xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/RegAllocFast.cpp (revision bc5304a006238115291e7568583632889dffbab9)
1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This register allocator allocates registers to a basic block at a
10 /// time, attempting to keep values in registers and reusing registers as
11 /// appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/IndexedMap.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/SparseSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RegAllocRegistry.h"
31 #include "llvm/CodeGen/RegisterClassInfo.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/IR/DebugLoc.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/InitializePasses.h"
39 #include "llvm/MC/MCInstrDesc.h"
40 #include "llvm/MC/MCRegisterInfo.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/Compiler.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <cassert>
48 #include <tuple>
49 #include <vector>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "regalloc"
54 
55 STATISTIC(NumStores, "Number of stores added");
56 STATISTIC(NumLoads , "Number of loads added");
57 STATISTIC(NumCoalesced, "Number of copies coalesced");
58 
59 // FIXME: Remove this switch when all testcases are fixed!
60 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs",
61                                        cl::Hidden);
62 
63 static RegisterRegAlloc
64   fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
65 
66 namespace {
67 
68   class RegAllocFast : public MachineFunctionPass {
69   public:
70     static char ID;
71 
72     RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {}
73 
74   private:
75     MachineFrameInfo *MFI;
76     MachineRegisterInfo *MRI;
77     const TargetRegisterInfo *TRI;
78     const TargetInstrInfo *TII;
79     RegisterClassInfo RegClassInfo;
80 
81     /// Basic block currently being allocated.
82     MachineBasicBlock *MBB;
83 
84     /// Maps virtual regs to the frame index where these values are spilled.
85     IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
86 
87     /// Everything we know about a live virtual register.
88     struct LiveReg {
89       MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
90       Register VirtReg;                ///< Virtual register number.
91       MCPhysReg PhysReg = 0;           ///< Currently held here.
92       bool LiveOut = false;            ///< Register is possibly live out.
93       bool Reloaded = false;           ///< Register was reloaded.
94       bool Error = false;              ///< Could not allocate.
95 
96       explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {}
97 
98       unsigned getSparseSetIndex() const {
99         return Register::virtReg2Index(VirtReg);
100       }
101     };
102 
103     using LiveRegMap = SparseSet<LiveReg>;
104     /// This map contains entries for each virtual register that is currently
105     /// available in a physical register.
106     LiveRegMap LiveVirtRegs;
107 
108     /// Stores assigned virtual registers present in the bundle MI.
109     DenseMap<Register, MCPhysReg> BundleVirtRegsMap;
110 
111     DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap;
112     /// List of DBG_VALUE that we encountered without the vreg being assigned
113     /// because they were placed after the last use of the vreg.
114     DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues;
115 
116     /// Has a bit set for every virtual register for which it was determined
117     /// that it is alive across blocks.
118     BitVector MayLiveAcrossBlocks;
119 
120     /// State of a register unit.
121     enum RegUnitState {
122       /// A free register is not currently in use and can be allocated
123       /// immediately without checking aliases.
124       regFree,
125 
126       /// A pre-assigned register has been assigned before register allocation
127       /// (e.g., setting up a call parameter).
128       regPreAssigned,
129 
130       /// Used temporarily in reloadAtBegin() to mark register units that are
131       /// live-in to the basic block.
132       regLiveIn,
133 
134       /// A register state may also be a virtual register number, indication
135       /// that the physical register is currently allocated to a virtual
136       /// register. In that case, LiveVirtRegs contains the inverse mapping.
137     };
138 
139     /// Maps each physical register to a RegUnitState enum or virtual register.
140     std::vector<unsigned> RegUnitStates;
141 
142     SmallVector<MachineInstr *, 32> Coalesced;
143 
144     using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>;
145     /// Set of register units that are used in the current instruction, and so
146     /// cannot be allocated.
147     RegUnitSet UsedInInstr;
148     RegUnitSet PhysRegUses;
149     SmallVector<uint16_t, 8> DefOperandIndexes;
150 
151     void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);
152     bool isPhysRegFree(MCPhysReg PhysReg) const;
153 
154     /// Mark a physreg as used in this instruction.
155     void markRegUsedInInstr(MCPhysReg PhysReg) {
156       for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
157         UsedInInstr.insert(*Units);
158     }
159 
160     /// Check if a physreg or any of its aliases are used in this instruction.
161     bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const {
162       for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
163         if (UsedInInstr.count(*Units))
164           return true;
165         if (LookAtPhysRegUses && PhysRegUses.count(*Units))
166           return true;
167       }
168       return false;
169     }
170 
171     /// Mark physical register as being used in a register use operand.
172     /// This is only used by the special livethrough handling code.
173     void markPhysRegUsedInInstr(MCPhysReg PhysReg) {
174       for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
175         PhysRegUses.insert(*Units);
176     }
177 
178     /// Remove mark of physical register being used in the instruction.
