 // Unsplit ranges that couldn't be allocated immediately are deferred until 750 // everything else has been allocated. 751 Prio = Size; 752 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) { 753 // Memory operand should be considered last. 754 // Change the priority such that Memory operand are assigned in 755 // the reverse order that they came in. 756 // TODO: Make this a member variable and probably do something about hints. 757 static unsigned MemOp = 0; 758 Prio = MemOp++; 759 } else { 760 // Giant live ranges fall back to the global assignment heuristic, which 761 // prevents excessive spilling in pathological cases. 762 bool ReverseLocal = TRI->reverseLocalAssignment(); 763 bool AddPriorityToGlobal = TRI->addAllocPriorityToGlobalRanges(); 764 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 765 bool ForceGlobal = !ReverseLocal && 766 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs()); 767 768 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() && 769 LIS->intervalIsInOneMBB(*LI)) { 770 // Allocate original local ranges in linear instruction order. Since they 771 // are singly defined, this produces optimal coloring in the absence of 772 // global interference and other constraints. 773 if (!ReverseLocal) 774 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 775 else { 776 // Allocating bottom up may allow many short LRGs to be assigned first 777 // to one of the cheap registers. This could be much faster for very 778 // large blocks on targets with many physical registers. 779 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 780 } 781 Prio |= RC.AllocationPriority << 24; 782 } else { 783 // Allocate global and split ranges in long->short order. Long ranges that 784 // don't fit should be spilled (or split) ASAP so they don't create 785 // interference. Mark a bit to prioritize global above local ranges. 786 Prio = (1u << 29) + Size; 787 788 if (AddPriorityToGlobal) 789 Prio |= RC.AllocationPriority << 24; 790 } 791 // Mark a higher bit to prioritize global and local above RS_Split. 792 Prio |= (1u << 31); 793 794 // Boost ranges that have a physical register hint. 795 if (VRM->hasKnownPreference(Reg)) 796 Prio |= (1u << 30); 797 } 798 // The virtual register number is a tie breaker for same-sized ranges. 799 // Give lower vreg numbers higher priority to assign them first. 800 CurQueue.push(std::make_pair(Prio, ~Reg)); 801 } 802 803 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 804 805 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 806 if (CurQueue.empty()) 807 return nullptr; 808 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 809 CurQueue.pop(); 810 return LI; 811 } 812 813 //===----------------------------------------------------------------------===// 814 // Direct Assignment 815 //===----------------------------------------------------------------------===// 816 817 /// tryAssign - Try to assign VirtReg to an available register. 818 MCRegister RAGreedy::tryAssign(LiveInterval &VirtReg, 819 AllocationOrder &Order, 820 SmallVectorImpl<Register> &NewVRegs, 821 const SmallVirtRegSet &FixedRegisters) { 822 MCRegister PhysReg; 823 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 824 assert(*I); 825 if (!Matrix->checkInterference(VirtReg, *I)) { 826 if (I.isHint()) 827 return *I; 828 else 829 PhysReg = *I; 830 } 831 } 832 if (!PhysReg.isValid()) 833 return PhysReg; 834 835 // PhysReg is available, but there may be a better choice. 836 837 // If we missed a simple hint, try to cheaply evict interference from the 838 // preferred register. 839 if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) 840 if (Order.isHint(Hint)) { 841 MCRegister PhysHint = Hint.asMCReg(); 842 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n'); 843 EvictionCost MaxCost; 844 MaxCost.setBrokenHints(1); 845 if (canEvictInterference(VirtReg, PhysHint, true, MaxCost, 846 FixedRegisters)) { 847 evictInterference(VirtReg, PhysHint, NewVRegs); 848 return PhysHint; 849 } 850 // Record the missed hint, we may be able to recover 851 // at the end if the surrounding allocation changed. 852 SetOfBrokenHints.insert(&VirtReg); 853 } 854 855 // Try to evict interference from a cheaper alternative. 856 uint8_t Cost = RegCosts[PhysReg]; 857 858 // Most registers have 0 additional cost. 859 if (!Cost) 860 return PhysReg; 861 862 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 863 << Cost << '\n'); 864 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 865 return CheapReg ? CheapReg : PhysReg; 866 } 867 868 //===----------------------------------------------------------------------===// 869 // Interference eviction 870 //===----------------------------------------------------------------------===// 871 872 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) const { 873 auto Order = 874 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 875 MCRegister PhysReg; 876 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 877 if ((*I).id() == PrevReg.id()) 878 continue; 879 880 MCRegUnitIterator Units(*I, TRI); 881 for (; Units.isValid(); ++Units) { 882 // Instantiate a "subquery", not to be confused with the Queries array. 883 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 884 if (subQ.checkInterference()) 885 break; 886 } 887 // If no units have interference, break out with the current PhysReg. 888 if (!Units.isValid()) 889 PhysReg = *I; 890 } 891 if (PhysReg) 892 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 893 << printReg(PrevReg, TRI) << " to " 894 << printReg(PhysReg, TRI) << '\n'); 895 return PhysReg; 896 } 897 898 /// shouldEvict - determine if A should evict the assigned live range B. The 899 /// eviction policy defined by this function together with the allocation order 900 /// defined by enqueue() decides which registers ultimately end up being split 901 /// and spilled. 902 /// 903 /// Cascade numbers are used to prevent infinite loops if this function is a 904 /// cyclic relation. 905 /// 906 /// @param A The live range to be assigned. 907 /// @param IsHint True when A is about to be assigned to its preferred 908 /// register. 909 /// @param B The live range to be evicted. 910 /// @param BreaksHint True when B is already assigned to its preferred register. 911 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 912 LiveInterval &B, bool BreaksHint) const { 913 bool CanSplit = getStage(B) < RS_Spill; 914 915 // Be fairly aggressive about following hints as long as the evictee can be 916 // split. 917 if (CanSplit && IsHint && !BreaksHint) 918 return true; 919 920 if (A.weight() > B.weight()) { 921 LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n'); 922 return true; 923 } 924 return false; 925 } 926 927 /// canEvictInterference - Return true if all interferences between VirtReg and 928 /// PhysReg can be evicted. 929 /// 930 /// @param VirtReg Live range that is about to be assigned. 931 /// @param PhysReg Desired register for assignment. 932 /// @param IsHint True when PhysReg is VirtReg's preferred register. 933 /// @param MaxCost Only look for cheaper candidates and update with new cost 934 /// when returning true. 935 /// @returns True when interference can be evicted cheaper than MaxCost. 936 bool RAGreedy::canEvictInterference( 937 LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint, 938 EvictionCost &MaxCost, const SmallVirtRegSet &FixedRegisters) const { 939 // It is only possible to evict virtual register interference. 940 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 941 return false; 942 943 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 944 945 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 946 // involved in an eviction before. If a cascade number was assigned, deny 947 // evicting anything with the same or a newer cascade number. This prevents 948 // infinite eviction loops. 949 // 950 // This works out so a register without a cascade number is allowed to evict 951 // anything, and it can be evicted by anything. 952 unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade; 953 if (!Cascade) 954 Cascade = NextCascade; 955 956 EvictionCost Cost; 957 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 958 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 959 // If there is 10 or more interferences, chances are one is heavier. 960 if (Q.collectInterferingVRegs(10) >= 10) 961 return false; 962 963 // Check if any interfering live range is heavier than MaxWeight. 964 for (LiveInterval *Intf : reverse(Q.interferingVRegs())) { 965 assert(Register::isVirtualRegister(Intf->reg()) && 966 "Only expecting virtual register interference from query"); 967 968 // Do not allow eviction of a virtual register if we are in the middle 969 // of last-chance recoloring and this virtual register is one that we 970 // have scavenged a physical register for. 971 if (FixedRegisters.count(Intf->reg())) 972 return false; 973 974 // Never evict spill products. They cannot split or spill. 975 if (getStage(*Intf) == RS_Done) 976 return false; 977 // Once a live range becomes small enough, it is urgent that we find a 978 // register for it. This is indicated by an infinite spill weight. These 979 // urgent live ranges get to evict almost anything. 980 // 981 // Also allow urgent evictions of unspillable ranges from a strictly 982 // larger allocation order. 983 bool Urgent = 984 !VirtReg.isSpillable() && 985 (Intf->isSpillable() || 986 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) < 987 RegClassInfo.getNumAllocatableRegs( 988 MRI->getRegClass(Intf->reg()))); 989 // Only evict older cascades or live ranges without a cascade. 990 unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade; 991 if (Cascade <= IntfCascade) { 992 if (!Urgent) 993 return false; 994 // We permit breaking cascades for urgent evictions. It should be the 995 // last resort, though, so make it really expensive. 996 Cost.BrokenHints += 10; 997 } 998 // Would this break a satisfied hint? 999 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 1000 // Update eviction cost. 1001 Cost.BrokenHints += BreaksHint; 1002 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 1003 // Abort if this would be too expensive. 1004 if (!(Cost < MaxCost)) 1005 return false; 1006 if (Urgent) 1007 continue; 1008 // Apply the eviction policy for non-urgent evictions. 1009 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 1010 return false; 1011 // If !MaxCost.isMax(), then we're just looking for a cheap register. 1012 // Evicting another local live range in this case could lead to suboptimal 1013 // coloring. 1014 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 1015 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 1016 return false; 1017 } 1018 } 1019 } 1020 MaxCost = Cost; 1021 return true; 1022 } 1023 1024 /// Return true if all interferences between VirtReg and PhysReg between 1025 /// Start and End can be evicted. 1026 /// 1027 /// \param VirtReg Live range that is about to be assigned. 1028 /// \param PhysReg Desired register for assignment. 1029 /// \param Start Start of range to look for interferences. 1030 /// \param End End of range to look for interferences. 1031 /// \param MaxCost Only look for cheaper candidates and update with new cost 1032 /// when returning true. 1033 /// \return True when interference can be evicted cheaper than MaxCost. 1034 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg, 1035 MCRegister PhysReg, SlotIndex Start, 1036 SlotIndex End, 1037 EvictionCost &MaxCost) const { 1038 EvictionCost Cost; 1039 1040 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1041 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1042 Q.collectInterferingVRegs(); 1043 1044 // Check if any interfering live range is heavier than MaxWeight. 1045 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 1046 // Check if interference overlast the segment in interest. 1047 if (!Intf->overlaps(Start, End)) 1048 continue; 1049 1050 // Cannot evict non virtual reg interference. 1051 if (!Register::isVirtualRegister(Intf->reg())) 1052 return false; 1053 // Never evict spill products. They cannot split or spill. 1054 if (getStage(*Intf) == RS_Done) 1055 return false; 1056 1057 // Would this break a satisfied hint? 1058 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 1059 // Update eviction cost. 1060 Cost.BrokenHints += BreaksHint; 1061 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 1062 // Abort if this would be too expensive. 1063 if (!