xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/RegAllocGreedy.cpp (revision 06c3fb2749bda94cb5201f81ffdb8fa6c3161b2e)
1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the RAGreedy function pass for register allocation in
10 // optimized builds.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "RegAllocGreedy.h"
15 #include "AllocationOrder.h"
16 #include "InterferenceCache.h"
17 #include "LiveDebugVariables.h"
18 #include "RegAllocBase.h"
19 #include "RegAllocEvictionAdvisor.h"
20 #include "RegAllocPriorityAdvisor.h"
21 #include "SpillPlacement.h"
22 #include "SplitKit.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/BitVector.h"
25 #include "llvm/ADT/IndexedMap.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/CodeGen/CalcSpillWeights.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LiveInterval.h"
36 #include "llvm/CodeGen/LiveIntervalUnion.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveRegMatrix.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RegAllocRegistry.h"
53 #include "llvm/CodeGen/RegisterClassInfo.h"
54 #include "llvm/CodeGen/SlotIndexes.h"
55 #include "llvm/CodeGen/Spiller.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/DebugInfoMetadata.h"
61 #include "llvm/IR/Function.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/InitializePasses.h"
64 #include "llvm/MC/MCRegisterInfo.h"
65 #include "llvm/Pass.h"
66 #include "llvm/Support/BlockFrequency.h"
67 #include "llvm/Support/BranchProbability.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/Timer.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <utility>
77 
78 using namespace llvm;
79 
80 #define DEBUG_TYPE "regalloc"
81 
82 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
83 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
84 STATISTIC(NumEvicted,      "Number of interferences evicted");
85 
86 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
87     "split-spill-mode", cl::Hidden,
88     cl::desc("Spill mode for splitting live ranges"),
89     cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
90                clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
91                clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
92     cl::init(SplitEditor::SM_Speed));
93 
94 static cl::opt<unsigned>
95 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
96                              cl::desc("Last chance recoloring max depth"),
97                              cl::init(5));
98 
99 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
100     "lcr-max-interf", cl::Hidden,
101     cl::desc("Last chance recoloring maximum number of considered"
102              " interference at a time"),
103     cl::init(8));
104 
105 static cl::opt<bool> ExhaustiveSearch(
106     "exhaustive-register-search", cl::NotHidden,
107     cl::desc("Exhaustive Search for registers bypassing the depth "
108              "and interference cutoffs of last chance recoloring"),
109     cl::Hidden);
110 
111 static cl::opt<bool> EnableDeferredSpilling(
112     "enable-deferred-spilling", cl::Hidden,
113     cl::desc("Instead of spilling a variable right away, defer the actual "
114              "code insertion to the end of the allocation. That way the "
115              "allocator might still find a suitable coloring for this "
116              "variable because of other evicted variables."),
117     cl::init(false));
118 
119 // FIXME: Find a good default for this flag and remove the flag.
120 static cl::opt<unsigned>
121 CSRFirstTimeCost("regalloc-csr-first-time-cost",
122               cl::desc("Cost for first time use of callee-saved register."),
123               cl::init(0), cl::Hidden);
124 
125 static cl::opt<unsigned long> GrowRegionComplexityBudget(
126     "grow-region-complexity-budget",
127     cl::desc("growRegion() does not scale with the number of BB edges, so "
128              "limit its budget and bail out once we reach the limit."),
129     cl::init(10000), cl::Hidden);
130 
131 static cl::opt<bool> GreedyRegClassPriorityTrumpsGlobalness(
132     "greedy-regclass-priority-trumps-globalness",
133     cl::desc("Change the greedy register allocator's live range priority "
134              "calculation to make the AllocationPriority of the register class "
135              "more important then whether the range is global"),
136     cl::Hidden);
137 
138 static cl::opt<bool> GreedyReverseLocalAssignment(
139     "greedy-reverse-local-assignment",
140     cl::desc("Reverse allocation order of local live ranges, such that "
141              "shorter local live ranges will tend to be allocated first"),
142     cl::Hidden);
143 
144 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
145                                        createGreedyRegisterAllocator);
146 
147 char RAGreedy::ID = 0;
148 char &llvm::RAGreedyID = RAGreedy::ID;
149 
150 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
151                 "Greedy Register Allocator", false, false)
152 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
153 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
154 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
155 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
156 INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
157 INITIALIZE_PASS_DEPENDENCY(LiveStacks)
158 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
159 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
160 INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
161 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
162 INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
163 INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
164 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
165 INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis)
166 INITIALIZE_PASS_DEPENDENCY(RegAllocPriorityAdvisorAnalysis)
167 INITIALIZE_PASS_END(RAGreedy, "greedy",
168                 "Greedy Register Allocator", false, false)
169 
170 #ifndef NDEBUG
171 const char *const RAGreedy::StageName[] = {
172     "RS_New",
173     "RS_Assign",
174     "RS_Split",
175     "RS_Split2",
176     "RS_Spill",
177     "RS_Memory",
178     "RS_Done"
179 };
180 #endif
181 
182 // Hysteresis to use when comparing floats.
183 // This helps stabilize decisions based on float comparisons.
184 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
185 
186 FunctionPass* llvm::createGreedyRegisterAllocator() {
187   return new RAGreedy();
188 }
189 
190 FunctionPass *llvm::createGreedyRegisterAllocator(RegClassFilterFunc Ftor) {
191   return new RAGreedy(Ftor);
192 }
193 
194 RAGreedy::RAGreedy(RegClassFilterFunc F):
195   MachineFunctionPass(ID),
196   RegAllocBase(F) {
197 }
198 
199 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
200   AU.setPreservesCFG();
201   AU.addRequired<MachineBlockFrequencyInfo>();
202   AU.addPreserved<MachineBlockFrequencyInfo>();
203   AU.addRequired<LiveIntervals>();
204   AU.addPreserved<LiveIntervals>();
205   AU.addRequired<SlotIndexes>();
206   AU.addPreserved<SlotIndexes>();
207   AU.addRequired<LiveDebugVariables>();
208   AU.addPreserved<LiveDebugVariables>();
209   AU.addRequired<LiveStacks>();
210   AU.addPreserved<LiveStacks>();
211   AU.addRequired<MachineDominatorTree>();
212   AU.addPreserved<MachineDominatorTree>();
213   AU.addRequired<MachineLoopInfo>();
214   AU.addPreserved<MachineLoopInfo>();
215   AU.addRequired<VirtRegMap>();
216   AU.addPreserved<VirtRegMap>();
217   AU.addRequired<LiveRegMatrix>();
218   AU.addPreserved<LiveRegMatrix>();
219   AU.addRequired<EdgeBundles>();
220   AU.addRequired<SpillPlacement>();
221   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
222   AU.addRequired<RegAllocEvictionAdvisorAnalysis>();
223   AU.addRequired<RegAllocPriorityAdvisorAnalysis>();
224   MachineFunctionPass::getAnalysisUsage(AU);
225 }
226 
227 //===----------------------------------------------------------------------===//
228 //                     LiveRangeEdit delegate methods
229 //===----------------------------------------------------------------------===//
230 
231 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
232   LiveInterval &LI = LIS->getInterval(VirtReg);
233   if (VRM->hasPhys(VirtReg)) {
234     Matrix->unassign(LI);
235     aboutToRemoveInterval(LI);
236     return true;
237   }
238   // Unassigned virtreg is probably in the priority queue.
239   // RegAllocBase will erase it after dequeueing.
240   // Nonetheless, clear the live-range so that the debug
241   // dump will show the right state for that VirtReg.
242   LI.clear();
243   return false;
244 }
245 
246 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
247   if (!VRM->hasPhys(VirtReg))
248     return;
249 
250   // Register is assigned, put it back on the queue for reassignment.
251   LiveInterval &LI = LIS->getInterval(VirtReg);
252   Matrix->unassign(LI);
253   RegAllocBase::enqueue(&LI);
254 }
255 
256 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
257   ExtraInfo->LRE_DidCloneVirtReg(New, Old);
258 }
259 
260 void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) {
261   // Cloning a register we haven't even heard about yet?  Just ignore it.
262   if (!Info.inBounds(Old))
263     return;
264 
265   // LRE may clone a virtual register because dead code elimination causes it to
266   // be split into connected components. The new components are much smaller
267   // than the original, so they should get a new chance at being assigned.
268   // same stage as the parent.
269   Info[Old].Stage = RS_Assign;
270   Info.grow(New.id());
271   Info[New] = Info[Old];
272 }
273 
274 void RAGreedy::releaseMemory() {
275   SpillerInstance.reset();
276   GlobalCand.clear();
277 }
278 
279 void RAGreedy::enqueueImpl(const LiveInterval *LI) { enqueue(Queue, LI); }
280 
281 void RAGreedy::enqueue(PQueue &CurQueue, const LiveInterval *LI) {
282   // Prioritize live ranges by size, assigning larger ranges first.
283   // The queue holds (size, reg) pairs.
284   const Register Reg = LI->reg();
285   assert(Reg.isVirtual() && "Can only enqueue virtual registers");
286 
287   auto Stage = ExtraInfo->getOrInitStage(Reg);
288   if (Stage == RS_New) {
289     Stage = RS_Assign;
290     ExtraInfo->setStage(Reg, Stage);
291   }
292 
293   unsigned Ret = PriorityAdvisor->getPriority(*LI);
294 
295   // The virtual register number is a tie breaker for same-sized ranges.
296   // Give lower vreg numbers higher priority to assign them first.
297   CurQueue.push(std::make_pair(Ret, ~Reg));
298 }
299 
300 unsigned DefaultPriorityAdvisor::getPriority(const LiveInterval &LI) const {
301   const unsigned Size = LI.getSize();
302   const Register Reg = LI.reg();
303   unsigned Prio;
304   LiveRangeStage Stage = RA.getExtraInfo().getStage(LI);
305 
306   if (Stage == RS_Split) {
307     // Unsplit ranges that couldn't be allocated immediately are deferred until
308     // everything else has been allocated.
309     Prio = Size;
310   } else if (Stage == RS_Memory) {
311     // Memory operand should be considered last.
312     // Change the priority such that Memory operand are assigned in
313     // the reverse order that they came in.
314     // TODO: Make this a member variable and probably do something about hints.
315     static unsigned MemOp = 0;
316     Prio = MemOp++;
317   } else {
318     // Giant live ranges fall back to the global assignment heuristic, which
319     // prevents excessive spilling in pathological cases.
320     const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
321     bool ForceGlobal = RC.GlobalPriority ||
322                        (!ReverseLocalAssignment &&
323                         (Size / SlotIndex::InstrDist) >
324                             (2 * RegClassInfo.getNumAllocatableRegs(&RC)));
325     unsigned GlobalBit = 0;
326 
327     if (Stage == RS_Assign && !ForceGlobal && !LI.empty() &&
328         LIS->intervalIsInOneMBB(LI)) {
329       // Allocate original local ranges in linear instruction order. Since they
330       // are singly defined, this produces optimal coloring in the absence of
331       // global interference and other constraints.
332       if (!ReverseLocalAssignment)
333         Prio = LI.beginIndex().getApproxInstrDistance(Indexes->getLastIndex());
334       else {
335         // Allocating bottom up may allow many short LRGs to be assigned first
336         // to one of the cheap registers. This could be much faster for very
337         // large blocks on targets with many physical registers.
338         Prio = Indexes->getZeroIndex().getApproxInstrDistance(LI.endIndex());
339       }
340     } else {
341       // Allocate global and split ranges in long->short order. Long ranges that
342       // don't fit should be spilled (or split) ASAP so they don't create
343       // interference.  Mark a bit to prioritize global above local ranges.