179     void unmarkRegUsedInInstr(MCPhysReg PhysReg) {
180       for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
181         UsedInInstr.erase(*Units);
182     }
183 
184     enum : unsigned {
185       spillClean = 50,
186       spillDirty = 100,
187       spillPrefBonus = 20,
188       spillImpossible = ~0u
189     };
190 
191   public:
192     StringRef getPassName() const override { return "Fast Register Allocator"; }
193 
194     void getAnalysisUsage(AnalysisUsage &AU) const override {
195       AU.setPreservesCFG();
196       MachineFunctionPass::getAnalysisUsage(AU);
197     }
198 
199     MachineFunctionProperties getRequiredProperties() const override {
200       return MachineFunctionProperties().set(
201           MachineFunctionProperties::Property::NoPHIs);
202     }
203 
204     MachineFunctionProperties getSetProperties() const override {
205       return MachineFunctionProperties().set(
206           MachineFunctionProperties::Property::NoVRegs);
207     }
208 
209     MachineFunctionProperties getClearedProperties() const override {
210       return MachineFunctionProperties().set(
211         MachineFunctionProperties::Property::IsSSA);
212     }
213 
214   private:
215     bool runOnMachineFunction(MachineFunction &MF) override;
216 
217     void allocateBasicBlock(MachineBasicBlock &MBB);
218 
219     void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts,
220                               Register Reg) const;
221 
222     void allocateInstruction(MachineInstr &MI);
223     void handleDebugValue(MachineInstr &MI);
224     void handleBundle(MachineInstr &MI);
225 
226     bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
227     bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
228     bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
229     void freePhysReg(MCPhysReg PhysReg);
230 
231     unsigned calcSpillCost(MCPhysReg PhysReg) const;
232 
233     LiveRegMap::iterator findLiveVirtReg(Register VirtReg) {
234       return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
235     }
236 
237     LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const {
238       return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
239     }
240 
241     void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg);
242     void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint,
243                       bool LookAtPhysRegUses = false);
244     void allocVirtRegUndef(MachineOperand &MO);
245     void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg,
246                                    MCPhysReg Reg);
247     void defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
248                                   Register VirtReg);
249     void defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg,
250                        bool LookAtPhysRegUses = false);
251     void useVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg);
252 
253     MachineBasicBlock::iterator
254     getMBBBeginInsertionPoint(MachineBasicBlock &MBB,
255                               SmallSet<Register, 2> &PrologLiveIns) const;
256 
257     void reloadAtBegin(MachineBasicBlock &MBB);
258     void setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);
259 
260     Register traceCopies(Register VirtReg) const;
261     Register traceCopyChain(Register Reg) const;
262 
263     int getStackSpaceFor(Register VirtReg);
264     void spill(MachineBasicBlock::iterator Before, Register VirtReg,
265                MCPhysReg AssignedReg, bool Kill, bool LiveOut);
266     void reload(MachineBasicBlock::iterator Before, Register VirtReg,
267                 MCPhysReg PhysReg);
268 
269     bool mayLiveOut(Register VirtReg);
270     bool mayLiveIn(Register VirtReg);
271 
272     void dumpState() const;
273   };
274 
275 } // end anonymous namespace
276 
277 char RegAllocFast::ID = 0;
278 
279 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
280                 false)
281 
282 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
283   for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI)
284     RegUnitStates[*UI] = NewState;
285 }
286 
287 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const {
288   for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
289     if (RegUnitStates[*UI] != regFree)
290       return false;
291   }
292   return true;
293 }
294 
295 /// This allocates space for the specified virtual register to be held on the
296 /// stack.
297 int RegAllocFast::getStackSpaceFor(Register VirtReg) {
298   // Find the location Reg would belong...
299   int SS = StackSlotForVirtReg[VirtReg];
300   // Already has space allocated?
301   if (SS != -1)
302     return SS;
303 
304   // Allocate a new stack object for this spill location...
305   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
306   unsigned Size = TRI->getSpillSize(RC);
307   Align Alignment = TRI->getSpillAlign(RC);
308   int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment);
309 
310   // Assign the slot.
311   StackSlotForVirtReg[VirtReg] = FrameIdx;
312   return FrameIdx;
313 }
314 
315 static bool dominates(MachineBasicBlock &MBB,
316                       MachineBasicBlock::const_iterator A,
317                       MachineBasicBlock::const_iterator B) {
318   auto MBBEnd = MBB.end();
319   if (B == MBBEnd)
320     return true;
321 
322   MachineBasicBlock::const_iterator I = MBB.begin();
323   for (; &*I != A && &*I != B; ++I)
324     ;
325 
326   return &*I == A;
327 }
328 
329 /// Returns false if \p VirtReg is known to not live out of the current block.
330 bool RegAllocFast::mayLiveOut(Register VirtReg) {
331   if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) {
332     // Cannot be live-out if there are no successors.
333     return !MBB->succ_empty();
334   }
335 
336   const MachineInstr *SelfLoopDef = nullptr;
337 
338   // If this block loops back to itself, it is necessary to check whether the
339   // use comes after the def.
340   if (MBB->isSuccessor(MBB)) {
341     SelfLoopDef = MRI->getUniqueVRegDef(VirtReg);
342     if (!SelfLoopDef) {
343       MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
344       return true;
345     }
346   }
347 
348   // See if the first \p Limit uses of the register are all in the current
349   // block.
350   static const unsigned Limit = 8;
351   unsigned C = 0;
352   for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) {
353     if (UseInst.getParent() != MBB || ++C >= Limit) {
354       MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
355       // Cannot be live-out if there are no successors.
356       return !MBB->succ_empty();
357     }
358 
359     if (SelfLoopDef) {
360       // Try to handle some simple cases to avoid spilling and reloading every
361       // value inside a self looping block.
362       if (SelfLoopDef == &UseInst ||
363           !dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) {
364         MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
365         return true;
366       }
367     }
368   }
369 
370   return false;
371 }
372 
373 /// Returns false if \p VirtReg is known to not be live into the current block.
374 bool RegAllocFast::mayLiveIn(Register VirtReg) {
375   if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg)))
376     return !MBB->pred_empty();
377 
378   // See if the first \p Limit def of the register are all in the current block.
379   static const unsigned Limit = 8;
380   unsigned C = 0;
381   for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
382     if (DefInst.getParent() != MBB || ++C >= Limit) {
383       MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
384       return !MBB->pred_empty();
385     }
386   }
387 
388   return false;
389 }
390 
391 /// Insert spill instruction for \p AssignedReg before \p Before. Update
392 /// DBG_VALUEs with \p VirtReg operands with the stack slot.
393 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg,
394                          MCPhysReg AssignedReg, bool Kill, bool LiveOut) {
395   LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI)
396                     << " in " << printReg(AssignedReg, TRI));
397   int FI = getStackSpaceFor(VirtReg);
398   LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');
399 
400   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
401   TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI);
402   ++NumStores;
403 
404   MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator();
405 
406   // When we spill a virtual register, we will have spill instructions behind
407   // every definition of it, meaning we can switch all the DBG_VALUEs over
408   // to just reference the stack slot.
409   SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg];
410   for (MachineInstr *DBG : LRIDbgValues) {
411     MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI);
412     assert(NewDV->getParent() == MBB && "dangling parent pointer");
413     (void)NewDV;
414     LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);
415 
416     if (LiveOut) {
417       // We need to insert a DBG_VALUE at the end of the block if the spill slot
418       // is live out, but there is another use of the value after the
419       // spill. This will allow LiveDebugValues to see the correct live out
420       // value to propagate to the successors.
421       MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV);
422       MBB->insert(FirstTerm, ClonedDV);
423       LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n");
424     }
425 
426     // Rewrite unassigned dbg_values to use the stack slot.
427     MachineOperand &MO = DBG->getOperand(0);
428     if (MO.isReg() && MO.getReg() == 0)
429       updateDbgValueForSpill(*DBG, FI);
430   }
431   // Now this register is spilled there is should not be any DBG_VALUE
432   // pointing to this register because they are all pointing to spilled value
433   // now.
