1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/SparseSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/RegAllocCommon.h" 32 #include "llvm/CodeGen/RegAllocRegistry.h" 33 #include "llvm/CodeGen/RegisterClassInfo.h" 34 #include "llvm/CodeGen/TargetInstrInfo.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/TargetSubtargetInfo.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <cassert> 45 #include <tuple> 46 #include <vector> 47 48 using namespace llvm; 49 50 #define DEBUG_TYPE "regalloc" 51 52 STATISTIC(NumStores, "Number of stores added"); 53 STATISTIC(NumLoads , "Number of loads added"); 54 STATISTIC(NumCoalesced, "Number of copies coalesced"); 55 56 // FIXME: Remove this switch when all testcases are fixed! 57 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs", 58 cl::Hidden); 59 60 static RegisterRegAlloc 61 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 62 63 namespace { 64 65 class RegAllocFast : public MachineFunctionPass { 66 public: 67 static char ID; 68 69 RegAllocFast(const RegClassFilterFunc F = allocateAllRegClasses, 70 bool ClearVirtRegs_ = true) : 71 MachineFunctionPass(ID), 72 ShouldAllocateClass(F), 73 StackSlotForVirtReg(-1), 74 ClearVirtRegs(ClearVirtRegs_) { 75 } 76 77 private: 78 MachineFrameInfo *MFI; 79 MachineRegisterInfo *MRI; 80 const TargetRegisterInfo *TRI; 81 const TargetInstrInfo *TII; 82 RegisterClassInfo RegClassInfo; 83 const RegClassFilterFunc ShouldAllocateClass; 84 85 /// Basic block currently being allocated. 86 MachineBasicBlock *MBB; 87 88 /// Maps virtual regs to the frame index where these values are spilled. 89 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 90 91 bool ClearVirtRegs; 92 93 /// Everything we know about a live virtual register. 94 struct LiveReg { 95 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 96 Register VirtReg; ///< Virtual register number. 97 MCPhysReg PhysReg = 0; ///< Currently held here. 98 bool LiveOut = false; ///< Register is possibly live out. 99 bool Reloaded = false; ///< Register was reloaded. 100 bool Error = false; ///< Could not allocate. 101 102 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {} 103 104 unsigned getSparseSetIndex() const { 105 return Register::virtReg2Index(VirtReg); 106 } 107 }; 108 109 using LiveRegMap = SparseSet<LiveReg>; 110 /// This map contains entries for each virtual register that is currently 111 /// available in a physical register. 112 LiveRegMap LiveVirtRegs; 113 114 /// Stores assigned virtual registers present in the bundle MI. 115 DenseMap<Register, MCPhysReg> BundleVirtRegsMap; 116 117 DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap; 118 /// List of DBG_VALUE that we encountered without the vreg being assigned 119 /// because they were placed after the last use of the vreg. 120 DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues; 121 122 /// Has a bit set for every virtual register for which it was determined 123 /// that it is alive across blocks. 124 BitVector MayLiveAcrossBlocks; 125 126 /// State of a register unit. 127 enum RegUnitState { 128 /// A free register is not currently in use and can be allocated 129 /// immediately without checking aliases. 130 regFree, 131 132 /// A pre-assigned register has been assigned before register allocation 133 /// (e.g., setting up a call parameter). 134 regPreAssigned, 135 136 /// Used temporarily in reloadAtBegin() to mark register units that are 137 /// live-in to the basic block. 138 regLiveIn, 139 140 /// A register state may also be a virtual register number, indication 141 /// that the physical register is currently allocated to a virtual 142 /// register. In that case, LiveVirtRegs contains the inverse mapping. 143 }; 144 145 /// Maps each physical register to a RegUnitState enum or virtual register. 146 std::vector<unsigned> RegUnitStates; 147 148 SmallVector<MachineInstr *, 32> Coalesced; 149 150 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 151 /// Set of register units that are used in the current instruction, and so 152 /// cannot be allocated. 153 RegUnitSet UsedInInstr; 154 RegUnitSet PhysRegUses; 155 SmallVector<uint16_t, 8> DefOperandIndexes; 156 // Register masks attached to the current instruction. 157 SmallVector<const uint32_t *> RegMasks; 158 159 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 160 bool isPhysRegFree(MCPhysReg PhysReg) const; 161 162 /// Mark a physreg as used in this instruction. 163 void markRegUsedInInstr(MCPhysReg PhysReg) { 164 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 165 UsedInInstr.insert(*Units); 166 } 167 168 // Check if physreg is clobbered by instruction's regmask(s). 169 bool isClobberedByRegMasks(MCPhysReg PhysReg) const { 170 return llvm::any_of(RegMasks, [PhysReg](const uint32_t *Mask) { 171 return MachineOperand::clobbersPhysReg(Mask, PhysReg); 172 }); 173 } 174 175 /// Check if a physreg or any of its aliases are used in this instruction. 176 bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const { 177 if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg)) 178 return true; 179 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 180 if (UsedInInstr.count(*Units)) 181 return true; 182 if (LookAtPhysRegUses && PhysRegUses.count(*Units)) 183 return true; 184 } 185 return false; 186 } 187 188 /// Mark physical register as being used in a register use operand. 