(Cost < MaxCost)) 1064 return false; 1065 } 1066 } 1067 1068 if (Cost.MaxWeight == 0) 1069 return false; 1070 1071 MaxCost = Cost; 1072 return true; 1073 } 1074 1075 /// Return the physical register that will be best 1076 /// candidate for eviction by a local split interval that will be created 1077 /// between Start and End. 1078 /// 1079 /// \param Order The allocation order 1080 /// \param VirtReg Live range that is about to be assigned. 1081 /// \param Start Start of range to look for interferences 1082 /// \param End End of range to look for interferences 1083 /// \param BestEvictweight The eviction cost of that eviction 1084 /// \return The PhysReg which is the best candidate for eviction and the 1085 /// eviction cost in BestEvictweight 1086 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 1087 const LiveInterval &VirtReg, 1088 SlotIndex Start, SlotIndex End, 1089 float *BestEvictweight) const { 1090 EvictionCost BestEvictCost; 1091 BestEvictCost.setMax(); 1092 BestEvictCost.MaxWeight = VirtReg.weight(); 1093 MCRegister BestEvicteePhys; 1094 1095 // Go over all physical registers and find the best candidate for eviction 1096 for (MCRegister PhysReg : Order.getOrder()) { 1097 1098 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 1099 BestEvictCost)) 1100 continue; 1101 1102 // Best so far. 1103 BestEvicteePhys = PhysReg; 1104 } 1105 *BestEvictweight = BestEvictCost.MaxWeight; 1106 return BestEvicteePhys; 1107 } 1108 1109 /// evictInterference - Evict any interferring registers that prevent VirtReg 1110 /// from being assigned to Physreg. This assumes that canEvictInterference 1111 /// returned true. 1112 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg, 1113 SmallVectorImpl<Register> &NewVRegs) { 1114 // Make sure that VirtReg has a cascade number, and assign that cascade 1115 // number to every evicted register. These live ranges than then only be 1116 // evicted by a newer cascade, preventing infinite loops. 1117 unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade; 1118 if (!Cascade) 1119 Cascade = ExtraRegInfo[VirtReg.reg()].Cascade = NextCascade++; 1120 1121 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 1122 << " interference: Cascade " << Cascade << '\n'); 1123 1124 // Collect all interfering virtregs first. 1125 SmallVector<LiveInterval*, 8> Intfs; 1126 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1127 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1128 // We usually have the interfering VRegs cached so collectInterferingVRegs() 1129 // should be fast, we may need to recalculate if when different physregs 1130 // overlap the same register unit so we had different SubRanges queried 1131 // against it. 1132 Q.collectInterferingVRegs(); 1133 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 1134 Intfs.append(IVR.begin(), IVR.end()); 1135 } 1136 1137 // Evict them second. This will invalidate the queries. 1138 for (LiveInterval *Intf : Intfs) { 1139 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 1140 if (!VRM->hasPhys(Intf->reg())) 1141 continue; 1142 1143 LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg()); 1144 1145 Matrix->unassign(*Intf); 1146 assert((ExtraRegInfo[Intf->reg()].Cascade < Cascade || 1147 VirtReg.isSpillable() < Intf->isSpillable()) && 1148 "Cannot decrease cascade number, illegal eviction"); 1149 ExtraRegInfo[Intf->reg()].Cascade = Cascade; 1150 ++NumEvicted; 1151 NewVRegs.push_back(Intf->reg()); 1152 } 1153 } 1154 1155 /// Returns true if the given \p PhysReg is a callee saved register and has not 1156 /// been used for allocation yet. 1157 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 1158 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 1159 if (!CSR) 1160 return false; 1161 1162 return !Matrix->isPhysRegUsed(PhysReg); 1163 } 1164 1165 /// tryEvict - Try to evict all interferences for a physreg. 1166 /// @param VirtReg Currently unassigned virtual register. 1167 /// @param Order Physregs to try. 1168 /// @return Physreg to assign VirtReg, or 0. 1169 MCRegister RAGreedy::tryEvict(LiveInterval &VirtReg, AllocationOrder &Order, 1170 SmallVectorImpl<Register> &NewVRegs, 1171 uint8_t CostPerUseLimit, 1172 const SmallVirtRegSet &FixedRegisters) { 1173 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 1174 TimePassesIsEnabled); 1175 1176 // Keep track of the cheapest interference seen so far. 1177 EvictionCost BestCost; 1178 BestCost.setMax(); 1179 MCRegister BestPhys; 1180 unsigned OrderLimit = Order.getOrder().size(); 1181 1182 // When we are just looking for a reduced cost per use, don't break any 1183 // hints, and only evict smaller spill weights. 1184 if (CostPerUseLimit < uint8_t(~0u)) { 1185 BestCost.BrokenHints = 0; 1186 BestCost.MaxWeight = VirtReg.weight(); 1187 1188 // Check of any registers in RC are below CostPerUseLimit. 1189 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); 1190 uint8_t MinCost = RegClassInfo.getMinCost(RC); 1191 if (MinCost >= CostPerUseLimit) { 1192 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 1193 << MinCost << ", no cheaper registers to be found.\n"); 1194 return 0; 1195 } 1196 1197 // It is normal for register classes to have a long tail of registers with 1198 // the same cost. We don't need to look at them if they're too expensive. 1199 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) { 1200 OrderLimit = RegClassInfo.getLastCostChange(RC); 1201 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 1202 << " regs.\n"); 1203 } 1204 } 1205 1206 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E; 1207 ++I) { 1208 MCRegister PhysReg = *I; 1209 assert(PhysReg); 1210 if (RegCosts[PhysReg] >= CostPerUseLimit) 1211 continue; 1212 // The first use of a callee-saved register in a function has cost 1. 1213 // Don't start using a CSR when the CostPerUseLimit is low. 1214 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 1215 LLVM_DEBUG( 1216 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 1217 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 1218 << '\n'); 1219 continue; 1220 } 1221 1222 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost, 1223 FixedRegisters)) 1224 continue; 1225 1226 // Best so far. 1227 BestPhys = PhysReg; 1228 1229 // Stop if the hint can be used. 1230 if (I.isHint()) 1231 break; 1232 } 1233 1234 if (BestPhys.isValid()) 1235 evictInterference(VirtReg, BestPhys, NewVRegs); 1236 return BestPhys; 1237 } 1238 1239 //===----------------------------------------------------------------------===// 1240 // Region Splitting 1241 //===----------------------------------------------------------------------===// 1242 1243 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 1244 /// interference pattern in Physreg and its aliases. Add the constraints to 1245 /// SpillPlacement and return the static cost of this split in Cost, assuming 1246 /// that all preferences in SplitConstraints are met. 1247 /// Return false if there are no bundles with positive bias. 1248 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 1249 BlockFrequency &Cost) { 1250 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1251 1252 // Reset interference dependent info. 1253 SplitConstraints.resize(UseBlocks.size()); 1254 BlockFrequency StaticCost = 0; 1255 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1256 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1257 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1258 1259 BC.Number = BI.MBB->getNumber(); 1260 Intf.moveToBlock(BC.Number); 1261 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1262 BC.Exit = (BI.LiveOut && 1263 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 1264 ? SpillPlacement::PrefReg 1265 : SpillPlacement::DontCare; 1266 BC.ChangesValue = BI.FirstDef.isValid(); 1267 1268 if (!Intf.hasInterference()) 1269 continue; 1270 1271 // Number of spill code instructions to insert. 1272 unsigned Ins = 0; 1273 1274 // Interference for the live-in value. 1275 if (BI.LiveIn) { 1276 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 1277 BC.Entry = SpillPlacement::MustSpill; 1278 ++Ins; 1279 } else if (Intf.first() < BI.FirstInstr) { 1280 BC.Entry = SpillPlacement::PrefSpill; 1281 ++Ins; 1282 } else if (Intf.first() < BI.LastInstr) { 1283 ++Ins; 1284 } 1285 1286 // Abort if the spill cannot be inserted at the MBB' start 1287 if (((BC.Entry == SpillPlacement::MustSpill) || 1288 (BC.Entry == SpillPlacement::PrefSpill)) && 1289 SlotIndex::isEarlierInstr(BI.FirstInstr, 1290 SA->getFirstSplitPoint(BC.Number))) 1291 return false; 1292 } 1293 1294 // Interference for the live-out value. 1295 if (BI.LiveOut) { 1296 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 1297 BC.Exit = SpillPlacement::MustSpill; 1298 ++Ins; 1299 } else if (Intf.last() > BI.LastInstr) { 1300 BC.Exit = SpillPlacement::PrefSpill; 1301 ++Ins; 1302 } else if (Intf.last() > BI.FirstInstr) { 1303 ++Ins; 1304 } 1305 } 1306 1307 // Accumulate the total frequency of inserted spill code. 1308 while (Ins--) 1309 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 1310 } 1311 Cost = StaticCost; 1312 1313 // Add constraints for use-blocks. Note that these are the only constraints 1314 // that may add a positive bias, it is downhill from here. 1315 SpillPlacer->addConstraints(SplitConstraints); 1316 return SpillPlacer->scanActiveBundles(); 1317 } 1318 1319 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1320 /// live-through blocks in Blocks. 1321 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1322 ArrayRef<unsigned> Blocks) { 1323 const unsigned GroupSize = 8; 1324 SpillPlacement::BlockConstraint BCS[GroupSize]; 1325 unsigned TBS[GroupSize]; 1326 unsigned B = 0, T = 0; 1327 1328 for (unsigned Number : Blocks) { 1329 Intf.moveToBlock(Number); 1330 1331 if (!Intf.hasInterference()) { 1332 assert(T < GroupSize && "Array overflow"); 1333 TBS[T] = Number; 1334 if (++T == GroupSize) { 1335 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1336 T = 0; 1337 } 1338 continue; 1339 } 1340 1341 assert(B < GroupSize && "Array overflow"); 1342 BCS[B].Number = Number; 1343 1344 // Abort if the spill cannot be inserted at the MBB' start 1345 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 1346 auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr(); 1347 if (FirstNonDebugInstr != MBB->end() && 1348 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr), 1349 SA->getFirstSplitPoint(Number))) 1350 return false; 1351 // Interference for the live-in value. 1352 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1353 BCS[B].Entry = SpillPlacement::MustSpill; 1354 else 1355 BCS[B].Entry = SpillPlacement::PrefSpill; 1356 1357 // Interference for the live-out value. 1358 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1359 BCS[B].Exit = SpillPlacement::MustSpill; 1360 else 1361 BCS[B].Exit = SpillPlacement::PrefSpill; 1362 1363 if (++B == GroupSize) { 1364 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1365 B = 0; 1366 } 1367 } 1368 1369 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1370 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1371 return true; 1372 } 1373 1374 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1375 // Keep track of through blocks that have not been added to SpillPlacer. 1376 BitVector Todo = SA->getThroughBlocks(); 1377 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1378 unsigned AddedTo = 0; 1379 #ifndef NDEBUG 1380 unsigned Visited = 0; 1381 #endif 1382 1383 while (true) { 1384 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1385 // Find new through blocks in the periphery of PrefRegBundles. 1386 for (unsigned Bundle : NewBundles) { 1387 // Look at all blocks connected to Bundle in the full graph. 1388 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1389 for (unsigned Block : Blocks) { 1390 if (!Todo.test(Block)) 1391 continue; 1392 Todo.reset(Block); 1393 // This is a new through block. Add it to SpillPlacer later. 1394 ActiveBlocks.push_back(Block); 1395 #ifndef NDEBUG 1396 ++Visited; 1397 #endif 1398 } 1399 } 1400 // Any new blocks to add? 1401 if (ActiveBlocks.size() == AddedTo) 1402 break; 1403 1404 // Compute through constraints from the interference, or assume that all 1405 // through blocks prefer spilling when forming compact regions. 1406 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1407 if (Cand.PhysReg) { 1408 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 1409 return false; 1410 } else 1411 // Provide a strong negative bias on through blocks to prevent unwanted 1412 // liveness on loop backedges. 1413 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1414 AddedTo = ActiveBlocks.size(); 1415 1416 // Perhaps iterating can enable more bundles? 