1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/SparseSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/RegAllocCommon.h" 31 #include "llvm/CodeGen/RegAllocRegistry.h" 32 #include "llvm/CodeGen/RegisterClassInfo.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetOpcodes.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/InitializePasses.h" 40 #include "llvm/MC/MCInstrDesc.h" 41 #include "llvm/MC/MCRegisterInfo.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/Compiler.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <cassert> 49 #include <tuple> 50 #include <vector> 51 52 using namespace llvm; 53 54 #define DEBUG_TYPE "regalloc" 55 56 STATISTIC(NumStores, "Number of stores added"); 57 STATISTIC(NumLoads , "Number of loads added"); 58 STATISTIC(NumCoalesced, "Number of copies coalesced"); 59 60 // FIXME: Remove this switch when all testcases are fixed! 61 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs", 62 cl::Hidden); 63 64 static RegisterRegAlloc 65 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 66 67 namespace { 68 69 class RegAllocFast : public MachineFunctionPass { 70 public: 71 static char ID; 72 73 RegAllocFast(const RegClassFilterFunc F = allocateAllRegClasses, 74 bool ClearVirtRegs_ = true) : 75 MachineFunctionPass(ID), 76 ShouldAllocateClass(F), 77 StackSlotForVirtReg(-1), 78 ClearVirtRegs(ClearVirtRegs_) { 79 } 80 81 private: 82 MachineFrameInfo *MFI; 83 MachineRegisterInfo *MRI; 84 const TargetRegisterInfo *TRI; 85 const TargetInstrInfo *TII; 86 RegisterClassInfo RegClassInfo; 87 const RegClassFilterFunc ShouldAllocateClass; 88 89 /// Basic block currently being allocated. 90 MachineBasicBlock *MBB; 91 92 /// Maps virtual regs to the frame index where these values are spilled. 93 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 94 95 bool ClearVirtRegs; 96 97 /// Everything we know about a live virtual register. 98 struct LiveReg { 99 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 100 Register VirtReg; ///< Virtual register number. 101 MCPhysReg PhysReg = 0; ///< Currently held here. 102 bool LiveOut = false; ///< Register is possibly live out. 103 bool Reloaded = false; ///< Register was reloaded. 104 bool Error = false; ///< Could not allocate. 105 106 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {} 107 108 unsigned getSparseSetIndex() const { 109 return Register::virtReg2Index(VirtReg); 110 } 111 }; 112 113 using LiveRegMap = SparseSet<LiveReg>; 114 /// This map contains entries for each virtual register that is currently 115 /// available in a physical register. 116 LiveRegMap LiveVirtRegs; 117 118 /// Stores assigned virtual registers present in the bundle MI. 119 DenseMap<Register, MCPhysReg> BundleVirtRegsMap; 120 121 DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap; 122 /// List of DBG_VALUE that we encountered without the vreg being assigned 123 /// because they were placed after the last use of the vreg. 124 DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues; 125 126 /// Has a bit set for every virtual register for which it was determined 127 /// that it is alive across blocks. 128 BitVector MayLiveAcrossBlocks; 129 130 /// State of a register unit. 131 enum RegUnitState { 132 /// A free register is not currently in use and can be allocated 133 /// immediately without checking aliases. 134 regFree, 135 136 /// A pre-assigned register has been assigned before register allocation 137 /// (e.g., setting up a call parameter). 138 regPreAssigned, 139 140 /// Used temporarily in reloadAtBegin() to mark register units that are 141 /// live-in to the basic block. 142 regLiveIn, 143 144 /// A register state may also be a virtual register number, indication 145 /// that the physical register is currently allocated to a virtual 146 /// register. In that case, LiveVirtRegs contains the inverse mapping. 147 }; 148 149 /// Maps each physical register to a RegUnitState enum or virtual register. 150 std::vector<unsigned> RegUnitStates; 151 152 SmallVector<MachineInstr *, 32> Coalesced; 153 154 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 155 /// Set of register units that are used in the current instruction, and so 156 /// cannot be allocated. 157 RegUnitSet UsedInInstr; 158 RegUnitSet PhysRegUses; 159 SmallVector<uint16_t, 8> DefOperandIndexes; 160 // Register masks attached to the current instruction. 161 SmallVector<const uint32_t *> RegMasks; 162 163 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 164 bool isPhysRegFree(MCPhysReg PhysReg) const; 165 166 /// Mark a physreg as used in this instruction. 167 void markRegUsedInInstr(MCPhysReg PhysReg) { 168 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 169 UsedInInstr.insert(*Units); 170 } 171 172 // Check if physreg is clobbered by instruction's regmask(s). 173 bool isClobberedByRegMasks(MCPhysReg PhysReg) const { 174 return llvm::any_of(RegMasks, [PhysReg](const uint32_t *Mask) { 175 return MachineOperand::clobbersPhysReg(Mask, PhysReg); 176 }); 177 } 178 179 /// Check if a physreg or any of its aliases are used in this instruction. 180 bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const { 181 if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg)) 182 return true; 183 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 184 if (UsedInInstr.count(*Units)) 185 return true; 186 if (LookAtPhysRegUses && PhysRegUses.count(*Units)) 187 return true; 188 } 189 return false; 190 } 191 192 /// Mark physical register as being used in a register use operand. 193 /// This is only used by the special livethrough handling code. 194 void markPhysRegUsedInInstr(MCPhysReg PhysReg) { 195 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 196 PhysRegUses.insert(*Units); 197 } 198 199 /// Remove mark of physical register being used in the instruction. 