344       Prio = Size;
345       GlobalBit = 1;
346     }
347 
348     // Priority bit layout:
349     // 31 RS_Assign priority
350     // 30 Preference priority
351     // if (RegClassPriorityTrumpsGlobalness)
352     //   29-25 AllocPriority
353     //   24 GlobalBit
354     // else
355     //   29 Global bit
356     //   28-24 AllocPriority
357     // 0-23 Size/Instr distance
358 
359     // Clamp the size to fit with the priority masking scheme
360     Prio = std::min(Prio, (unsigned)maxUIntN(24));
361     assert(isUInt<5>(RC.AllocationPriority) && "allocation priority overflow");
362 
363     if (RegClassPriorityTrumpsGlobalness)
364       Prio |= RC.AllocationPriority << 25 | GlobalBit << 24;
365     else
366       Prio |= GlobalBit << 29 | RC.AllocationPriority << 24;
367 
368     // Mark a higher bit to prioritize global and local above RS_Split.
369     Prio |= (1u << 31);
370 
371     // Boost ranges that have a physical register hint.
372     if (VRM->hasKnownPreference(Reg))
373       Prio |= (1u << 30);
374   }
375 
376   return Prio;
377 }
378 
379 const LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
380 
381 const LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
382   if (CurQueue.empty())
383     return nullptr;
384   LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
385   CurQueue.pop();
386   return LI;
387 }
388 
389 //===----------------------------------------------------------------------===//
390 //                            Direct Assignment
391 //===----------------------------------------------------------------------===//
392 
393 /// tryAssign - Try to assign VirtReg to an available register.
394 MCRegister RAGreedy::tryAssign(const LiveInterval &VirtReg,
395                                AllocationOrder &Order,
396                                SmallVectorImpl<Register> &NewVRegs,
397                                const SmallVirtRegSet &FixedRegisters) {
398   MCRegister PhysReg;
399   for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
400     assert(*I);
401     if (!Matrix->checkInterference(VirtReg, *I)) {
402       if (I.isHint())
403         return *I;
404       else
405         PhysReg = *I;
406     }
407   }
408   if (!PhysReg.isValid())
409     return PhysReg;
410 
411   // PhysReg is available, but there may be a better choice.
412 
413   // If we missed a simple hint, try to cheaply evict interference from the
414   // preferred register.
415   if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
416     if (Order.isHint(Hint)) {
417       MCRegister PhysHint = Hint.asMCReg();
418       LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
419 
420       if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint,
421                                                  FixedRegisters)) {
422         evictInterference(VirtReg, PhysHint, NewVRegs);
423         return PhysHint;
424       }
425       // Record the missed hint, we may be able to recover
426       // at the end if the surrounding allocation changed.
427       SetOfBrokenHints.insert(&VirtReg);
428     }
429 
430   // Try to evict interference from a cheaper alternative.
431   uint8_t Cost = RegCosts[PhysReg];
432 
433   // Most registers have 0 additional cost.
434   if (!Cost)
435     return PhysReg;
436 
437   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
438                     << (unsigned)Cost << '\n');
439   MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
440   return CheapReg ? CheapReg : PhysReg;
441 }
442 
443 //===----------------------------------------------------------------------===//
444 //                         Interference eviction
445 //===----------------------------------------------------------------------===//
446 
447 bool RegAllocEvictionAdvisor::canReassign(const LiveInterval &VirtReg,
448                                           MCRegister FromReg) const {
449   auto HasRegUnitInterference = [&](MCRegUnit Unit) {
450     // Instantiate a "subquery", not to be confused with the Queries array.
451     LiveIntervalUnion::Query SubQ(VirtReg, Matrix->getLiveUnions()[Unit]);
452     return SubQ.checkInterference();
453   };
454 
455   for (MCRegister Reg :
456        AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix)) {
457     if (Reg == FromReg)
458       continue;
459     // If no units have interference, reassignment is possible.
460     if (none_of(TRI->regunits(Reg), HasRegUnitInterference)) {
461       LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
462                         << printReg(FromReg, TRI) << " to "
463                         << printReg(Reg, TRI) << '\n');
464       return true;
465     }
466   }
467   return false;
468 }
469 
470 /// evictInterference - Evict any interferring registers that prevent VirtReg
471 /// from being assigned to Physreg. This assumes that canEvictInterference
472 /// returned true.
473 void RAGreedy::evictInterference(const LiveInterval &VirtReg,
474                                  MCRegister PhysReg,
475                                  SmallVectorImpl<Register> &NewVRegs) {
476   // Make sure that VirtReg has a cascade number, and assign that cascade
477   // number to every evicted register. These live ranges than then only be
478   // evicted by a newer cascade, preventing infinite loops.
479   unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg());
480 
481   LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
482                     << " interference: Cascade " << Cascade << '\n');
483 
484   // Collect all interfering virtregs first.
485   SmallVector<const LiveInterval *, 8> Intfs;
486   for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
487     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, Unit);
488     // We usually have the interfering VRegs cached so collectInterferingVRegs()
489     // should be fast, we may need to recalculate if when different physregs
490     // overlap the same register unit so we had different SubRanges queried
491     // against it.
492     ArrayRef<const LiveInterval *> IVR = Q.interferingVRegs();
493     Intfs.append(IVR.begin(), IVR.end());
494   }
495 
496   // Evict them second. This will invalidate the queries.
497   for (const LiveInterval *Intf : Intfs) {
498     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
499     if (!VRM->hasPhys(Intf->reg()))
500       continue;
501 
502     Matrix->unassign(*Intf);
503     assert((ExtraInfo->getCascade(Intf->reg()) < Cascade ||
504             VirtReg.isSpillable() < Intf->isSpillable()) &&
505            "Cannot decrease cascade number, illegal eviction");
506     ExtraInfo->setCascade(Intf->reg(), Cascade);
507     ++NumEvicted;
508     NewVRegs.push_back(Intf->reg());
509   }
510 }
511 
512 /// Returns true if the given \p PhysReg is a callee saved register and has not
513 /// been used for allocation yet.
514 bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
515   MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
516   if (!CSR)
517     return false;
518 
519   return !Matrix->isPhysRegUsed(PhysReg);
520 }
521 
522 std::optional<unsigned>
523 RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg,
524                                        const AllocationOrder &Order,
525                                        unsigned CostPerUseLimit) const {
526   unsigned OrderLimit = Order.getOrder().size();
527 
528   if (CostPerUseLimit < uint8_t(~0u)) {
529     // Check of any registers in RC are below CostPerUseLimit.
530     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
531     uint8_t MinCost = RegClassInfo.getMinCost(RC);
532     if (MinCost >= CostPerUseLimit) {
533       LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
534                         << MinCost << ", no cheaper registers to be found.\n");
535       return std::nullopt;
536     }
537 
538     // It is normal for register classes to have a long tail of registers with
539     // the same cost. We don't need to look at them if they're too expensive.
540     if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) {
541       OrderLimit = RegClassInfo.getLastCostChange(RC);
542       LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
543                         << " regs.\n");
544     }
545   }
546   return OrderLimit;
547 }
548 
549 bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit,
550                                                  MCRegister PhysReg) const {
551   if (RegCosts[PhysReg] >= CostPerUseLimit)
552     return false;
553   // The first use of a callee-saved register in a function has cost 1.
554   // Don't start using a CSR when the CostPerUseLimit is low.
555   if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
556     LLVM_DEBUG(
557         dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
558                << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
559                << '\n');
560     return false;
561   }
562   return true;
563 }
564 
565 /// tryEvict - Try to evict all interferences for a physreg.
566 /// @param  VirtReg Currently unassigned virtual register.
567 /// @param  Order   Physregs to try.
568 /// @return         Physreg to assign VirtReg, or 0.
569 MCRegister RAGreedy::tryEvict(const LiveInterval &VirtReg,
570                               AllocationOrder &Order,
571                               SmallVectorImpl<Register> &NewVRegs,
572                               uint8_t CostPerUseLimit,
573                               const SmallVirtRegSet &FixedRegisters) {
574   NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
575                      TimePassesIsEnabled);
576 
577   MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate(
578       VirtReg, Order, CostPerUseLimit, FixedRegisters);
579   if (BestPhys.isValid())
580     evictInterference(VirtReg, BestPhys, NewVRegs);
581   return BestPhys;
582 }
583 
584 //===----------------------------------------------------------------------===//
585 //                              Region Splitting
586 //===----------------------------------------------------------------------===//
587 
588 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
589 /// interference pattern in Physreg and its aliases. Add the constraints to
590 /// SpillPlacement and return the static cost of this split in Cost, assuming
591 /// that all preferences in SplitConstraints are met.
592 /// Return false if there are no bundles with positive bias.
593 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
594                                    BlockFrequency &Cost) {
595   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
596 
597   // Reset interference dependent info.
598   SplitConstraints.resize(UseBlocks.size());
599   BlockFrequency StaticCost = 0;
600   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
601     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
602     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
603 
604     BC.Number = BI.MBB->getNumber();
605     Intf.moveToBlock(BC.Number);
606     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
607     BC.Exit = (BI.LiveOut &&
608                !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
609                   ? SpillPlacement::PrefReg
610                   : SpillPlacement::DontCare;
611     BC.ChangesValue = BI.FirstDef.isValid();
612 
613     if (!Intf.hasInterference())
614       continue;
615 
616     // Number of spill code instructions to insert.
617     unsigned Ins = 0;
618 
619     // Interference for the live-in value.
620     if (BI.LiveIn) {
621       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
622         BC.Entry = SpillPlacement::MustSpill;
623         ++Ins;
624       } else if (Intf.first() < BI.FirstInstr) {
625         BC.Entry = SpillPlacement::PrefSpill;
626         ++Ins;
627       } else if (Intf.first() < BI.LastInstr) {
628         ++Ins;
629       }
630 
631       // Abort if the spill cannot be inserted at the MBB' start
632       if (((BC.Entry == SpillPlacement::MustSpill) ||
633            (BC.Entry == SpillPlacement::PrefSpill)) &&
634           SlotIndex::isEarlierInstr(BI.FirstInstr,
635                                     SA->getFirstSplitPoint(BC.Number)))
636         return false;
637     }
638 
639     // Interference for the live-out value.
640     if (BI.LiveOut) {
641       if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
642         BC.Exit = SpillPlacement::MustSpill;
643         ++Ins;
644       } else if (Intf.last() > BI.LastInstr) {
645         BC.Exit = SpillPlacement::PrefSpill;
646         ++Ins;
647       } else if (Intf.last() > BI.FirstInstr) {
648         ++Ins;
649       }
650     }
651 
652     // Accumulate the total frequency of inserted spill code.
653     while (Ins--)
654       StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
655   }
656   Cost = StaticCost;
657 
658   // Add constraints for use-blocks. Note that these are the only constraints
659   // that may add a positive bias, it is downhill from here.
660   SpillPlacer->addConstraints(SplitConstraints);
661   return SpillPlacer->scanActiveBundles();
662 }
663 
664 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
665 /// live-through blocks in Blocks.
666 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
667                                      ArrayRef<unsigned> Blocks) {
668   const unsigned GroupSize = 8;
669   SpillPlacement::BlockConstraint BCS[GroupSize];
670   unsigned TBS[GroupSize];
671   unsigned B = 0, T = 0;
672 
673   for (unsigned Number : Blocks) {
674     Intf.moveToBlock(Number);
675 
676     if (!Intf.hasInterference()) {
677       assert(T < GroupSize && "Array overflow");
678       TBS[T] = Number;
679       if (++T == GroupSize) {
680         SpillPlacer->addLinks(ArrayRef(TBS, T));
681         T = 0;
682       }
683       continue;
684     }
685 
686     assert(B < GroupSize && "Array overflow");
687     BCS[B].Number = Number;
688 
689     // Abort if the spill cannot be inserted at the MBB' start
690     MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
691     auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr();
692     if (FirstNonDebugInstr != MBB->end() &&
693         SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr),
694                                   SA->getFirstSplitPoint(Number)))
695       return false;
696     // Interference for the live-in value.
697     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
698       BCS[B].Entry = SpillPlacement::MustSpill;
699     else
700       BCS[B].Entry = SpillPlacement::PrefSpill;
701 
702     // Interference for the live-out value.