1417 SpillPlacer->iterate(); 1418 } 1419 LLVM_DEBUG(dbgs() << ", v=" << Visited); 1420 return true; 1421 } 1422 1423 /// calcCompactRegion - Compute the set of edge bundles that should be live 1424 /// when splitting the current live range into compact regions. Compact 1425 /// regions can be computed without looking at interference. They are the 1426 /// regions formed by removing all the live-through blocks from the live range. 1427 /// 1428 /// Returns false if the current live range is already compact, or if the 1429 /// compact regions would form single block regions anyway. 1430 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1431 // Without any through blocks, the live range is already compact. 1432 if (!SA->getNumThroughBlocks()) 1433 return false; 1434 1435 // Compact regions don't correspond to any physreg. 1436 Cand.reset(IntfCache, MCRegister::NoRegister); 1437 1438 LLVM_DEBUG(dbgs() << "Compact region bundles"); 1439 1440 // Use the spill placer to determine the live bundles. GrowRegion pretends 1441 // that all the through blocks have interference when PhysReg is unset. 1442 SpillPlacer->prepare(Cand.LiveBundles); 1443 1444 // The static split cost will be zero since Cand.Intf reports no interference. 1445 BlockFrequency Cost; 1446 if (!addSplitConstraints(Cand.Intf, Cost)) { 1447 LLVM_DEBUG(dbgs() << ", none.\n"); 1448 return false; 1449 } 1450 1451 if (!growRegion(Cand)) { 1452 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1453 return false; 1454 } 1455 1456 SpillPlacer->finish(); 1457 1458 if (!Cand.LiveBundles.any()) { 1459 LLVM_DEBUG(dbgs() << ", none.\n"); 1460 return false; 1461 } 1462 1463 LLVM_DEBUG({ 1464 for (int I : Cand.LiveBundles.set_bits()) 1465 dbgs() << " EB#" << I; 1466 dbgs() << ".\n"; 1467 }); 1468 return true; 1469 } 1470 1471 /// calcSpillCost - Compute how expensive it would be to split the live range in 1472 /// SA around all use blocks instead of forming bundle regions. 1473 BlockFrequency RAGreedy::calcSpillCost() { 1474 BlockFrequency Cost = 0; 1475 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1476 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1477 unsigned Number = BI.MBB->getNumber(); 1478 // We normally only need one spill instruction - a load or a store. 1479 Cost += SpillPlacer->getBlockFrequency(Number); 1480 1481 // Unless the value is redefined in the block. 1482 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1483 Cost += SpillPlacer->getBlockFrequency(Number); 1484 } 1485 return Cost; 1486 } 1487 1488 /// Check if splitting Evictee will create a local split interval in 1489 /// basic block number BBNumber that may cause a bad eviction chain. This is 1490 /// intended to prevent bad eviction sequences like: 1491 /// movl %ebp, 8(%esp) # 4-byte Spill 1492 /// movl %ecx, %ebp 1493 /// movl %ebx, %ecx 1494 /// movl %edi, %ebx 1495 /// movl %edx, %edi 1496 /// cltd 1497 /// idivl %esi 1498 /// movl %edi, %edx 1499 /// movl %ebx, %edi 1500 /// movl %ecx, %ebx 1501 /// movl %ebp, %ecx 1502 /// movl 16(%esp), %ebp # 4 - byte Reload 1503 /// 1504 /// Such sequences are created in 2 scenarios: 1505 /// 1506 /// Scenario #1: 1507 /// %0 is evicted from physreg0 by %1. 1508 /// Evictee %0 is intended for region splitting with split candidate 1509 /// physreg0 (the reg %0 was evicted from). 1510 /// Region splitting creates a local interval because of interference with the 1511 /// evictor %1 (normally region splitting creates 2 interval, the "by reg" 1512 /// and "by stack" intervals and local interval created when interference 1513 /// occurs). 1514 /// One of the split intervals ends up evicting %2 from physreg1. 1515 /// Evictee %2 is intended for region splitting with split candidate 1516 /// physreg1. 1517 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1518 /// 1519 /// Scenario #2 1520 /// %0 is evicted from physreg0 by %1. 1521 /// %2 is evicted from physreg2 by %3 etc. 1522 /// Evictee %0 is intended for region splitting with split candidate 1523 /// physreg1. 1524 /// Region splitting creates a local interval because of interference with the 1525 /// evictor %1. 1526 /// One of the split intervals ends up evicting back original evictor %1 1527 /// from physreg0 (the reg %0 was evicted from). 1528 /// Another evictee %2 is intended for region splitting with split candidate 1529 /// physreg1. 1530 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1531 /// 1532 /// \param Evictee The register considered to be split. 1533 /// \param Cand The split candidate that determines the physical register 1534 /// we are splitting for and the interferences. 1535 /// \param BBNumber The number of a BB for which the region split process will 1536 /// create a local split interval. 1537 /// \param Order The physical registers that may get evicted by a split 1538 /// artifact of Evictee. 1539 /// \return True if splitting Evictee may cause a bad eviction chain, false 1540 /// otherwise. 1541 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee, 1542 GlobalSplitCandidate &Cand, 1543 unsigned BBNumber, 1544 const AllocationOrder &Order) { 1545 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 1546 unsigned Evictor = VregEvictorInfo.first; 1547 MCRegister PhysReg = VregEvictorInfo.second; 1548 1549 // No actual evictor. 1550 if (!Evictor || !PhysReg) 1551 return false; 1552 1553 float MaxWeight = 0; 1554 MCRegister FutureEvictedPhysReg = 1555 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 1556 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 1557 1558 // The bad eviction chain occurs when either the split candidate is the 1559 // evicting reg or one of the split artifact will evict the evicting reg. 1560 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 1561 return false; 1562 1563 Cand.Intf.moveToBlock(BBNumber); 1564 1565 // Check to see if the Evictor contains interference (with Evictee) in the 1566 // given BB. If so, this interference caused the eviction of Evictee from 1567 // PhysReg. This suggest that we will create a local interval during the 1568 // region split to avoid this interference This local interval may cause a bad 1569 // eviction chain. 1570 if (!LIS->hasInterval(Evictor)) 1571 return false; 1572 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 1573 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 1574 return false; 1575 1576 // Now, check to see if the local interval we will create is going to be 1577 // expensive enough to evict somebody If so, this may cause a bad eviction 1578 // chain. 1579 float splitArtifactWeight = 1580 VRAI->futureWeight(LIS->getInterval(Evictee), 1581 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1582 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 1583 return false; 1584 1585 return true; 1586 } 1587 1588 /// Check if splitting VirtRegToSplit will create a local split interval 1589 /// in basic block number BBNumber that may cause a spill. 1590 /// 1591 /// \param VirtRegToSplit The register considered to be split. 1592 /// \param Cand The split candidate that determines the physical 1593 /// register we are splitting for and the interferences. 1594 /// \param BBNumber The number of a BB for which the region split process 1595 /// will create a local split interval. 1596 /// \param Order The physical registers that may get evicted by a 1597 /// split artifact of VirtRegToSplit. 1598 /// \return True if splitting VirtRegToSplit may cause a spill, false 1599 /// otherwise. 1600 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit, 1601 GlobalSplitCandidate &Cand, 1602 unsigned BBNumber, 1603 const AllocationOrder &Order) { 1604 Cand.Intf.moveToBlock(BBNumber); 1605 1606 // Check if the local interval will find a non interfereing assignment. 1607 for (auto PhysReg : Order.getOrder()) { 1608 if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(), 1609 Cand.Intf.last(), PhysReg)) 1610 return false; 1611 } 1612 1613 // The local interval is not able to find non interferencing assignment 1614 // and not able to evict a less worthy interval, therfore, it can cause a 1615 // spill. 1616 return true; 1617 } 1618 1619 /// calcGlobalSplitCost - Return the global split cost of following the split 1620 /// pattern in LiveBundles. This cost should be added to the local cost of the 1621 /// interference pattern in SplitConstraints. 1622 /// 1623 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 1624 const AllocationOrder &Order, 1625 bool *CanCauseEvictionChain) { 1626 BlockFrequency GlobalCost = 0; 1627 const BitVector &LiveBundles = Cand.LiveBundles; 1628 Register VirtRegToSplit = SA->getParent().reg(); 1629 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1630 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1631 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1632 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1633 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1634 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1635 unsigned Ins = 0; 1636 1637 Cand.Intf.moveToBlock(BC.Number); 1638 // Check wheather a local interval is going to be created during the region 1639 // split. Calculate adavanced spilt cost (cost of local intervals) if option 1640 // is enabled. 1641 if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn && 1642 BI.LiveOut && RegIn && RegOut) { 1643 1644 if (CanCauseEvictionChain && 1645 splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { 1646 // This interference causes our eviction from this assignment, we might 1647 // evict somebody else and eventually someone will spill, add that cost. 1648 // See splitCanCauseEvictionChain for detailed description of scenarios. 1649 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1650 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1651 1652 *CanCauseEvictionChain = true; 1653 1654 } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number, 1655 Order)) { 1656 // This interference causes local interval to spill, add that cost. 1657 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1658 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1659 } 1660 } 1661 1662 if (BI.LiveIn) 1663 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1664 if (BI.LiveOut) 1665 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1666 while (Ins--) 1667 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1668 } 1669 1670 for (unsigned Number : Cand.ActiveBlocks) { 1671 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1672 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1673 if (!RegIn && !RegOut) 1674 continue; 1675 if (RegIn && RegOut) { 1676 // We need double spill code if this block has interference. 1677 Cand.Intf.moveToBlock(Number); 1678 if (Cand.Intf.hasInterference()) { 1679 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1680 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1681 1682 // Check wheather a local interval is going to be created during the 1683 // region split. 1684 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1685 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { 1686 // This interference cause our eviction from this assignment, we might 1687 // evict somebody else, add that cost. 1688 // See splitCanCauseEvictionChain for detailed description of 1689 // scenarios. 1690 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1691 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1692 1693 *CanCauseEvictionChain = true; 1694 } 1695 } 1696 continue; 1697 } 1698 // live-in / stack-out or stack-in live-out. 1699 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1700 } 1701 return GlobalCost; 1702 } 1703 1704 /// splitAroundRegion - Split the current live range around the regions 1705 /// determined by BundleCand and GlobalCand. 1706 /// 1707 /// Before calling this function, GlobalCand and BundleCand must be initialized 1708 /// so each bundle is assigned to a valid candidate, or NoCand for the 1709 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1710 /// objects must be initialized for the current live range, and intervals 1711 /// created for the used candidates. 1712 /// 1713 /// @param LREdit The LiveRangeEdit object handling the current split. 1714 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1715 /// must appear in this list. 1716 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1717 ArrayRef<unsigned> UsedCands) { 1718 // These are the intervals created for new global ranges. We may create more 1719 // intervals for local ranges. 