200 void unmarkRegUsedInInstr(MCPhysReg PhysReg) { 201 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 202 UsedInInstr.erase(*Units); 203 } 204 205 enum : unsigned { 206 spillClean = 50, 207 spillDirty = 100, 208 spillPrefBonus = 20, 209 spillImpossible = ~0u 210 }; 211 212 public: 213 StringRef getPassName() const override { return "Fast Register Allocator"; } 214 215 void getAnalysisUsage(AnalysisUsage &AU) const override { 216 AU.setPreservesCFG(); 217 MachineFunctionPass::getAnalysisUsage(AU); 218 } 219 220 MachineFunctionProperties getRequiredProperties() const override { 221 return MachineFunctionProperties().set( 222 MachineFunctionProperties::Property::NoPHIs); 223 } 224 225 MachineFunctionProperties getSetProperties() const override { 226 if (ClearVirtRegs) { 227 return MachineFunctionProperties().set( 228 MachineFunctionProperties::Property::NoVRegs); 229 } 230 231 return MachineFunctionProperties(); 232 } 233 234 MachineFunctionProperties getClearedProperties() const override { 235 return MachineFunctionProperties().set( 236 MachineFunctionProperties::Property::IsSSA); 237 } 238 239 private: 240 bool runOnMachineFunction(MachineFunction &MF) override; 241 242 void allocateBasicBlock(MachineBasicBlock &MBB); 243 244 void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 245 Register Reg) const; 246 247 void allocateInstruction(MachineInstr &MI); 248 void handleDebugValue(MachineInstr &MI); 249 void handleBundle(MachineInstr &MI); 250 251 bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 252 bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 253 bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 254 void freePhysReg(MCPhysReg PhysReg); 255 256 unsigned calcSpillCost(MCPhysReg PhysReg) const; 257 258 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) { 259 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 260 } 261 262 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const { 263 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 264 } 265 266 void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg); 267 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint, 268 bool LookAtPhysRegUses = false); 269 void allocVirtRegUndef(MachineOperand &MO); 270 void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg, 271 MCPhysReg Reg); 272 void defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 273 Register VirtReg); 274 void defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 275 bool LookAtPhysRegUses = false); 276 void useVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg); 277 278 MachineBasicBlock::iterator 279 getMBBBeginInsertionPoint(MachineBasicBlock &MBB, 280 SmallSet<Register, 2> &PrologLiveIns) const; 281 282 void reloadAtBegin(MachineBasicBlock &MBB); 283 void setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 284 285 Register traceCopies(Register VirtReg) const; 286 Register traceCopyChain(Register Reg) const; 287 288 int getStackSpaceFor(Register VirtReg); 289 void spill(MachineBasicBlock::iterator Before, Register VirtReg, 290 MCPhysReg AssignedReg, bool Kill, bool LiveOut); 291 void reload(MachineBasicBlock::iterator Before, Register VirtReg, 292 MCPhysReg PhysReg); 293 294 bool mayLiveOut(Register VirtReg); 295 bool mayLiveIn(Register VirtReg); 296 297 void dumpState() const; 298 }; 299 300 } // end anonymous namespace 301 302 char RegAllocFast::ID = 0; 303 304 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 305 false) 306 307 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 308 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) 309 RegUnitStates[*UI] = NewState; 310 } 311 312 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const { 313 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 314 if (RegUnitStates[*UI] != regFree) 315 return false; 316 } 317 return true; 318 } 319 320 /// This allocates space for the specified virtual register to be held on the 321 /// stack. 322 int RegAllocFast::getStackSpaceFor(Register VirtReg) { 323 // Find the location Reg would belong... 324 int SS = StackSlotForVirtReg[VirtReg]; 325 // Already has space allocated? 326 if (SS != -1) 327 return SS; 328 329 // Allocate a new stack object for this spill location... 330 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 331 unsigned Size = TRI->getSpillSize(RC); 332 Align Alignment = TRI->getSpillAlign(RC); 333 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment); 334 335 // Assign the slot. 336 StackSlotForVirtReg[VirtReg] = FrameIdx; 337 return FrameIdx; 338 } 339 340 static bool dominates(MachineBasicBlock &MBB, 341 MachineBasicBlock::const_iterator A, 342 MachineBasicBlock::const_iterator B) { 343 auto MBBEnd = MBB.end(); 344 if (B == MBBEnd) 345 return true; 346 347 MachineBasicBlock::const_iterator I = MBB.begin(); 348 for (; &*I != A && &*I != B; ++I) 349 ; 350 351 return &*I == A; 352 } 353 354 /// Returns false if \p VirtReg is known to not live out of the current block. 355 bool RegAllocFast::mayLiveOut(Register VirtReg) { 356 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) { 357 // Cannot be live-out if there are no successors. 358 return !MBB->succ_empty(); 359 } 360 361 const MachineInstr *SelfLoopDef = nullptr; 362 363 // If this block loops back to itself, it is necessary to check whether the 364 // use comes after the def. 365 if (MBB->isSuccessor(MBB)) { 366 SelfLoopDef = MRI->getUniqueVRegDef(VirtReg); 367 if (!SelfLoopDef) { 368 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 369 return true; 370 } 371 } 372 373 // See if the first \p Limit uses of the register are all in the current 374 // block. 375 static const unsigned Limit = 8; 376 unsigned C = 0; 377 for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) { 378 if (UseInst.getParent() != MBB || ++C >= Limit) { 379 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 380 // Cannot be live-out if there are no successors. 381 return !MBB->succ_empty(); 382 } 383 384 if (SelfLoopDef) { 385 // Try to handle some simple cases to avoid spilling and reloading every 386 // value inside a self looping block. 387 if (SelfLoopDef == &UseInst || 388 !dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) { 389 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 390 return true; 391 } 392 } 393 } 394 395 return false; 396 } 397 398 /// Returns false if \p VirtReg is known to not be live into the current block. 399 bool RegAllocFast::mayLiveIn(Register VirtReg) { 400 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) 401 return !MBB->pred_empty(); 402 403 // See if the first \p Limit def of the register are all in the current block. 