1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/SparseSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/RegAllocCommon.h" 32 #include "llvm/CodeGen/RegAllocRegistry.h" 33 #include "llvm/CodeGen/RegisterClassInfo.h" 34 #include "llvm/CodeGen/TargetInstrInfo.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/TargetSubtargetInfo.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <cassert> 45 #include <tuple> 46 #include <vector> 47 48 using namespace llvm; 49 50 #define DEBUG_TYPE "regalloc" 51 52 STATISTIC(NumStores, "Number of stores added"); 53 STATISTIC(NumLoads , "Number of loads added"); 54 STATISTIC(NumCoalesced, "Number of copies coalesced"); 55 56 // FIXME: Remove this switch when all testcases are fixed! 57 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs", 58 cl::Hidden); 59 60 static RegisterRegAlloc 61 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 62 63 namespace { 64 65 class RegAllocFast : public MachineFunctionPass { 66 public: 67 static char ID; 68 69 RegAllocFast(const RegClassFilterFunc F = allocateAllRegClasses, 70 bool ClearVirtRegs_ = true) : 71 MachineFunctionPass(ID), 72 ShouldAllocateClass(F), 73 StackSlotForVirtReg(-1), 74 ClearVirtRegs(ClearVirtRegs_) { 75 } 76 77 private: 78 MachineFrameInfo *MFI; 79 MachineRegisterInfo *MRI; 80 const TargetRegisterInfo *TRI; 81 const TargetInstrInfo *TII; 82 RegisterClassInfo RegClassInfo; 83 const RegClassFilterFunc ShouldAllocateClass; 84 85 /// Basic block currently being allocated. 86 MachineBasicBlock *MBB; 87 88 /// Maps virtual regs to the frame index where these values are spilled. 89 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 90 91 bool ClearVirtRegs; 92 93 /// Everything we know about a live virtual register. 94 struct LiveReg { 95 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 96 Register VirtReg; ///< Virtual register number. 97 MCPhysReg PhysReg = 0; ///< Currently held here. 98 bool LiveOut = false; ///< Register is possibly live out. 99 bool Reloaded = false; ///< Register was reloaded. 100 bool Error = false; ///< Could not allocate. 101 102 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {} 103 104 unsigned getSparseSetIndex() const { 105 return Register::virtReg2Index(VirtReg); 106 } 107 }; 108 109 using LiveRegMap = SparseSet<LiveReg>; 110 /// This map contains entries for each virtual register that is currently 111 /// available in a physical register. 112 LiveRegMap LiveVirtRegs; 113 114 /// Stores assigned virtual registers present in the bundle MI. 115 DenseMap<Register, MCPhysReg> BundleVirtRegsMap; 116 117 DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap; 118 /// List of DBG_VALUE that we encountered without the vreg being assigned 119 /// because they were placed after the last use of the vreg. 120 DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues; 121 122 /// Has a bit set for every virtual register for which it was determined 123 /// that it is alive across blocks. 124 BitVector MayLiveAcrossBlocks; 125 126 /// State of a register unit. 127 enum RegUnitState { 128 /// A free register is not currently in use and can be allocated 129 /// immediately without checking aliases. 130 regFree, 131 132 /// A pre-assigned register has been assigned before register allocation 133 /// (e.g., setting up a call parameter). 134 regPreAssigned, 135 136 /// Used temporarily in reloadAtBegin() to mark register units that are 137 /// live-in to the basic block. 138 regLiveIn, 139 140 /// A register state may also be a virtual register number, indication 141 /// that the physical register is currently allocated to a virtual 142 /// register. In that case, LiveVirtRegs contains the inverse mapping. 143 }; 144 145 /// Maps each physical register to a RegUnitState enum or virtual register. 146 std::vector<unsigned> RegUnitStates; 147 148 SmallVector<MachineInstr *, 32> Coalesced; 149 150 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 151 /// Set of register units that are used in the current instruction, and so 152 /// cannot be allocated. 153 RegUnitSet UsedInInstr; 154 RegUnitSet PhysRegUses; 155 SmallVector<uint16_t, 8> DefOperandIndexes; 156 // Register masks attached to the current instruction. 157 SmallVector<const uint32_t *> RegMasks; 158 159 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 160 bool isPhysRegFree(MCPhysReg PhysReg) const; 161 162 /// Mark a physreg as used in this instruction. 163 void markRegUsedInInstr(MCPhysReg PhysReg) { 164 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 165 UsedInInstr.insert(*Units); 166 } 167 168 // Check if physreg is clobbered by instruction's regmask(s). 169 bool isClobberedByRegMasks(MCPhysReg PhysReg) const { 170 return llvm::any_of(RegMasks, [PhysReg](const uint32_t *Mask) { 171 return MachineOperand::clobbersPhysReg(Mask, PhysReg); 172 }); 173 } 174 175 /// Check if a physreg or any of its aliases are used in this instruction. 176 bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const { 177 if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg)) 178 return true; 179 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 180 if (UsedInInstr.count(*Units)) 181 return true; 182 if (LookAtPhysRegUses && PhysRegUses.count(*Units)) 183 return true; 184 } 185 return false; 186 } 187 188 /// Mark physical register as being used in a register use operand. 189 /// This is only used by the special livethrough handling code. 190 void markPhysRegUsedInInstr(MCPhysReg PhysReg) { 191 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 192 PhysRegUses.insert(*Units); 193 } 194 195 /// Remove mark of physical register being used in the instruction. 