703     if (Intf.last() >= SA->getLastSplitPoint(Number))
704       BCS[B].Exit = SpillPlacement::MustSpill;
705     else
706       BCS[B].Exit = SpillPlacement::PrefSpill;
707 
708     if (++B == GroupSize) {
709       SpillPlacer->addConstraints(ArrayRef(BCS, B));
710       B = 0;
711     }
712   }
713 
714   SpillPlacer->addConstraints(ArrayRef(BCS, B));
715   SpillPlacer->addLinks(ArrayRef(TBS, T));
716   return true;
717 }
718 
719 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
720   // Keep track of through blocks that have not been added to SpillPlacer.
721   BitVector Todo = SA->getThroughBlocks();
722   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
723   unsigned AddedTo = 0;
724 #ifndef NDEBUG
725   unsigned Visited = 0;
726 #endif
727 
728   unsigned long Budget = GrowRegionComplexityBudget;
729   while (true) {
730     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
731     // Find new through blocks in the periphery of PrefRegBundles.
732     for (unsigned Bundle : NewBundles) {
733       // Look at all blocks connected to Bundle in the full graph.
734       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
735       // Limit compilation time by bailing out after we use all our budget.
736       if (Blocks.size() >= Budget)
737         return false;
738       Budget -= Blocks.size();
739       for (unsigned Block : Blocks) {
740         if (!Todo.test(Block))
741           continue;
742         Todo.reset(Block);
743         // This is a new through block. Add it to SpillPlacer later.
744         ActiveBlocks.push_back(Block);
745 #ifndef NDEBUG
746         ++Visited;
747 #endif
748       }
749     }
750     // Any new blocks to add?
751     if (ActiveBlocks.size() == AddedTo)
752       break;
753 
754     // Compute through constraints from the interference, or assume that all
755     // through blocks prefer spilling when forming compact regions.
756     auto NewBlocks = ArrayRef(ActiveBlocks).slice(AddedTo);
757     if (Cand.PhysReg) {
758       if (!addThroughConstraints(Cand.Intf, NewBlocks))
759         return false;
760     } else
761       // Provide a strong negative bias on through blocks to prevent unwanted
762       // liveness on loop backedges.
763       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
764     AddedTo = ActiveBlocks.size();
765 
766     // Perhaps iterating can enable more bundles?
767     SpillPlacer->iterate();
768   }
769   LLVM_DEBUG(dbgs() << ", v=" << Visited);
770   return true;
771 }
772 
773 /// calcCompactRegion - Compute the set of edge bundles that should be live
774 /// when splitting the current live range into compact regions.  Compact
775 /// regions can be computed without looking at interference.  They are the
776 /// regions formed by removing all the live-through blocks from the live range.
777 ///
778 /// Returns false if the current live range is already compact, or if the
779 /// compact regions would form single block regions anyway.
780 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
781   // Without any through blocks, the live range is already compact.
782   if (!SA->getNumThroughBlocks())
783     return false;
784 
785   // Compact regions don't correspond to any physreg.
786   Cand.reset(IntfCache, MCRegister::NoRegister);
787 
788   LLVM_DEBUG(dbgs() << "Compact region bundles");
789 
790   // Use the spill placer to determine the live bundles. GrowRegion pretends
791   // that all the through blocks have interference when PhysReg is unset.
792   SpillPlacer->prepare(Cand.LiveBundles);
793 
794   // The static split cost will be zero since Cand.Intf reports no interference.
795   BlockFrequency Cost;
796   if (!addSplitConstraints(Cand.Intf, Cost)) {
797     LLVM_DEBUG(dbgs() << ", none.\n");
798     return false;
799   }
800 
801   if (!growRegion(Cand)) {
802     LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
803     return false;
804   }
805 
806   SpillPlacer->finish();
807 
808   if (!Cand.LiveBundles.any()) {
809     LLVM_DEBUG(dbgs() << ", none.\n");
810     return false;
811   }
812 
813   LLVM_DEBUG({
814     for (int I : Cand.LiveBundles.set_bits())
815       dbgs() << " EB#" << I;
816     dbgs() << ".\n";
817   });
818   return true;
819 }
820 
821 /// calcSpillCost - Compute how expensive it would be to split the live range in
822 /// SA around all use blocks instead of forming bundle regions.
823 BlockFrequency RAGreedy::calcSpillCost() {
824   BlockFrequency Cost = 0;
825   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
826   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
827     unsigned Number = BI.MBB->getNumber();
828     // We normally only need one spill instruction - a load or a store.
829     Cost += SpillPlacer->getBlockFrequency(Number);
830 
831     // Unless the value is redefined in the block.
832     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
833       Cost += SpillPlacer->getBlockFrequency(Number);
834   }
835   return Cost;
836 }
837 
838 /// calcGlobalSplitCost - Return the global split cost of following the split
839 /// pattern in LiveBundles. This cost should be added to the local cost of the
840 /// interference pattern in SplitConstraints.
841 ///
842 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
843                                              const AllocationOrder &Order) {
844   BlockFrequency GlobalCost = 0;
845   const BitVector &LiveBundles = Cand.LiveBundles;
846   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
847   for (unsigned I = 0; I != UseBlocks.size(); ++I) {
848     const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
849     SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
850     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
851     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
852     unsigned Ins = 0;
853 
854     Cand.Intf.moveToBlock(BC.Number);
855 
856     if (BI.LiveIn)
857       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
858     if (BI.LiveOut)
859       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
860     while (Ins--)
861       GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
862   }
863 
864   for (unsigned Number : Cand.ActiveBlocks) {
865     bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
866     bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
867     if (!RegIn && !RegOut)
868       continue;
869     if (RegIn && RegOut) {
870       // We need double spill code if this block has interference.
871       Cand.Intf.moveToBlock(Number);
872       if (Cand.Intf.hasInterference()) {
873         GlobalCost += SpillPlacer->getBlockFrequency(Number);
874         GlobalCost += SpillPlacer->getBlockFrequency(Number);
875       }
876       continue;
877     }
878     // live-in / stack-out or stack-in live-out.
879     GlobalCost += SpillPlacer->getBlockFrequency(Number);
880   }
881   return GlobalCost;
882 }
883 
884 /// splitAroundRegion - Split the current live range around the regions
885 /// determined by BundleCand and GlobalCand.
886 ///
887 /// Before calling this function, GlobalCand and BundleCand must be initialized
888 /// so each bundle is assigned to a valid candidate, or NoCand for the
889 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
890 /// objects must be initialized for the current live range, and intervals
891 /// created for the used candidates.
892 ///
893 /// @param LREdit    The LiveRangeEdit object handling the current split.
894 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
895 ///                  must appear in this list.
896 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
897                                  ArrayRef<unsigned> UsedCands) {
898   // These are the intervals created for new global ranges. We may create more
899   // intervals for local ranges.
900   const unsigned NumGlobalIntvs = LREdit.size();
901   LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
902                     << " globals.\n");
903   assert(NumGlobalIntvs && "No global intervals configured");
904 
905   // Isolate even single instructions when dealing with a proper sub-class.
906   // That guarantees register class inflation for the stack interval because it
907   // is all copies.
908   Register Reg = SA->getParent().reg();
909   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
910 
911   // First handle all the blocks with uses.
912   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
913   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
914     unsigned Number = BI.MBB->getNumber();
915     unsigned IntvIn = 0, IntvOut = 0;
916     SlotIndex IntfIn, IntfOut;
917     if (BI.LiveIn) {
918       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
919       if (CandIn != NoCand) {
920         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
921         IntvIn = Cand.IntvIdx;
922         Cand.Intf.moveToBlock(Number);
923         IntfIn = Cand.Intf.first();
924       }
925     }
926     if (BI.LiveOut) {
927       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
928       if (CandOut != NoCand) {
929         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
930         IntvOut = Cand.IntvIdx;
931         Cand.Intf.moveToBlock(Number);
932         IntfOut = Cand.Intf.last();
933       }
934     }
935 
936     // Create separate intervals for isolated blocks with multiple uses.
937     if (!IntvIn && !IntvOut) {
938       LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
939       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
940         SE->splitSingleBlock(BI);
941       continue;
942     }
943 
944     if (IntvIn && IntvOut)
945       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
946     else if (IntvIn)
947       SE->splitRegInBlock(BI, IntvIn, IntfIn);
948     else
949       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
950   }
951 
952   // Handle live-through blocks. The relevant live-through blocks are stored in
953   // the ActiveBlocks list with each candidate. We need to filter out
954   // duplicates.
955   BitVector Todo = SA->getThroughBlocks();
956   for (unsigned UsedCand : UsedCands) {
957     ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks;
958     for (unsigned Number : Blocks) {
959       if (!Todo.test(Number))
960         continue;
961       Todo.reset(Number);
962 
963       unsigned IntvIn = 0, IntvOut = 0;
964       SlotIndex IntfIn, IntfOut;
965 
966       unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
967       if (CandIn != NoCand) {
968         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
969         IntvIn = Cand.IntvIdx;
970         Cand.Intf.moveToBlock(Number);
971         IntfIn = Cand.Intf.first();
972       }
973 
974       unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
975       if (CandOut != NoCand) {
976         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
977         IntvOut = Cand.IntvIdx;
978         Cand.Intf.moveToBlock(Number);
979         IntfOut = Cand.Intf.last();
980       }
981       if (!IntvIn && !IntvOut)
982         continue;
983       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
984     }
985   }
986 
987   ++NumGlobalSplits;
988 
989   SmallVector<unsigned, 8> IntvMap;
990   SE->finish(&IntvMap);
991   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
992 
993   unsigned OrigBlocks = SA->getNumLiveBlocks();
994 
995   // Sort out the new intervals created by splitting. We get four kinds:
996   // - Remainder intervals should not be split again.
997   // - Candidate intervals can be assigned to Cand.PhysReg.
998   // - Block-local splits are candidates for local splitting.
999   // - DCE leftovers should go back on the queue.
1000   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1001     const LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1002 
1003     // Ignore old intervals from DCE.
1004     if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New)
1005       continue;
1006 
1007     // Remainder interval. Don't try splitting again, spill if it doesn't
1008     // allocate.
1009     if (IntvMap[I] == 0) {
1010       ExtraInfo->setStage(Reg, RS_Spill);
1011       continue;
1012     }
1013 
1014     // Global intervals. Allow repeated splitting as long as the number of live
1015     // blocks is strictly decreasing.
1016     if (IntvMap[I] < NumGlobalIntvs) {
1017       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1018         LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1019                           << " blocks as original.\n");
1020         // Don't allow repeated splitting as a safe guard against looping.
1021         ExtraInfo->setStage(Reg, RS_Split2);
1022       }
1023       continue;
1024     }
1025 
1026     // Other intervals are treated as new. This includes local intervals created
1027     // for blocks with multiple uses, and anything created by DCE.
1028   }
1029 
1030   if (VerifyEnabled)
1031     MF->verify(this, "After splitting live range around region");
1032 }
1033 
1034 MCRegister RAGreedy::tryRegionSplit(const LiveInterval &VirtReg,
1035                                     AllocationOrder &Order,
1036                                     SmallVectorImpl<Register> &NewVRegs) {
1037   if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1038     return MCRegister::NoRegister;
1039   unsigned NumCands = 0;
1040   BlockFrequency SpillCost = calcSpillCost();
1041   BlockFrequency BestCost;
1042 
1043   // Check if we can split this live range around a compact region.
1044   bool HasCompact = calcCompactRegion(GlobalCand.front());
1045   if (HasCompact) {
1046     // Yes, keep GlobalCand[0] as the compact region candidate.
1047     NumCands = 1;
1048     BestCost = BlockFrequency::getMaxFrequency();
1049   } else {
1050     // No benefit from the compact region, our fallback will be per-block
1051     // splitting. Make sure we find a solution that is cheaper than spilling.
1052     BestCost = SpillCost;
1053     LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1054                MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1055   }
1056 
1057   unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
1058                                                NumCands, false /*IgnoreCSR*/);
1059 
1060   // No solutions found, fall back to single block splitting.