404 static const unsigned Limit = 8; 405 unsigned C = 0; 406 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 407 if (DefInst.getParent() != MBB || ++C >= Limit) { 408 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 409 return !MBB->pred_empty(); 410 } 411 } 412 413 return false; 414 } 415 416 /// Insert spill instruction for \p AssignedReg before \p Before. Update 417 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 418 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg, 419 MCPhysReg AssignedReg, bool Kill, bool LiveOut) { 420 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) 421 << " in " << printReg(AssignedReg, TRI)); 422 int FI = getStackSpaceFor(VirtReg); 423 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 424 425 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 426 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI); 427 ++NumStores; 428 429 MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator(); 430 431 // When we spill a virtual register, we will have spill instructions behind 432 // every definition of it, meaning we can switch all the DBG_VALUEs over 433 // to just reference the stack slot. 434 SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg]; 435 SmallDenseMap<MachineInstr *, SmallVector<const MachineOperand *>> 436 SpilledOperandsMap; 437 for (MachineOperand *MO : LRIDbgOperands) 438 SpilledOperandsMap[MO->getParent()].push_back(MO); 439 for (auto MISpilledOperands : SpilledOperandsMap) { 440 MachineInstr &DBG = *MISpilledOperands.first; 441 MachineInstr *NewDV = buildDbgValueForSpill( 442 *MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second); 443 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 444 (void)NewDV; 445 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 446 447 if (LiveOut) { 448 // We need to insert a DBG_VALUE at the end of the block if the spill slot 449 // is live out, but there is another use of the value after the 450 // spill. This will allow LiveDebugValues to see the correct live out 451 // value to propagate to the successors. 452 MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV); 453 MBB->insert(FirstTerm, ClonedDV); 454 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n"); 455 } 456 457 // Rewrite unassigned dbg_values to use the stack slot. 458 // TODO We can potentially do this for list debug values as well if we know 459 // how the dbg_values are getting unassigned. 460 if (DBG.isNonListDebugValue()) { 461 MachineOperand &MO = DBG.getDebugOperand(0); 462 if (MO.isReg() && MO.getReg() == 0) { 463 updateDbgValueForSpill(DBG, FI, 0); 464 } 465 } 466 } 467 // Now this register is spilled there is should not be any DBG_VALUE 468 // pointing to this register because they are all pointing to spilled value 469 // now. 470 LRIDbgOperands.clear(); 471 } 472 473 /// Insert reload instruction for \p PhysReg before \p Before. 474 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg, 475 MCPhysReg PhysReg) { 476 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 477 << printReg(PhysReg, TRI) << '\n'); 478 int FI = getStackSpaceFor(VirtReg); 479 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 480 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI); 481 ++NumLoads; 482 } 483 484 /// Get basic block begin insertion point. 485 /// This is not just MBB.begin() because surprisingly we have EH_LABEL 486 /// instructions marking the begin of a basic block. This means we must insert 487 /// new instructions after such labels... 488 MachineBasicBlock::iterator 489 RegAllocFast::getMBBBeginInsertionPoint( 490 MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const { 491 MachineBasicBlock::iterator I = MBB.begin(); 492 while (I != MBB.end()) { 493 if (I->isLabel()) { 494 ++I; 495 continue; 496 } 497 498 // Most reloads should be inserted after prolog instructions. 499 if (!TII->isBasicBlockPrologue(*I)) 500 break; 501 502 // However if a prolog instruction reads a register that needs to be 503 // reloaded, the reload should be inserted before the prolog. 504 for (MachineOperand &MO : I->operands()) { 505 if (MO.isReg()) 506 PrologLiveIns.insert(MO.getReg()); 507 } 508 509 ++I; 510 } 511 512 return I; 513 } 514 515 /// Reload all currently assigned virtual registers. 516 void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) { 517 if (LiveVirtRegs.empty()) 518 return; 519 520 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 521 MCPhysReg Reg = P.PhysReg; 522 // Set state to live-in. This possibly overrides mappings to virtual 523 // registers but we don't care anymore at this point. 524 setPhysRegState(Reg, regLiveIn); 525 } 526 527 528 SmallSet<Register, 2> PrologLiveIns; 529 530 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 531 // of spilling here is deterministic, if arbitrary. 532 MachineBasicBlock::iterator InsertBefore 533 = getMBBBeginInsertionPoint(MBB, PrologLiveIns); 534 for (const LiveReg &LR : LiveVirtRegs) { 535 MCPhysReg PhysReg = LR.PhysReg; 536 if (PhysReg == 0) 537 continue; 538 539 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 540 if (RegUnitStates[FirstUnit] == regLiveIn) 541 continue; 542 543 assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) && 544 "no reload in start block. Missing vreg def?"); 545 546 if (PrologLiveIns.count(PhysReg)) { 547 // FIXME: Theoretically this should use an insert point skipping labels 548 // but I'm not sure how labels should interact with prolog instruction 549 // that need reloads. 550 reload(MBB.begin(), LR.VirtReg, PhysReg); 551 } else 552 reload(InsertBefore, LR.VirtReg, PhysReg); 553 } 554 LiveVirtRegs.clear(); 555 } 556 557 /// Handle the direct use of a physical register. Check that the register is 558 /// not used by a virtreg. Kill the physreg, marking it free. This may add 559 /// implicit kills to MO->getParent() and invalidate MO. 560 bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) { 561 assert(Register::isPhysicalRegister(Reg) && "expected physreg"); 562 bool displacedAny = displacePhysReg(MI, Reg); 563 setPhysRegState(Reg, regPreAssigned); 564 markRegUsedInInstr(Reg); 565 return displacedAny; 566 } 567 568 bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) { 569 bool displacedAny = displacePhysReg(MI, Reg); 570 setPhysRegState(Reg, regPreAssigned); 571 return displacedAny; 572 } 573 574 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 575 /// similar to defineVirtReg except the physreg is reserved instead of 576 /// allocated. 