1720 const unsigned NumGlobalIntvs = LREdit.size(); 1721 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 1722 << " globals.\n"); 1723 assert(NumGlobalIntvs && "No global intervals configured"); 1724 1725 // Isolate even single instructions when dealing with a proper sub-class. 1726 // That guarantees register class inflation for the stack interval because it 1727 // is all copies. 1728 Register Reg = SA->getParent().reg(); 1729 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1730 1731 // First handle all the blocks with uses. 1732 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1733 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1734 unsigned Number = BI.MBB->getNumber(); 1735 unsigned IntvIn = 0, IntvOut = 0; 1736 SlotIndex IntfIn, IntfOut; 1737 if (BI.LiveIn) { 1738 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1739 if (CandIn != NoCand) { 1740 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1741 IntvIn = Cand.IntvIdx; 1742 Cand.Intf.moveToBlock(Number); 1743 IntfIn = Cand.Intf.first(); 1744 } 1745 } 1746 if (BI.LiveOut) { 1747 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1748 if (CandOut != NoCand) { 1749 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1750 IntvOut = Cand.IntvIdx; 1751 Cand.Intf.moveToBlock(Number); 1752 IntfOut = Cand.Intf.last(); 1753 } 1754 } 1755 1756 // Create separate intervals for isolated blocks with multiple uses. 1757 if (!IntvIn && !IntvOut) { 1758 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 1759 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1760 SE->splitSingleBlock(BI); 1761 continue; 1762 } 1763 1764 if (IntvIn && IntvOut) 1765 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1766 else if (IntvIn) 1767 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1768 else 1769 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1770 } 1771 1772 // Handle live-through blocks. The relevant live-through blocks are stored in 1773 // the ActiveBlocks list with each candidate. We need to filter out 1774 // duplicates. 1775 BitVector Todo = SA->getThroughBlocks(); 1776 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1777 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1778 for (unsigned Number : Blocks) { 1779 if (!Todo.test(Number)) 1780 continue; 1781 Todo.reset(Number); 1782 1783 unsigned IntvIn = 0, IntvOut = 0; 1784 SlotIndex IntfIn, IntfOut; 1785 1786 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1787 if (CandIn != NoCand) { 1788 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1789 IntvIn = Cand.IntvIdx; 1790 Cand.Intf.moveToBlock(Number); 1791 IntfIn = Cand.Intf.first(); 1792 } 1793 1794 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1795 if (CandOut != NoCand) { 1796 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1797 IntvOut = Cand.IntvIdx; 1798 Cand.Intf.moveToBlock(Number); 1799 IntfOut = Cand.Intf.last(); 1800 } 1801 if (!IntvIn && !IntvOut) 1802 continue; 1803 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1804 } 1805 } 1806 1807 ++NumGlobalSplits; 1808 1809 SmallVector<unsigned, 8> IntvMap; 1810 SE->finish(&IntvMap); 1811 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1812 1813 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 1814 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1815 1816 // Sort out the new intervals created by splitting. We get four kinds: 1817 // - Remainder intervals should not be split again. 1818 // - Candidate intervals can be assigned to Cand.PhysReg. 1819 // - Block-local splits are candidates for local splitting. 1820 // - DCE leftovers should go back on the queue. 1821 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1822 LiveInterval &Reg = LIS->getInterval(LREdit.get(I)); 1823 1824 // Ignore old intervals from DCE. 1825 if (getStage(Reg) != RS_New) 1826 continue; 1827 1828 // Remainder interval. Don't try splitting again, spill if it doesn't 1829 // allocate. 1830 if (IntvMap[I] == 0) { 1831 setStage(Reg, RS_Spill); 1832 continue; 1833 } 1834 1835 // Global intervals. Allow repeated splitting as long as the number of live 1836 // blocks is strictly decreasing. 1837 if (IntvMap[I] < NumGlobalIntvs) { 1838 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1839 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1840 << " blocks as original.\n"); 1841 // Don't allow repeated splitting as a safe guard against looping. 1842 setStage(Reg, RS_Split2); 1843 } 1844 continue; 1845 } 1846 1847 // Other intervals are treated as new. This includes local intervals created 1848 // for blocks with multiple uses, and anything created by DCE. 1849 } 1850 1851 if (VerifyEnabled) 1852 MF->verify(this, "After splitting live range around region"); 1853 } 1854 1855 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg, 1856 AllocationOrder &Order, 1857 SmallVectorImpl<Register> &NewVRegs) { 1858 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1859 return MCRegister::NoRegister; 1860 unsigned NumCands = 0; 1861 BlockFrequency SpillCost = calcSpillCost(); 1862 BlockFrequency BestCost; 1863 1864 // Check if we can split this live range around a compact region. 1865 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1866 if (HasCompact) { 1867 // Yes, keep GlobalCand[0] as the compact region candidate. 1868 NumCands = 1; 1869 BestCost = BlockFrequency::getMaxFrequency(); 1870 } else { 1871 // No benefit from the compact region, our fallback will be per-block 1872 // splitting. Make sure we find a solution that is cheaper than spilling. 1873 BestCost = SpillCost; 1874 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1875 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1876 } 1877 1878 bool CanCauseEvictionChain = false; 1879 unsigned BestCand = 1880 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1881 false /*IgnoreCSR*/, &CanCauseEvictionChain); 1882 1883 // Split candidates with compact regions can cause a bad eviction sequence. 1884 // See splitCanCauseEvictionChain for detailed description of scenarios. 1885 // To avoid it, we need to comapre the cost with the spill cost and not the 1886 // current max frequency. 1887 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && 1888 CanCauseEvictionChain) { 1889 return MCRegister::NoRegister; 1890 } 1891 1892 // No solutions found, fall back to single block splitting. 1893 if (!HasCompact && BestCand == NoCand) 1894 return MCRegister::NoRegister; 1895 1896 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1897 } 1898 1899 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1900 AllocationOrder &Order, 1901 BlockFrequency &BestCost, 1902 unsigned &NumCands, bool IgnoreCSR, 1903 bool *CanCauseEvictionChain) { 1904 unsigned BestCand = NoCand; 1905 for (MCPhysReg PhysReg : Order) { 1906 assert(PhysReg); 1907 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1908 continue; 1909 1910 // Discard bad candidates before we run out of interference cache cursors. 1911 // This will only affect register classes with a lot of registers (>32). 1912 if (NumCands == IntfCache.getMaxCursors()) { 1913 unsigned WorstCount = ~0u; 1914 unsigned Worst = 0; 1915 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) { 1916 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg) 1917 continue; 1918 unsigned Count = GlobalCand[CandIndex].LiveBundles.count(); 1919 if (Count < WorstCount) { 1920 Worst = CandIndex; 1921 WorstCount = Count; 1922 } 1923 } 1924 --NumCands; 1925 GlobalCand[Worst] = GlobalCand[NumCands]; 1926 if (BestCand == NumCands) 1927 BestCand = Worst; 1928 } 1929 1930 if (GlobalCand.size() <= NumCands) 1931 GlobalCand.resize(NumCands+1); 1932 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1933 Cand.reset(IntfCache, PhysReg); 1934 1935 SpillPlacer->prepare(Cand.LiveBundles); 1936 BlockFrequency Cost; 1937 if (!addSplitConstraints(Cand.Intf, Cost)) { 1938 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1939 continue; 1940 } 1941 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1942 MBFI->printBlockFreq(dbgs(), Cost)); 1943 if (Cost >= BestCost) { 1944 LLVM_DEBUG({ 1945 if (BestCand == NoCand) 1946 dbgs() << " worse than no bundles\n"; 1947 else 1948 dbgs() << " worse than " 1949 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1950 }); 1951 continue; 1952 } 1953 if (!growRegion(Cand)) { 1954 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1955 continue; 1956 } 1957 1958 SpillPlacer->finish(); 1959 1960 // No live bundles, defer to splitSingleBlocks(). 1961 if (!Cand.LiveBundles.any()) { 1962 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1963 continue; 1964 } 1965 1966 bool HasEvictionChain = false; 1967 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); 1968 LLVM_DEBUG({ 1969 dbgs() << ", total = "; 1970 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1971 for (int I : Cand.LiveBundles.set_bits()) 1972 dbgs() << " EB#" << I; 1973 dbgs() << ".\n"; 1974 }); 1975 if (Cost < BestCost) { 1976 BestCand = NumCands; 1977 BestCost = Cost; 1978 // See splitCanCauseEvictionChain for detailed description of bad 1979 // eviction chain scenarios. 1980 if (CanCauseEvictionChain) 1981 *CanCauseEvictionChain = HasEvictionChain; 1982 } 1983 ++NumCands; 1984 } 1985 1986 if (CanCauseEvictionChain && BestCand != NoCand) { 1987 // See splitCanCauseEvictionChain for detailed description of bad 1988 // eviction chain scenarios. 1989 LLVM_DEBUG(dbgs() << "Best split candidate of vreg " 1990 << printReg(VirtReg.reg(), TRI) << " may "); 1991 if (!(*CanCauseEvictionChain)) 1992 LLVM_DEBUG(dbgs() << "not "); 1993 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n"); 1994 } 1995 1996 return BestCand; 1997 } 1998 1999 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 2000 bool HasCompact, 2001 SmallVectorImpl<Register> &NewVRegs) { 2002 SmallVector<unsigned, 8> UsedCands; 2003 // Prepare split editor. 2004 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2005 SE->reset(LREdit, SplitSpillMode); 2006 2007 // Assign all edge bundles to the preferred candidate, or NoCand. 2008 BundleCand.assign(Bundles->getNumBundles(), NoCand); 2009 2010 // Assign bundles for the best candidate region. 2011 if (BestCand != NoCand) { 2012 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 2013 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 2014 UsedCands.push_back(BestCand); 2015 Cand.IntvIdx = SE->openIntv(); 2016 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 2017 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 2018 (void)B; 2019 } 2020 } 2021 2022 // Assign bundles for the compact region. 2023 if (HasCompact) { 2024 GlobalSplitCandidate &Cand = GlobalCand.front(); 2025 assert(!Cand.PhysReg && "Compact region has no physreg"); 2026 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 2027 UsedCands.push_back(0); 2028 Cand.IntvIdx = SE->openIntv(); 2029 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 2030 << " bundles, intv " << Cand.IntvIdx << ".\n"); 2031 (void)B; 2032 } 2033 } 2034 2035 splitAroundRegion(LREdit, UsedCands); 2036 return 0; 2037 } 2038 2039 //===----------------------------------------------------------------------===// 2040 // Per-Block Splitting 2041 //===----------------------------------------------------------------------===// 2042 2043 /// tryBlockSplit - Split a global live range around every block with uses. This 2044 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 2045 /// they don't allocate. 2046 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2047 SmallVectorImpl<Register> &NewVRegs) { 2048 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 2049 Register Reg = VirtReg.reg(); 2050 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 2051 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2052 SE->reset(LREdit, SplitSpillMode); 2053 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 2054 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 2055 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 2056 SE->splitSingleBlock(BI); 2057 } 2058 // No blocks were split. 2059 if (LREdit.empty()) 2060 return 0; 2061 2062 // We did split for some blocks. 2063 SmallVector<unsigned, 8> IntvMap; 2064 SE->finish(&IntvMap); 2065 2066 // Tell LiveDebugVariables about the new ranges. 