434   LRIDbgValues.clear();
435 }
436 
437 /// Insert reload instruction for \p PhysReg before \p Before.
438 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg,
439                           MCPhysReg PhysReg) {
440   LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
441                     << printReg(PhysReg, TRI) << '\n');
442   int FI = getStackSpaceFor(VirtReg);
443   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
444   TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI);
445   ++NumLoads;
446 }
447 
448 /// Get basic block begin insertion point.
449 /// This is not just MBB.begin() because surprisingly we have EH_LABEL
450 /// instructions marking the begin of a basic block. This means we must insert
451 /// new instructions after such labels...
452 MachineBasicBlock::iterator
453 RegAllocFast::getMBBBeginInsertionPoint(
454   MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const {
455   MachineBasicBlock::iterator I = MBB.begin();
456   while (I != MBB.end()) {
457     if (I->isLabel()) {
458       ++I;
459       continue;
460     }
461 
462     // Most reloads should be inserted after prolog instructions.
463     if (!TII->isBasicBlockPrologue(*I))
464       break;
465 
466     // However if a prolog instruction reads a register that needs to be
467     // reloaded, the reload should be inserted before the prolog.
468     for (MachineOperand &MO : I->operands()) {
469       if (MO.isReg())
470         PrologLiveIns.insert(MO.getReg());
471     }
472 
473     ++I;
474   }
475 
476   return I;
477 }
478 
479 /// Reload all currently assigned virtual registers.
480 void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) {
481   if (LiveVirtRegs.empty())
482     return;
483 
484   for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
485     MCPhysReg Reg = P.PhysReg;
486     // Set state to live-in. This possibly overrides mappings to virtual
487     // registers but we don't care anymore at this point.
488     setPhysRegState(Reg, regLiveIn);
489   }
490 
491 
492   SmallSet<Register, 2> PrologLiveIns;
493 
494   // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
495   // of spilling here is deterministic, if arbitrary.
496   MachineBasicBlock::iterator InsertBefore
497     = getMBBBeginInsertionPoint(MBB, PrologLiveIns);
498   for (const LiveReg &LR : LiveVirtRegs) {
499     MCPhysReg PhysReg = LR.PhysReg;
500     if (PhysReg == 0)
501       continue;
502 
503     MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI);
504     if (RegUnitStates[FirstUnit] == regLiveIn)
505       continue;
506 
507     assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) &&
508            "no reload in start block. Missing vreg def?");
509 
510     if (PrologLiveIns.count(PhysReg)) {
511       // FIXME: Theoretically this should use an insert point skipping labels
512       // but I'm not sure how labels should interact with prolog instruction
513       // that need reloads.
514       reload(MBB.begin(), LR.VirtReg, PhysReg);
515     } else
516       reload(InsertBefore, LR.VirtReg, PhysReg);
517   }
518   LiveVirtRegs.clear();
519 }
520 
521 /// Handle the direct use of a physical register.  Check that the register is
522 /// not used by a virtreg. Kill the physreg, marking it free. This may add
523 /// implicit kills to MO->getParent() and invalidate MO.
524 bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) {
525   assert(Register::isPhysicalRegister(Reg) && "expected physreg");
526   bool displacedAny = displacePhysReg(MI, Reg);
527   setPhysRegState(Reg, regPreAssigned);
528   markRegUsedInInstr(Reg);
529   return displacedAny;
530 }
531 
532 bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) {
533   bool displacedAny = displacePhysReg(MI, Reg);
534   setPhysRegState(Reg, regPreAssigned);
535   return displacedAny;
536 }
537 
538 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very
539 /// similar to defineVirtReg except the physreg is reserved instead of
540 /// allocated.
541 bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) {
542   bool displacedAny = false;
543 
544   for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
545     unsigned Unit = *UI;
546     switch (unsigned VirtReg = RegUnitStates[Unit]) {
547     default: {
548       LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
549       assert(LRI != LiveVirtRegs.end() && "datastructures in sync");
550       MachineBasicBlock::iterator ReloadBefore =
551           std::next((MachineBasicBlock::iterator)MI.getIterator());
552       reload(ReloadBefore, VirtReg, LRI->PhysReg);
553 
554       setPhysRegState(LRI->PhysReg, regFree);
555       LRI->PhysReg = 0;
556       LRI->Reloaded = true;
557       displacedAny = true;
558       break;
559     }
560     case regPreAssigned:
561       RegUnitStates[Unit] = regFree;
562       displacedAny = true;
563       break;
564     case regFree:
565       break;
566     }
567   }
568   return displacedAny;
569 }
570 
571 void RegAllocFast::freePhysReg(MCPhysReg PhysReg) {
572   LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':');
573 
574   MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI);
575   switch (unsigned VirtReg = RegUnitStates[FirstUnit]) {
576   case regFree:
577     LLVM_DEBUG(dbgs() << '\n');
578     return;
579   case regPreAssigned:
580     LLVM_DEBUG(dbgs() << '\n');
581     setPhysRegState(PhysReg, regFree);
582     return;
583   default: {
584       LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
585       assert(LRI != LiveVirtRegs.end());
586       LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n');
587       setPhysRegState(LRI->PhysReg, regFree);
588       LRI->PhysReg = 0;
589     }
590     return;
591   }
592 }
593 
594 /// Return the cost of spilling clearing out PhysReg and aliases so it is free
595 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
596 /// disabled - it can be allocated directly.
597 /// \returns spillImpossible when PhysReg or an alias can't be spilled.
598 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const {
599   for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
600     switch (unsigned VirtReg = RegUnitStates[*UI]) {
601     case regFree:
602       break;
603     case regPreAssigned:
604       LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned "
605                         << printReg(PhysReg, TRI) << '\n');
606       return spillImpossible;
607     default: {
608       bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 ||
609                        findLiveVirtReg(VirtReg)->LiveOut;
610       return SureSpill ? spillClean : spillDirty;
611     }
612     }
613   }
614   return 0;
615 }
616 
617 void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition,
618                                              Register VirtReg, MCPhysReg Reg) {
619   auto UDBGValIter = DanglingDbgValues.find(VirtReg);
620   if (UDBGValIter == DanglingDbgValues.end())
621     return;
622 
623   SmallVectorImpl<MachineInstr*> &Dangling = UDBGValIter->second;
624   for (MachineInstr *DbgValue : Dangling) {
625     assert(DbgValue->isDebugValue());
626     MachineOperand &MO = DbgValue->getOperand(0);
627     if (!MO.isReg())
628       continue;
629 
630     // Test whether the physreg survives from the definition to the DBG_VALUE.