577 bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) { 578 bool displacedAny = false; 579 580 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 581 unsigned Unit = *UI; 582 switch (unsigned VirtReg = RegUnitStates[Unit]) { 583 default: { 584 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 585 assert(LRI != LiveVirtRegs.end() && "datastructures in sync"); 586 MachineBasicBlock::iterator ReloadBefore = 587 std::next((MachineBasicBlock::iterator)MI.getIterator()); 588 reload(ReloadBefore, VirtReg, LRI->PhysReg); 589 590 setPhysRegState(LRI->PhysReg, regFree); 591 LRI->PhysReg = 0; 592 LRI->Reloaded = true; 593 displacedAny = true; 594 break; 595 } 596 case regPreAssigned: 597 RegUnitStates[Unit] = regFree; 598 displacedAny = true; 599 break; 600 case regFree: 601 break; 602 } 603 } 604 return displacedAny; 605 } 606 607 void RegAllocFast::freePhysReg(MCPhysReg PhysReg) { 608 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':'); 609 610 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 611 switch (unsigned VirtReg = RegUnitStates[FirstUnit]) { 612 case regFree: 613 LLVM_DEBUG(dbgs() << '\n'); 614 return; 615 case regPreAssigned: 616 LLVM_DEBUG(dbgs() << '\n'); 617 setPhysRegState(PhysReg, regFree); 618 return; 619 default: { 620 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 621 assert(LRI != LiveVirtRegs.end()); 622 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n'); 623 setPhysRegState(LRI->PhysReg, regFree); 624 LRI->PhysReg = 0; 625 } 626 return; 627 } 628 } 629 630 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 631 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 632 /// disabled - it can be allocated directly. 633 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 634 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 635 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 636 switch (unsigned VirtReg = RegUnitStates[*UI]) { 637 case regFree: 638 break; 639 case regPreAssigned: 640 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned " 641 << printReg(PhysReg, TRI) << '\n'); 642 return spillImpossible; 643 default: { 644 bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 || 645 findLiveVirtReg(VirtReg)->LiveOut; 646 return SureSpill ? spillClean : spillDirty; 647 } 648 } 649 } 650 return 0; 651 } 652 653 void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition, 654 Register VirtReg, MCPhysReg Reg) { 655 auto UDBGValIter = DanglingDbgValues.find(VirtReg); 656 if (UDBGValIter == DanglingDbgValues.end()) 657 return; 658 659 SmallVectorImpl<MachineInstr*> &Dangling = UDBGValIter->second; 660 for (MachineInstr *DbgValue : Dangling) { 661 assert(DbgValue->isDebugValue()); 662 if (!DbgValue->hasDebugOperandForReg(VirtReg)) 663 continue; 664 665 // Test whether the physreg survives from the definition to the DBG_VALUE. 666 MCPhysReg SetToReg = Reg; 667 unsigned Limit = 20; 668 for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()), 669 E = DbgValue->getIterator(); I != E; ++I) { 670 if (I->modifiesRegister(Reg, TRI) || --Limit == 0) { 671 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 672 << '\n'); 673 SetToReg = 0; 674 break; 675 } 676 } 677 for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) { 678 MO.setReg(SetToReg); 679 if (SetToReg != 0) 680 MO.setIsRenamable(); 681 } 682 } 683 Dangling.clear(); 684 } 685 686 /// This method updates local state so that we know that PhysReg is the 687 /// proper container for VirtReg now. The physical register must not be used 688 /// for anything else when this is called. 689 void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR, 690 MCPhysReg PhysReg) { 691 Register VirtReg = LR.VirtReg; 692 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 693 << printReg(PhysReg, TRI) << '\n'); 694 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 695 assert(PhysReg != 0 && "Trying to assign no register"); 696 LR.PhysReg = PhysReg; 697 setPhysRegState(PhysReg, VirtReg); 698 699 assignDanglingDebugValues(AtMI, VirtReg, PhysReg); 700 } 701 702 static bool isCoalescable(const MachineInstr &MI) { 703 return MI.isFullCopy(); 704 } 705 706 Register RegAllocFast::traceCopyChain(Register Reg) const { 707 static const unsigned ChainLengthLimit = 3; 708 unsigned C = 0; 709 do { 710 if (Reg.isPhysical()) 711 return Reg; 712 assert(Reg.isVirtual()); 713 714 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); 715 if (!VRegDef || !isCoalescable(*VRegDef)) 716 return 0; 717 Reg = VRegDef->getOperand(1).getReg(); 718 } while (++C <= ChainLengthLimit); 719 return 0; 720 } 721 722 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the 723 /// chain of copies to check whether we reach a physical register we can 724 /// coalesce with. 725 Register RegAllocFast::traceCopies(Register VirtReg) const { 726 static const unsigned DefLimit = 3; 727 unsigned C = 0; 728 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { 729 if (isCoalescable(MI)) { 730 Register Reg = MI.getOperand(1).getReg(); 731 Reg = traceCopyChain(Reg); 732 if (Reg.isValid()) 733 return Reg; 734 } 735 736 if (++C >= DefLimit) 737 break; 738 } 739 return Register(); 740 } 741 742 /// Allocates a physical register for VirtReg. 743 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, 744 Register Hint0, bool LookAtPhysRegUses) { 745 const Register VirtReg = LR.VirtReg; 746 assert(LR.PhysReg == 0); 747 748 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 749 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 750 << " in class " << TRI->getRegClassName(&RC) 751 << " with hint " << printReg(Hint0, TRI) << '\n'); 752 753 // Take hint when possible. 754 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) && 755 !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) { 756 // Take hint if the register is currently free. 757 if (isPhysRegFree(Hint0)) { 758 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 759 << '\n'); 760 assignVirtToPhysReg(MI, LR, Hint0); 761 return; 762 } else { 763 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI) 764 << " occupied\n"); 765 } 766 } else { 767 Hint0 = Register(); 768 } 769 770 771 // Try other hint. 772 Register Hint1 = traceCopies(VirtReg); 773 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) && 774 !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) { 775 // Take hint if the register is currently free. 776 if (isPhysRegFree(Hint1)) { 777 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 778 << '\n'); 779 assignVirtToPhysReg(MI, LR, Hint1); 780 return; 781 } else { 782 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI) 783 << " occupied\n"); 784 } 785 } else { 786 Hint1 = Register(); 787 } 788 789 MCPhysReg BestReg = 0; 790 unsigned BestCost = spillImpossible; 791 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 792 for (MCPhysReg PhysReg : AllocationOrder) { 793 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 794 if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) { 795 LLVM_DEBUG(dbgs() << "already used in instr.