2067 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 2068 2069 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2070 2071 // Sort out the new intervals created by splitting. The remainder interval 2072 // goes straight to spilling, the new local ranges get to stay RS_New. 2073 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 2074 LiveInterval &LI = LIS->getInterval(LREdit.get(I)); 2075 if (getStage(LI) == RS_New && IntvMap[I] == 0) 2076 setStage(LI, RS_Spill); 2077 } 2078 2079 if (VerifyEnabled) 2080 MF->verify(this, "After splitting live range around basic blocks"); 2081 return 0; 2082 } 2083 2084 //===----------------------------------------------------------------------===// 2085 // Per-Instruction Splitting 2086 //===----------------------------------------------------------------------===// 2087 2088 /// Get the number of allocatable registers that match the constraints of \p Reg 2089 /// on \p MI and that are also in \p SuperRC. 2090 static unsigned getNumAllocatableRegsForConstraints( 2091 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, 2092 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 2093 const RegisterClassInfo &RCI) { 2094 assert(SuperRC && "Invalid register class"); 2095 2096 const TargetRegisterClass *ConstrainedRC = 2097 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 2098 /* ExploreBundle */ true); 2099 if (!ConstrainedRC) 2100 return 0; 2101 return RCI.getNumAllocatableRegs(ConstrainedRC); 2102 } 2103 2104 /// tryInstructionSplit - Split a live range around individual instructions. 2105 /// This is normally not worthwhile since the spiller is doing essentially the 2106 /// same thing. However, when the live range is in a constrained register 2107 /// class, it may help to insert copies such that parts of the live range can 2108 /// be moved to a larger register class. 2109 /// 2110 /// This is similar to spilling to a larger register class. 2111 unsigned 2112 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2113 SmallVectorImpl<Register> &NewVRegs) { 2114 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2115 // There is no point to this if there are no larger sub-classes. 2116 if (!RegClassInfo.isProperSubClass(CurRC)) 2117 return 0; 2118 2119 // Always enable split spill mode, since we're effectively spilling to a 2120 // register. 2121 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2122 SE->reset(LREdit, SplitEditor::SM_Size); 2123 2124 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2125 if (Uses.size() <= 1) 2126 return 0; 2127 2128 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 2129 << " individual instrs.\n"); 2130 2131 const TargetRegisterClass *SuperRC = 2132 TRI->getLargestLegalSuperClass(CurRC, *MF); 2133 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 2134 // Split around every non-copy instruction if this split will relax 2135 // the constraints on the virtual register. 2136 // Otherwise, splitting just inserts uncoalescable copies that do not help 2137 // the allocation. 2138 for (const auto &Use : Uses) { 2139 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) 2140 if (MI->isFullCopy() || 2141 SuperRCNumAllocatableRegs == 2142 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, 2143 TII, TRI, RCI)) { 2144 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI); 2145 continue; 2146 } 2147 SE->openIntv(); 2148 SlotIndex SegStart = SE->enterIntvBefore(Use); 2149 SlotIndex SegStop = SE->leaveIntvAfter(Use); 2150 SE->useIntv(SegStart, SegStop); 2151 } 2152 2153 if (LREdit.empty()) { 2154 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 2155 return 0; 2156 } 2157 2158 SmallVector<unsigned, 8> IntvMap; 2159 SE->finish(&IntvMap); 2160 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2161 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 2162 2163 // Assign all new registers to RS_Spill. This was the last chance. 2164 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 2165 return 0; 2166 } 2167 2168 //===----------------------------------------------------------------------===// 2169 // Local Splitting 2170 //===----------------------------------------------------------------------===// 2171 2172 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 2173 /// in order to use PhysReg between two entries in SA->UseSlots. 2174 /// 2175 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1]. 2176 /// 2177 void RAGreedy::calcGapWeights(MCRegister PhysReg, 2178 SmallVectorImpl<float> &GapWeight) { 2179 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2180 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2181 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2182 const unsigned NumGaps = Uses.size()-1; 2183 2184 // Start and end points for the interference check. 2185 SlotIndex StartIdx = 2186 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 2187 SlotIndex StopIdx = 2188 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 2189 2190 GapWeight.assign(NumGaps, 0.0f); 2191 2192 // Add interference from each overlapping register. 2193 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2194 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 2195 .checkInterference()) 2196 continue; 2197 2198 // We know that VirtReg is a continuous interval from FirstInstr to 2199 // LastInstr, so we don't need InterferenceQuery. 2200 // 2201 // Interference that overlaps an instruction is counted in both gaps 2202 // surrounding the instruction. The exception is interference before 2203 // StartIdx and after StopIdx. 2204 // 2205 LiveIntervalUnion::SegmentIter IntI = 2206 Matrix->getLiveUnions()[*Units] .find(StartIdx); 2207 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 2208 // Skip the gaps before IntI. 2209 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 2210 if (++Gap == NumGaps) 2211 break; 2212 if (Gap == NumGaps) 2213 break; 2214 2215 // Update the gaps covered by IntI. 2216 const float weight = IntI.value()->weight(); 2217 for (; Gap != NumGaps; ++Gap) { 2218 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 2219 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 2220 break; 2221 } 2222 if (Gap == NumGaps) 2223 break; 2224 } 2225 } 2226 2227 // Add fixed interference. 2228 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2229 const LiveRange &LR = LIS->getRegUnit(*Units); 2230 LiveRange::const_iterator I = LR.find(StartIdx); 2231 LiveRange::const_iterator E = LR.end(); 2232 2233 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 2234 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 2235 while (Uses[Gap+1].getBoundaryIndex() < I->start) 2236 if (++Gap == NumGaps) 2237 break; 2238 if (Gap == NumGaps) 2239 break; 2240 2241 for (; Gap != NumGaps; ++Gap) { 2242 GapWeight[Gap] = huge_valf; 2243 if (Uses[Gap+1].getBaseIndex() >= I->end) 2244 break; 2245 } 2246 if (Gap == NumGaps) 2247 break; 2248 } 2249 } 2250 } 2251 2252 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 2253 /// basic block. 2254 /// 2255 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2256 SmallVectorImpl<Register> &NewVRegs) { 2257 // TODO: the function currently only handles a single UseBlock; it should be 2258 // possible to generalize. 2259 if (SA->getUseBlocks().size() != 1) 2260 return 0; 2261 2262 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2263 2264 // Note that it is possible to have an interval that is live-in or live-out 2265 // while only covering a single block - A phi-def can use undef values from 2266 // predecessors, and the block could be a single-block loop. 2267 // We don't bother doing anything clever about such a case, we simply assume 2268 // that the interval is continuous from FirstInstr to LastInstr. We should 2269 // make sure that we don't do anything illegal to such an interval, though. 2270 2271 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2272 if (Uses.size() <= 2) 2273 return 0; 2274 const unsigned NumGaps = Uses.size()-1; 2275 2276 LLVM_DEBUG({ 2277 dbgs() << "tryLocalSplit: "; 2278 for (const auto &Use : Uses) 2279 dbgs() << ' ' << Use; 2280 dbgs() << '\n'; 2281 }); 2282 2283 // If VirtReg is live across any register mask operands, compute a list of 2284 // gaps with register masks. 2285 SmallVector<unsigned, 8> RegMaskGaps; 2286 if (Matrix->checkRegMaskInterference(VirtReg)) { 2287 // Get regmask slots for the whole block. 2288 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 2289 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 2290 // Constrain to VirtReg's live range. 2291 unsigned RI = 2292 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 2293 unsigned RE = RMS.size(); 2294 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) { 2295 // Look for Uses[I] <= RMS <= Uses[I + 1]. 2296 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I])); 2297 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI])) 2298 continue; 2299 // Skip a regmask on the same instruction as the last use. It doesn't 2300 // overlap the live range. 2301 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps) 2302 break; 2303 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-' 2304 << Uses[I + 1]); 2305 RegMaskGaps.push_back(I); 2306 // Advance ri to the next gap. A regmask on one of the uses counts in 2307 // both gaps. 2308 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1])) 2309 ++RI; 2310 } 2311 LLVM_DEBUG(dbgs() << '\n'); 2312 } 2313 2314 // Since we allow local split results to be split again, there is a risk of 2315 // creating infinite loops. It is tempting to require that the new live 2316 // ranges have less instructions than the original. That would guarantee 2317 // convergence, but it is too strict. A live range with 3 instructions can be 2318 // split 2+3 (including the COPY), and we want to allow that. 2319 // 2320 // Instead we use these rules: 2321 // 2322 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 2323 // noop split, of course). 2324 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 2325 // the new ranges must have fewer instructions than before the split. 2326 // 3. New ranges with the same number of instructions are marked RS_Split2, 2327 // smaller ranges are marked RS_New. 2328 // 2329 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 2330 // excessive splitting and infinite loops. 2331 // 2332 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 2333 2334 // Best split candidate. 2335 unsigned BestBefore = NumGaps; 2336 unsigned BestAfter = 0; 2337 float BestDiff = 0; 2338 2339 const float blockFreq = 2340 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 2341 (1.0f / MBFI->getEntryFreq()); 2342 SmallVector<float, 8> GapWeight; 2343 2344 for (MCPhysReg PhysReg : Order) { 2345 assert(PhysReg); 2346 // Keep track of the largest spill weight that would need to be evicted in 2347 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1]. 2348 calcGapWeights(PhysReg, GapWeight); 2349 2350 // Remove any gaps with regmask clobbers. 2351 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 2352 for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I) 2353 GapWeight[RegMaskGaps[I]] = huge_valf; 2354 2355 // Try to find the best sequence of gaps to close. 2356 // The new spill weight must be larger than any gap interference. 2357 2358 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 2359 unsigned SplitBefore = 0, SplitAfter = 1; 2360 2361 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 2362 // It is the spill weight that needs to be evicted. 2363 float MaxGap = GapWeight[0]; 2364 2365 while (true) { 2366 // Live before/after split? 2367 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 2368 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 2369 2370 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 2371 << '-' << Uses[SplitAfter] << " I=" << MaxGap); 2372 2373 // Stop before the interval gets so big we wouldn't be making progress. 2374 if (!LiveBefore && !LiveAfter) { 2375 LLVM_DEBUG(dbgs() << " all\n"); 2376 break; 2377 } 2378 // Should the interval be extended or shrunk? 2379 bool Shrink = true; 2380 2381 // How many gaps would the new range have? 2382 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 2383 2384 // Legally, without causing looping? 2385 bool Legal = !ProgressRequired || NewGaps < NumGaps; 2386 2387 if (Legal && MaxGap < huge_valf) { 2388 // Estimate the new spill weight. Each instruction reads or writes the 2389 // register. Conservatively assume there are no read-modify-write 2390 // instructions. 2391 // 2392 // Try to guess the size of the new interval. 2393 const float EstWeight = normalizeSpillWeight( 2394 blockFreq * (NewGaps + 1), 2395 Uses[SplitBefore].distance(Uses[SplitAfter]) + 2396 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 2397 1); 2398 // Would this split be possible to allocate? 2399 // Never allocate all gaps, we wouldn't be making progress. 