631     MCPhysReg SetToReg = Reg;
632     unsigned Limit = 20;
633     for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()),
634          E = DbgValue->getIterator(); I != E; ++I) {
635       if (I->modifiesRegister(Reg, TRI) || --Limit == 0) {
636         LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
637                    << '\n');
638         SetToReg = 0;
639         break;
640       }
641     }
642     MO.setReg(SetToReg);
643     if (SetToReg != 0)
644       MO.setIsRenamable();
645   }
646   Dangling.clear();
647 }
648 
649 /// This method updates local state so that we know that PhysReg is the
650 /// proper container for VirtReg now.  The physical register must not be used
651 /// for anything else when this is called.
652 void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR,
653                                        MCPhysReg PhysReg) {
654   Register VirtReg = LR.VirtReg;
655   LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
656                     << printReg(PhysReg, TRI) << '\n');
657   assert(LR.PhysReg == 0 && "Already assigned a physreg");
658   assert(PhysReg != 0 && "Trying to assign no register");
659   LR.PhysReg = PhysReg;
660   setPhysRegState(PhysReg, VirtReg);
661 
662   assignDanglingDebugValues(AtMI, VirtReg, PhysReg);
663 }
664 
665 static bool isCoalescable(const MachineInstr &MI) {
666   return MI.isFullCopy();
667 }
668 
669 Register RegAllocFast::traceCopyChain(Register Reg) const {
670   static const unsigned ChainLengthLimit = 3;
671   unsigned C = 0;
672   do {
673     if (Reg.isPhysical())
674       return Reg;
675     assert(Reg.isVirtual());
676 
677     MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg);
678     if (!VRegDef || !isCoalescable(*VRegDef))
679       return 0;
680     Reg = VRegDef->getOperand(1).getReg();
681   } while (++C <= ChainLengthLimit);
682   return 0;
683 }
684 
685 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the
686 /// chain of copies to check whether we reach a physical register we can
687 /// coalesce with.
688 Register RegAllocFast::traceCopies(Register VirtReg) const {
689   static const unsigned DefLimit = 3;
690   unsigned C = 0;
691   for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) {
692     if (isCoalescable(MI)) {
693       Register Reg = MI.getOperand(1).getReg();
694       Reg = traceCopyChain(Reg);
695       if (Reg.isValid())
696         return Reg;
697     }
698 
699     if (++C >= DefLimit)
700       break;
701   }
702   return Register();
703 }
704 
705 /// Allocates a physical register for VirtReg.
706 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR,
707                                 Register Hint0, bool LookAtPhysRegUses) {
708   const Register VirtReg = LR.VirtReg;
709   assert(LR.PhysReg == 0);
710 
711   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
712   LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
713                     << " in class " << TRI->getRegClassName(&RC)
714                     << " with hint " << printReg(Hint0, TRI) << '\n');
715 
716   // Take hint when possible.
717   if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) &&
718       !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) {
719     // Take hint if the register is currently free.
720     if (isPhysRegFree(Hint0)) {
721       LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
722                         << '\n');
723       assignVirtToPhysReg(MI, LR, Hint0);
724       return;
725     } else {
726       LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI)
727                         << " occupied\n");
728     }
729   } else {
730     Hint0 = Register();
731   }
732 
733 
734   // Try other hint.
735   Register Hint1 = traceCopies(VirtReg);
736   if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) &&
737       !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) {
738     // Take hint if the register is currently free.
739     if (isPhysRegFree(Hint1)) {
740       LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
741                  << '\n');
742       assignVirtToPhysReg(MI, LR, Hint1);
743       return;
744     } else {
745       LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI)
746                  << " occupied\n");
747     }
748   } else {
749     Hint1 = Register();
750   }
751 
752   MCPhysReg BestReg = 0;
753   unsigned BestCost = spillImpossible;
754   ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
755   for (MCPhysReg PhysReg : AllocationOrder) {
756     LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
757     if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) {
758       LLVM_DEBUG(dbgs() << "already used in instr.\n");
759       continue;
760     }
761 
762     unsigned Cost = calcSpillCost(PhysReg);
763     LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
764     // Immediate take a register with cost 0.
765     if (Cost == 0) {
766       assignVirtToPhysReg(MI, LR, PhysReg);
767       return;
768     }
769 
770     if (PhysReg == Hint0 || PhysReg == Hint1)
771       Cost -= spillPrefBonus;
772 
773     if (Cost < BestCost) {
774       BestReg = PhysReg;
775       BestCost = Cost;
776     }
777   }
778 
779   if (!BestReg) {
780     // Nothing we can do: Report an error and keep going with an invalid
781     // allocation.
782     if (MI.isInlineAsm())
783       MI.emitError("inline assembly requires more registers than available");
784     else
785       MI.emitError("ran out of registers during register allocation");
786 
787     LR.Error = true;
788     LR.PhysReg = 0;
789     return;
790   }
791 
792   displacePhysReg(MI, BestReg);
793   assignVirtToPhysReg(MI, LR, BestReg);
794 }
795 
796 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) {
797   assert(MO.isUndef() && "expected undef use");
798   Register VirtReg = MO.getReg();
799   assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg");
800 
801   LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
802   MCPhysReg PhysReg;
803   if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
804     PhysReg = LRI->PhysReg;
805   } else {
806     const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
807     ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
808     assert(!AllocationOrder.empty() && "Allocation order must not be empty");
809     PhysReg = AllocationOrder[0];
810   }
811 
812   unsigned SubRegIdx = MO.getSubReg();
813   if (SubRegIdx != 0) {
814     PhysReg = TRI->getSubReg(PhysReg, SubRegIdx);
815     MO.setSubReg(0);
816   }
817   MO.setReg(PhysReg);
818   MO.setIsRenamable(true);
819 }
820 
821 /// Variation of defineVirtReg() with special handling for livethrough regs
822 /// (tied or earlyclobber) that may interfere with preassigned uses.