\n"); 796 continue; 797 } 798 799 unsigned Cost = calcSpillCost(PhysReg); 800 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 801 // Immediate take a register with cost 0. 802 if (Cost == 0) { 803 assignVirtToPhysReg(MI, LR, PhysReg); 804 return; 805 } 806 807 if (PhysReg == Hint0 || PhysReg == Hint1) 808 Cost -= spillPrefBonus; 809 810 if (Cost < BestCost) { 811 BestReg = PhysReg; 812 BestCost = Cost; 813 } 814 } 815 816 if (!BestReg) { 817 // Nothing we can do: Report an error and keep going with an invalid 818 // allocation. 819 if (MI.isInlineAsm()) 820 MI.emitError("inline assembly requires more registers than available"); 821 else 822 MI.emitError("ran out of registers during register allocation"); 823 824 LR.Error = true; 825 LR.PhysReg = 0; 826 return; 827 } 828 829 displacePhysReg(MI, BestReg); 830 assignVirtToPhysReg(MI, LR, BestReg); 831 } 832 833 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) { 834 assert(MO.isUndef() && "expected undef use"); 835 Register VirtReg = MO.getReg(); 836 assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg"); 837 838 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 839 MCPhysReg PhysReg; 840 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 841 PhysReg = LRI->PhysReg; 842 } else { 843 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 844 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 845 assert(!AllocationOrder.empty() && "Allocation order must not be empty"); 846 PhysReg = AllocationOrder[0]; 847 } 848 849 unsigned SubRegIdx = MO.getSubReg(); 850 if (SubRegIdx != 0) { 851 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); 852 MO.setSubReg(0); 853 } 854 MO.setReg(PhysReg); 855 MO.setIsRenamable(true); 856 } 857 858 /// Variation of defineVirtReg() with special handling for livethrough regs 859 /// (tied or earlyclobber) that may interfere with preassigned uses. 860 void RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 861 Register VirtReg) { 862 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 863 if (LRI != LiveVirtRegs.end()) { 864 MCPhysReg PrevReg = LRI->PhysReg; 865 if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) { 866 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI) 867 << " (tied/earlyclobber resolution)\n"); 868 freePhysReg(PrevReg); 869 LRI->PhysReg = 0; 870 allocVirtReg(MI, *LRI, 0, true); 871 MachineBasicBlock::iterator InsertBefore = 872 std::next((MachineBasicBlock::iterator)MI.getIterator()); 873 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to " 874 << printReg(PrevReg, TRI) << '\n'); 875 BuildMI(*MBB, InsertBefore, MI.getDebugLoc(), 876 TII->get(TargetOpcode::COPY), PrevReg) 877 .addReg(LRI->PhysReg, llvm::RegState::Kill); 878 } 879 MachineOperand &MO = MI.getOperand(OpNum); 880 if (MO.getSubReg() && !MO.isUndef()) { 881 LRI->LastUse = &MI; 882 } 883 } 884 return defineVirtReg(MI, OpNum, VirtReg, true); 885 } 886 887 /// Allocates a register for VirtReg definition. Typically the register is 888 /// already assigned from a use of the virtreg, however we still need to 889 /// perform an allocation if: 890 /// - It is a dead definition without any uses. 891 /// - The value is live out and all uses are in different basic blocks. 892 void RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, 893 Register VirtReg, bool LookAtPhysRegUses) { 894 assert(VirtReg.isVirtual() && "Not a virtual register"); 895 MachineOperand &MO = MI.getOperand(OpNum); 896 LiveRegMap::iterator LRI; 897 bool New; 898 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 899 if (New) { 900 if (!MO.isDead()) { 901 if (mayLiveOut(VirtReg)) { 902 LRI->LiveOut = true; 903 } else { 904 // It is a dead def without the dead flag; add the flag now. 905 MO.setIsDead(true); 906 } 907 } 908 } 909 if (LRI->PhysReg == 0) 910 allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses); 911 else { 912 assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) && 913 "TODO: preassign mismatch"); 914 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI) 915 << " use existing assignment to " 916 << printReg(LRI->PhysReg, TRI) << '\n'); 917 } 918 919 MCPhysReg PhysReg = LRI->PhysReg; 920 assert(PhysReg != 0 && "Register not assigned"); 921 if (LRI->Reloaded || LRI->LiveOut) { 922 if (!MI.isImplicitDef()) { 923 MachineBasicBlock::iterator SpillBefore = 924 std::next((MachineBasicBlock::iterator)MI.getIterator()); 925 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut << " RL: " 926 << LRI->Reloaded << '\n'); 927 bool Kill = LRI->LastUse == nullptr; 928 spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut); 929 LRI->LastUse = nullptr; 930 } 931 LRI->LiveOut = false; 932 LRI->Reloaded = false; 933 } 934 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 935 BundleVirtRegsMap[VirtReg] = PhysReg; 936 } 937 markRegUsedInInstr(PhysReg); 938 setPhysReg(MI, MO, PhysReg); 939 } 940 941 /// Allocates a register for a VirtReg use. 942 void RegAllocFast::useVirtReg(MachineInstr &MI, unsigned OpNum, 943 Register VirtReg) { 944 assert(VirtReg.isVirtual() && "Not a virtual register"); 945 MachineOperand &MO = MI.getOperand(OpNum); 946 LiveRegMap::iterator LRI; 947 bool New; 948 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 949 if (New) { 950 MachineOperand &MO = MI.getOperand(OpNum); 951 if (!MO.isKill()) { 952 if (mayLiveOut(VirtReg)) { 953 LRI->LiveOut = true; 954 } else { 955 // It is a last (killing) use without the kill flag; add the flag now. 956 MO.setIsKill(true); 957 } 958 } 959 } else { 960 assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag"); 961 } 962 963 // If necessary allocate a register. 964 if (LRI->PhysReg == 0) { 965 assert(!MO.isTied() && "tied op should be allocated"); 966 Register Hint; 967 if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) { 968 Hint = MI.getOperand(0).getReg(); 969 assert(Hint.isPhysical() && 970 "Copy destination should already be assigned"); 971 } 972 allocVirtReg(MI, *LRI, Hint, false); 973 if (LRI->Error) { 974 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 975 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 976 setPhysReg(MI, MO, *AllocationOrder.begin()); 977 return; 978 } 979 } 980 981 LRI->LastUse = &MI; 982 983 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 984 BundleVirtRegsMap[VirtReg] = LRI->PhysReg; 985 } 986 markRegUsedInInstr(LRI->PhysReg); 987 setPhysReg(MI, MO, LRI->PhysReg); 988 } 989 990 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 991 /// may invalidate any operand pointers. Return true if the operand kills its 992 /// register. 