2400 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 2401 if (EstWeight * Hysteresis >= MaxGap) { 2402 Shrink = false; 2403 float Diff = EstWeight - MaxGap; 2404 if (Diff > BestDiff) { 2405 LLVM_DEBUG(dbgs() << " (best)"); 2406 BestDiff = Hysteresis * Diff; 2407 BestBefore = SplitBefore; 2408 BestAfter = SplitAfter; 2409 } 2410 } 2411 } 2412 2413 // Try to shrink. 2414 if (Shrink) { 2415 if (++SplitBefore < SplitAfter) { 2416 LLVM_DEBUG(dbgs() << " shrink\n"); 2417 // Recompute the max when necessary. 2418 if (GapWeight[SplitBefore - 1] >= MaxGap) { 2419 MaxGap = GapWeight[SplitBefore]; 2420 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I) 2421 MaxGap = std::max(MaxGap, GapWeight[I]); 2422 } 2423 continue; 2424 } 2425 MaxGap = 0; 2426 } 2427 2428 // Try to extend the interval. 2429 if (SplitAfter >= NumGaps) { 2430 LLVM_DEBUG(dbgs() << " end\n"); 2431 break; 2432 } 2433 2434 LLVM_DEBUG(dbgs() << " extend\n"); 2435 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 2436 } 2437 } 2438 2439 // Didn't find any candidates? 2440 if (BestBefore == NumGaps) 2441 return 0; 2442 2443 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 2444 << Uses[BestAfter] << ", " << BestDiff << ", " 2445 << (BestAfter - BestBefore + 1) << " instrs\n"); 2446 2447 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2448 SE->reset(LREdit); 2449 2450 SE->openIntv(); 2451 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 2452 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 2453 SE->useIntv(SegStart, SegStop); 2454 SmallVector<unsigned, 8> IntvMap; 2455 SE->finish(&IntvMap); 2456 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2457 2458 // If the new range has the same number of instructions as before, mark it as 2459 // RS_Split2 so the next split will be forced to make progress. Otherwise, 2460 // leave the new intervals as RS_New so they can compete. 2461 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 2462 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 2463 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 2464 if (NewGaps >= NumGaps) { 2465 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges: "); 2466 assert(!ProgressRequired && "Didn't make progress when it was required."); 2467 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I) 2468 if (IntvMap[I] == 1) { 2469 setStage(LIS->getInterval(LREdit.get(I)), RS_Split2); 2470 LLVM_DEBUG(dbgs() << printReg(LREdit.get(I))); 2471 } 2472 LLVM_DEBUG(dbgs() << '\n'); 2473 } 2474 ++NumLocalSplits; 2475 2476 return 0; 2477 } 2478 2479 //===----------------------------------------------------------------------===// 2480 // Live Range Splitting 2481 //===----------------------------------------------------------------------===// 2482 2483 /// trySplit - Try to split VirtReg or one of its interferences, making it 2484 /// assignable. 2485 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 2486 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 2487 SmallVectorImpl<Register> &NewVRegs, 2488 const SmallVirtRegSet &FixedRegisters) { 2489 // Ranges must be Split2 or less. 2490 if (getStage(VirtReg) >= RS_Spill) 2491 return 0; 2492 2493 // Local intervals are handled separately. 2494 if (LIS->intervalIsInOneMBB(VirtReg)) { 2495 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 2496 TimerGroupDescription, TimePassesIsEnabled); 2497 SA->analyze(&VirtReg); 2498 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 2499 if (PhysReg || !NewVRegs.empty()) 2500 return PhysReg; 2501 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2502 } 2503 2504 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2505 TimerGroupDescription, TimePassesIsEnabled); 2506 2507 SA->analyze(&VirtReg); 2508 2509 // FIXME: SplitAnalysis may repair broken live ranges coming from the 2510 // coalescer. That may cause the range to become allocatable which means that 2511 // tryRegionSplit won't be making progress. This check should be replaced with 2512 // an assertion when the coalescer is fixed. 2513 if (SA->didRepairRange()) { 2514 // VirtReg has changed, so all cached queries are invalid. 2515 Matrix->invalidateVirtRegs(); 2516 if (Register PhysReg = tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) 2517 return PhysReg; 2518 } 2519 2520 // First try to split around a region spanning multiple blocks. RS_Split2 2521 // ranges already made dubious progress with region splitting, so they go 2522 // straight to single block splitting. 2523 if (getStage(VirtReg) < RS_Split2) { 2524 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2525 if (PhysReg || !NewVRegs.empty()) 2526 return PhysReg; 2527 } 2528 2529 // Then isolate blocks. 2530 return tryBlockSplit(VirtReg, Order, NewVRegs); 2531 } 2532 2533 //===----------------------------------------------------------------------===// 2534 // Last Chance Recoloring 2535 //===----------------------------------------------------------------------===// 2536 2537 /// Return true if \p reg has any tied def operand. 2538 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 2539 for (const MachineOperand &MO : MRI->def_operands(reg)) 2540 if (MO.isTied()) 2541 return true; 2542 2543 return false; 2544 } 2545 2546 /// mayRecolorAllInterferences - Check if the virtual registers that 2547 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2548 /// recolored to free \p PhysReg. 2549 /// When true is returned, \p RecoloringCandidates has been augmented with all 2550 /// the live intervals that need to be recolored in order to free \p PhysReg 2551 /// for \p VirtReg. 2552 /// \p FixedRegisters contains all the virtual registers that cannot be 2553 /// recolored. 2554 bool RAGreedy::mayRecolorAllInterferences( 2555 MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates, 2556 const SmallVirtRegSet &FixedRegisters) { 2557 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2558 2559 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2560 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2561 // If there is LastChanceRecoloringMaxInterference or more interferences, 2562 // chances are one would not be recolorable. 2563 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >= 2564 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) { 2565 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2566 CutOffInfo |= CO_Interf; 2567 return false; 2568 } 2569 for (LiveInterval *Intf : reverse(Q.interferingVRegs())) { 2570 // If Intf is done and sit on the same register class as VirtReg, 2571 // it would not be recolorable as it is in the same state as VirtReg. 2572 // However, if VirtReg has tied defs and Intf doesn't, then 2573 // there is still a point in examining if it can be recolorable. 2574 if (((getStage(*Intf) == RS_Done && 2575 MRI->getRegClass(Intf->reg()) == CurRC) && 2576 !(hasTiedDef(MRI, VirtReg.reg()) && 2577 !hasTiedDef(MRI, Intf->reg()))) || 2578 FixedRegisters.count(Intf->reg())) { 2579 LLVM_DEBUG( 2580 dbgs() << "Early abort: the interference is not recolorable.\n"); 2581 return false; 2582 } 2583 RecoloringCandidates.insert(Intf); 2584 } 2585 } 2586 return true; 2587 } 2588 2589 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2590 /// its interferences. 2591 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2592 /// virtual register that was using it. The recoloring process may recursively 2593 /// use the last chance recoloring. Therefore, when a virtual register has been 2594 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2595 /// be last-chance-recolored again during this recoloring "session". 2596 /// E.g., 2597 /// Let 2598 /// vA can use {R1, R2 } 2599 /// vB can use { R2, R3} 2600 /// vC can use {R1 } 2601 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2602 /// instance) and they all interfere. 2603 /// 2604 /// vA is assigned R1 2605 /// vB is assigned R2 2606 /// vC tries to evict vA but vA is already done. 2607 /// Regular register allocation fails. 2608 /// 2609 /// Last chance recoloring kicks in: 2610 /// vC does as if vA was evicted => vC uses R1. 2611 /// vC is marked as fixed. 2612 /// vA needs to find a color. 2613 /// None are available. 2614 /// vA cannot evict vC: vC is a fixed virtual register now. 2615 /// vA does as if vB was evicted => vA uses R2. 2616 /// vB needs to find a color. 2617 /// R3 is available. 2618 /// Recoloring => vC = R1, vA = R2, vB = R3 2619 /// 2620 /// \p Order defines the preferred allocation order for \p VirtReg. 2621 /// \p NewRegs will contain any new virtual register that have been created 2622 /// (split, spill) during the process and that must be assigned. 2623 /// \p FixedRegisters contains all the virtual registers that cannot be 2624 /// recolored. 2625 /// \p Depth gives the current depth of the last chance recoloring. 2626 /// \return a physical register that can be used for VirtReg or ~0u if none 2627 /// exists. 2628 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2629 AllocationOrder &Order, 2630 SmallVectorImpl<Register> &NewVRegs, 2631 SmallVirtRegSet &FixedRegisters, 2632 unsigned Depth) { 2633 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) 2634 return ~0u; 2635 2636 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2637 // Ranges must be Done. 2638 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2639 "Last chance recoloring should really be last chance"); 2640 // Set the max depth to LastChanceRecoloringMaxDepth. 2641 // We may want to reconsider that if we end up with a too large search space 2642 // for target with hundreds of registers. 2643 // Indeed, in that case we may want to cut the search space earlier. 2644 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2645 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2646 CutOffInfo |= CO_Depth; 2647 return ~0u; 2648 } 2649 2650 // Set of Live intervals that will need to be recolored. 2651 SmallLISet RecoloringCandidates; 2652 // Record the original mapping virtual register to physical register in case 2653 // the recoloring fails. 2654 DenseMap<Register, MCRegister> VirtRegToPhysReg; 2655 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2656 // this recoloring "session". 2657 assert(!FixedRegisters.count(VirtReg.reg())); 2658 FixedRegisters.insert(VirtReg.reg()); 2659 SmallVector<Register, 4> CurrentNewVRegs; 2660 2661 for (MCRegister PhysReg : Order) { 2662 assert(PhysReg.isValid()); 2663 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2664 << printReg(PhysReg, TRI) << '\n'); 2665 RecoloringCandidates.clear(); 2666 VirtRegToPhysReg.clear(); 2667 CurrentNewVRegs.clear(); 2668 2669 // It is only possible to recolor virtual register interference. 2670 if (Matrix->checkInterference(VirtReg, PhysReg) > 2671 LiveRegMatrix::IK_VirtReg) { 2672 LLVM_DEBUG( 2673 dbgs() << "Some interferences are not with virtual registers.\n"); 2674 2675 continue; 2676 } 2677 2678 // Early give up on this PhysReg if it is obvious we cannot recolor all 2679 // the interferences. 2680 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2681 FixedRegisters)) { 2682 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2683 continue; 2684 } 2685 2686 // RecoloringCandidates contains all the virtual registers that interfer 2687 // with VirtReg on PhysReg (or one of its aliases). 2688 // Enqueue them for recoloring and perform the actual recoloring. 2689 PQueue RecoloringQueue; 2690 for (LiveInterval *RC : RecoloringCandidates) { 2691 Register ItVirtReg = RC->reg(); 2692 enqueue(RecoloringQueue, RC); 2693 assert(VRM->hasPhys(ItVirtReg) && 2694 "Interferences are supposed to be with allocated variables"); 2695 2696 // Record the current allocation. 2697 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2698 // unset the related struct. 2699 Matrix->unassign(*RC); 2700 } 2701 2702 // Do as if VirtReg was assigned to PhysReg so that the underlying 2703 // recoloring has the right information about the interferes and 2704 // available colors. 2705 Matrix->assign(VirtReg, PhysReg); 2706 2707 // Save the current recoloring state. 2708 // If we cannot recolor all the interferences, we will have to start again 2709 // at this point for the next physical register. 2710 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2711 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2712 FixedRegisters, Depth)) { 2713 // Push the queued vregs into the main queue. 2714 for (Register NewVReg : CurrentNewVRegs) 2715 NewVRegs.push_back(NewVReg); 2716 // Do not mess up with the global assignment process. 2717 // I.e., VirtReg must be unassigned. 