196 void unmarkRegUsedInInstr(MCPhysReg PhysReg) { 197 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 198 UsedInInstr.erase(*Units); 199 } 200 201 enum : unsigned { 202 spillClean = 50, 203 spillDirty = 100, 204 spillPrefBonus = 20, 205 spillImpossible = ~0u 206 }; 207 208 public: 209 StringRef getPassName() const override { return "Fast Register Allocator"; } 210 211 void getAnalysisUsage(AnalysisUsage &AU) const override { 212 AU.setPreservesCFG(); 213 MachineFunctionPass::getAnalysisUsage(AU); 214 } 215 216 MachineFunctionProperties getRequiredProperties() const override { 217 return MachineFunctionProperties().set( 218 MachineFunctionProperties::Property::NoPHIs); 219 } 220 221 MachineFunctionProperties getSetProperties() const override { 222 if (ClearVirtRegs) { 223 return MachineFunctionProperties().set( 224 MachineFunctionProperties::Property::NoVRegs); 225 } 226 227 return MachineFunctionProperties(); 228 } 229 230 MachineFunctionProperties getClearedProperties() const override { 231 return MachineFunctionProperties().set( 232 MachineFunctionProperties::Property::IsSSA); 233 } 234 235 private: 236 bool runOnMachineFunction(MachineFunction &MF) override; 237 238 void allocateBasicBlock(MachineBasicBlock &MBB); 239 240 void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 241 Register Reg) const; 242 243 void allocateInstruction(MachineInstr &MI); 244 void handleDebugValue(MachineInstr &MI); 245 void handleBundle(MachineInstr &MI); 246 247 bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 248 bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 249 bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 250 void freePhysReg(MCPhysReg PhysReg); 251 252 unsigned calcSpillCost(MCPhysReg PhysReg) const; 253 254 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) { 255 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 256 } 257 258 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const { 259 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 260 } 261 262 void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg); 263 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint, 264 bool LookAtPhysRegUses = false); 265 void allocVirtRegUndef(MachineOperand &MO); 266 void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg, 267 MCPhysReg Reg); 268 void defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 269 Register VirtReg); 270 void defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 271 bool LookAtPhysRegUses = false); 272 void useVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg); 273 274 MachineBasicBlock::iterator 275 getMBBBeginInsertionPoint(MachineBasicBlock &MBB, 276 SmallSet<Register, 2> &PrologLiveIns) const; 277 278 void reloadAtBegin(MachineBasicBlock &MBB); 279 void setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 280 281 Register traceCopies(Register VirtReg) const; 282 Register traceCopyChain(Register Reg) const; 283 284 int getStackSpaceFor(Register VirtReg); 285 void spill(MachineBasicBlock::iterator Before, Register VirtReg, 286 MCPhysReg AssignedReg, bool Kill, bool LiveOut); 287 void reload(MachineBasicBlock::iterator Before, Register VirtReg, 288 MCPhysReg PhysReg); 289 290 bool mayLiveOut(Register VirtReg); 291 bool mayLiveIn(Register VirtReg); 292 293 void dumpState() const; 294 }; 295 296 } // end anonymous namespace 297 298 char RegAllocFast::ID = 0; 299 300 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 301 false) 302 303 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 304 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) 305 RegUnitStates[*UI] = NewState; 306 } 307 308 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const { 309 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 310 if (RegUnitStates[*UI] != regFree) 311 return false; 312 } 313 return true; 314 } 315 316 /// This allocates space for the specified virtual register to be held on the 317 /// stack. 318 int RegAllocFast::getStackSpaceFor(Register VirtReg) { 319 // Find the location Reg would belong... 320 int SS = StackSlotForVirtReg[VirtReg]; 321 // Already has space allocated? 322 if (SS != -1) 323 return SS; 324 325 // Allocate a new stack object for this spill location... 326 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 327 unsigned Size = TRI->getSpillSize(RC); 328 Align Alignment = TRI->getSpillAlign(RC); 329 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment); 330 331 // Assign the slot. 332 StackSlotForVirtReg[VirtReg] = FrameIdx; 333 return FrameIdx; 334 } 335 336 static bool dominates(MachineBasicBlock &MBB, 337 MachineBasicBlock::const_iterator A, 338 MachineBasicBlock::const_iterator B) { 339 auto MBBEnd = MBB.end(); 340 if (B == MBBEnd) 341 return true; 342 343 MachineBasicBlock::const_iterator I = MBB.begin(); 344 for (; &*I != A && &*I != B; ++I) 345 ; 346 347 return &*I == A; 348 } 349 350 /// Returns false if \p VirtReg is known to not live out of the current block. 351 bool RegAllocFast::mayLiveOut(Register VirtReg) { 352 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) { 353 // Cannot be live-out if there are no successors. 354 return !MBB->succ_empty(); 355 } 356 357 const MachineInstr *SelfLoopDef = nullptr; 358 359 // If this block loops back to itself, it is necessary to check whether the 360 // use comes after the def. 361 if (MBB->isSuccessor(MBB)) { 362 // Find the first def in the self loop MBB. 363 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 364 if (DefInst.getParent() != MBB) { 365 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 366 return true; 367 } else { 368 if (!SelfLoopDef || dominates(*MBB, DefInst.getIterator(), SelfLoopDef)) 369 SelfLoopDef = &DefInst; 370 } 371 } 372 if (!SelfLoopDef) { 373 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 374 return true; 375 } 376 } 377 378 // See if the first \p Limit uses of the register are all in the current 379 // block. 380 static const unsigned Limit = 8; 381 unsigned C = 0; 382 for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) { 383 if (UseInst.getParent() != MBB || ++C >= Limit) { 384 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 385 // Cannot be live-out if there are no successors. 386 return !MBB->succ_empty(); 387 } 388 389 if (SelfLoopDef) { 390 // Try to handle some simple cases to avoid spilling and reloading every 391 // value inside a self looping block. 392 if (SelfLoopDef == &UseInst || 393 !dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) { 394 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 395 return true; 396 } 397 } 398 } 399 400 return false; 401 } 402 403 /// Returns false if \p VirtReg is known to not be live into the current block. 404 bool RegAllocFast::mayLiveIn(Register VirtReg) { 405 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) 406 return !MBB->pred_empty(); 407 408 // See if the first \p Limit def of the register are all in the current block. 