823 void RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
824                                             Register VirtReg) {
825   LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
826   if (LRI != LiveVirtRegs.end()) {
827     MCPhysReg PrevReg = LRI->PhysReg;
828     if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) {
829       LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI)
830                         << " (tied/earlyclobber resolution)\n");
831       freePhysReg(PrevReg);
832       LRI->PhysReg = 0;
833       allocVirtReg(MI, *LRI, 0, true);
834       MachineBasicBlock::iterator InsertBefore =
835         std::next((MachineBasicBlock::iterator)MI.getIterator());
836       LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to "
837                         << printReg(PrevReg, TRI) << '\n');
838       BuildMI(*MBB, InsertBefore, MI.getDebugLoc(),
839               TII->get(TargetOpcode::COPY), PrevReg)
840         .addReg(LRI->PhysReg, llvm::RegState::Kill);
841     }
842     MachineOperand &MO = MI.getOperand(OpNum);
843     if (MO.getSubReg() && !MO.isUndef()) {
844       LRI->LastUse = &MI;
845     }
846   }
847   return defineVirtReg(MI, OpNum, VirtReg, true);
848 }
849 
850 /// Allocates a register for VirtReg definition. Typically the register is
851 /// already assigned from a use of the virtreg, however we still need to
852 /// perform an allocation if:
853 /// - It is a dead definition without any uses.
854 /// - The value is live out and all uses are in different basic blocks.
855 void RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum,
856                                  Register VirtReg, bool LookAtPhysRegUses) {
857   assert(VirtReg.isVirtual() && "Not a virtual register");
858   MachineOperand &MO = MI.getOperand(OpNum);
859   LiveRegMap::iterator LRI;
860   bool New;
861   std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
862   if (New) {
863     if (!MO.isDead()) {
864       if (mayLiveOut(VirtReg)) {
865         LRI->LiveOut = true;
866       } else {
867         // It is a dead def without the dead flag; add the flag now.
868         MO.setIsDead(true);
869       }
870     }
871   }
872   if (LRI->PhysReg == 0)
873     allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses);
874   else {
875     assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) &&
876            "TODO: preassign mismatch");
877     LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI)
878                       << " use existing assignment to "
879                       << printReg(LRI->PhysReg, TRI) << '\n');
880   }
881 
882   MCPhysReg PhysReg = LRI->PhysReg;
883   assert(PhysReg != 0 && "Register not assigned");
884   if (LRI->Reloaded || LRI->LiveOut) {
885     if (!MI.isImplicitDef()) {
886       MachineBasicBlock::iterator SpillBefore =
887           std::next((MachineBasicBlock::iterator)MI.getIterator());
888       LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut << " RL: "
889                         << LRI->Reloaded << '\n');
890       bool Kill = LRI->LastUse == nullptr;
891       spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut);
892       LRI->LastUse = nullptr;
893     }
894     LRI->LiveOut = false;
895     LRI->Reloaded = false;
896   }
897   if (MI.getOpcode() == TargetOpcode::BUNDLE) {
898     BundleVirtRegsMap[VirtReg] = PhysReg;
899   }
900   markRegUsedInInstr(PhysReg);
901   setPhysReg(MI, MO, PhysReg);
902 }
903 
904 /// Allocates a register for a VirtReg use.
905 void RegAllocFast::useVirtReg(MachineInstr &MI, unsigned OpNum,
906                               Register VirtReg) {
907   assert(VirtReg.isVirtual() && "Not a virtual register");
908   MachineOperand &MO = MI.getOperand(OpNum);
909   LiveRegMap::iterator LRI;
910   bool New;
911   std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
912   if (New) {
913     MachineOperand &MO = MI.getOperand(OpNum);
914     if (!MO.isKill()) {
915       if (mayLiveOut(VirtReg)) {
916         LRI->LiveOut = true;
917       } else {
918         // It is a last (killing) use without the kill flag; add the flag now.
919         MO.setIsKill(true);
920       }
921     }
922   } else {
923     assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag");
924   }
925 
926   // If necessary allocate a register.
927   if (LRI->PhysReg == 0) {
928     assert(!MO.isTied() && "tied op should be allocated");
929     Register Hint;
930     if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) {
931       Hint = MI.getOperand(0).getReg();
932       assert(Hint.isPhysical() &&
933              "Copy destination should already be assigned");
934     }
935     allocVirtReg(MI, *LRI, Hint, false);
936     if (LRI->Error) {
937       const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
938       ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
939       setPhysReg(MI, MO, *AllocationOrder.begin());
940       return;
941     }
942   }
943 
944   LRI->LastUse = &MI;
945 
946   if (MI.getOpcode() == TargetOpcode::BUNDLE) {
947     BundleVirtRegsMap[VirtReg] = LRI->PhysReg;
948   }
949   markRegUsedInInstr(LRI->PhysReg);
950   setPhysReg(MI, MO, LRI->PhysReg);
951 }
952 
953 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This
954 /// may invalidate any operand pointers.  Return true if the operand kills its
955 /// register.
956 void RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO,
957                               MCPhysReg PhysReg) {
958   if (!MO.getSubReg()) {
959     MO.setReg(PhysReg);
960     MO.setIsRenamable(true);
961     return;
962   }
963 
964   // Handle subregister index.
965   MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister());
966   MO.setIsRenamable(true);
967   // Note: We leave the subreg number around a little longer in case of defs.
968   // This is so that the register freeing logic in allocateInstruction can still
969   // recognize this as subregister defs. The code there will clear the number.
970   if (!MO.isDef())
971     MO.setSubReg(0);
972 
973   // A kill flag implies killing the full register. Add corresponding super
974   // register kill.
975   if (MO.isKill()) {
976     MI.addRegisterKilled(PhysReg, TRI, true);
977     return;
978   }
979 
980   // A <def,read-undef> of a sub-register requires an implicit def of the full
981   // register.
982   if (MO.isDef() && MO.isUndef()) {
983     if (MO.isDead())
984       MI.addRegisterDead(PhysReg, TRI, true);
985     else
986       MI.addRegisterDefined(PhysReg, TRI);
987   }
988 }
989 
990 #ifndef NDEBUG
991 
992 void RegAllocFast::dumpState() const {
993   for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE;
994        ++Unit) {
995     switch (unsigned VirtReg = RegUnitStates[Unit]) {
996     case regFree:
997       break;
998     case regPreAssigned:
999       dbgs() << " " << printRegUnit(Unit, TRI) << "[P]";
1000       break;
1001     case regLiveIn:
1002       llvm_unreachable("Should not have regLiveIn in map");
1003     default: {
1004       dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg);
1005       LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
1006       assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry");
1007       if (I->LiveOut || I->Reloaded) {
1008         dbgs() << '[';
1009         if (I->LiveOut) dbgs() << 'O';
1010         if (I->Reloaded) dbgs() << 'R';
1011         dbgs() << ']';
1012       }
1013       assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present");
1014       break;
1015     }
1016     }
1017   }
1018   dbgs() << '\n';
1019   // Check that LiveVirtRegs is the inverse.