2718 Matrix->unassign(VirtReg); 2719 return PhysReg; 2720 } 2721 2722 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2723 << printReg(PhysReg, TRI) << '\n'); 2724 2725 // The recoloring attempt failed, undo the changes. 2726 FixedRegisters = SaveFixedRegisters; 2727 Matrix->unassign(VirtReg); 2728 2729 // For a newly created vreg which is also in RecoloringCandidates, 2730 // don't add it to NewVRegs because its physical register will be restored 2731 // below. Other vregs in CurrentNewVRegs are created by calling 2732 // selectOrSplit and should be added into NewVRegs. 2733 for (Register &R : CurrentNewVRegs) { 2734 if (RecoloringCandidates.count(&LIS->getInterval(R))) 2735 continue; 2736 NewVRegs.push_back(R); 2737 } 2738 2739 for (LiveInterval *RC : RecoloringCandidates) { 2740 Register ItVirtReg = RC->reg(); 2741 if (VRM->hasPhys(ItVirtReg)) 2742 Matrix->unassign(*RC); 2743 MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2744 Matrix->assign(*RC, ItPhysReg); 2745 } 2746 } 2747 2748 // Last chance recoloring did not worked either, give up. 2749 return ~0u; 2750 } 2751 2752 /// tryRecoloringCandidates - Try to assign a new color to every register 2753 /// in \RecoloringQueue. 2754 /// \p NewRegs will contain any new virtual register created during the 2755 /// recoloring process. 2756 /// \p FixedRegisters[in/out] contains all the registers that have been 2757 /// recolored. 2758 /// \return true if all virtual registers in RecoloringQueue were successfully 2759 /// recolored, false otherwise. 2760 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2761 SmallVectorImpl<Register> &NewVRegs, 2762 SmallVirtRegSet &FixedRegisters, 2763 unsigned Depth) { 2764 while (!RecoloringQueue.empty()) { 2765 LiveInterval *LI = dequeue(RecoloringQueue); 2766 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2767 MCRegister PhysReg = 2768 selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2769 // When splitting happens, the live-range may actually be empty. 2770 // In that case, this is okay to continue the recoloring even 2771 // if we did not find an alternative color for it. Indeed, 2772 // there will not be anything to color for LI in the end. 2773 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2774 return false; 2775 2776 if (!PhysReg) { 2777 assert(LI->empty() && "Only empty live-range do not require a register"); 2778 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2779 << " succeeded. Empty LI.\n"); 2780 continue; 2781 } 2782 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2783 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2784 2785 Matrix->assign(*LI, PhysReg); 2786 FixedRegisters.insert(LI->reg()); 2787 } 2788 return true; 2789 } 2790 2791 //===----------------------------------------------------------------------===// 2792 // Main Entry Point 2793 //===----------------------------------------------------------------------===// 2794 2795 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2796 SmallVectorImpl<Register> &NewVRegs) { 2797 CutOffInfo = CO_None; 2798 LLVMContext &Ctx = MF->getFunction().getContext(); 2799 SmallVirtRegSet FixedRegisters; 2800 MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2801 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2802 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2803 if (CutOffEncountered == CO_Depth) 2804 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2805 "reached. Use -fexhaustive-register-search to skip " 2806 "cutoffs"); 2807 else if (CutOffEncountered == CO_Interf) 2808 Ctx.emitError("register allocation failed: maximum interference for " 2809 "recoloring reached. Use -fexhaustive-register-search " 2810 "to skip cutoffs"); 2811 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2812 Ctx.emitError("register allocation failed: maximum interference and " 2813 "depth for recoloring reached. Use " 2814 "-fexhaustive-register-search to skip cutoffs"); 2815 } 2816 return Reg; 2817 } 2818 2819 /// Using a CSR for the first time has a cost because it causes push|pop 2820 /// to be added to prologue|epilogue. Splitting a cold section of the live 2821 /// range can have lower cost than using the CSR for the first time; 2822 /// Spilling a live range in the cold path can have lower cost than using 2823 /// the CSR for the first time. Returns the physical register if we decide 2824 /// to use the CSR; otherwise return 0. 2825 MCRegister 2826 RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 2827 MCRegister PhysReg, uint8_t &CostPerUseLimit, 2828 SmallVectorImpl<Register> &NewVRegs) { 2829 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2830 // We choose spill over using the CSR for the first time if the spill cost 2831 // is lower than CSRCost. 2832 SA->analyze(&VirtReg); 2833 if (calcSpillCost() >= CSRCost) 2834 return PhysReg; 2835 2836 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2837 // we will not use a callee-saved register in tryEvict. 2838 CostPerUseLimit = 1; 2839 return 0; 2840 } 2841 if (getStage(VirtReg) < RS_Split) { 2842 // We choose pre-splitting over using the CSR for the first time if 2843 // the cost of splitting is lower than CSRCost. 2844 SA->analyze(&VirtReg); 2845 unsigned NumCands = 0; 2846 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2847 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2848 NumCands, true /*IgnoreCSR*/); 2849 if (BestCand == NoCand) 2850 // Use the CSR if we can't find a region split below CSRCost. 2851 return PhysReg; 2852 2853 // Perform the actual pre-splitting. 2854 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2855 return 0; 2856 } 2857 return PhysReg; 2858 } 2859 2860 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2861 // Do not keep invalid information around. 2862 SetOfBrokenHints.remove(&LI); 2863 } 2864 2865 void RAGreedy::initializeCSRCost() { 2866 // We use the larger one out of the command-line option and the value report 2867 // by TRI. 2868 CSRCost = BlockFrequency( 2869 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2870 if (!CSRCost.getFrequency()) 2871 return; 2872 2873 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2874 uint64_t ActualEntry = MBFI->getEntryFreq(); 2875 if (!ActualEntry) { 2876 CSRCost = 0; 2877 return; 2878 } 2879 uint64_t FixedEntry = 1 << 14; 2880 if (ActualEntry < FixedEntry) 2881 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2882 else if (ActualEntry <= UINT32_MAX) 2883 // Invert the fraction and divide. 2884 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2885 else 2886 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2887 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2888 } 2889 2890 /// Collect the hint info for \p Reg. 2891 /// The results are stored into \p Out. 2892 /// \p Out is not cleared before being populated. 2893 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) { 2894 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2895 if (!Instr.isFullCopy()) 2896 continue; 2897 // Look for the other end of the copy. 2898 Register OtherReg = Instr.getOperand(0).getReg(); 2899 if (OtherReg == Reg) { 2900 OtherReg = Instr.getOperand(1).getReg(); 2901 if (OtherReg == Reg) 2902 continue; 2903 } 2904 // Get the current assignment. 2905 MCRegister OtherPhysReg = 2906 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 2907 // Push the collected information. 2908 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2909 OtherPhysReg)); 2910 } 2911 } 2912 2913 /// Using the given \p List, compute the cost of the broken hints if 2914 /// \p PhysReg was used. 2915 /// \return The cost of \p List for \p PhysReg. 2916 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2917 MCRegister PhysReg) { 2918 BlockFrequency Cost = 0; 2919 for (const HintInfo &Info : List) { 2920 if (Info.PhysReg != PhysReg) 2921 Cost += Info.Freq; 2922 } 2923 return Cost; 2924 } 2925 2926 /// Using the register assigned to \p VirtReg, try to recolor 2927 /// all the live ranges that are copy-related with \p VirtReg. 2928 /// The recoloring is then propagated to all the live-ranges that have 2929 /// been recolored and so on, until no more copies can be coalesced or 2930 /// it is not profitable. 2931 /// For a given live range, profitability is determined by the sum of the 2932 /// frequencies of the non-identity copies it would introduce with the old 2933 /// and new register. 2934 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2935 // We have a broken hint, check if it is possible to fix it by 2936 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2937 // some register and PhysReg may be available for the other live-ranges. 2938 SmallSet<Register, 4> Visited; 2939 SmallVector<unsigned, 2> RecoloringCandidates; 2940 HintsInfo Info; 2941 Register Reg = VirtReg.reg(); 2942 MCRegister PhysReg = VRM->getPhys(Reg); 2943 // Start the recoloring algorithm from the input live-interval, then 2944 // it will propagate to the ones that are copy-related with it. 2945 Visited.insert(Reg); 2946 RecoloringCandidates.push_back(Reg); 2947 2948 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2949 << '(' << printReg(PhysReg, TRI) << ")\n"); 2950 2951 do { 2952 Reg = RecoloringCandidates.pop_back_val(); 2953 2954 // We cannot recolor physical register. 2955 if (Register::isPhysicalRegister(Reg)) 2956 continue; 2957 2958 // This may be a skipped class 2959 if (!VRM->hasPhys(Reg)) { 2960 assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) && 2961 "We have an unallocated variable which should have been handled"); 2962 continue; 2963 } 2964 2965 // Get the live interval mapped with this virtual register to be able 2966 // to check for the interference with the new color. 2967 LiveInterval &LI = LIS->getInterval(Reg); 2968 MCRegister CurrPhys = VRM->getPhys(Reg); 2969 // Check that the new color matches the register class constraints and 2970 // that it is free for this live range. 2971 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2972 Matrix->checkInterference(LI, PhysReg))) 2973 continue; 2974 2975 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2976 << ") is recolorable.\n"); 2977 2978 // Gather the hint info. 2979 Info.clear(); 2980 collectHintInfo(Reg, Info); 2981 // Check if recoloring the live-range will increase the cost of the 2982 // non-identity copies. 2983 if (CurrPhys != PhysReg) { 2984 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2985 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2986 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2987 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2988 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2989 << '\n'); 2990 if (OldCopiesCost < NewCopiesCost) { 2991 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2992 continue; 2993 } 2994 // At this point, the cost is either cheaper or equal. If it is 2995 // equal, we consider this is profitable because it may expose 2996 // more recoloring opportunities. 2997 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2998 // Recolor the live-range. 2999 Matrix->unassign(LI); 3000 Matrix->assign(LI, PhysReg); 3001 } 3002 // Push all copy-related live-ranges to keep reconciling the broken 3003 // hints. 3004 for (const HintInfo &HI : Info) { 3005 if (Visited.insert(HI.Reg).second) 3006 RecoloringCandidates.push_back(HI.Reg); 3007 } 3008 } while (!RecoloringCandidates.empty()); 3009 } 3010 3011 /// Try to recolor broken hints. 3012 /// Broken hints may be repaired by recoloring when an evicted variable 3013 /// freed up a register for a larger live-range. 3014 /// Consider the following example: 3015 /// BB1: 3016 /// a = 3017 /// b = 3018 /// BB2: 3019 /// ... 3020 /// = b 3021 /// = a 3022 /// Let us assume b gets split: 3023 /// BB1: 3024 /// a = 3025 /// b = 3026 /// BB2: 3027 /// c = b 3028 /// ... 3029 /// d = c 3030 /// = d 3031 /// = a 3032 /// Because of how the allocation work, b, c, and d may be assigned different 3033 /// colors. Now, if a gets evicted later: 3034 /// BB1: 3035 /// a = 3036 /// st a, SpillSlot 3037 /// b = 3038 /// BB2: 3039 /// c = b 3040 /// ... 3041 /// d = c 3042 /// = d 3043 /// e = ld SpillSlot 3044 /// = e 3045 /// This is likely that we can assign the same register for b, c, and d, 3046 /// getting rid of 2 copies. 3047 void RAGreedy::tryHintsRecoloring() { 3048 for (LiveInterval *LI : SetOfBrokenHints) { 3049 assert(Register::isVirtualRegister(LI->reg()) && 3050 "Recoloring is possible only for virtual registers"); 3051 // Some dead defs may be around (e.g., because of debug uses). 3052 // Ignore those. 