409 static const unsigned Limit = 8; 410 unsigned C = 0; 411 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 412 if (DefInst.getParent() != MBB || ++C >= Limit) { 413 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 414 return !MBB->pred_empty(); 415 } 416 } 417 418 return false; 419 } 420 421 /// Insert spill instruction for \p AssignedReg before \p Before. Update 422 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 423 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg, 424 MCPhysReg AssignedReg, bool Kill, bool LiveOut) { 425 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) 426 << " in " << printReg(AssignedReg, TRI)); 427 int FI = getStackSpaceFor(VirtReg); 428 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 429 430 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 431 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI); 432 ++NumStores; 433 434 MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator(); 435 436 // When we spill a virtual register, we will have spill instructions behind 437 // every definition of it, meaning we can switch all the DBG_VALUEs over 438 // to just reference the stack slot. 439 SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg]; 440 SmallMapVector<MachineInstr *, SmallVector<const MachineOperand *>, 2> 441 SpilledOperandsMap; 442 for (MachineOperand *MO : LRIDbgOperands) 443 SpilledOperandsMap[MO->getParent()].push_back(MO); 444 for (auto MISpilledOperands : SpilledOperandsMap) { 445 MachineInstr &DBG = *MISpilledOperands.first; 446 MachineInstr *NewDV = buildDbgValueForSpill( 447 *MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second); 448 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 449 (void)NewDV; 450 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 451 452 if (LiveOut) { 453 // We need to insert a DBG_VALUE at the end of the block if the spill slot 454 // is live out, but there is another use of the value after the 455 // spill. This will allow LiveDebugValues to see the correct live out 456 // value to propagate to the successors. 457 MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV); 458 MBB->insert(FirstTerm, ClonedDV); 459 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n"); 460 } 461 462 // Rewrite unassigned dbg_values to use the stack slot. 463 // TODO We can potentially do this for list debug values as well if we know 464 // how the dbg_values are getting unassigned. 465 if (DBG.isNonListDebugValue()) { 466 MachineOperand &MO = DBG.getDebugOperand(0); 467 if (MO.isReg() && MO.getReg() == 0) { 468 updateDbgValueForSpill(DBG, FI, 0); 469 } 470 } 471 } 472 // Now this register is spilled there is should not be any DBG_VALUE 473 // pointing to this register because they are all pointing to spilled value 474 // now. 475 LRIDbgOperands.clear(); 476 } 477 478 /// Insert reload instruction for \p PhysReg before \p Before. 479 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg, 480 MCPhysReg PhysReg) { 481 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 482 << printReg(PhysReg, TRI) << '\n'); 483 int FI = getStackSpaceFor(VirtReg); 484 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 485 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI); 486 ++NumLoads; 487 } 488 489 /// Get basic block begin insertion point. 490 /// This is not just MBB.begin() because surprisingly we have EH_LABEL 491 /// instructions marking the begin of a basic block. This means we must insert 492 /// new instructions after such labels... 493 MachineBasicBlock::iterator 494 RegAllocFast::getMBBBeginInsertionPoint( 495 MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const { 496 MachineBasicBlock::iterator I = MBB.begin(); 497 while (I != MBB.end()) { 498 if (I->isLabel()) { 499 ++I; 500 continue; 501 } 502 503 // Most reloads should be inserted after prolog instructions. 504 if (!TII->isBasicBlockPrologue(*I)) 505 break; 506 507 // However if a prolog instruction reads a register that needs to be 508 // reloaded, the reload should be inserted before the prolog. 509 for (MachineOperand &MO : I->operands()) { 510 if (MO.isReg()) 511 PrologLiveIns.insert(MO.getReg()); 512 } 513 514 ++I; 515 } 516 517 return I; 518 } 519 520 /// Reload all currently assigned virtual registers. 521 void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) { 522 if (LiveVirtRegs.empty()) 523 return; 524 525 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 526 MCPhysReg Reg = P.PhysReg; 527 // Set state to live-in. This possibly overrides mappings to virtual 528 // registers but we don't care anymore at this point. 529 setPhysRegState(Reg, regLiveIn); 530 } 531 532 533 SmallSet<Register, 2> PrologLiveIns; 534 535 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 536 // of spilling here is deterministic, if arbitrary. 537 MachineBasicBlock::iterator InsertBefore 538 = getMBBBeginInsertionPoint(MBB, PrologLiveIns); 539 for (const LiveReg &LR : LiveVirtRegs) { 540 MCPhysReg PhysReg = LR.PhysReg; 541 if (PhysReg == 0) 542 continue; 543 544 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 545 if (RegUnitStates[FirstUnit] == regLiveIn) 546 continue; 547 548 assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) && 549 "no reload in start block. Missing vreg def?"); 550 551 if (PrologLiveIns.count(PhysReg)) { 552 // FIXME: Theoretically this should use an insert point skipping labels 553 // but I'm not sure how labels should interact with prolog instruction 554 // that need reloads. 555 reload(MBB.begin(), LR.VirtReg, PhysReg); 556 } else 557 reload(InsertBefore, LR.VirtReg, PhysReg); 558 } 559 LiveVirtRegs.clear(); 560 } 561 562 /// Handle the direct use of a physical register. Check that the register is 563 /// not used by a virtreg. Kill the physreg, marking it free. This may add 564 /// implicit kills to MO->getParent() and invalidate MO. 565 bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) { 566 assert(Register::isPhysicalRegister(Reg) && "expected physreg"); 567 bool displacedAny = displacePhysReg(MI, Reg); 568 setPhysRegState(Reg, regPreAssigned); 569 markRegUsedInInstr(Reg); 570 return displacedAny; 571 } 572 573 bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) { 574 bool displacedAny = displacePhysReg(MI, Reg); 575 setPhysRegState(Reg, regPreAssigned); 576 return displacedAny; 577 } 578 579 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 580 /// similar to defineVirtReg except the physreg is reserved instead of 581 /// allocated. 