993 void RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, 994 MCPhysReg PhysReg) { 995 if (!MO.getSubReg()) { 996 MO.setReg(PhysReg); 997 MO.setIsRenamable(true); 998 return; 999 } 1000 1001 // Handle subregister index. 1002 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister()); 1003 MO.setIsRenamable(true); 1004 // Note: We leave the subreg number around a little longer in case of defs. 1005 // This is so that the register freeing logic in allocateInstruction can still 1006 // recognize this as subregister defs. The code there will clear the number. 1007 if (!MO.isDef()) 1008 MO.setSubReg(0); 1009 1010 // A kill flag implies killing the full register. Add corresponding super 1011 // register kill. 1012 if (MO.isKill()) { 1013 MI.addRegisterKilled(PhysReg, TRI, true); 1014 return; 1015 } 1016 1017 // A <def,read-undef> of a sub-register requires an implicit def of the full 1018 // register. 1019 if (MO.isDef() && MO.isUndef()) { 1020 if (MO.isDead()) 1021 MI.addRegisterDead(PhysReg, TRI, true); 1022 else 1023 MI.addRegisterDefined(PhysReg, TRI); 1024 } 1025 } 1026 1027 #ifndef NDEBUG 1028 1029 void RegAllocFast::dumpState() const { 1030 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE; 1031 ++Unit) { 1032 switch (unsigned VirtReg = RegUnitStates[Unit]) { 1033 case regFree: 1034 break; 1035 case regPreAssigned: 1036 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]"; 1037 break; 1038 case regLiveIn: 1039 llvm_unreachable("Should not have regLiveIn in map"); 1040 default: { 1041 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg); 1042 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 1043 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry"); 1044 if (I->LiveOut || I->Reloaded) { 1045 dbgs() << '['; 1046 if (I->LiveOut) dbgs() << 'O'; 1047 if (I->Reloaded) dbgs() << 'R'; 1048 dbgs() << ']'; 1049 } 1050 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present"); 1051 break; 1052 } 1053 } 1054 } 1055 dbgs() << '\n'; 1056 // Check that LiveVirtRegs is the inverse. 1057 for (const LiveReg &LR : LiveVirtRegs) { 1058 Register VirtReg = LR.VirtReg; 1059 assert(VirtReg.isVirtual() && "Bad map key"); 1060 MCPhysReg PhysReg = LR.PhysReg; 1061 if (PhysReg != 0) { 1062 assert(Register::isPhysicalRegister(PhysReg) && 1063 "mapped to physreg"); 1064 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 1065 assert(RegUnitStates[*UI] == VirtReg && "inverse map valid"); 1066 } 1067 } 1068 } 1069 } 1070 #endif 1071 1072 /// Count number of defs consumed from each register class by \p Reg 1073 void RegAllocFast::addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 1074 Register Reg) const { 1075 assert(RegClassDefCounts.size() == TRI->getNumRegClasses()); 1076 1077 if (Reg.isVirtual()) { 1078 const TargetRegisterClass *OpRC = MRI->getRegClass(Reg); 1079 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1080 RCIdx != RCIdxEnd; ++RCIdx) { 1081 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1082 // FIXME: Consider aliasing sub/super registers. 1083 if (OpRC->hasSubClassEq(IdxRC)) 1084 ++RegClassDefCounts[RCIdx]; 1085 } 1086 1087 return; 1088 } 1089 1090 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1091 RCIdx != RCIdxEnd; ++RCIdx) { 1092 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1093 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 1094 if (IdxRC->contains(*Alias)) { 1095 ++RegClassDefCounts[RCIdx]; 1096 break; 1097 } 1098 } 1099 } 1100 } 1101 1102 void RegAllocFast::allocateInstruction(MachineInstr &MI) { 1103 // The basic algorithm here is: 1104 // 1. Mark registers of def operands as free 1105 // 2. Allocate registers to use operands and place reload instructions for 1106 // registers displaced by the allocation. 1107 // 1108 // However we need to handle some corner cases: 1109 // - pre-assigned defs and uses need to be handled before the other def/use 1110 // operands are processed to avoid the allocation heuristics clashing with 1111 // the pre-assignment. 1112 // - The "free def operands" step has to come last instead of first for tied 1113 // operands and early-clobbers. 1114 1115 UsedInInstr.clear(); 1116 RegMasks.clear(); 1117 BundleVirtRegsMap.clear(); 1118 1119 // Scan for special cases; Apply pre-assigned register defs to state. 1120 bool HasPhysRegUse = false; 1121 bool HasRegMask = false; 1122 bool HasVRegDef = false; 1123 bool HasDef = false; 1124 bool HasEarlyClobber = false; 1125 bool NeedToAssignLiveThroughs = false; 1126 for (MachineOperand &MO : MI.operands()) { 1127 if (MO.isReg()) { 1128 Register Reg = MO.getReg(); 1129 if (Reg.isVirtual()) { 1130 if (MO.isDef()) { 1131 HasDef = true; 1132 HasVRegDef = true; 1133 if (MO.isEarlyClobber()) { 1134 HasEarlyClobber = true; 1135 NeedToAssignLiveThroughs = true; 1136 } 1137 if (MO.isTied() || (MO.getSubReg() != 0 && !MO.isUndef())) 1138 NeedToAssignLiveThroughs = true; 1139 } 1140 } else if (Reg.isPhysical()) { 1141 if (!MRI->isReserved(Reg)) { 1142 if (MO.isDef()) { 1143 HasDef = true; 1144 bool displacedAny = definePhysReg(MI, Reg); 1145 if (MO.isEarlyClobber()) 1146 HasEarlyClobber = true; 1147 if (!displacedAny) 1148 MO.setIsDead(true); 1149 } 1150 if (MO.readsReg()) 1151 HasPhysRegUse = true; 1152 } 1153 } 1154 } else if (MO.isRegMask()) { 1155 HasRegMask = true; 1156 RegMasks.push_back(MO.getRegMask()); 1157 } 1158 } 1159 1160 // Allocate virtreg defs. 1161 if (HasDef) { 1162 if (HasVRegDef) { 1163 // Special handling for early clobbers, tied operands or subregister defs: 1164 // Compared to "normal" defs these: 1165 // - Must not use a register that is pre-assigned for a use operand. 1166 // - In order to solve tricky inline assembly constraints we change the 1167 // heuristic to figure out a good operand order before doing 1168 // assignments. 1169 if (NeedToAssignLiveThroughs) { 1170 DefOperandIndexes.clear(); 1171 PhysRegUses.clear(); 1172 1173 // Track number of defs which may consume a register from the class. 