1020   for (const LiveReg &LR : LiveVirtRegs) {
1021     Register VirtReg = LR.VirtReg;
1022     assert(VirtReg.isVirtual() && "Bad map key");
1023     MCPhysReg PhysReg = LR.PhysReg;
1024     if (PhysReg != 0) {
1025       assert(Register::isPhysicalRegister(PhysReg) &&
1026              "mapped to physreg");
1027       for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
1028         assert(RegUnitStates[*UI] == VirtReg && "inverse map valid");
1029       }
1030     }
1031   }
1032 }
1033 #endif
1034 
1035 /// Count number of defs consumed from each register class by \p Reg
1036 void RegAllocFast::addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts,
1037                                         Register Reg) const {
1038   assert(RegClassDefCounts.size() == TRI->getNumRegClasses());
1039 
1040   if (Reg.isVirtual()) {
1041     const TargetRegisterClass *OpRC = MRI->getRegClass(Reg);
1042     for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
1043          RCIdx != RCIdxEnd; ++RCIdx) {
1044       const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
1045       // FIXME: Consider aliasing sub/super registers.
1046       if (OpRC->hasSubClassEq(IdxRC))
1047         ++RegClassDefCounts[RCIdx];
1048     }
1049 
1050     return;
1051   }
1052 
1053   for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
1054        RCIdx != RCIdxEnd; ++RCIdx) {
1055     const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
1056     for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
1057       if (IdxRC->contains(*Alias)) {
1058         ++RegClassDefCounts[RCIdx];
1059         break;
1060       }
1061     }
1062   }
1063 }
1064 
1065 void RegAllocFast::allocateInstruction(MachineInstr &MI) {
1066   // The basic algorithm here is:
1067   // 1. Mark registers of def operands as free
1068   // 2. Allocate registers to use operands and place reload instructions for
1069   //    registers displaced by the allocation.
1070   //
1071   // However we need to handle some corner cases:
1072   // - pre-assigned defs and uses need to be handled before the other def/use
1073   //   operands are processed to avoid the allocation heuristics clashing with
1074   //   the pre-assignment.
1075   // - The "free def operands" step has to come last instead of first for tied
1076   //   operands and early-clobbers.
1077 
1078   UsedInInstr.clear();
1079   BundleVirtRegsMap.clear();
1080 
1081   // Scan for special cases; Apply pre-assigned register defs to state.
1082   bool HasPhysRegUse = false;
1083   bool HasRegMask = false;
1084   bool HasVRegDef = false;
1085   bool HasDef = false;
1086   bool HasEarlyClobber = false;
1087   bool NeedToAssignLiveThroughs = false;
1088   for (MachineOperand &MO : MI.operands()) {
1089     if (MO.isReg()) {
1090       Register Reg = MO.getReg();
1091       if (Reg.isVirtual()) {
1092         if (MO.isDef()) {
1093           HasDef = true;
1094           HasVRegDef = true;
1095           if (MO.isEarlyClobber()) {
1096             HasEarlyClobber = true;
1097             NeedToAssignLiveThroughs = true;
1098           }
1099           if (MO.isTied() || (MO.getSubReg() != 0 && !MO.isUndef()))
1100             NeedToAssignLiveThroughs = true;
1101         }
1102       } else if (Reg.isPhysical()) {
1103         if (!MRI->isReserved(Reg)) {
1104           if (MO.isDef()) {
1105             HasDef = true;
1106             bool displacedAny = definePhysReg(MI, Reg);
1107             if (MO.isEarlyClobber())
1108               HasEarlyClobber = true;
1109             if (!displacedAny)
1110               MO.setIsDead(true);
1111           }
1112           if (MO.readsReg())
1113             HasPhysRegUse = true;
1114         }
1115       }
1116     } else if (MO.isRegMask()) {
1117       HasRegMask = true;
1118     }
1119   }
1120 
1121   // Allocate virtreg defs.
1122   if (HasDef) {
1123     if (HasVRegDef) {
1124       // Special handling for early clobbers, tied operands or subregister defs:
1125       // Compared to "normal" defs these:
1126       // - Must not use a register that is pre-assigned for a use operand.
1127       // - In order to solve tricky inline assembly constraints we change the
1128       //   heuristic to figure out a good operand order before doing
1129       //   assignments.
1130       if (NeedToAssignLiveThroughs) {
1131         DefOperandIndexes.clear();
1132         PhysRegUses.clear();
1133 
1134         // Track number of defs which may consume a register from the class.
1135         std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0);
1136         assert(RegClassDefCounts[0] == 0);
1137 
1138         LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n");
1139         for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
1140           const MachineOperand &MO = MI.getOperand(I);
1141           if (!MO.isReg())
1142             continue;
1143           Register Reg = MO.getReg();
1144           if (MO.readsReg()) {
1145             if (Reg.isPhysical()) {
1146               LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI)
1147                                 << '\n');
1148               markPhysRegUsedInInstr(Reg);
1149             }
1150           }
1151 
1152           if (MO.isDef()) {
1153             if (Reg.isVirtual())
1154               DefOperandIndexes.push_back(I);
1155 
1156             addRegClassDefCounts(RegClassDefCounts, Reg);
1157           }
1158         }
1159 
1160         llvm::sort(DefOperandIndexes, [&](uint16_t I0, uint16_t I1) {
1161           const MachineOperand &MO0 = MI.getOperand(I0);
1162           const MachineOperand &MO1 = MI.getOperand(I1);
1163           Register Reg0 = MO0.getReg();
1164           Register Reg1 = MO1.getReg();
1165           const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0);
1166           const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1);
1167 
1168           // Identify regclass that are easy to use up completely just in this
1169           // instruction.
1170           unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size();
1171           unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size();
1172 
1173           bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()];
1174           bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()];
1175           if (SmallClass0 > SmallClass1)
1176             return true;
1177           if (SmallClass0 < SmallClass1)
1178             return false;
1179 
1180           // Allocate early clobbers and livethrough operands first.
1181           bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() ||
1182                               (MO0.getSubReg() == 0 && !MO0.isUndef());
1183           bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() ||
1184                               (MO1.getSubReg() == 0 && !MO1.isUndef());
1185           if (Livethrough0 > Livethrough1)
1186             return true;
1187           if (Livethrough0 < Livethrough1)
1188             return false;
1189 
1190           // Tie-break rule: operand index.