582 bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) { 583 bool displacedAny = false; 584 585 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 586 unsigned Unit = *UI; 587 switch (unsigned VirtReg = RegUnitStates[Unit]) { 588 default: { 589 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 590 assert(LRI != LiveVirtRegs.end() && "datastructures in sync"); 591 MachineBasicBlock::iterator ReloadBefore = 592 std::next((MachineBasicBlock::iterator)MI.getIterator()); 593 reload(ReloadBefore, VirtReg, LRI->PhysReg); 594 595 setPhysRegState(LRI->PhysReg, regFree); 596 LRI->PhysReg = 0; 597 LRI->Reloaded = true; 598 displacedAny = true; 599 break; 600 } 601 case regPreAssigned: 602 RegUnitStates[Unit] = regFree; 603 displacedAny = true; 604 break; 605 case regFree: 606 break; 607 } 608 } 609 return displacedAny; 610 } 611 612 void RegAllocFast::freePhysReg(MCPhysReg PhysReg) { 613 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':'); 614 615 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 616 switch (unsigned VirtReg = RegUnitStates[FirstUnit]) { 617 case regFree: 618 LLVM_DEBUG(dbgs() << '\n'); 619 return; 620 case regPreAssigned: 621 LLVM_DEBUG(dbgs() << '\n'); 622 setPhysRegState(PhysReg, regFree); 623 return; 624 default: { 625 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 626 assert(LRI != LiveVirtRegs.end()); 627 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n'); 628 setPhysRegState(LRI->PhysReg, regFree); 629 LRI->PhysReg = 0; 630 } 631 return; 632 } 633 } 634 635 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 636 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 637 /// disabled - it can be allocated directly. 638 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 639 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 640 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 641 switch (unsigned VirtReg = RegUnitStates[*UI]) { 642 case regFree: 643 break; 644 case regPreAssigned: 645 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned " 646 << printReg(PhysReg, TRI) << '\n'); 647 return spillImpossible; 648 default: { 649 bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 || 650 findLiveVirtReg(VirtReg)->LiveOut; 651 return SureSpill ? spillClean : spillDirty; 652 } 653 } 654 } 655 return 0; 656 } 657 658 void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition, 659 Register VirtReg, MCPhysReg Reg) { 660 auto UDBGValIter = DanglingDbgValues.find(VirtReg); 661 if (UDBGValIter == DanglingDbgValues.end()) 662 return; 663 664 SmallVectorImpl<MachineInstr*> &Dangling = UDBGValIter->second; 665 for (MachineInstr *DbgValue : Dangling) { 666 assert(DbgValue->isDebugValue()); 667 if (!DbgValue->hasDebugOperandForReg(VirtReg)) 668 continue; 669 670 // Test whether the physreg survives from the definition to the DBG_VALUE. 671 MCPhysReg SetToReg = Reg; 672 unsigned Limit = 20; 673 for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()), 674 E = DbgValue->getIterator(); I != E; ++I) { 675 if (I->modifiesRegister(Reg, TRI) || --Limit == 0) { 676 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 677 << '\n'); 678 SetToReg = 0; 679 break; 680 } 681 } 682 for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) { 683 MO.setReg(SetToReg); 684 if (SetToReg != 0) 685 MO.setIsRenamable(); 686 } 687 } 688 Dangling.clear(); 689 } 690 691 /// This method updates local state so that we know that PhysReg is the 692 /// proper container for VirtReg now. The physical register must not be used 693 /// for anything else when this is called. 694 void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR, 695 MCPhysReg PhysReg) { 696 Register VirtReg = LR.VirtReg; 697 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 698 << printReg(PhysReg, TRI) << '\n'); 699 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 700 assert(PhysReg != 0 && "Trying to assign no register"); 701 LR.PhysReg = PhysReg; 702 setPhysRegState(PhysReg, VirtReg); 703 704 assignDanglingDebugValues(AtMI, VirtReg, PhysReg); 705 } 706 707 static bool isCoalescable(const MachineInstr &MI) { 708 return MI.isFullCopy(); 709 } 710 711 Register RegAllocFast::traceCopyChain(Register Reg) const { 712 static const unsigned ChainLengthLimit = 3; 713 unsigned C = 0; 714 do { 715 if (Reg.isPhysical()) 716 return Reg; 717 assert(Reg.isVirtual()); 718 719 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); 720 if (!VRegDef || !isCoalescable(*VRegDef)) 721 return 0; 722 Reg = VRegDef->getOperand(1).getReg(); 723 } while (++C <= ChainLengthLimit); 724 return 0; 725 } 726 727 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the 728 /// chain of copies to check whether we reach a physical register we can 729 /// coalesce with. 730 Register RegAllocFast::traceCopies(Register VirtReg) const { 731 static const unsigned DefLimit = 3; 732 unsigned C = 0; 733 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { 734 if (isCoalescable(MI)) { 735 Register Reg = MI.getOperand(1).getReg(); 736 Reg = traceCopyChain(Reg); 737 if (Reg.isValid()) 738 return Reg; 739 } 740 741 if (++C >= DefLimit) 742 break; 743 } 744 return Register(); 745 } 746 747 /// Allocates a physical register for VirtReg. 748 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, 749 Register Hint0, bool LookAtPhysRegUses) { 750 const Register VirtReg = LR.VirtReg; 751 assert(LR.PhysReg == 0); 752 753 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 754 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 755 << " in class " << TRI->getRegClassName(&RC) 756 << " with hint " << printReg(Hint0, TRI) << '\n'); 757 758 // Take hint when possible. 759 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) && 760 !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) { 761 // Take hint if the register is currently free. 762 if (isPhysRegFree(Hint0)) { 763 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 764 << '\n'); 765 assignVirtToPhysReg(MI, LR, Hint0); 766 return; 767 } else { 768 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI) 769 << " occupied\n"); 770 } 771 } else { 772 Hint0 = Register(); 773 } 774 775 776 // Try other hint. 777 Register Hint1 = traceCopies(VirtReg); 778 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) && 779 !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) { 780 // Take hint if the register is currently free. 781 if (isPhysRegFree(Hint1)) { 782 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 783 << '\n'); 784 assignVirtToPhysReg(MI, LR, Hint1); 785 return; 786 } else { 787 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI) 788 << " occupied\n"); 789 } 790 } else { 791 Hint1 = Register(); 792 } 793 794 MCPhysReg BestReg = 0; 795 unsigned BestCost = spillImpossible; 796 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 797 for (MCPhysReg PhysReg : AllocationOrder) { 798 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 799 if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) { 800 LLVM_DEBUG(dbgs() << "already used in instr.