1061   if (!HasCompact && BestCand == NoCand)
1062     return MCRegister::NoRegister;
1063 
1064   return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1065 }
1066 
1067 unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval &VirtReg,
1068                                             AllocationOrder &Order,
1069                                             BlockFrequency &BestCost,
1070                                             unsigned &NumCands,
1071                                             bool IgnoreCSR) {
1072   unsigned BestCand = NoCand;
1073   for (MCPhysReg PhysReg : Order) {
1074     assert(PhysReg);
1075     if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg))
1076       continue;
1077 
1078     // Discard bad candidates before we run out of interference cache cursors.
1079     // This will only affect register classes with a lot of registers (>32).
1080     if (NumCands == IntfCache.getMaxCursors()) {
1081       unsigned WorstCount = ~0u;
1082       unsigned Worst = 0;
1083       for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1084         if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1085           continue;
1086         unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1087         if (Count < WorstCount) {
1088           Worst = CandIndex;
1089           WorstCount = Count;
1090         }
1091       }
1092       --NumCands;
1093       GlobalCand[Worst] = GlobalCand[NumCands];
1094       if (BestCand == NumCands)
1095         BestCand = Worst;
1096     }
1097 
1098     if (GlobalCand.size() <= NumCands)
1099       GlobalCand.resize(NumCands+1);
1100     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1101     Cand.reset(IntfCache, PhysReg);
1102 
1103     SpillPlacer->prepare(Cand.LiveBundles);
1104     BlockFrequency Cost;
1105     if (!addSplitConstraints(Cand.Intf, Cost)) {
1106       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1107       continue;
1108     }
1109     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = ";
1110                MBFI->printBlockFreq(dbgs(), Cost));
1111     if (Cost >= BestCost) {
1112       LLVM_DEBUG({
1113         if (BestCand == NoCand)
1114           dbgs() << " worse than no bundles\n";
1115         else
1116           dbgs() << " worse than "
1117                  << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1118       });
1119       continue;
1120     }
1121     if (!growRegion(Cand)) {
1122       LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1123       continue;
1124     }
1125 
1126     SpillPlacer->finish();
1127 
1128     // No live bundles, defer to splitSingleBlocks().
1129     if (!Cand.LiveBundles.any()) {
1130       LLVM_DEBUG(dbgs() << " no bundles.\n");
1131       continue;
1132     }
1133 
1134     Cost += calcGlobalSplitCost(Cand, Order);
1135     LLVM_DEBUG({
1136       dbgs() << ", total = ";
1137       MBFI->printBlockFreq(dbgs(), Cost) << " with bundles";
1138       for (int I : Cand.LiveBundles.set_bits())
1139         dbgs() << " EB#" << I;
1140       dbgs() << ".\n";
1141     });
1142     if (Cost < BestCost) {
1143       BestCand = NumCands;
1144       BestCost = Cost;
1145     }
1146     ++NumCands;
1147   }
1148 
1149   return BestCand;
1150 }
1151 
1152 unsigned RAGreedy::doRegionSplit(const LiveInterval &VirtReg, unsigned BestCand,
1153                                  bool HasCompact,
1154                                  SmallVectorImpl<Register> &NewVRegs) {
1155   SmallVector<unsigned, 8> UsedCands;
1156   // Prepare split editor.
1157   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1158   SE->reset(LREdit, SplitSpillMode);
1159 
1160   // Assign all edge bundles to the preferred candidate, or NoCand.
1161   BundleCand.assign(Bundles->getNumBundles(), NoCand);
1162 
1163   // Assign bundles for the best candidate region.
1164   if (BestCand != NoCand) {
1165     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1166     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1167       UsedCands.push_back(BestCand);
1168       Cand.IntvIdx = SE->openIntv();
1169       LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1170                         << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1171       (void)B;
1172     }
1173   }
1174 
1175   // Assign bundles for the compact region.
1176   if (HasCompact) {
1177     GlobalSplitCandidate &Cand = GlobalCand.front();
1178     assert(!Cand.PhysReg && "Compact region has no physreg");
1179     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1180       UsedCands.push_back(0);
1181       Cand.IntvIdx = SE->openIntv();
1182       LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1183                         << " bundles, intv " << Cand.IntvIdx << ".\n");
1184       (void)B;
1185     }
1186   }
1187 
1188   splitAroundRegion(LREdit, UsedCands);
1189   return 0;
1190 }
1191 
1192 //===----------------------------------------------------------------------===//
1193 //                            Per-Block Splitting
1194 //===----------------------------------------------------------------------===//
1195 
1196 /// tryBlockSplit - Split a global live range around every block with uses. This
1197 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1198 /// they don't allocate.
1199 unsigned RAGreedy::tryBlockSplit(const LiveInterval &VirtReg,
1200                                  AllocationOrder &Order,
1201                                  SmallVectorImpl<Register> &NewVRegs) {
1202   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1203   Register Reg = VirtReg.reg();
1204   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1205   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1206   SE->reset(LREdit, SplitSpillMode);
1207   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1208   for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1209     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1210       SE->splitSingleBlock(BI);
1211   }
1212   // No blocks were split.
1213   if (LREdit.empty())
1214     return 0;
1215 
1216   // We did split for some blocks.
1217   SmallVector<unsigned, 8> IntvMap;
1218   SE->finish(&IntvMap);
1219 
1220   // Tell LiveDebugVariables about the new ranges.
1221   DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1222 
1223   // Sort out the new intervals created by splitting. The remainder interval
1224   // goes straight to spilling, the new local ranges get to stay RS_New.
1225   for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1226     const LiveInterval &LI = LIS->getInterval(LREdit.get(I));
1227     if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0)
1228       ExtraInfo->setStage(LI, RS_Spill);
1229   }
1230 
1231   if (VerifyEnabled)
1232     MF->verify(this, "After splitting live range around basic blocks");
1233   return 0;
1234 }
1235 
1236 //===----------------------------------------------------------------------===//
1237 //                         Per-Instruction Splitting
1238 //===----------------------------------------------------------------------===//
1239 
1240 /// Get the number of allocatable registers that match the constraints of \p Reg
1241 /// on \p MI and that are also in \p SuperRC.
1242 static unsigned getNumAllocatableRegsForConstraints(
1243     const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC,
1244     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1245     const RegisterClassInfo &RCI) {
1246   assert(SuperRC && "Invalid register class");
1247 
1248   const TargetRegisterClass *ConstrainedRC =
1249       MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
1250                                              /* ExploreBundle */ true);
1251   if (!ConstrainedRC)
1252     return 0;
1253   return RCI.getNumAllocatableRegs(ConstrainedRC);
1254 }
1255 
1256 static LaneBitmask getInstReadLaneMask(const MachineRegisterInfo &MRI,
1257                                        const TargetRegisterInfo &TRI,
1258                                        const MachineInstr &MI, Register Reg) {
1259   LaneBitmask Mask;
1260   for (const MachineOperand &MO : MI.operands()) {
1261     if (!MO.isReg() || MO.getReg() != Reg)
1262       continue;
1263 
1264     unsigned SubReg = MO.getSubReg();
1265     if (SubReg == 0 && MO.isUse()) {
1266       Mask |= MRI.getMaxLaneMaskForVReg(Reg);
1267       continue;
1268     }
1269 
1270     LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(SubReg);
1271     if (MO.isDef()) {
1272       if (!MO.isUndef())
1273         Mask |= ~SubRegMask;
1274     } else
1275       Mask |= SubRegMask;
1276   }
1277 
1278   return Mask;
1279 }
1280 
1281 /// Return true if \p MI at \P Use reads a subset of the lanes live in \p
1282 /// VirtReg.
1283 static bool readsLaneSubset(const MachineRegisterInfo &MRI,
1284                             const MachineInstr *MI, const LiveInterval &VirtReg,
1285                             const TargetRegisterInfo *TRI, SlotIndex Use,
1286                             const TargetInstrInfo *TII) {
1287   // Early check the common case.
1288   auto DestSrc = TII->isCopyInstr(*MI);
1289   if (DestSrc &&
1290       DestSrc->Destination->getSubReg() == DestSrc->Source->getSubReg())
1291     return false;
1292 
1293   // FIXME: We're only considering uses, but should be consider defs too?
1294   LaneBitmask ReadMask = getInstReadLaneMask(MRI, *TRI, *MI, VirtReg.reg());
1295 
1296   LaneBitmask LiveAtMask;
1297   for (const LiveInterval::SubRange &S : VirtReg.subranges()) {
1298     if (S.liveAt(Use))
1299       LiveAtMask |= S.LaneMask;
1300   }
1301 
1302   // If the live lanes aren't different from the lanes used by the instruction,
1303   // this doesn't help.
1304   return (ReadMask & ~(LiveAtMask & TRI->getCoveringLanes())).any();
1305 }
1306 
1307 /// tryInstructionSplit - Split a live range around individual instructions.
1308 /// This is normally not worthwhile since the spiller is doing essentially the
1309 /// same thing. However, when the live range is in a constrained register
1310 /// class, it may help to insert copies such that parts of the live range can
1311 /// be moved to a larger register class.
1312 ///
1313 /// This is similar to spilling to a larger register class.
1314 unsigned RAGreedy::tryInstructionSplit(const LiveInterval &VirtReg,
1315                                        AllocationOrder &Order,
1316                                        SmallVectorImpl<Register> &NewVRegs) {
1317   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1318   // There is no point to this if there are no larger sub-classes.
1319 
1320   bool SplitSubClass = true;
1321   if (!RegClassInfo.isProperSubClass(CurRC)) {
1322     if (!VirtReg.hasSubRanges())
1323       return 0;
1324     SplitSubClass = false;
1325   }
1326 
1327   // Always enable split spill mode, since we're effectively spilling to a
1328   // register.
1329   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1330   SE->reset(LREdit, SplitEditor::SM_Size);
1331 
1332   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1333   if (Uses.size() <= 1)
1334     return 0;
1335 
1336   LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
1337                     << " individual instrs.\n");
1338 
1339   const TargetRegisterClass *SuperRC =
1340       TRI->getLargestLegalSuperClass(CurRC, *MF);
1341   unsigned SuperRCNumAllocatableRegs =
1342       RegClassInfo.getNumAllocatableRegs(SuperRC);
1343   // Split around every non-copy instruction if this split will relax
1344   // the constraints on the virtual register.
1345   // Otherwise, splitting just inserts uncoalescable copies that do not help
1346   // the allocation.
1347   for (const SlotIndex Use : Uses) {
1348     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) {
1349       if (TII->isFullCopyInstr(*MI) ||
1350           (SplitSubClass &&
1351            SuperRCNumAllocatableRegs ==
1352                getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
1353                                                    TII, TRI, RegClassInfo)) ||
1354           // TODO: Handle split for subranges with subclass constraints?
1355           (!SplitSubClass && VirtReg.hasSubRanges() &&
1356            !readsLaneSubset(*MRI, MI, VirtReg, TRI, Use, TII))) {
1357         LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
1358         continue;
1359       }
1360     }
1361     SE->openIntv();
1362     SlotIndex SegStart = SE->enterIntvBefore(Use);
1363     SlotIndex SegStop = SE->leaveIntvAfter(Use);
1364     SE->useIntv(SegStart, SegStop);
1365   }
1366 
1367   if (LREdit.empty()) {
1368     LLVM_DEBUG(dbgs() << "All uses were copies.\n");
1369     return 0;
1370   }
1371 
1372   SmallVector<unsigned, 8> IntvMap;
1373   SE->finish(&IntvMap);
1374   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1375   // Assign all new registers to RS_Spill. This was the last chance.
1376   ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1377   return 0;
1378 }
1379 
1380 //===----------------------------------------------------------------------===//
1381 //                             Local Splitting
1382 //===----------------------------------------------------------------------===//
1383 
1384 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1385 /// in order to use PhysReg between two entries in SA->UseSlots.
1386 ///
1387 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
1388 ///
1389 void RAGreedy::calcGapWeights(MCRegister PhysReg,
1390                               SmallVectorImpl<float> &GapWeight) {
1391   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1392   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1393   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1394   const unsigned NumGaps = Uses.size()-1;
1395 
1396   // Start and end points for the interference check.