1174 std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0); 1175 assert(RegClassDefCounts[0] == 0); 1176 1177 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n"); 1178 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1179 const MachineOperand &MO = MI.getOperand(I); 1180 if (!MO.isReg()) 1181 continue; 1182 Register Reg = MO.getReg(); 1183 if (MO.readsReg()) { 1184 if (Reg.isPhysical()) { 1185 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) 1186 << '\n'); 1187 markPhysRegUsedInInstr(Reg); 1188 } 1189 } 1190 1191 if (MO.isDef()) { 1192 if (Reg.isVirtual()) 1193 DefOperandIndexes.push_back(I); 1194 1195 addRegClassDefCounts(RegClassDefCounts, Reg); 1196 } 1197 } 1198 1199 llvm::sort(DefOperandIndexes, [&](uint16_t I0, uint16_t I1) { 1200 const MachineOperand &MO0 = MI.getOperand(I0); 1201 const MachineOperand &MO1 = MI.getOperand(I1); 1202 Register Reg0 = MO0.getReg(); 1203 Register Reg1 = MO1.getReg(); 1204 const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0); 1205 const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1); 1206 1207 // Identify regclass that are easy to use up completely just in this 1208 // instruction. 1209 unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size(); 1210 unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size(); 1211 1212 bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()]; 1213 bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()]; 1214 if (SmallClass0 > SmallClass1) 1215 return true; 1216 if (SmallClass0 < SmallClass1) 1217 return false; 1218 1219 // Allocate early clobbers and livethrough operands first. 1220 bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() || 1221 (MO0.getSubReg() == 0 && !MO0.isUndef()); 1222 bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() || 1223 (MO1.getSubReg() == 0 && !MO1.isUndef()); 1224 if (Livethrough0 > Livethrough1) 1225 return true; 1226 if (Livethrough0 < Livethrough1) 1227 return false; 1228 1229 // Tie-break rule: operand index. 1230 return I0 < I1; 1231 }); 1232 1233 for (uint16_t OpIdx : DefOperandIndexes) { 1234 MachineOperand &MO = MI.getOperand(OpIdx); 1235 LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n'); 1236 unsigned Reg = MO.getReg(); 1237 if (MO.isEarlyClobber() || MO.isTied() || 1238 (MO.getSubReg() && !MO.isUndef())) { 1239 defineLiveThroughVirtReg(MI, OpIdx, Reg); 1240 } else { 1241 defineVirtReg(MI, OpIdx, Reg); 1242 } 1243 } 1244 } else { 1245 // Assign virtual register defs. 1246 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1247 MachineOperand &MO = MI.getOperand(I); 1248 if (!MO.isReg() || !MO.isDef()) 1249 continue; 1250 Register Reg = MO.getReg(); 1251 if (Reg.isVirtual()) 1252 defineVirtReg(MI, I, Reg); 1253 } 1254 } 1255 } 1256 1257 // Free registers occupied by defs. 1258 // Iterate operands in reverse order, so we see the implicit super register 1259 // defs first (we added them earlier in case of <def,read-undef>). 1260 for (unsigned I = MI.getNumOperands(); I-- > 0;) { 1261 MachineOperand &MO = MI.getOperand(I); 1262 if (!MO.isReg() || !MO.isDef()) 1263 continue; 1264 1265 // subreg defs don't free the full register. We left the subreg number 1266 // around as a marker in setPhysReg() to recognize this case here. 1267 if (MO.getSubReg() != 0) { 1268 MO.setSubReg(0); 1269 continue; 1270 } 1271 1272 assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) && 1273 "tied def assigned to clobbered register"); 1274 1275 // Do not free tied operands and early clobbers. 1276 if (MO.isTied() || MO.isEarlyClobber()) 1277 continue; 1278 Register Reg = MO.getReg(); 1279 if (!Reg) 1280 continue; 1281 assert(Reg.isPhysical()); 1282 if (MRI->isReserved(Reg)) 1283 continue; 1284 freePhysReg(Reg); 1285 unmarkRegUsedInInstr(Reg); 1286 } 1287 } 1288 1289 // Displace clobbered registers. 1290 if (HasRegMask) { 1291 assert(!RegMasks.empty() && "expected RegMask"); 1292 // MRI bookkeeping. 1293 for (const auto *RM : RegMasks) 1294 MRI->addPhysRegsUsedFromRegMask(RM); 1295 1296 // Displace clobbered registers. 1297 for (const LiveReg &LR : LiveVirtRegs) { 1298 MCPhysReg PhysReg = LR.PhysReg; 1299 if (PhysReg != 0 && isClobberedByRegMasks(PhysReg)) 1300 displacePhysReg(MI, PhysReg); 1301 } 1302 } 1303 1304 // Apply pre-assigned register uses to state. 1305 if (HasPhysRegUse) { 1306 for (MachineOperand &MO : MI.operands()) { 1307 if (!MO.isReg() || !MO.readsReg()) 1308 continue; 1309 Register Reg = MO.getReg(); 1310 if (!Reg.isPhysical()) 1311 continue; 1312 if (MRI->isReserved(Reg)) 1313 continue; 1314 bool displacedAny = usePhysReg(MI, Reg); 1315 if (!displacedAny && !MRI->isReserved(Reg)) 1316 MO.setIsKill(true); 1317 } 1318 } 1319 1320 // Allocate virtreg uses and insert reloads as necessary. 1321 bool HasUndefUse = false; 1322 for (unsigned I = 0; I < MI.getNumOperands(); ++I) { 1323 MachineOperand &MO = MI.getOperand(I); 1324 if (!MO.isReg() || !MO.isUse()) 1325 continue; 1326 Register Reg = MO.getReg(); 1327 if (!Reg.isVirtual()) 1328 continue; 1329 1330 if (MO.isUndef()) { 1331 HasUndefUse = true; 1332 continue; 1333 } 1334 1335 1336 // Populate MayLiveAcrossBlocks in case the use block is allocated before 1337 // the def block (removing the vreg uses). 1338 mayLiveIn(Reg); 1339 1340 1341 assert(!MO.isInternalRead() && "Bundles not supported"); 1342 assert(MO.readsReg() && "reading use"); 1343 useVirtReg(MI, I, Reg); 1344 } 1345 1346 // Allocate undef operands. This is a separate step because in a situation 1347 // like ` = OP undef %X, %X` both operands need the same register assign 1348 // so we should perform the normal assignment first. 1349 if (HasUndefUse) { 1350 for (MachineOperand &MO : MI.uses()) { 1351 if (!MO.isReg() || !MO.isUse()) 1352 continue; 1353 Register Reg = MO.getReg(); 1354 if (!Reg.isVirtual()) 1355 continue; 1356 1357 assert(MO.isUndef() && "Should only have undef virtreg uses left"); 1358 allocVirtRegUndef(MO); 1359 } 1360 } 1361 1362 // Free early clobbers. 