\n"); 801 continue; 802 } 803 804 unsigned Cost = calcSpillCost(PhysReg); 805 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 806 // Immediate take a register with cost 0. 807 if (Cost == 0) { 808 assignVirtToPhysReg(MI, LR, PhysReg); 809 return; 810 } 811 812 if (PhysReg == Hint0 || PhysReg == Hint1) 813 Cost -= spillPrefBonus; 814 815 if (Cost < BestCost) { 816 BestReg = PhysReg; 817 BestCost = Cost; 818 } 819 } 820 821 if (!BestReg) { 822 // Nothing we can do: Report an error and keep going with an invalid 823 // allocation. 824 if (MI.isInlineAsm()) 825 MI.emitError("inline assembly requires more registers than available"); 826 else 827 MI.emitError("ran out of registers during register allocation"); 828 829 LR.Error = true; 830 LR.PhysReg = 0; 831 return; 832 } 833 834 displacePhysReg(MI, BestReg); 835 assignVirtToPhysReg(MI, LR, BestReg); 836 } 837 838 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) { 839 assert(MO.isUndef() && "expected undef use"); 840 Register VirtReg = MO.getReg(); 841 assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg"); 842 843 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 844 MCPhysReg PhysReg; 845 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 846 PhysReg = LRI->PhysReg; 847 } else { 848 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 849 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 850 assert(!AllocationOrder.empty() && "Allocation order must not be empty"); 851 PhysReg = AllocationOrder[0]; 852 } 853 854 unsigned SubRegIdx = MO.getSubReg(); 855 if (SubRegIdx != 0) { 856 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); 857 MO.setSubReg(0); 858 } 859 MO.setReg(PhysReg); 860 MO.setIsRenamable(true); 861 } 862 863 /// Variation of defineVirtReg() with special handling for livethrough regs 864 /// (tied or earlyclobber) that may interfere with preassigned uses. 865 void RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 866 Register VirtReg) { 867 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 868 if (LRI != LiveVirtRegs.end()) { 869 MCPhysReg PrevReg = LRI->PhysReg; 870 if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) { 871 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI) 872 << " (tied/earlyclobber resolution)\n"); 873 freePhysReg(PrevReg); 874 LRI->PhysReg = 0; 875 allocVirtReg(MI, *LRI, 0, true); 876 MachineBasicBlock::iterator InsertBefore = 877 std::next((MachineBasicBlock::iterator)MI.getIterator()); 878 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to " 879 << printReg(PrevReg, TRI) << '\n'); 880 BuildMI(*MBB, InsertBefore, MI.getDebugLoc(), 881 TII->get(TargetOpcode::COPY), PrevReg) 882 .addReg(LRI->PhysReg, llvm::RegState::Kill); 883 } 884 MachineOperand &MO = MI.getOperand(OpNum); 885 if (MO.getSubReg() && !MO.isUndef()) { 886 LRI->LastUse = &MI; 887 } 888 } 889 return defineVirtReg(MI, OpNum, VirtReg, true); 890 } 891 892 /// Allocates a register for VirtReg definition. Typically the register is 893 /// already assigned from a use of the virtreg, however we still need to 894 /// perform an allocation if: 895 /// - It is a dead definition without any uses. 896 /// - The value is live out and all uses are in different basic blocks. 897 void RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, 898 Register VirtReg, bool LookAtPhysRegUses) { 899 assert(VirtReg.isVirtual() && "Not a virtual register"); 900 MachineOperand &MO = MI.getOperand(OpNum); 901 LiveRegMap::iterator LRI; 902 bool New; 903 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 904 if (New) { 905 if (!MO.isDead()) { 906 if (mayLiveOut(VirtReg)) { 907 LRI->LiveOut = true; 908 } else { 909 // It is a dead def without the dead flag; add the flag now. 910 MO.setIsDead(true); 911 } 912 } 913 } 914 if (LRI->PhysReg == 0) 915 allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses); 916 else { 917 assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) && 918 "TODO: preassign mismatch"); 919 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI) 920 << " use existing assignment to " 921 << printReg(LRI->PhysReg, TRI) << '\n'); 922 } 923 924 MCPhysReg PhysReg = LRI->PhysReg; 925 assert(PhysReg != 0 && "Register not assigned"); 926 if (LRI->Reloaded || LRI->LiveOut) { 927 if (!MI.isImplicitDef()) { 928 MachineBasicBlock::iterator SpillBefore = 929 std::next((MachineBasicBlock::iterator)MI.getIterator()); 930 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut << " RL: " 931 << LRI->Reloaded << '\n'); 932 bool Kill = LRI->LastUse == nullptr; 933 spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut); 934 LRI->LastUse = nullptr; 935 } 936 LRI->LiveOut = false; 937 LRI->Reloaded = false; 938 } 939 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 940 BundleVirtRegsMap[VirtReg] = PhysReg; 941 } 942 markRegUsedInInstr(PhysReg); 943 setPhysReg(MI, MO, PhysReg); 944 } 945 946 /// Allocates a register for a VirtReg use. 947 void RegAllocFast::useVirtReg(MachineInstr &MI, unsigned OpNum, 948 Register VirtReg) { 949 assert(VirtReg.isVirtual() && "Not a virtual register"); 950 MachineOperand &MO = MI.getOperand(OpNum); 951 LiveRegMap::iterator LRI; 952 bool New; 953 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 954 if (New) { 955 MachineOperand &MO = MI.getOperand(OpNum); 956 if (!MO.isKill()) { 957 if (mayLiveOut(VirtReg)) { 958 LRI->LiveOut = true; 959 } else { 960 // It is a last (killing) use without the kill flag; add the flag now. 961 MO.setIsKill(true); 962 } 963 } 964 } else { 965 assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag"); 966 } 967 968 // If necessary allocate a register. 969 if (LRI->PhysReg == 0) { 970 assert(!MO.isTied() && "tied op should be allocated"); 971 Register Hint; 972 if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) { 973 Hint = MI.getOperand(0).getReg(); 974 assert(Hint.isPhysical() && 975 "Copy destination should already be assigned"); 976 } 977 allocVirtReg(MI, *LRI, Hint, false); 978 if (LRI->Error) { 979 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 980 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 981 setPhysReg(MI, MO, *AllocationOrder.begin()); 982 return; 983 } 984 } 985 986 LRI->LastUse = &MI; 987 988 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 989 BundleVirtRegsMap[VirtReg] = LRI->PhysReg; 990 } 991 markRegUsedInInstr(LRI->PhysReg); 992 setPhysReg(MI, MO, LRI->PhysReg); 993 } 994 995 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 996 /// may invalidate any operand pointers. Return true if the operand kills its 997 /// register. 