1397   SlotIndex StartIdx =
1398     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1399   SlotIndex StopIdx =
1400     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1401 
1402   GapWeight.assign(NumGaps, 0.0f);
1403 
1404   // Add interference from each overlapping register.
1405   for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
1406     if (!Matrix->query(const_cast<LiveInterval &>(SA->getParent()), Unit)
1407              .checkInterference())
1408       continue;
1409 
1410     // We know that VirtReg is a continuous interval from FirstInstr to
1411     // LastInstr, so we don't need InterferenceQuery.
1412     //
1413     // Interference that overlaps an instruction is counted in both gaps
1414     // surrounding the instruction. The exception is interference before
1415     // StartIdx and after StopIdx.
1416     //
1417     LiveIntervalUnion::SegmentIter IntI =
1418         Matrix->getLiveUnions()[Unit].find(StartIdx);
1419     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1420       // Skip the gaps before IntI.
1421       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1422         if (++Gap == NumGaps)
1423           break;
1424       if (Gap == NumGaps)
1425         break;
1426 
1427       // Update the gaps covered by IntI.
1428       const float weight = IntI.value()->weight();
1429       for (; Gap != NumGaps; ++Gap) {
1430         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1431         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1432           break;
1433       }
1434       if (Gap == NumGaps)
1435         break;
1436     }
1437   }
1438 
1439   // Add fixed interference.
1440   for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
1441     const LiveRange &LR = LIS->getRegUnit(Unit);
1442     LiveRange::const_iterator I = LR.find(StartIdx);
1443     LiveRange::const_iterator E = LR.end();
1444 
1445     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1446     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1447       while (Uses[Gap+1].getBoundaryIndex() < I->start)
1448         if (++Gap == NumGaps)
1449           break;
1450       if (Gap == NumGaps)
1451         break;
1452 
1453       for (; Gap != NumGaps; ++Gap) {
1454         GapWeight[Gap] = huge_valf;
1455         if (Uses[Gap+1].getBaseIndex() >= I->end)
1456           break;
1457       }
1458       if (Gap == NumGaps)
1459         break;
1460     }
1461   }
1462 }
1463 
1464 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1465 /// basic block.
1466 ///
1467 unsigned RAGreedy::tryLocalSplit(const LiveInterval &VirtReg,
1468                                  AllocationOrder &Order,
1469                                  SmallVectorImpl<Register> &NewVRegs) {
1470   // TODO: the function currently only handles a single UseBlock; it should be
1471   // possible to generalize.
1472   if (SA->getUseBlocks().size() != 1)
1473     return 0;
1474 
1475   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1476 
1477   // Note that it is possible to have an interval that is live-in or live-out
1478   // while only covering a single block - A phi-def can use undef values from
1479   // predecessors, and the block could be a single-block loop.
1480   // We don't bother doing anything clever about such a case, we simply assume
1481   // that the interval is continuous from FirstInstr to LastInstr. We should
1482   // make sure that we don't do anything illegal to such an interval, though.
1483 
1484   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1485   if (Uses.size() <= 2)
1486     return 0;
1487   const unsigned NumGaps = Uses.size()-1;
1488 
1489   LLVM_DEBUG({
1490     dbgs() << "tryLocalSplit: ";
1491     for (const auto &Use : Uses)
1492       dbgs() << ' ' << Use;
1493     dbgs() << '\n';
1494   });
1495 
1496   // If VirtReg is live across any register mask operands, compute a list of
1497   // gaps with register masks.
1498   SmallVector<unsigned, 8> RegMaskGaps;
1499   if (Matrix->checkRegMaskInterference(VirtReg)) {
1500     // Get regmask slots for the whole block.
1501     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1502     LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1503     // Constrain to VirtReg's live range.
1504     unsigned RI =
1505         llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
1506     unsigned RE = RMS.size();
1507     for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
1508       // Look for Uses[I] <= RMS <= Uses[I + 1].
1509       assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
1510       if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
1511         continue;
1512       // Skip a regmask on the same instruction as the last use. It doesn't
1513       // overlap the live range.
1514       if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
1515         break;
1516       LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
1517                         << Uses[I + 1]);
1518       RegMaskGaps.push_back(I);
1519       // Advance ri to the next gap. A regmask on one of the uses counts in
1520       // both gaps.
1521       while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
1522         ++RI;
1523     }
1524     LLVM_DEBUG(dbgs() << '\n');
1525   }
1526 
1527   // Since we allow local split results to be split again, there is a risk of
1528   // creating infinite loops. It is tempting to require that the new live
1529   // ranges have less instructions than the original. That would guarantee
1530   // convergence, but it is too strict. A live range with 3 instructions can be
1531   // split 2+3 (including the COPY), and we want to allow that.
1532   //
1533   // Instead we use these rules:
1534   //
1535   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1536   //    noop split, of course).
1537   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1538   //    the new ranges must have fewer instructions than before the split.
1539   // 3. New ranges with the same number of instructions are marked RS_Split2,
1540   //    smaller ranges are marked RS_New.
1541   //
1542   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1543   // excessive splitting and infinite loops.
1544   //
1545   bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2;
1546 
1547   // Best split candidate.
1548   unsigned BestBefore = NumGaps;
1549   unsigned BestAfter = 0;
1550   float BestDiff = 0;
1551 
1552   const float blockFreq =
1553     SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1554     (1.0f / MBFI->getEntryFreq());
1555   SmallVector<float, 8> GapWeight;
1556 
1557   for (MCPhysReg PhysReg : Order) {
1558     assert(PhysReg);
1559     // Keep track of the largest spill weight that would need to be evicted in
1560     // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
1561     calcGapWeights(PhysReg, GapWeight);
1562 
1563     // Remove any gaps with regmask clobbers.
1564     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1565       for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
1566         GapWeight[RegMaskGaps[I]] = huge_valf;
1567 
1568     // Try to find the best sequence of gaps to close.
1569     // The new spill weight must be larger than any gap interference.
1570 
1571     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1572     unsigned SplitBefore = 0, SplitAfter = 1;
1573 
1574     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1575     // It is the spill weight that needs to be evicted.
1576     float MaxGap = GapWeight[0];
1577 
1578     while (true) {
1579       // Live before/after split?
1580       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1581       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1582 
1583       LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
1584                         << '-' << Uses[SplitAfter] << " I=" << MaxGap);
1585 
1586       // Stop before the interval gets so big we wouldn't be making progress.
1587       if (!LiveBefore && !LiveAfter) {
1588         LLVM_DEBUG(dbgs() << " all\n");
1589         break;
1590       }
1591       // Should the interval be extended or shrunk?
1592       bool Shrink = true;
1593 
1594       // How many gaps would the new range have?
1595       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1596 
1597       // Legally, without causing looping?
1598       bool Legal = !ProgressRequired || NewGaps < NumGaps;
1599 
1600       if (Legal && MaxGap < huge_valf) {
1601         // Estimate the new spill weight. Each instruction reads or writes the
1602         // register. Conservatively assume there are no read-modify-write
1603         // instructions.
1604         //
1605         // Try to guess the size of the new interval.
1606         const float EstWeight = normalizeSpillWeight(
1607             blockFreq * (NewGaps + 1),
1608             Uses[SplitBefore].distance(Uses[SplitAfter]) +
1609                 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
1610             1);
1611         // Would this split be possible to allocate?
1612         // Never allocate all gaps, we wouldn't be making progress.
1613         LLVM_DEBUG(dbgs() << " w=" << EstWeight);
1614         if (EstWeight * Hysteresis >= MaxGap) {
1615           Shrink = false;
1616           float Diff = EstWeight - MaxGap;
1617           if (Diff > BestDiff) {
1618             LLVM_DEBUG(dbgs() << " (best)");
1619             BestDiff = Hysteresis * Diff;
1620             BestBefore = SplitBefore;
1621             BestAfter = SplitAfter;
1622           }
1623         }
1624       }
1625 
1626       // Try to shrink.
1627       if (Shrink) {
1628         if (++SplitBefore < SplitAfter) {
1629           LLVM_DEBUG(dbgs() << " shrink\n");
1630           // Recompute the max when necessary.
1631           if (GapWeight[SplitBefore - 1] >= MaxGap) {
1632             MaxGap = GapWeight[SplitBefore];
1633             for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
1634               MaxGap = std::max(MaxGap, GapWeight[I]);
1635           }
1636           continue;
1637         }
1638         MaxGap = 0;
1639       }
1640 
1641       // Try to extend the interval.
1642       if (SplitAfter >= NumGaps) {
1643         LLVM_DEBUG(dbgs() << " end\n");
1644         break;
1645       }
1646 
1647       LLVM_DEBUG(dbgs() << " extend\n");
1648       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1649     }
1650   }
1651 
1652   // Didn't find any candidates?
1653   if (BestBefore == NumGaps)
1654     return 0;
1655 
1656   LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
1657                     << Uses[BestAfter] << ", " << BestDiff << ", "
1658                     << (BestAfter - BestBefore + 1) << " instrs\n");
1659 
1660   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1661   SE->reset(LREdit);
1662 
1663   SE->openIntv();
1664   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1665   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1666   SE->useIntv(SegStart, SegStop);
1667   SmallVector<unsigned, 8> IntvMap;
1668   SE->finish(&IntvMap);
1669   DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1670   // If the new range has the same number of instructions as before, mark it as
1671   // RS_Split2 so the next split will be forced to make progress. Otherwise,
1672   // leave the new intervals as RS_New so they can compete.
1673   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1674   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1675   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1676   if (NewGaps >= NumGaps) {
1677     LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:");
1678     assert(!ProgressRequired && "Didn't make progress when it was required.");
1679     for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
1680       if (IntvMap[I] == 1) {
1681         ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
1682         LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I)));
1683       }
1684     LLVM_DEBUG(dbgs() << '\n');
1685   }
1686   ++NumLocalSplits;
1687 
1688   return 0;
1689 }
1690 
1691 //===----------------------------------------------------------------------===//
1692 //                          Live Range Splitting
1693 //===----------------------------------------------------------------------===//
1694 
1695 /// trySplit - Try to split VirtReg or one of its interferences, making it
1696 /// assignable.
1697 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1698 unsigned RAGreedy::trySplit(const LiveInterval &VirtReg, AllocationOrder &Order,
1699                             SmallVectorImpl<Register> &NewVRegs,
1700                             const SmallVirtRegSet &FixedRegisters) {
1701   // Ranges must be Split2 or less.
1702   if (ExtraInfo->getStage(VirtReg) >= RS_Spill)
1703     return 0;
1704 
1705   // Local intervals are handled separately.
1706   if (LIS->intervalIsInOneMBB(VirtReg)) {
1707     NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
1708                        TimerGroupDescription, TimePassesIsEnabled);
1709     SA->analyze(&VirtReg);
1710     Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1711     if (PhysReg || !NewVRegs.empty())
1712       return PhysReg;
1713     return tryInstructionSplit(VirtReg, Order, NewVRegs);
1714   }
1715 
1716   NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
1717                      TimerGroupDescription, TimePassesIsEnabled);
1718 
1719   SA->analyze(&VirtReg);
1720 
1721   // First try to split around a region spanning multiple blocks. RS_Split2
1722   // ranges already made dubious progress with region splitting, so they go
1723   // straight to single block splitting.
1724   if (ExtraInfo->getStage(VirtReg) < RS_Split2) {
1725     MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1726     if (PhysReg || !NewVRegs.empty())
1727       return PhysReg;
1728   }
1729 
1730   // Then isolate blocks.
1731   return tryBlockSplit(VirtReg, Order, NewVRegs);
1732 }
1733 
1734 //===----------------------------------------------------------------------===//
1735 //                          Last Chance Recoloring
1736 //===----------------------------------------------------------------------===//
1737 
1738 /// Return true if \p reg has any tied def operand.
1739 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
1740   for (const MachineOperand &MO : MRI->def_operands(reg))
1741     if (MO.isTied())
1742       return true;
1743 
1744   return false;
1745 }
1746 
1747 /// Return true if the existing assignment of \p Intf overlaps, but is not the
1748 /// same, as \p PhysReg.