1191           return I0 < I1;
1192         });
1193 
1194         for (uint16_t OpIdx : DefOperandIndexes) {
1195           MachineOperand &MO = MI.getOperand(OpIdx);
1196           LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n');
1197           unsigned Reg = MO.getReg();
1198           if (MO.isEarlyClobber() || MO.isTied() ||
1199               (MO.getSubReg() && !MO.isUndef())) {
1200             defineLiveThroughVirtReg(MI, OpIdx, Reg);
1201           } else {
1202             defineVirtReg(MI, OpIdx, Reg);
1203           }
1204         }
1205       } else {
1206         // Assign virtual register defs.
1207         for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
1208           MachineOperand &MO = MI.getOperand(I);
1209           if (!MO.isReg() || !MO.isDef())
1210             continue;
1211           Register Reg = MO.getReg();
1212           if (Reg.isVirtual())
1213             defineVirtReg(MI, I, Reg);
1214         }
1215       }
1216     }
1217 
1218     // Free registers occupied by defs.
1219     // Iterate operands in reverse order, so we see the implicit super register
1220     // defs first (we added them earlier in case of <def,read-undef>).
1221     for (unsigned I = MI.getNumOperands(); I-- > 0;) {
1222       MachineOperand &MO = MI.getOperand(I);
1223       if (!MO.isReg() || !MO.isDef())
1224         continue;
1225 
1226       // subreg defs don't free the full register. We left the subreg number
1227       // around as a marker in setPhysReg() to recognize this case here.
1228       if (MO.getSubReg() != 0) {
1229         MO.setSubReg(0);
1230         continue;
1231       }
1232 
1233       // Do not free tied operands and early clobbers.
1234       if (MO.isTied() || MO.isEarlyClobber())
1235         continue;
1236       Register Reg = MO.getReg();
1237       if (!Reg)
1238         continue;
1239       assert(Reg.isPhysical());
1240       if (MRI->isReserved(Reg))
1241         continue;
1242       freePhysReg(Reg);
1243       unmarkRegUsedInInstr(Reg);
1244     }
1245   }
1246 
1247   // Displace clobbered registers.
1248   if (HasRegMask) {
1249     for (const MachineOperand &MO : MI.operands()) {
1250       if (MO.isRegMask()) {
1251         // MRI bookkeeping.
1252         MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
1253 
1254         // Displace clobbered registers.
1255         const uint32_t *Mask = MO.getRegMask();
1256         for (LiveRegMap::iterator LRI = LiveVirtRegs.begin(),
1257              LRIE = LiveVirtRegs.end(); LRI != LRIE; ++LRI) {
1258           MCPhysReg PhysReg = LRI->PhysReg;
1259           if (PhysReg != 0 && MachineOperand::clobbersPhysReg(Mask, PhysReg))
1260             displacePhysReg(MI, PhysReg);
1261         }
1262       }
1263     }
1264   }
1265 
1266   // Apply pre-assigned register uses to state.
1267   if (HasPhysRegUse) {
1268     for (MachineOperand &MO : MI.operands()) {
1269       if (!MO.isReg() || !MO.readsReg())
1270         continue;
1271       Register Reg = MO.getReg();
1272       if (!Reg.isPhysical())
1273         continue;
1274       if (MRI->isReserved(Reg))
1275         continue;
1276       bool displacedAny = usePhysReg(MI, Reg);
1277       if (!displacedAny && !MRI->isReserved(Reg))
1278         MO.setIsKill(true);
1279     }
1280   }
1281 
1282   // Allocate virtreg uses and insert reloads as necessary.
1283   bool HasUndefUse = false;
1284   for (unsigned I = 0; I < MI.getNumOperands(); ++I) {
1285     MachineOperand &MO = MI.getOperand(I);
1286     if (!MO.isReg() || !MO.isUse())
1287       continue;
1288     Register Reg = MO.getReg();
1289     if (!Reg.isVirtual())
1290       continue;
1291 
1292     if (MO.isUndef()) {
1293       HasUndefUse = true;
1294       continue;
1295     }
1296 
1297 
1298     // Populate MayLiveAcrossBlocks in case the use block is allocated before
1299     // the def block (removing the vreg uses).
1300     mayLiveIn(Reg);
1301 
1302 
1303     assert(!MO.isInternalRead() && "Bundles not supported");
1304     assert(MO.readsReg() && "reading use");
1305     useVirtReg(MI, I, Reg);
1306   }
1307 
1308   // Allocate undef operands. This is a separate step because in a situation
1309   // like  ` = OP undef %X, %X`    both operands need the same register assign
1310   // so we should perform the normal assignment first.
1311   if (HasUndefUse) {
1312     for (MachineOperand &MO : MI.uses()) {
1313       if (!MO.isReg() || !MO.isUse())
1314         continue;
1315       Register Reg = MO.getReg();
1316       if (!Reg.isVirtual())
1317         continue;
1318 
1319       assert(MO.isUndef() && "Should only have undef virtreg uses left");
1320       allocVirtRegUndef(MO);
1321     }
1322   }
1323 
1324   // Free early clobbers.
1325   if (HasEarlyClobber) {
1326     for (unsigned I = MI.getNumOperands(); I-- > 0; ) {
1327       MachineOperand &MO = MI.getOperand(I);
1328       if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber())
1329         continue;
1330       // subreg defs don't free the full register. We left the subreg number
1331       // around as a marker in setPhysReg() to recognize this case here.
1332       if (MO.getSubReg() != 0) {
1333         MO.setSubReg(0);
1334         continue;
1335       }
1336 
1337       Register Reg = MO.getReg();
1338       if (!Reg)
1339         continue;
1340       assert(Reg.isPhysical() && "should have register assigned");
1341 
1342       // We sometimes get odd situations like:
1343       //    early-clobber %x0 = INSTRUCTION %x0
1344       // which is semantically questionable as the early-clobber should
1345       // apply before the use. But in practice we consider the use to
1346       // happen before the early clobber now. Don't free the early clobber
1347       // register in this case.