998 void RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, 999 MCPhysReg PhysReg) { 1000 if (!MO.getSubReg()) { 1001 MO.setReg(PhysReg); 1002 MO.setIsRenamable(true); 1003 return; 1004 } 1005 1006 // Handle subregister index. 1007 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister()); 1008 MO.setIsRenamable(true); 1009 // Note: We leave the subreg number around a little longer in case of defs. 1010 // This is so that the register freeing logic in allocateInstruction can still 1011 // recognize this as subregister defs. The code there will clear the number. 1012 if (!MO.isDef()) 1013 MO.setSubReg(0); 1014 1015 // A kill flag implies killing the full register. Add corresponding super 1016 // register kill. 1017 if (MO.isKill()) { 1018 MI.addRegisterKilled(PhysReg, TRI, true); 1019 return; 1020 } 1021 1022 // A <def,read-undef> of a sub-register requires an implicit def of the full 1023 // register. 1024 if (MO.isDef() && MO.isUndef()) { 1025 if (MO.isDead()) 1026 MI.addRegisterDead(PhysReg, TRI, true); 1027 else 1028 MI.addRegisterDefined(PhysReg, TRI); 1029 } 1030 } 1031 1032 #ifndef NDEBUG 1033 1034 void RegAllocFast::dumpState() const { 1035 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE; 1036 ++Unit) { 1037 switch (unsigned VirtReg = RegUnitStates[Unit]) { 1038 case regFree: 1039 break; 1040 case regPreAssigned: 1041 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]"; 1042 break; 1043 case regLiveIn: 1044 llvm_unreachable("Should not have regLiveIn in map"); 1045 default: { 1046 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg); 1047 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 1048 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry"); 1049 if (I->LiveOut || I->Reloaded) { 1050 dbgs() << '['; 1051 if (I->LiveOut) dbgs() << 'O'; 1052 if (I->Reloaded) dbgs() << 'R'; 1053 dbgs() << ']'; 1054 } 1055 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present"); 1056 break; 1057 } 1058 } 1059 } 1060 dbgs() << '\n'; 1061 // Check that LiveVirtRegs is the inverse. 1062 for (const LiveReg &LR : LiveVirtRegs) { 1063 Register VirtReg = LR.VirtReg; 1064 assert(VirtReg.isVirtual() && "Bad map key"); 1065 MCPhysReg PhysReg = LR.PhysReg; 1066 if (PhysReg != 0) { 1067 assert(Register::isPhysicalRegister(PhysReg) && 1068 "mapped to physreg"); 1069 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 1070 assert(RegUnitStates[*UI] == VirtReg && "inverse map valid"); 1071 } 1072 } 1073 } 1074 } 1075 #endif 1076 1077 /// Count number of defs consumed from each register class by \p Reg 1078 void RegAllocFast::addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 1079 Register Reg) const { 1080 assert(RegClassDefCounts.size() == TRI->getNumRegClasses()); 1081 1082 if (Reg.isVirtual()) { 1083 const TargetRegisterClass *OpRC = MRI->getRegClass(Reg); 1084 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1085 RCIdx != RCIdxEnd; ++RCIdx) { 1086 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1087 // FIXME: Consider aliasing sub/super registers. 1088 if (OpRC->hasSubClassEq(IdxRC)) 1089 ++RegClassDefCounts[RCIdx]; 1090 } 1091 1092 return; 1093 } 1094 1095 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1096 RCIdx != RCIdxEnd; ++RCIdx) { 1097 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1098 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 1099 if (IdxRC->contains(*Alias)) { 1100 ++RegClassDefCounts[RCIdx]; 1101 break; 1102 } 1103 } 1104 } 1105 } 1106 1107 void RegAllocFast::allocateInstruction(MachineInstr &MI) { 1108 // The basic algorithm here is: 1109 // 1. Mark registers of def operands as free 1110 // 2. Allocate registers to use operands and place reload instructions for 1111 // registers displaced by the allocation. 1112 // 1113 // However we need to handle some corner cases: 1114 // - pre-assigned defs and uses need to be handled before the other def/use 1115 // operands are processed to avoid the allocation heuristics clashing with 1116 // the pre-assignment. 1117 // - The "free def operands" step has to come last instead of first for tied 1118 // operands and early-clobbers. 1119 1120 UsedInInstr.clear(); 1121 RegMasks.clear(); 1122 BundleVirtRegsMap.clear(); 1123 1124 auto TiedOpIsUndef = [&](const MachineOperand &MO, unsigned Idx) { 1125 assert(MO.isTied()); 1126 unsigned TiedIdx = MI.findTiedOperandIdx(Idx); 1127 const MachineOperand &TiedMO = MI.getOperand(TiedIdx); 1128 return TiedMO.isUndef(); 1129 }; 1130 // Scan for special cases; Apply pre-assigned register defs to state. 1131 bool HasPhysRegUse = false; 1132 bool HasRegMask = false; 1133 bool HasVRegDef = false; 1134 bool HasDef = false; 1135 bool HasEarlyClobber = false; 1136 bool NeedToAssignLiveThroughs = false; 1137 for (unsigned I = 0; I < MI.getNumOperands(); ++I) { 1138 MachineOperand &MO = MI.getOperand(I); 1139 if (MO.isReg()) { 1140 Register Reg = MO.getReg(); 1141 if (Reg.isVirtual()) { 1142 if (MO.isDef()) { 1143 HasDef = true; 1144 HasVRegDef = true; 1145 if (MO.isEarlyClobber()) { 1146 HasEarlyClobber = true; 1147 NeedToAssignLiveThroughs = true; 1148 } 1149 if ((MO.isTied() && !TiedOpIsUndef(MO, I)) || 1150 (MO.getSubReg() != 0 && !MO.isUndef())) 1151 NeedToAssignLiveThroughs = true; 1152 } 1153 } else if (Reg.isPhysical()) { 1154 if (!MRI->isReserved(Reg)) { 1155 if (MO.isDef()) { 1156 HasDef = true; 1157 bool displacedAny = definePhysReg(MI, Reg); 1158 if (MO.isEarlyClobber()) 1159 HasEarlyClobber = true; 1160 if (!displacedAny) 1161 MO.setIsDead(true); 1162 } 1163 if (MO.readsReg()) 1164 HasPhysRegUse = true; 1165 } 1166 } 1167 } else if (MO.isRegMask()) { 1168 HasRegMask = true; 1169 RegMasks.push_back(MO.getRegMask()); 1170 } 1171 } 1172 1173 // Allocate virtreg defs. 1174 if (HasDef) { 1175 if (HasVRegDef) { 1176 // Special handling for early clobbers, tied operands or subregister defs: 1177 // Compared to "normal" defs these: 1178 // - Must not use a register that is pre-assigned for a use operand. 1179 // - In order to solve tricky inline assembly constraints we change the 1180 // heuristic to figure out a good operand order before doing 1181 // assignments. 1182 if (NeedToAssignLiveThroughs) { 1183 DefOperandIndexes.clear(); 1184 PhysRegUses.clear(); 1185 1186 // Track number of defs which may consume a register from the class. 