1363 if (HasEarlyClobber) { 1364 for (unsigned I = MI.getNumOperands(); I-- > 0; ) { 1365 MachineOperand &MO = MI.getOperand(I); 1366 if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber()) 1367 continue; 1368 // subreg defs don't free the full register. We left the subreg number 1369 // around as a marker in setPhysReg() to recognize this case here. 1370 if (MO.getSubReg() != 0) { 1371 MO.setSubReg(0); 1372 continue; 1373 } 1374 1375 Register Reg = MO.getReg(); 1376 if (!Reg) 1377 continue; 1378 assert(Reg.isPhysical() && "should have register assigned"); 1379 1380 // We sometimes get odd situations like: 1381 // early-clobber %x0 = INSTRUCTION %x0 1382 // which is semantically questionable as the early-clobber should 1383 // apply before the use. But in practice we consider the use to 1384 // happen before the early clobber now. Don't free the early clobber 1385 // register in this case. 1386 if (MI.readsRegister(Reg, TRI)) 1387 continue; 1388 1389 freePhysReg(Reg); 1390 } 1391 } 1392 1393 LLVM_DEBUG(dbgs() << "<< " << MI); 1394 if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() && 1395 MI.getNumOperands() == 2) { 1396 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1397 Coalesced.push_back(&MI); 1398 } 1399 } 1400 1401 void RegAllocFast::handleDebugValue(MachineInstr &MI) { 1402 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1403 // mostly constants and frame indices. 1404 for (Register Reg : MI.getUsedDebugRegs()) { 1405 if (!Register::isVirtualRegister(Reg)) 1406 continue; 1407 1408 // Already spilled to a stackslot? 1409 int SS = StackSlotForVirtReg[Reg]; 1410 if (SS != -1) { 1411 // Modify DBG_VALUE now that the value is in a spill slot. 1412 updateDbgValueForSpill(MI, SS, Reg); 1413 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI); 1414 continue; 1415 } 1416 1417 // See if this virtual register has already been allocated to a physical 1418 // register or spilled to a stack slot. 1419 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1420 SmallVector<MachineOperand *> DbgOps; 1421 for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg)) 1422 DbgOps.push_back(&Op); 1423 1424 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1425 // Update every use of Reg within MI. 1426 for (auto &RegMO : DbgOps) 1427 setPhysReg(MI, *RegMO, LRI->PhysReg); 1428 } else { 1429 DanglingDbgValues[Reg].push_back(&MI); 1430 } 1431 1432 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1433 // that future spills of Reg will have DBG_VALUEs. 1434 LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end()); 1435 } 1436 } 1437 1438 void RegAllocFast::handleBundle(MachineInstr &MI) { 1439 MachineBasicBlock::instr_iterator BundledMI = MI.getIterator(); 1440 ++BundledMI; 1441 while (BundledMI->isBundledWithPred()) { 1442 for (unsigned I = 0; I < BundledMI->getNumOperands(); ++I) { 1443 MachineOperand &MO = BundledMI->getOperand(I); 1444 if (!MO.isReg()) 1445 continue; 1446 1447 Register Reg = MO.getReg(); 1448 if (!Reg.isVirtual()) 1449 continue; 1450 1451 DenseMap<Register, MCPhysReg>::iterator DI; 1452 DI = BundleVirtRegsMap.find(Reg); 1453 assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register"); 1454 1455 setPhysReg(MI, MO, DI->second); 1456 } 1457 1458 ++BundledMI; 1459 } 1460 } 1461 1462 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 1463 this->MBB = &MBB; 1464 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1465 1466 RegUnitStates.assign(TRI->getNumRegUnits(), regFree); 1467 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1468 1469 for (auto &LiveReg : MBB.liveouts()) 1470 setPhysRegState(LiveReg.PhysReg, regPreAssigned); 1471 1472 Coalesced.clear(); 1473 1474 // Traverse block in reverse order allocating instructions one by one. 1475 for (MachineInstr &MI : reverse(MBB)) { 1476 LLVM_DEBUG( 1477 dbgs() << "\n>> " << MI << "Regs:"; 1478 dumpState() 1479 ); 1480 1481 // Special handling for debug values. Note that they are not allowed to 1482 // affect codegen of the other instructions in any way. 1483 if (MI.isDebugValue()) { 1484 handleDebugValue(MI); 1485 continue; 1486 } 1487 1488 allocateInstruction(MI); 1489 1490 // Once BUNDLE header is assigned registers, same assignments need to be 1491 // done for bundled MIs. 1492 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1493 handleBundle(MI); 1494 } 1495 } 1496 1497 LLVM_DEBUG( 1498 dbgs() << "Begin Regs:"; 1499 dumpState() 1500 ); 1501 1502 // Spill all physical registers holding virtual registers now. 1503 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n"); 1504 reloadAtBegin(MBB); 1505 1506 // Erase all the coalesced copies. We are delaying it until now because 1507 // LiveVirtRegs might refer to the instrs. 1508 for (MachineInstr *MI : Coalesced) 1509 MBB.erase(MI); 1510 NumCoalesced += Coalesced.size(); 1511 1512 for (auto &UDBGPair : DanglingDbgValues) { 1513 for (MachineInstr *DbgValue : UDBGPair.second) { 1514 assert(DbgValue->isDebugValue() && "expected DBG_VALUE"); 1515 // Nothing to do if the vreg was spilled in the meantime. 1516 if (!DbgValue->hasDebugOperandForReg(UDBGPair.first)) 1517 continue; 1518 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 1519 << '\n'); 1520 DbgValue->setDebugValueUndef(); 1521 } 1522 } 1523 DanglingDbgValues.clear(); 1524 1525 LLVM_DEBUG(MBB.dump()); 1526 } 1527 1528 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1529 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1530 << "********** Function: " << MF.getName() << '\n'); 1531 MRI = &MF.getRegInfo(); 1532 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1533 TRI = STI.getRegisterInfo(); 1534 TII = STI.getInstrInfo(); 1535 MFI = &MF.getFrameInfo(); 1536 MRI->freezeReservedRegs(MF); 1537 RegClassInfo.runOnMachineFunction(MF); 1538 unsigned NumRegUnits = TRI->getNumRegUnits(); 1539 UsedInInstr.clear(); 1540 UsedInInstr.setUniverse(NumRegUnits); 1541 PhysRegUses.clear(); 1542 PhysRegUses.setUniverse(NumRegUnits); 1543 1544 // initialize the virtual->physical register map to have a 'null' 1545 // mapping for all virtual registers 1546 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1547 StackSlotForVirtReg.resize(NumVirtRegs); 1548 LiveVirtRegs.setUniverse(NumVirtRegs); 1549 MayLiveAcrossBlocks.clear(); 1550 MayLiveAcrossBlocks.resize(NumVirtRegs); 1551 1552 // Loop over all of the basic blocks, eliminating virtual register references 1553 for (MachineBasicBlock &MBB : MF) 1554 allocateBasicBlock(MBB); 1555 1556 if (ClearVirtRegs) { 1557 // All machine operands and other references to virtual registers have been 1558 // replaced. Remove the virtual registers. 1559 MRI->clearVirtRegs(); 1560 } 1561 1562 StackSlotForVirtReg.clear(); 1563 LiveDbgValueMap.clear(); 1564 return true; 1565 } 1566 1567 FunctionPass *llvm::createFastRegisterAllocator() { 1568 return new RegAllocFast(); 1569 } 1570 1571 FunctionPass *llvm::createFastRegisterAllocator( 1572 std::function<bool(const TargetRegisterInfo &TRI, 1573 const TargetRegisterClass &RC)> Ftor, bool ClearVirtRegs) { 1574 return new RegAllocFast(Ftor, ClearVirtRegs); 1575 } 1576