3053 if (!VRM->hasPhys(LI->reg())) 3054 continue; 3055 tryHintRecoloring(*LI); 3056 } 3057 } 3058 3059 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 3060 SmallVectorImpl<Register> &NewVRegs, 3061 SmallVirtRegSet &FixedRegisters, 3062 unsigned Depth) { 3063 uint8_t CostPerUseLimit = uint8_t(~0u); 3064 // First try assigning a free register. 3065 auto Order = 3066 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 3067 if (MCRegister PhysReg = 3068 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 3069 // If VirtReg got an assignment, the eviction info is no longer relevant. 3070 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3071 // When NewVRegs is not empty, we may have made decisions such as evicting 3072 // a virtual register, go with the earlier decisions and use the physical 3073 // register. 3074 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 3075 NewVRegs.empty()) { 3076 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 3077 CostPerUseLimit, NewVRegs); 3078 if (CSRReg || !NewVRegs.empty()) 3079 // Return now if we decide to use a CSR or create new vregs due to 3080 // pre-splitting. 3081 return CSRReg; 3082 } else 3083 return PhysReg; 3084 } 3085 3086 LiveRangeStage Stage = getStage(VirtReg); 3087 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 3088 << ExtraRegInfo[VirtReg.reg()].Cascade << '\n'); 3089 3090 // Try to evict a less worthy live range, but only for ranges from the primary 3091 // queue. The RS_Split ranges already failed to do this, and they should not 3092 // get a second chance until they have been split. 3093 if (Stage != RS_Split) 3094 if (Register PhysReg = 3095 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 3096 FixedRegisters)) { 3097 Register Hint = MRI->getSimpleHint(VirtReg.reg()); 3098 // If VirtReg has a hint and that hint is broken record this 3099 // virtual register as a recoloring candidate for broken hint. 3100 // Indeed, since we evicted a variable in its neighborhood it is 3101 // likely we can at least partially recolor some of the 3102 // copy-related live-ranges. 3103 if (Hint && Hint != PhysReg) 3104 SetOfBrokenHints.insert(&VirtReg); 3105 // If VirtReg eviction someone, the eviction info for it as an evictee is 3106 // no longer relevant. 3107 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3108 return PhysReg; 3109 } 3110 3111 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 3112 3113 // The first time we see a live range, don't try to split or spill. 3114 // Wait until the second time, when all smaller ranges have been allocated. 3115 // This gives a better picture of the interference to split around. 3116 if (Stage < RS_Split) { 3117 setStage(VirtReg, RS_Split); 3118 LLVM_DEBUG(dbgs() << "wait for second round\n"); 3119 NewVRegs.push_back(VirtReg.reg()); 3120 return 0; 3121 } 3122 3123 if (Stage < RS_Spill) { 3124 // Try splitting VirtReg or interferences. 3125 unsigned NewVRegSizeBefore = NewVRegs.size(); 3126 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 3127 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 3128 // If VirtReg got split, the eviction info is no longer relevant. 3129 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3130 return PhysReg; 3131 } 3132 } 3133 3134 // If we couldn't allocate a register from spilling, there is probably some 3135 // invalid inline assembly. The base class will report it. 3136 if (Stage >= RS_Done || !VirtReg.isSpillable()) 3137 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 3138 Depth); 3139 3140 // Finally spill VirtReg itself. 3141 if ((EnableDeferredSpilling || 3142 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) && 3143 getStage(VirtReg) < RS_Memory) { 3144 // TODO: This is experimental and in particular, we do not model 3145 // the live range splitting done by spilling correctly. 3146 // We would need a deep integration with the spiller to do the 3147 // right thing here. Anyway, that is still good for early testing. 3148 setStage(VirtReg, RS_Memory); 3149 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 3150 NewVRegs.push_back(VirtReg.reg()); 3151 } else { 3152 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 3153 TimerGroupDescription, TimePassesIsEnabled); 3154 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 3155 spiller().spill(LRE); 3156 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 3157 3158 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 3159 // the new regs are kept in LDV (still mapping to the old register), until 3160 // we rewrite spilled locations in LDV at a later stage. 3161 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS); 3162 3163 if (VerifyEnabled) 3164 MF->verify(this, "After spilling"); 3165 } 3166 3167 // The live virtual register requesting allocation was spilled, so tell 3168 // the caller not to allocate anything during this round. 3169 return 0; 3170 } 3171 3172 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) { 3173 using namespace ore; 3174 if (Spills) { 3175 R << NV("NumSpills", Spills) << " spills "; 3176 R << NV("TotalSpillsCost", SpillsCost) << " total spills cost "; 3177 } 3178 if (FoldedSpills) { 3179 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 3180 R << NV("TotalFoldedSpillsCost", FoldedSpillsCost) 3181 << " total folded spills cost "; 3182 } 3183 if (Reloads) { 3184 R << NV("NumReloads", Reloads) << " reloads "; 3185 R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost "; 3186 } 3187 if (FoldedReloads) { 3188 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 3189 R << NV("TotalFoldedReloadsCost", FoldedReloadsCost) 3190 << " total folded reloads cost "; 3191 } 3192 if (ZeroCostFoldedReloads) 3193 R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads) 3194 << " zero cost folded reloads "; 3195 if (Copies) { 3196 R << NV("NumVRCopies", Copies) << " virtual registers copies "; 3197 R << NV("TotalCopiesCost", CopiesCost) << " total copies cost "; 3198 } 3199 } 3200 3201 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) { 3202 RAGreedyStats Stats; 3203 const MachineFrameInfo &MFI = MF->getFrameInfo(); 3204 int FI; 3205 3206 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 3207 return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>( 3208 A->getPseudoValue())->getFrameIndex()); 3209 }; 3210 auto isPatchpointInstr = [](const MachineInstr &MI) { 3211 return MI.getOpcode() == TargetOpcode::PATCHPOINT || 3212 MI.getOpcode() == TargetOpcode::STACKMAP || 3213 MI.getOpcode() == TargetOpcode::STATEPOINT; 3214 }; 3215 for (MachineInstr &MI : MBB) { 3216 if (MI.isCopy()) { 3217 MachineOperand &Dest = MI.getOperand(0); 3218 MachineOperand &Src = MI.getOperand(1); 3219 if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() && 3220 Src.getReg().isVirtual()) 3221 ++Stats.Copies; 3222 continue; 3223 } 3224 3225 SmallVector<const MachineMemOperand *, 2> Accesses; 3226 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 3227 ++Stats.Reloads; 3228 continue; 3229 } 3230 if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 3231 ++Stats.Spills; 3232 continue; 3233 } 3234 if (TII->hasLoadFromStackSlot(MI, Accesses) && 3235 llvm::any_of(Accesses, isSpillSlotAccess)) { 3236 if (!isPatchpointInstr(MI)) { 3237 Stats.FoldedReloads += Accesses.size(); 3238 continue; 3239 } 3240 // For statepoint there may be folded and zero cost folded stack reloads. 3241 std::pair<unsigned, unsigned> NonZeroCostRange = 3242 TII->getPatchpointUnfoldableRange(MI); 3243 SmallSet<unsigned, 16> FoldedReloads; 3244 SmallSet<unsigned, 16> ZeroCostFoldedReloads; 3245 for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) { 3246 MachineOperand &MO = MI.getOperand(Idx); 3247 if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex())) 3248 continue; 3249 if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second) 3250 FoldedReloads.insert(MO.getIndex()); 3251 else 3252 ZeroCostFoldedReloads.insert(MO.getIndex()); 3253 } 3254 // If stack slot is used in folded reload it is not zero cost then. 3255 for (unsigned Slot : FoldedReloads) 3256 ZeroCostFoldedReloads.erase(Slot); 3257 Stats.FoldedReloads += FoldedReloads.size(); 3258 Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size(); 3259 continue; 3260 } 3261 Accesses.clear(); 3262 if (TII->hasStoreToStackSlot(MI, Accesses) && 3263 llvm::any_of(Accesses, isSpillSlotAccess)) { 3264 Stats.FoldedSpills += Accesses.size(); 3265 } 3266 } 3267 // Set cost of collected statistic by multiplication to relative frequency of 3268 // this basic block. 3269 float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB); 3270 Stats.ReloadsCost = RelFreq * Stats.Reloads; 3271 Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads; 3272 Stats.SpillsCost = RelFreq * Stats.Spills; 3273 Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills; 3274 Stats.CopiesCost = RelFreq * Stats.Copies; 3275 return Stats; 3276 } 3277 3278 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) { 3279 RAGreedyStats Stats; 3280 3281 // Sum up the spill and reloads in subloops. 3282 for (MachineLoop *SubLoop : *L) 3283 Stats.add(reportStats(SubLoop)); 3284 3285 for (MachineBasicBlock *MBB : L->getBlocks()) 3286 // Handle blocks that were not included in subloops. 3287 if (Loops->getLoopFor(MBB) == L) 3288 Stats.add(computeStats(*MBB)); 3289 3290 if (!Stats.isEmpty()) { 3291 using namespace ore; 3292 3293 ORE->emit([&]() { 3294 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies", 3295 L->getStartLoc(), L->getHeader()); 3296 Stats.report(R); 3297 R << "generated in loop"; 3298 return R; 3299 }); 3300 } 3301 return Stats; 3302 } 3303 3304 void RAGreedy::reportStats() { 3305 if (!ORE->allowExtraAnalysis(DEBUG_TYPE)) 3306 return; 3307 RAGreedyStats Stats; 3308 for (MachineLoop *L : *Loops) 3309 Stats.add(reportStats(L)); 3310 // Process non-loop blocks. 3311 for (MachineBasicBlock &MBB : *MF) 3312 if (!Loops->getLoopFor(&MBB)) 3313 Stats.add(computeStats(MBB)); 3314 if (!Stats.isEmpty()) { 3315 using namespace ore; 3316 3317 ORE->emit([&]() { 3318 DebugLoc Loc; 3319 if (auto *SP = MF->getFunction().getSubprogram()) 3320 Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 3321 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc, 3322 &MF->front()); 3323 Stats.report(R); 3324 R << "generated in function"; 3325 return R; 3326 }); 3327 } 3328 } 3329 3330 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 3331 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 3332 << "********** Function: " << mf.getName() << '\n'); 3333 3334 MF = &mf; 3335 TRI = MF->getSubtarget().getRegisterInfo(); 3336 TII = MF->getSubtarget().getInstrInfo(); 3337 RCI.runOnMachineFunction(mf); 3338 3339 EnableLocalReassign = EnableLocalReassignment || 3340 MF->getSubtarget().enableRALocalReassignment( 3341 MF->getTarget().getOptLevel()); 3342 3343 EnableAdvancedRASplitCost = 3344 ConsiderLocalIntervalCost.getNumOccurrences() 3345 ? ConsiderLocalIntervalCost 3346 : MF->getSubtarget().enableAdvancedRASplitCost(); 3347 3348 if (VerifyEnabled) 3349 MF->verify(this, "Before greedy register allocator"); 3350 3351 RegAllocBase::init(getAnalysis<VirtRegMap>(), 3352 getAnalysis<LiveIntervals>(), 3353 getAnalysis<LiveRegMatrix>()); 3354 Indexes = &getAnalysis<SlotIndexes>(); 3355 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3356 DomTree = &getAnalysis<MachineDominatorTree>(); 3357 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 3358 Loops = &getAnalysis<MachineLoopInfo>(); 3359 Bundles = &getAnalysis<EdgeBundles>(); 3360 SpillPlacer = &getAnalysis<SpillPlacement>(); 3361 DebugVars = &getAnalysis<LiveDebugVariables>(); 3362 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3363 3364 initializeCSRCost(); 3365 3366 RegCosts = TRI->getRegisterCosts(*MF); 3367 3368 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI); 3369 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI)); 3370 3371 VRAI->calculateSpillWeightsAndHints(); 3372 3373 LLVM_DEBUG(LIS->dump()); 3374 3375 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 3376 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI)); 3377 ExtraRegInfo.clear(); 3378 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 3379 NextCascade = 1; 3380 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 3381 GlobalCand.resize(32); // This will grow as needed. 3382 SetOfBrokenHints.clear(); 3383 LastEvicted.clear(); 3384 3385 allocatePhysRegs(); 3386 tryHintsRecoloring(); 3387 3388 if (VerifyEnabled) 3389 MF->verify(this, "Before post optimization"); 3390 postOptimization(); 3391 reportStats(); 3392 3393 releaseMemory(); 3394 return true; 3395 } 3396