1187 std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0); 1188 assert(RegClassDefCounts[0] == 0); 1189 1190 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n"); 1191 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1192 const MachineOperand &MO = MI.getOperand(I); 1193 if (!MO.isReg()) 1194 continue; 1195 Register Reg = MO.getReg(); 1196 if (MO.readsReg()) { 1197 if (Reg.isPhysical()) { 1198 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) 1199 << '\n'); 1200 markPhysRegUsedInInstr(Reg); 1201 } 1202 } 1203 1204 if (MO.isDef()) { 1205 if (Reg.isVirtual()) 1206 DefOperandIndexes.push_back(I); 1207 1208 addRegClassDefCounts(RegClassDefCounts, Reg); 1209 } 1210 } 1211 1212 llvm::sort(DefOperandIndexes, [&](uint16_t I0, uint16_t I1) { 1213 const MachineOperand &MO0 = MI.getOperand(I0); 1214 const MachineOperand &MO1 = MI.getOperand(I1); 1215 Register Reg0 = MO0.getReg(); 1216 Register Reg1 = MO1.getReg(); 1217 const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0); 1218 const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1); 1219 1220 // Identify regclass that are easy to use up completely just in this 1221 // instruction. 1222 unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size(); 1223 unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size(); 1224 1225 bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()]; 1226 bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()]; 1227 if (SmallClass0 > SmallClass1) 1228 return true; 1229 if (SmallClass0 < SmallClass1) 1230 return false; 1231 1232 // Allocate early clobbers and livethrough operands first. 1233 bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() || 1234 (MO0.getSubReg() == 0 && !MO0.isUndef()); 1235 bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() || 1236 (MO1.getSubReg() == 0 && !MO1.isUndef()); 1237 if (Livethrough0 > Livethrough1) 1238 return true; 1239 if (Livethrough0 < Livethrough1) 1240 return false; 1241 1242 // Tie-break rule: operand index. 1243 return I0 < I1; 1244 }); 1245 1246 for (uint16_t OpIdx : DefOperandIndexes) { 1247 MachineOperand &MO = MI.getOperand(OpIdx); 1248 LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n'); 1249 unsigned Reg = MO.getReg(); 1250 if (MO.isEarlyClobber() || 1251 (MO.isTied() && !TiedOpIsUndef(MO, OpIdx)) || 1252 (MO.getSubReg() && !MO.isUndef())) { 1253 defineLiveThroughVirtReg(MI, OpIdx, Reg); 1254 } else { 1255 defineVirtReg(MI, OpIdx, Reg); 1256 } 1257 } 1258 } else { 1259 // Assign virtual register defs. 1260 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1261 MachineOperand &MO = MI.getOperand(I); 1262 if (!MO.isReg() || !MO.isDef()) 1263 continue; 1264 Register Reg = MO.getReg(); 1265 if (Reg.isVirtual()) 1266 defineVirtReg(MI, I, Reg); 1267 } 1268 } 1269 } 1270 1271 // Free registers occupied by defs. 1272 // Iterate operands in reverse order, so we see the implicit super register 1273 // defs first (we added them earlier in case of <def,read-undef>). 1274 for (signed I = MI.getNumOperands() - 1; I >= 0; --I) { 1275 MachineOperand &MO = MI.getOperand(I); 1276 if (!MO.isReg() || !MO.isDef()) 1277 continue; 1278 1279 // subreg defs don't free the full register. We left the subreg number 1280 // around as a marker in setPhysReg() to recognize this case here. 1281 if (MO.getSubReg() != 0) { 1282 MO.setSubReg(0); 1283 continue; 1284 } 1285 1286 assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) && 1287 "tied def assigned to clobbered register"); 1288 1289 // Do not free tied operands and early clobbers. 1290 if ((MO.isTied() && !TiedOpIsUndef(MO, I)) || MO.isEarlyClobber()) 1291 continue; 1292 Register Reg = MO.getReg(); 1293 if (!Reg) 1294 continue; 1295 assert(Reg.isPhysical()); 1296 if (MRI->isReserved(Reg)) 1297 continue; 1298 freePhysReg(Reg); 1299 unmarkRegUsedInInstr(Reg); 1300 } 1301 } 1302 1303 // Displace clobbered registers. 1304 if (HasRegMask) { 1305 assert(!RegMasks.empty() && "expected RegMask"); 1306 // MRI bookkeeping. 1307 for (const auto *RM : RegMasks) 1308 MRI->addPhysRegsUsedFromRegMask(RM); 1309 1310 // Displace clobbered registers. 1311 for (const LiveReg &LR : LiveVirtRegs) { 1312 MCPhysReg PhysReg = LR.PhysReg; 1313 if (PhysReg != 0 && isClobberedByRegMasks(PhysReg)) 1314 displacePhysReg(MI, PhysReg); 1315 } 1316 } 1317 1318 // Apply pre-assigned register uses to state. 1319 if (HasPhysRegUse) { 1320 for (MachineOperand &MO : MI.operands()) { 1321 if (!MO.isReg() || !MO.readsReg()) 1322 continue; 1323 Register Reg = MO.getReg(); 1324 if (!Reg.isPhysical()) 1325 continue; 1326 if (MRI->isReserved(Reg)) 1327 continue; 1328 bool displacedAny = usePhysReg(MI, Reg); 1329 if (!displacedAny && !MRI->isReserved(Reg)) 1330 MO.setIsKill(true); 1331 } 1332 } 1333 1334 // Allocate virtreg uses and insert reloads as necessary. 1335 bool HasUndefUse = false; 1336 for (unsigned I = 0; I < MI.getNumOperands(); ++I) { 1337 MachineOperand &MO = MI.getOperand(I); 1338 if (!MO.isReg() || !MO.isUse()) 1339 continue; 1340 Register Reg = MO.getReg(); 1341 if (!Reg.isVirtual()) 1342 continue; 1343 1344 if (MO.isUndef()) { 1345 HasUndefUse = true; 1346 continue; 1347 } 1348 1349 1350 // Populate MayLiveAcrossBlocks in case the use block is allocated before 1351 // the def block (removing the vreg uses). 1352 mayLiveIn(Reg); 1353 1354 1355 assert(!MO.isInternalRead() && "Bundles not supported"); 1356 assert(MO.readsReg() && "reading use"); 1357 useVirtReg(MI, I, Reg); 1358 } 1359 1360 // Allocate undef operands. This is a separate step because in a situation 1361 // like ` = OP undef %X, %X` both operands need the same register assign 1362 // so we should perform the normal assignment first. 1363 if (HasUndefUse) { 1364 for (MachineOperand &MO : MI.uses()) { 1365 if (!MO.isReg() || !MO.isUse()) 1366 continue; 1367 Register Reg = MO.getReg(); 1368 if (!Reg.isVirtual()) 1369 continue; 1370 1371 assert(MO.isUndef() && "Should only have undef virtreg uses left"); 1372 allocVirtRegUndef(MO); 1373 } 1374 } 1375 1376 // Free early clobbers. 