1749 static bool assignedRegPartiallyOverlaps(const TargetRegisterInfo &TRI,
1750                                          const VirtRegMap &VRM,
1751                                          MCRegister PhysReg,
1752                                          const LiveInterval &Intf) {
1753   MCRegister AssignedReg = VRM.getPhys(Intf.reg());
1754   if (PhysReg == AssignedReg)
1755     return false;
1756   return TRI.regsOverlap(PhysReg, AssignedReg);
1757 }
1758 
1759 /// mayRecolorAllInterferences - Check if the virtual registers that
1760 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
1761 /// recolored to free \p PhysReg.
1762 /// When true is returned, \p RecoloringCandidates has been augmented with all
1763 /// the live intervals that need to be recolored in order to free \p PhysReg
1764 /// for \p VirtReg.
1765 /// \p FixedRegisters contains all the virtual registers that cannot be
1766 /// recolored.
1767 bool RAGreedy::mayRecolorAllInterferences(
1768     MCRegister PhysReg, const LiveInterval &VirtReg,
1769     SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters) {
1770   const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1771 
1772   for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
1773     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, Unit);
1774     // If there is LastChanceRecoloringMaxInterference or more interferences,
1775     // chances are one would not be recolorable.
1776     if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >=
1777             LastChanceRecoloringMaxInterference &&
1778         !ExhaustiveSearch) {
1779       LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
1780       CutOffInfo |= CO_Interf;
1781       return false;
1782     }
1783     for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
1784       // If Intf is done and sits on the same register class as VirtReg, it
1785       // would not be recolorable as it is in the same state as
1786       // VirtReg. However there are at least two exceptions.
1787       //
1788       // If VirtReg has tied defs and Intf doesn't, then
1789       // there is still a point in examining if it can be recolorable.
1790       //
1791       // Additionally, if the register class has overlapping tuple members, it
1792       // may still be recolorable using a different tuple. This is more likely
1793       // if the existing assignment aliases with the candidate.
1794       //
1795       if (((ExtraInfo->getStage(*Intf) == RS_Done &&
1796             MRI->getRegClass(Intf->reg()) == CurRC &&
1797             !assignedRegPartiallyOverlaps(*TRI, *VRM, PhysReg, *Intf)) &&
1798            !(hasTiedDef(MRI, VirtReg.reg()) &&
1799              !hasTiedDef(MRI, Intf->reg()))) ||
1800           FixedRegisters.count(Intf->reg())) {
1801         LLVM_DEBUG(
1802             dbgs() << "Early abort: the interference is not recolorable.\n");
1803         return false;
1804       }
1805       RecoloringCandidates.insert(Intf);
1806     }
1807   }
1808   return true;
1809 }
1810 
1811 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
1812 /// its interferences.
1813 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
1814 /// virtual register that was using it. The recoloring process may recursively
1815 /// use the last chance recoloring. Therefore, when a virtual register has been
1816 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
1817 /// be last-chance-recolored again during this recoloring "session".
1818 /// E.g.,
1819 /// Let
1820 /// vA can use {R1, R2    }
1821 /// vB can use {    R2, R3}
1822 /// vC can use {R1        }
1823 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
1824 /// instance) and they all interfere.
1825 ///
1826 /// vA is assigned R1
1827 /// vB is assigned R2
1828 /// vC tries to evict vA but vA is already done.
1829 /// Regular register allocation fails.
1830 ///
1831 /// Last chance recoloring kicks in:
1832 /// vC does as if vA was evicted => vC uses R1.
1833 /// vC is marked as fixed.
1834 /// vA needs to find a color.
1835 /// None are available.
1836 /// vA cannot evict vC: vC is a fixed virtual register now.
1837 /// vA does as if vB was evicted => vA uses R2.
1838 /// vB needs to find a color.
1839 /// R3 is available.
1840 /// Recoloring => vC = R1, vA = R2, vB = R3
1841 ///
1842 /// \p Order defines the preferred allocation order for \p VirtReg.
1843 /// \p NewRegs will contain any new virtual register that have been created
1844 /// (split, spill) during the process and that must be assigned.
1845 /// \p FixedRegisters contains all the virtual registers that cannot be
1846 /// recolored.
1847 ///
1848 /// \p RecolorStack tracks the original assignments of successfully recolored
1849 /// registers.
1850 ///
1851 /// \p Depth gives the current depth of the last chance recoloring.
1852 /// \return a physical register that can be used for VirtReg or ~0u if none
1853 /// exists.
1854 unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval &VirtReg,
1855                                            AllocationOrder &Order,
1856                                            SmallVectorImpl<Register> &NewVRegs,
1857                                            SmallVirtRegSet &FixedRegisters,
1858                                            RecoloringStack &RecolorStack,
1859                                            unsigned Depth) {
1860   if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
1861     return ~0u;
1862 
1863   LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
1864 
1865   const ssize_t EntryStackSize = RecolorStack.size();
1866 
1867   // Ranges must be Done.
1868   assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
1869          "Last chance recoloring should really be last chance");
1870   // Set the max depth to LastChanceRecoloringMaxDepth.
1871   // We may want to reconsider that if we end up with a too large search space
1872   // for target with hundreds of registers.
1873   // Indeed, in that case we may want to cut the search space earlier.
1874   if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
1875     LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
1876     CutOffInfo |= CO_Depth;
1877     return ~0u;
1878   }
1879 
1880   // Set of Live intervals that will need to be recolored.
1881   SmallLISet RecoloringCandidates;
1882 
1883   // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
1884   // this recoloring "session".
1885   assert(!FixedRegisters.count(VirtReg.reg()));
1886   FixedRegisters.insert(VirtReg.reg());
1887   SmallVector<Register, 4> CurrentNewVRegs;
1888 
1889   for (MCRegister PhysReg : Order) {
1890     assert(PhysReg.isValid());
1891     LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
1892                       << printReg(PhysReg, TRI) << '\n');
1893     RecoloringCandidates.clear();
1894     CurrentNewVRegs.clear();
1895 
1896     // It is only possible to recolor virtual register interference.
1897     if (Matrix->checkInterference(VirtReg, PhysReg) >
1898         LiveRegMatrix::IK_VirtReg) {
1899       LLVM_DEBUG(
1900           dbgs() << "Some interferences are not with virtual registers.\n");
1901 
1902       continue;
1903     }
1904 
1905     // Early give up on this PhysReg if it is obvious we cannot recolor all
1906     // the interferences.
1907     if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
1908                                     FixedRegisters)) {
1909       LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
1910       continue;
1911     }
1912 
1913     // RecoloringCandidates contains all the virtual registers that interfere
1914     // with VirtReg on PhysReg (or one of its aliases). Enqueue them for
1915     // recoloring and perform the actual recoloring.
1916     PQueue RecoloringQueue;
1917     for (const LiveInterval *RC : RecoloringCandidates) {
1918       Register ItVirtReg = RC->reg();
1919       enqueue(RecoloringQueue, RC);
1920       assert(VRM->hasPhys(ItVirtReg) &&
1921              "Interferences are supposed to be with allocated variables");
1922 
1923       // Record the current allocation.
1924       RecolorStack.push_back(std::make_pair(RC, VRM->getPhys(ItVirtReg)));
1925 
1926       // unset the related struct.
1927       Matrix->unassign(*RC);
1928     }
1929 
1930     // Do as if VirtReg was assigned to PhysReg so that the underlying
1931     // recoloring has the right information about the interferes and
1932     // available colors.
1933     Matrix->assign(VirtReg, PhysReg);
1934 
1935     // Save the current recoloring state.
1936     // If we cannot recolor all the interferences, we will have to start again
1937     // at this point for the next physical register.
1938     SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
1939     if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
1940                                 FixedRegisters, RecolorStack, Depth)) {
1941       // Push the queued vregs into the main queue.
1942       for (Register NewVReg : CurrentNewVRegs)
1943         NewVRegs.push_back(NewVReg);
1944       // Do not mess up with the global assignment process.
1945       // I.e., VirtReg must be unassigned.
1946       Matrix->unassign(VirtReg);
1947       return PhysReg;
1948     }
1949 
1950     LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
1951                       << printReg(PhysReg, TRI) << '\n');
1952 
1953     // The recoloring attempt failed, undo the changes.
1954     FixedRegisters = SaveFixedRegisters;
1955     Matrix->unassign(VirtReg);
1956 
1957     // For a newly created vreg which is also in RecoloringCandidates,
1958     // don't add it to NewVRegs because its physical register will be restored
1959     // below. Other vregs in CurrentNewVRegs are created by calling
1960     // selectOrSplit and should be added into NewVRegs.
1961     for (Register R : CurrentNewVRegs) {
1962       if (RecoloringCandidates.count(&LIS->getInterval(R)))
1963         continue;
1964       NewVRegs.push_back(R);
1965     }
1966 
1967     // Roll back our unsuccessful recoloring. Also roll back any successful
1968     // recolorings in any recursive recoloring attempts, since it's possible
1969     // they would have introduced conflicts with assignments we will be
1970     // restoring further up the stack. Perform all unassignments prior to
1971     // reassigning, since sub-recolorings may have conflicted with the registers
1972     // we are going to restore to their original assignments.
1973     for (ssize_t I = RecolorStack.size() - 1; I >= EntryStackSize; --I) {
1974       const LiveInterval *LI;
1975       MCRegister PhysReg;
1976       std::tie(LI, PhysReg) = RecolorStack[I];
1977 
1978       if (VRM->hasPhys(LI->reg()))
1979         Matrix->unassign(*LI);
1980     }
1981 
1982     for (size_t I = EntryStackSize; I != RecolorStack.size(); ++I) {
1983       const LiveInterval *LI;
1984       MCRegister PhysReg;
1985       std::tie(LI, PhysReg) = RecolorStack[I];
1986       if (!LI->empty() && !MRI->reg_nodbg_empty(LI->reg()))
1987         Matrix->assign(*LI, PhysReg);
1988     }
1989 
1990     // Pop the stack of recoloring attempts.
1991     RecolorStack.resize(EntryStackSize);
1992   }
1993 
1994   // Last chance recoloring did not worked either, give up.
1995   return ~0u;
1996 }
1997 
1998 /// tryRecoloringCandidates - Try to assign a new color to every register
1999 /// in \RecoloringQueue.
2000 /// \p NewRegs will contain any new virtual register created during the
2001 /// recoloring process.
2002 /// \p FixedRegisters[in/out] contains all the registers that have been
2003 /// recolored.
2004 /// \return true if all virtual registers in RecoloringQueue were successfully
2005 /// recolored, false otherwise.
2006 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2007                                        SmallVectorImpl<Register> &NewVRegs,
2008                                        SmallVirtRegSet &FixedRegisters,
2009                                        RecoloringStack &RecolorStack,
2010                                        unsigned Depth) {
2011   while (!RecoloringQueue.empty()) {
2012     const LiveInterval *LI = dequeue(RecoloringQueue);
2013     LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2014     MCRegister PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters,
2015                                            RecolorStack, Depth + 1);
2016     // When splitting happens, the live-range may actually be empty.
2017     // In that case, this is okay to continue the recoloring even
2018     // if we did not find an alternative color for it. Indeed,
2019     // there will not be anything to color for LI in the end.