1348       if (MI.readsRegister(Reg, TRI))
1349         continue;
1350 
1351       freePhysReg(Reg);
1352     }
1353   }
1354 
1355   LLVM_DEBUG(dbgs() << "<< " << MI);
1356   if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
1357       MI.getNumOperands() == 2) {
1358     LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
1359     Coalesced.push_back(&MI);
1360   }
1361 }
1362 
1363 void RegAllocFast::handleDebugValue(MachineInstr &MI) {
1364   MachineOperand &MO = MI.getDebugOperand(0);
1365 
1366   // Ignore DBG_VALUEs that aren't based on virtual registers. These are
1367   // mostly constants and frame indices.
1368   if (!MO.isReg())
1369     return;
1370   Register Reg = MO.getReg();
1371   if (!Register::isVirtualRegister(Reg))
1372     return;
1373 
1374   // Already spilled to a stackslot?
1375   int SS = StackSlotForVirtReg[Reg];
1376   if (SS != -1) {
1377     // Modify DBG_VALUE now that the value is in a spill slot.
1378     updateDbgValueForSpill(MI, SS);
1379     LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI);
1380     return;
1381   }
1382 
1383   // See if this virtual register has already been allocated to a physical
1384   // register or spilled to a stack slot.
1385   LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
1386   if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
1387     setPhysReg(MI, MO, LRI->PhysReg);
1388   } else {
1389     DanglingDbgValues[Reg].push_back(&MI);
1390   }
1391 
1392   // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
1393   // that future spills of Reg will have DBG_VALUEs.
1394   LiveDbgValueMap[Reg].push_back(&MI);
1395 }
1396 
1397 void RegAllocFast::handleBundle(MachineInstr &MI) {
1398   MachineBasicBlock::instr_iterator BundledMI = MI.getIterator();
1399   ++BundledMI;
1400   while (BundledMI->isBundledWithPred()) {
1401     for (unsigned I = 0; I < BundledMI->getNumOperands(); ++I) {
1402       MachineOperand &MO = BundledMI->getOperand(I);
1403       if (!MO.isReg())
1404         continue;
1405 
1406       Register Reg = MO.getReg();
1407       if (!Reg.isVirtual())
1408         continue;
1409 
1410       DenseMap<Register, MCPhysReg>::iterator DI;
1411       DI = BundleVirtRegsMap.find(Reg);
1412       assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register");
1413 
1414       setPhysReg(MI, MO, DI->second);
1415     }
1416 
1417     ++BundledMI;
1418   }
1419 }
1420 
1421 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) {
1422   this->MBB = &MBB;
1423   LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);
1424 
1425   RegUnitStates.assign(TRI->getNumRegUnits(), regFree);
1426   assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
1427 
1428   for (MachineBasicBlock *Succ : MBB.successors()) {
1429     for (const MachineBasicBlock::RegisterMaskPair &LI : Succ->liveins())
1430       setPhysRegState(LI.PhysReg, regPreAssigned);
1431   }
1432 
1433   Coalesced.clear();
1434 
1435   // Traverse block in reverse order allocating instructions one by one.
1436   for (MachineInstr &MI : reverse(MBB)) {
1437     LLVM_DEBUG(
1438       dbgs() << "\n>> " << MI << "Regs:";
1439       dumpState()
1440     );
1441 
1442     // Special handling for debug values. Note that they are not allowed to
1443     // affect codegen of the other instructions in any way.
1444     if (MI.isDebugValue()) {
1445       handleDebugValue(MI);
1446       continue;
1447     }
1448 
1449     allocateInstruction(MI);
1450 
1451     // Once BUNDLE header is assigned registers, same assignments need to be
1452     // done for bundled MIs.
1453     if (MI.getOpcode() == TargetOpcode::BUNDLE) {
1454       handleBundle(MI);
1455     }
1456   }
1457 
1458   LLVM_DEBUG(
1459     dbgs() << "Begin Regs:";
1460     dumpState()
1461   );
1462 
1463   // Spill all physical registers holding virtual registers now.
1464   LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n");
1465   reloadAtBegin(MBB);
1466 
1467   // Erase all the coalesced copies. We are delaying it until now because
1468   // LiveVirtRegs might refer to the instrs.
1469   for (MachineInstr *MI : Coalesced)
1470     MBB.erase(MI);
1471   NumCoalesced += Coalesced.size();
1472 
1473   for (auto &UDBGPair : DanglingDbgValues) {
1474     for (MachineInstr *DbgValue : UDBGPair.second) {
1475       assert(DbgValue->isDebugValue() && "expected DBG_VALUE");
1476       MachineOperand &MO = DbgValue->getOperand(0);
1477       // Nothing to do if the vreg was spilled in the meantime.
1478       if (!MO.isReg())
1479         continue;
1480       LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
1481                  << '\n');
1482       MO.setReg(0);
1483     }
1484   }
1485   DanglingDbgValues.clear();
1486 
1487   LLVM_DEBUG(MBB.dump());
1488 }
1489 
1490 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) {
1491   LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1492                     << "********** Function: " << MF.getName() << '\n');
1493   MRI = &MF.getRegInfo();
1494   const TargetSubtargetInfo &STI = MF.getSubtarget();
1495   TRI = STI.getRegisterInfo();
1496   TII = STI.getInstrInfo();
1497   MFI = &MF.getFrameInfo();
1498   MRI->freezeReservedRegs(MF);
1499   RegClassInfo.runOnMachineFunction(MF);
1500   unsigned NumRegUnits = TRI->getNumRegUnits();
1501   UsedInInstr.clear();
1502   UsedInInstr.setUniverse(NumRegUnits);
1503   PhysRegUses.clear();
1504   PhysRegUses.setUniverse(NumRegUnits);
1505 
1506   // initialize the virtual->physical register map to have a 'null'
1507   // mapping for all virtual registers
1508   unsigned NumVirtRegs = MRI->getNumVirtRegs();
1509   StackSlotForVirtReg.resize(NumVirtRegs);
1510   LiveVirtRegs.setUniverse(NumVirtRegs);
1511   MayLiveAcrossBlocks.clear();
1512   MayLiveAcrossBlocks.resize(NumVirtRegs);
1513 
1514   // Loop over all of the basic blocks, eliminating virtual register references
1515   for (MachineBasicBlock &MBB : MF)
1516     allocateBasicBlock(MBB);
1517 
1518   // All machine operands and other references to virtual registers have been
1519   // replaced. Remove the virtual registers.
1520   MRI->clearVirtRegs();
1521 
1522   StackSlotForVirtReg.clear();
1523   LiveDbgValueMap.clear();
1524   return true;
1525 }
1526 
1527 FunctionPass *llvm::createFastRegisterAllocator() {
1528   return new RegAllocFast();
1529 }
1530