1377 if (HasEarlyClobber) { 1378 for (MachineOperand &MO : llvm::reverse(MI.operands())) { 1379 if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber()) 1380 continue; 1381 // subreg defs don't free the full register. We left the subreg number 1382 // around as a marker in setPhysReg() to recognize this case here. 1383 if (MO.getSubReg() != 0) { 1384 MO.setSubReg(0); 1385 continue; 1386 } 1387 1388 Register Reg = MO.getReg(); 1389 if (!Reg) 1390 continue; 1391 assert(Reg.isPhysical() && "should have register assigned"); 1392 1393 // We sometimes get odd situations like: 1394 // early-clobber %x0 = INSTRUCTION %x0 1395 // which is semantically questionable as the early-clobber should 1396 // apply before the use. But in practice we consider the use to 1397 // happen before the early clobber now. Don't free the early clobber 1398 // register in this case. 1399 if (MI.readsRegister(Reg, TRI)) 1400 continue; 1401 1402 freePhysReg(Reg); 1403 } 1404 } 1405 1406 LLVM_DEBUG(dbgs() << "<< " << MI); 1407 if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() && 1408 MI.getNumOperands() == 2) { 1409 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1410 Coalesced.push_back(&MI); 1411 } 1412 } 1413 1414 void RegAllocFast::handleDebugValue(MachineInstr &MI) { 1415 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1416 // mostly constants and frame indices. 1417 for (Register Reg : MI.getUsedDebugRegs()) { 1418 if (!Register::isVirtualRegister(Reg)) 1419 continue; 1420 1421 // Already spilled to a stackslot? 1422 int SS = StackSlotForVirtReg[Reg]; 1423 if (SS != -1) { 1424 // Modify DBG_VALUE now that the value is in a spill slot. 1425 updateDbgValueForSpill(MI, SS, Reg); 1426 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI); 1427 continue; 1428 } 1429 1430 // See if this virtual register has already been allocated to a physical 1431 // register or spilled to a stack slot. 1432 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1433 SmallVector<MachineOperand *> DbgOps; 1434 for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg)) 1435 DbgOps.push_back(&Op); 1436 1437 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1438 // Update every use of Reg within MI. 1439 for (auto &RegMO : DbgOps) 1440 setPhysReg(MI, *RegMO, LRI->PhysReg); 1441 } else { 1442 DanglingDbgValues[Reg].push_back(&MI); 1443 } 1444 1445 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1446 // that future spills of Reg will have DBG_VALUEs. 1447 LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end()); 1448 } 1449 } 1450 1451 void RegAllocFast::handleBundle(MachineInstr &MI) { 1452 MachineBasicBlock::instr_iterator BundledMI = MI.getIterator(); 1453 ++BundledMI; 1454 while (BundledMI->isBundledWithPred()) { 1455 for (MachineOperand &MO : BundledMI->operands()) { 1456 if (!MO.isReg()) 1457 continue; 1458 1459 Register Reg = MO.getReg(); 1460 if (!Reg.isVirtual()) 1461 continue; 1462 1463 DenseMap<Register, MCPhysReg>::iterator DI; 1464 DI = BundleVirtRegsMap.find(Reg); 1465 assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register"); 1466 1467 setPhysReg(MI, MO, DI->second); 1468 } 1469 1470 ++BundledMI; 1471 } 1472 } 1473 1474 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 1475 this->MBB = &MBB; 1476 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1477 1478 RegUnitStates.assign(TRI->getNumRegUnits(), regFree); 1479 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1480 1481 for (const auto &LiveReg : MBB.liveouts()) 1482 setPhysRegState(LiveReg.PhysReg, regPreAssigned); 1483 1484 Coalesced.clear(); 1485 1486 // Traverse block in reverse order allocating instructions one by one. 1487 for (MachineInstr &MI : reverse(MBB)) { 1488 LLVM_DEBUG( 1489 dbgs() << "\n>> " << MI << "Regs:"; 1490 dumpState() 1491 ); 1492 1493 // Special handling for debug values. Note that they are not allowed to 1494 // affect codegen of the other instructions in any way. 1495 if (MI.isDebugValue()) { 1496 handleDebugValue(MI); 1497 continue; 1498 } 1499 1500 allocateInstruction(MI); 1501 1502 // Once BUNDLE header is assigned registers, same assignments need to be 1503 // done for bundled MIs. 1504 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1505 handleBundle(MI); 1506 } 1507 } 1508 1509 LLVM_DEBUG( 1510 dbgs() << "Begin Regs:"; 1511 dumpState() 1512 ); 1513 1514 // Spill all physical registers holding virtual registers now. 1515 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n"); 1516 reloadAtBegin(MBB); 1517 1518 // Erase all the coalesced copies. We are delaying it until now because 1519 // LiveVirtRegs might refer to the instrs. 1520 for (MachineInstr *MI : Coalesced) 1521 MBB.erase(MI); 1522 NumCoalesced += Coalesced.size(); 1523 1524 for (auto &UDBGPair : DanglingDbgValues) { 1525 for (MachineInstr *DbgValue : UDBGPair.second) { 1526 assert(DbgValue->isDebugValue() && "expected DBG_VALUE"); 1527 // Nothing to do if the vreg was spilled in the meantime. 1528 if (!DbgValue->hasDebugOperandForReg(UDBGPair.first)) 1529 continue; 1530 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 1531 << '\n'); 1532 DbgValue->setDebugValueUndef(); 1533 } 1534 } 1535 DanglingDbgValues.clear(); 1536 1537 LLVM_DEBUG(MBB.dump()); 1538 } 1539 1540 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1541 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1542 << "********** Function: " << MF.getName() << '\n'); 1543 MRI = &MF.getRegInfo(); 1544 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1545 TRI = STI.getRegisterInfo(); 1546 TII = STI.getInstrInfo(); 1547 MFI = &MF.getFrameInfo(); 1548 MRI->freezeReservedRegs(MF); 1549 RegClassInfo.runOnMachineFunction(MF); 1550 unsigned NumRegUnits = TRI->getNumRegUnits(); 1551 UsedInInstr.clear(); 1552 UsedInInstr.setUniverse(NumRegUnits); 1553 PhysRegUses.clear(); 1554 PhysRegUses.setUniverse(NumRegUnits); 1555 1556 // initialize the virtual->physical register map to have a 'null' 1557 // mapping for all virtual registers 1558 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1559 StackSlotForVirtReg.resize(NumVirtRegs); 1560 LiveVirtRegs.setUniverse(NumVirtRegs); 1561 MayLiveAcrossBlocks.clear(); 1562 MayLiveAcrossBlocks.resize(NumVirtRegs); 1563 1564 // Loop over all of the basic blocks, eliminating virtual register references 1565 for (MachineBasicBlock &MBB : MF) 1566 allocateBasicBlock(MBB); 1567 1568 if (ClearVirtRegs) { 1569 // All machine operands and other references to virtual registers have been 1570 // replaced. Remove the virtual registers. 1571 MRI->clearVirtRegs(); 1572 } 1573 1574 StackSlotForVirtReg.clear(); 1575 LiveDbgValueMap.clear(); 1576 return true; 1577 } 1578 1579 FunctionPass *llvm::createFastRegisterAllocator() { 1580 return new RegAllocFast(); 1581 } 1582 1583 FunctionPass *llvm::createFastRegisterAllocator(RegClassFilterFunc Ftor, 1584 bool ClearVirtRegs) { 1585 return new RegAllocFast(Ftor, ClearVirtRegs); 1586 } 1587