2020     if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2021       return false;
2022 
2023     if (!PhysReg) {
2024       assert(LI->empty() && "Only empty live-range do not require a register");
2025       LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2026                         << " succeeded. Empty LI.\n");
2027       continue;
2028     }
2029     LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2030                       << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2031 
2032     Matrix->assign(*LI, PhysReg);
2033     FixedRegisters.insert(LI->reg());
2034   }
2035   return true;
2036 }
2037 
2038 //===----------------------------------------------------------------------===//
2039 //                            Main Entry Point
2040 //===----------------------------------------------------------------------===//
2041 
2042 MCRegister RAGreedy::selectOrSplit(const LiveInterval &VirtReg,
2043                                    SmallVectorImpl<Register> &NewVRegs) {
2044   CutOffInfo = CO_None;
2045   LLVMContext &Ctx = MF->getFunction().getContext();
2046   SmallVirtRegSet FixedRegisters;
2047   RecoloringStack RecolorStack;
2048   MCRegister Reg =
2049       selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters, RecolorStack);
2050   if (Reg == ~0U && (CutOffInfo != CO_None)) {
2051     uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2052     if (CutOffEncountered == CO_Depth)
2053       Ctx.emitError("register allocation failed: maximum depth for recoloring "
2054                     "reached. Use -fexhaustive-register-search to skip "
2055                     "cutoffs");
2056     else if (CutOffEncountered == CO_Interf)
2057       Ctx.emitError("register allocation failed: maximum interference for "
2058                     "recoloring reached. Use -fexhaustive-register-search "
2059                     "to skip cutoffs");
2060     else if (CutOffEncountered == (CO_Depth | CO_Interf))
2061       Ctx.emitError("register allocation failed: maximum interference and "
2062                     "depth for recoloring reached. Use "
2063                     "-fexhaustive-register-search to skip cutoffs");
2064   }
2065   return Reg;
2066 }
2067 
2068 /// Using a CSR for the first time has a cost because it causes push|pop
2069 /// to be added to prologue|epilogue. Splitting a cold section of the live
2070 /// range can have lower cost than using the CSR for the first time;
2071 /// Spilling a live range in the cold path can have lower cost than using
2072 /// the CSR for the first time. Returns the physical register if we decide
2073 /// to use the CSR; otherwise return 0.
2074 MCRegister RAGreedy::tryAssignCSRFirstTime(
2075     const LiveInterval &VirtReg, AllocationOrder &Order, MCRegister PhysReg,
2076     uint8_t &CostPerUseLimit, SmallVectorImpl<Register> &NewVRegs) {
2077   if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2078     // We choose spill over using the CSR for the first time if the spill cost
2079     // is lower than CSRCost.
2080     SA->analyze(&VirtReg);
2081     if (calcSpillCost() >= CSRCost)
2082       return PhysReg;
2083 
2084     // We are going to spill, set CostPerUseLimit to 1 to make sure that
2085     // we will not use a callee-saved register in tryEvict.
2086     CostPerUseLimit = 1;
2087     return 0;
2088   }
2089   if (ExtraInfo->getStage(VirtReg) < RS_Split) {
2090     // We choose pre-splitting over using the CSR for the first time if
2091     // the cost of splitting is lower than CSRCost.
2092     SA->analyze(&VirtReg);
2093     unsigned NumCands = 0;
2094     BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2095     unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2096                                                  NumCands, true /*IgnoreCSR*/);
2097     if (BestCand == NoCand)
2098       // Use the CSR if we can't find a region split below CSRCost.
2099       return PhysReg;
2100 
2101     // Perform the actual pre-splitting.
2102     doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2103     return 0;
2104   }
2105   return PhysReg;
2106 }
2107 
2108 void RAGreedy::aboutToRemoveInterval(const LiveInterval &LI) {
2109   // Do not keep invalid information around.
2110   SetOfBrokenHints.remove(&LI);
2111 }
2112 
2113 void RAGreedy::initializeCSRCost() {
2114   // We use the larger one out of the command-line option and the value report
2115   // by TRI.
2116   CSRCost = BlockFrequency(
2117       std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2118   if (!CSRCost.getFrequency())
2119     return;
2120 
2121   // Raw cost is relative to Entry == 2^14; scale it appropriately.
2122   uint64_t ActualEntry = MBFI->getEntryFreq();
2123   if (!ActualEntry) {
2124     CSRCost = 0;
2125     return;
2126   }
2127   uint64_t FixedEntry = 1 << 14;
2128   if (ActualEntry < FixedEntry)
2129     CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2130   else if (ActualEntry <= UINT32_MAX)
2131     // Invert the fraction and divide.
2132     CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2133   else
2134     // Can't use BranchProbability in general, since it takes 32-bit numbers.
2135     CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2136 }
2137 
2138 /// Collect the hint info for \p Reg.
2139 /// The results are stored into \p Out.
2140 /// \p Out is not cleared before being populated.
2141 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
2142   for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2143     if (!TII->isFullCopyInstr(Instr))
2144       continue;
2145     // Look for the other end of the copy.
2146     Register OtherReg = Instr.getOperand(0).getReg();
2147     if (OtherReg == Reg) {
2148       OtherReg = Instr.getOperand(1).getReg();
2149       if (OtherReg == Reg)
2150         continue;
2151     }
2152     // Get the current assignment.
2153     MCRegister OtherPhysReg =
2154         OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
2155     // Push the collected information.
2156     Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2157                            OtherPhysReg));
2158   }
2159 }
2160 
2161 /// Using the given \p List, compute the cost of the broken hints if
2162 /// \p PhysReg was used.
2163 /// \return The cost of \p List for \p PhysReg.
2164 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2165                                            MCRegister PhysReg) {
2166   BlockFrequency Cost = 0;
2167   for (const HintInfo &Info : List) {
2168     if (Info.PhysReg != PhysReg)
2169       Cost += Info.Freq;
2170   }
2171   return Cost;
2172 }
2173 
2174 /// Using the register assigned to \p VirtReg, try to recolor
2175 /// all the live ranges that are copy-related with \p VirtReg.
2176 /// The recoloring is then propagated to all the live-ranges that have
2177 /// been recolored and so on, until no more copies can be coalesced or
2178 /// it is not profitable.
2179 /// For a given live range, profitability is determined by the sum of the
2180 /// frequencies of the non-identity copies it would introduce with the old
2181 /// and new register.
2182 void RAGreedy::tryHintRecoloring(const LiveInterval &VirtReg) {
2183   // We have a broken hint, check if it is possible to fix it by
2184   // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2185   // some register and PhysReg may be available for the other live-ranges.
2186   SmallSet<Register, 4> Visited;
2187   SmallVector<unsigned, 2> RecoloringCandidates;
2188   HintsInfo Info;
2189   Register Reg = VirtReg.reg();
2190   MCRegister PhysReg = VRM->getPhys(Reg);
2191   // Start the recoloring algorithm from the input live-interval, then
2192   // it will propagate to the ones that are copy-related with it.
2193   Visited.insert(Reg);
2194   RecoloringCandidates.push_back(Reg);
2195 
2196   LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2197                     << '(' << printReg(PhysReg, TRI) << ")\n");
2198 
2199   do {
2200     Reg = RecoloringCandidates.pop_back_val();
2201 
2202     // We cannot recolor physical register.
2203     if (Reg.isPhysical())
2204       continue;
2205 
2206     // This may be a skipped class
2207     if (!VRM->hasPhys(Reg)) {
2208       assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) &&
2209              "We have an unallocated variable which should have been handled");
2210       continue;
2211     }
2212 
2213     // Get the live interval mapped with this virtual register to be able
2214     // to check for the interference with the new color.
2215     LiveInterval &LI = LIS->getInterval(Reg);
2216     MCRegister CurrPhys = VRM->getPhys(Reg);
2217     // Check that the new color matches the register class constraints and
2218     // that it is free for this live range.
2219     if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2220                                 Matrix->checkInterference(LI, PhysReg)))
2221       continue;
2222 
2223     LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2224                       << ") is recolorable.\n");
2225 
2226     // Gather the hint info.
2227     Info.clear();
2228     collectHintInfo(Reg, Info);
2229     // Check if recoloring the live-range will increase the cost of the
2230     // non-identity copies.
2231     if (CurrPhys != PhysReg) {
2232       LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2233       BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2234       BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2235       LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2236                         << "\nNew Cost: " << NewCopiesCost.getFrequency()
2237                         << '\n');
2238       if (OldCopiesCost < NewCopiesCost) {
2239         LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2240         continue;
2241       }
2242       // At this point, the cost is either cheaper or equal. If it is
2243       // equal, we consider this is profitable because it may expose
2244       // more recoloring opportunities.
2245       LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2246       // Recolor the live-range.
2247       Matrix->unassign(LI);
2248       Matrix->assign(LI, PhysReg);
2249     }
2250     // Push all copy-related live-ranges to keep reconciling the broken
2251     // hints.
2252     for (const HintInfo &HI : Info) {
2253       if (Visited.insert(HI.Reg).second)
2254         RecoloringCandidates.push_back(HI.Reg);
2255     }
2256   } while (!RecoloringCandidates.empty());
2257 }
2258 
2259 /// Try to recolor broken hints.
2260 /// Broken hints may be repaired by recoloring when an evicted variable
2261 /// freed up a register for a larger live-range.
2262 /// Consider the following example:
2263 /// BB1:
2264 ///   a =
2265 ///   b =
2266 /// BB2:
2267 ///   ...
2268 ///   = b
2269 ///   = a
2270 /// Let us assume b gets split:
2271 /// BB1:
2272 ///   a =
2273 ///   b =
2274 /// BB2:
2275 ///   c = b
2276 ///   ...
2277 ///   d = c
2278 ///   = d
2279 ///   = a
2280 /// Because of how the allocation work, b, c, and d may be assigned different
2281 /// colors. Now, if a gets evicted later:
2282 /// BB1:
2283 ///   a =
2284 ///   st a, SpillSlot
2285 ///   b =
2286 /// BB2:
2287 ///   c = b
2288 ///   ...
2289 ///   d = c
2290 ///   = d
2291 ///   e = ld SpillSlot
2292 ///   = e
2293 /// This is likely that we can assign the same register for b, c, and d,
2294 /// getting rid of 2 copies.
2295 void RAGreedy::tryHintsRecoloring() {
2296   for (const LiveInterval *LI : SetOfBrokenHints) {
2297     assert(LI->reg().isVirtual() &&
2298            "Recoloring is possible only for virtual registers");
2299     // Some dead defs may be around (e.g., because of debug uses).
2300     // Ignore those.
2301     if (!VRM->hasPhys(LI->reg()))
2302       continue;
2303     tryHintRecoloring(*LI);
2304   }
2305 }
2306 
2307 MCRegister RAGreedy::selectOrSplitImpl(const LiveInterval &VirtReg,
2308                                        SmallVectorImpl<Register> &NewVRegs,
2309                                        SmallVirtRegSet &FixedRegisters,
2310                                        RecoloringStack &RecolorStack,
2311                                        unsigned Depth) {
2312   uint8_t CostPerUseLimit = uint8_t(~0u);
2313   // First try assigning a free register.
2314   auto Order =
2315       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
2316   if (MCRegister PhysReg =
2317           tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
2318     // When NewVRegs is not empty, we may have made decisions such as evicting
2319     // a virtual register, go with the earlier decisions and use the physical
2320     // register.
2321     if (CSRCost.getFrequency() &&
2322         EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) {
2323       MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2324                                                 CostPerUseLimit, NewVRegs);
2325       if (CSRReg || !NewVRegs.empty())
2326         // Return now if we decide to use a CSR or create new vregs due to
2327         // pre-splitting.
2328         return CSRReg;
2329     } else
2330       return PhysReg;
2331   }
2332 
2333   LiveRangeStage Stage = ExtraInfo->getStage(VirtReg);
2334   LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
2335                     << ExtraInfo->getCascade(VirtReg.reg()) << '\n');
2336 
2337   // Try to evict a less worthy live range, but only for ranges from the primary
2338   // queue. The RS_Split ranges already failed to do this, and they should not
2339   // get a second chance until they have been split.
2340   if (Stage != RS_Split)
2341     if (Register PhysReg =
2342             tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
2343                      FixedRegisters)) {
2344       Register Hint = MRI->getSimpleHint(VirtReg.reg());
2345       // If VirtReg has a hint and that hint is broken record this
2346       // virtual register as a recoloring candidate for broken hint.
2347       // Indeed, since we evicted a variable in its neighborhood it is
2348       // likely we can at least partially recolor some of the
2349       // copy-related live-ranges.
2350       if (Hint && Hint != PhysReg)
2351         SetOfBrokenHints.insert(&VirtReg);
2352       return PhysReg;
2353     }
2354 
2355   assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
2356 
2357   // The first time we see a live range, don't try to split or spill.
2358   // Wait until the second time, when all smaller ranges have been allocated.
2359   // This gives a better picture of the interference to split around.
2360   if (Stage < RS_Split) {
2361     ExtraInfo->setStage(VirtReg, RS_Split);
2362     LLVM_DEBUG(dbgs() << "wait for second round\n");
2363     NewVRegs.push_back(VirtReg.reg());
2364     return 0;
2365   }
2366 
2367   if (Stage < RS_Spill) {
2368     // Try splitting VirtReg or interferences.
2369     unsigned NewVRegSizeBefore = NewVRegs.size();
2370     Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
2371     if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore))
2372       return PhysReg;
2373   }
2374 
2375   // If we couldn't allocate a register from spilling, there is probably some
2376   // invalid inline assembly. The base class will report it.
2377   if (Stage >= RS_Done || !VirtReg.isSpillable()) {
2378     return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
2379                                    RecolorStack, Depth);
2380   }
2381 
2382   // Finally spill VirtReg itself.
2383   if ((EnableDeferredSpilling ||
2384        TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
2385       ExtraInfo->getStage(VirtReg) < RS_Memory) {
2386     // TODO: This is experimental and in particular, we do not model
2387     // the live range splitting done by spilling correctly.
2388     // We would need a deep integration with the spiller to do the
2389     // right thing here. Anyway, that is still good for early testing.
2390     ExtraInfo->setStage(VirtReg, RS_Memory);
2391     LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
2392     NewVRegs.push_back(VirtReg.reg());
2393   } else {
2394     NamedRegionTimer T("spill", "Spiller", TimerGroupName,
2395                        TimerGroupDescription, TimePassesIsEnabled);
2396     LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2397     spiller().spill(LRE);
2398     ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
2399 
2400     // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
2401     // the new regs are kept in LDV (still mapping to the old register), until
2402     // we rewrite spilled locations in LDV at a later stage.
2403     DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
2404 
2405     if (VerifyEnabled)
2406       MF->verify(this, "After spilling");
2407   }
2408 
2409   // The live virtual register requesting allocation was spilled, so tell
2410   // the caller not to allocate anything during this round.
2411   return 0;
2412 }
2413 
2414 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) {
2415   using namespace ore;
2416   if (Spills) {
2417     R << NV("NumSpills", Spills) << " spills ";
2418     R << NV("TotalSpillsCost", SpillsCost) << " total spills cost ";
2419   }
2420   if (FoldedSpills) {
2421     R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
2422     R << NV("TotalFoldedSpillsCost", FoldedSpillsCost)
2423       << " total folded spills cost ";
2424   }
2425   if (Reloads) {
2426     R << NV("NumReloads", Reloads) << " reloads ";
2427     R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost ";
2428   }
2429   if (FoldedReloads) {
2430     R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
2431     R << NV("TotalFoldedReloadsCost", FoldedReloadsCost)
2432       << " total folded reloads cost ";
2433   }
2434   if (ZeroCostFoldedReloads)
2435     R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads)
2436       << " zero cost folded reloads ";
2437   if (Copies) {
2438     R << NV("NumVRCopies", Copies) << " virtual registers copies ";
2439     R << NV("TotalCopiesCost", CopiesCost) << " total copies cost ";
2440   }
2441 }
2442 
2443 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) {
2444   RAGreedyStats Stats;
2445   const MachineFrameInfo &MFI = MF->getFrameInfo();
2446   int FI;
2447 
2448   auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
2449     return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>(
2450         A->getPseudoValue())->getFrameIndex());
2451   };
2452   auto isPatchpointInstr = [](const MachineInstr &MI) {
2453     return MI.getOpcode() == TargetOpcode::PATCHPOINT ||
2454            MI.getOpcode() == TargetOpcode::STACKMAP ||
2455            MI.getOpcode() == TargetOpcode::STATEPOINT;
2456   };
2457   for (MachineInstr &MI : MBB) {
2458     auto DestSrc = TII->isCopyInstr(MI);
2459     if (DestSrc) {
2460       const MachineOperand &Dest = *DestSrc->Destination;
2461       const MachineOperand &Src = *DestSrc->Source;
2462       Register SrcReg = Src.getReg();
2463       Register DestReg = Dest.getReg();
2464       // Only count `COPY`s with a virtual register as source or destination.
2465       if (SrcReg.isVirtual() || DestReg.isVirtual()) {
2466         if (SrcReg.isVirtual()) {
2467           SrcReg = VRM->getPhys(SrcReg);
2468           if (SrcReg && Src.getSubReg())
2469             SrcReg = TRI->getSubReg(SrcReg, Src.getSubReg());
2470         }
2471         if (DestReg.isVirtual()) {
2472           DestReg = VRM->getPhys(DestReg);
2473           if (DestReg && Dest.getSubReg())
2474             DestReg = TRI->getSubReg(DestReg, Dest.getSubReg());
2475         }
2476         if (SrcReg != DestReg)
2477           ++Stats.Copies;
2478       }
2479       continue;
2480     }
2481 
2482     SmallVector<const MachineMemOperand *, 2> Accesses;
2483     if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2484       ++Stats.Reloads;
2485       continue;
2486     }
2487     if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2488       ++Stats.Spills;
2489       continue;
2490     }
2491     if (TII->hasLoadFromStackSlot(MI, Accesses) &&
2492         llvm::any_of(Accesses, isSpillSlotAccess)) {
2493       if (!isPatchpointInstr(MI)) {
2494         Stats.FoldedReloads += Accesses.size();
2495         continue;
2496       }
2497       // For statepoint there may be folded and zero cost folded stack reloads.
2498       std::pair<unsigned, unsigned> NonZeroCostRange =
2499           TII->getPatchpointUnfoldableRange(MI);
2500       SmallSet<unsigned, 16> FoldedReloads;
2501       SmallSet<unsigned, 16> ZeroCostFoldedReloads;
2502       for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) {
2503         MachineOperand &MO = MI.getOperand(Idx);
2504         if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex()))
2505           continue;
2506         if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second)
2507           FoldedReloads.insert(MO.getIndex());
2508         else
2509           ZeroCostFoldedReloads.insert(MO.getIndex());
2510       }
2511       // If stack slot is used in folded reload it is not zero cost then.
2512       for (unsigned Slot : FoldedReloads)
2513         ZeroCostFoldedReloads.erase(Slot);
2514       Stats.FoldedReloads += FoldedReloads.size();
2515       Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size();
2516       continue;
2517     }
2518     Accesses.clear();
2519     if (TII->hasStoreToStackSlot(MI, Accesses) &&
2520         llvm::any_of(Accesses, isSpillSlotAccess)) {
2521       Stats.FoldedSpills += Accesses.size();
2522     }
2523   }
2524   // Set cost of collected statistic by multiplication to relative frequency of
2525   // this basic block.
2526   float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB);
2527   Stats.ReloadsCost = RelFreq * Stats.Reloads;
2528   Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads;
2529   Stats.SpillsCost = RelFreq * Stats.Spills;
2530   Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills;
2531   Stats.CopiesCost = RelFreq * Stats.Copies;
2532   return Stats;
2533 }
2534 
2535 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) {
2536   RAGreedyStats Stats;
2537 
2538   // Sum up the spill and reloads in subloops.
2539   for (MachineLoop *SubLoop : *L)
2540     Stats.add(reportStats(SubLoop));
2541 
2542   for (MachineBasicBlock *MBB : L->getBlocks())
2543     // Handle blocks that were not included in subloops.
2544     if (Loops->getLoopFor(MBB) == L)
2545       Stats.add(computeStats(*MBB));
2546 
2547   if (!Stats.isEmpty()) {
2548     using namespace ore;
2549 
2550     ORE->emit([&]() {
2551       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies",
2552                                         L->getStartLoc(), L->getHeader());
2553       Stats.report(R);
2554       R << "generated in loop";
2555       return R;
2556     });
2557   }
2558   return Stats;
2559 }
2560 
2561 void RAGreedy::reportStats() {
2562   if (!ORE->allowExtraAnalysis(DEBUG_TYPE))
2563     return;
2564   RAGreedyStats Stats;
2565   for (MachineLoop *L : *Loops)
2566     Stats.add(reportStats(L));
2567   // Process non-loop blocks.
2568   for (MachineBasicBlock &MBB : *MF)
2569     if (!Loops->getLoopFor(&MBB))
2570       Stats.add(computeStats(MBB));
2571   if (!Stats.isEmpty()) {
2572     using namespace ore;
2573 
2574     ORE->emit([&]() {
2575       DebugLoc Loc;
2576       if (auto *SP = MF->getFunction().getSubprogram())
2577         Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
2578       MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc,
2579                                         &MF->front());
2580       Stats.report(R);
2581       R << "generated in function";
2582       return R;
2583     });
2584   }
2585 }
2586 
2587 bool RAGreedy::hasVirtRegAlloc() {
2588   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2589     Register Reg = Register::index2VirtReg(I);
2590     if (MRI->reg_nodbg_empty(Reg))
2591       continue;
2592     const TargetRegisterClass *RC = MRI->getRegClass(Reg);
2593     if (!RC)
2594       continue;
2595     if (ShouldAllocateClass(*TRI, *RC))
2596       return true;
2597   }
2598 
2599   return false;
2600 }
2601 
2602 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
2603   LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2604                     << "********** Function: " << mf.getName() << '\n');
2605 
2606   MF = &mf;
2607   TII = MF->getSubtarget().getInstrInfo();
2608 
2609   if (VerifyEnabled)
2610     MF->verify(this, "Before greedy register allocator");
2611 
2612   RegAllocBase::init(getAnalysis<VirtRegMap>(),
2613                      getAnalysis<LiveIntervals>(),
2614                      getAnalysis<LiveRegMatrix>());
2615 
2616   // Early return if there is no virtual register to be allocated to a
2617   // physical register.
2618   if (!hasVirtRegAlloc())
2619     return false;
2620 
2621   Indexes = &getAnalysis<SlotIndexes>();
2622   MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2623   DomTree = &getAnalysis<MachineDominatorTree>();
2624   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
2625   Loops = &getAnalysis<MachineLoopInfo>();
2626   Bundles = &getAnalysis<EdgeBundles>();
2627   SpillPlacer = &getAnalysis<SpillPlacement>();
2628   DebugVars = &getAnalysis<LiveDebugVariables>();
2629 
2630   initializeCSRCost();
2631 
2632   RegCosts = TRI->getRegisterCosts(*MF);
2633   RegClassPriorityTrumpsGlobalness =
2634       GreedyRegClassPriorityTrumpsGlobalness.getNumOccurrences()
2635           ? GreedyRegClassPriorityTrumpsGlobalness
2636           : TRI->regClassPriorityTrumpsGlobalness(*MF);
2637 
2638   ReverseLocalAssignment = GreedyReverseLocalAssignment.getNumOccurrences()
2639                                ? GreedyReverseLocalAssignment
2640                                : TRI->reverseLocalAssignment();
2641 
2642   ExtraInfo.emplace();
2643   EvictAdvisor =
2644       getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this);
2645   PriorityAdvisor =
2646       getAnalysis<RegAllocPriorityAdvisorAnalysis>().getAdvisor(*MF, *this);
2647 
2648   VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
2649   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI));
2650 
2651   VRAI->calculateSpillWeightsAndHints();
2652 
2653   LLVM_DEBUG(LIS->dump());
2654 
2655   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
2656   SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI, *VRAI));
2657 
2658   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
2659   GlobalCand.resize(32);  // This will grow as needed.
2660   SetOfBrokenHints.clear();
2661 
2662   allocatePhysRegs();
2663   tryHintsRecoloring();
2664 
2665   if (VerifyEnabled)
2666     MF->verify(this, "Before post optimization");
2667   postOptimization();
2668   reportStats();
2669 
2670   releaseMemory();
2671   return true;
2672 }
2673