189 /// This is only used by the special livethrough handling code. 190 void markPhysRegUsedInInstr(MCPhysReg PhysReg) { 191 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 192 PhysRegUses.insert(*Units); 193 } 194 195 /// Remove mark of physical register being used in the instruction. 196 void unmarkRegUsedInInstr(MCPhysReg PhysReg) { 197 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 198 UsedInInstr.erase(*Units); 199 } 200 201 enum : unsigned { 202 spillClean = 50, 203 spillDirty = 100, 204 spillPrefBonus = 20, 205 spillImpossible = ~0u 206 }; 207 208 public: 209 StringRef getPassName() const override { return "Fast Register Allocator"; } 210 211 void getAnalysisUsage(AnalysisUsage &AU) const override { 212 AU.setPreservesCFG(); 213 MachineFunctionPass::getAnalysisUsage(AU); 214 } 215 216 MachineFunctionProperties getRequiredProperties() const override { 217 return MachineFunctionProperties().set( 218 MachineFunctionProperties::Property::NoPHIs); 219 } 220 221 MachineFunctionProperties getSetProperties() const override { 222 if (ClearVirtRegs) { 223 return MachineFunctionProperties().set( 224 MachineFunctionProperties::Property::NoVRegs); 225 } 226 227 return MachineFunctionProperties(); 228 } 229 230 MachineFunctionProperties getClearedProperties() const override { 231 return MachineFunctionProperties().set( 232 MachineFunctionProperties::Property::IsSSA); 233 } 234 235 private: 236 bool runOnMachineFunction(MachineFunction &MF) override; 237 238 void allocateBasicBlock(MachineBasicBlock &MBB); 239 240 void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 241 Register Reg) const; 242 243 void allocateInstruction(MachineInstr &MI); 244 void handleDebugValue(MachineInstr &MI); 245 void handleBundle(MachineInstr &MI); 246 247 bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 248 bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 249 bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 250 void freePhysReg(MCPhysReg PhysReg); 251 252 unsigned calcSpillCost(MCPhysReg PhysReg) const; 253 254 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) { 255 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 256 } 257 258 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const { 259 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 260 } 261 262 void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg); 263 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint, 264 bool LookAtPhysRegUses = false); 265 void allocVirtRegUndef(MachineOperand &MO); 266 void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg, 267 MCPhysReg Reg); 268 void defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 269 Register VirtReg); 270 void defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 271 bool LookAtPhysRegUses = false); 272 void useVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg); 273 274 MachineBasicBlock::iterator 275 getMBBBeginInsertionPoint(MachineBasicBlock &MBB, 276 SmallSet<Register, 2> &PrologLiveIns) const; 277 278 void reloadAtBegin(MachineBasicBlock &MBB); 279 void setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 280 281 Register traceCopies(Register VirtReg) const; 282 Register traceCopyChain(Register Reg) const; 283 284 bool shouldAllocateRegister(const Register Reg) const; 285 int getStackSpaceFor(Register VirtReg); 286 void spill(MachineBasicBlock::iterator Before, Register VirtReg, 287 MCPhysReg AssignedReg, bool Kill, bool LiveOut); 288 void reload(MachineBasicBlock::iterator Before, Register VirtReg, 289 MCPhysReg PhysReg); 290 291 bool mayLiveOut(Register VirtReg); 292 bool mayLiveIn(Register VirtReg); 293 294 void dumpState() const; 295 }; 296 297 } // end anonymous namespace 298 299 char RegAllocFast::ID = 0; 300 301 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 302 false) 303 304 bool RegAllocFast::shouldAllocateRegister(const Register Reg) const { 305 assert(Reg.isVirtual()); 306 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 307 return ShouldAllocateClass(*TRI, RC); 308 } 309 310 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 311 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) 312 RegUnitStates[*UI] = NewState; 313 } 314 315 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const { 316 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 317 if (RegUnitStates[*UI] != regFree) 318 return false; 319 } 320 return true; 321 } 322 323 /// This allocates space for the specified virtual register to be held on the 324 /// stack. 325 int RegAllocFast::getStackSpaceFor(Register VirtReg) { 326 // Find the location Reg would belong... 327 int SS = StackSlotForVirtReg[VirtReg]; 328 // Already has space allocated? 329 if (SS != -1) 330 return SS; 331 332 // Allocate a new stack object for this spill location... 333 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 334 unsigned Size = TRI->getSpillSize(RC); 335 Align Alignment = TRI->getSpillAlign(RC); 336 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment); 337 338 // Assign the slot. 339 StackSlotForVirtReg[VirtReg] = FrameIdx; 340 return FrameIdx; 341 } 342 343 static bool dominates(MachineBasicBlock &MBB, 344 MachineBasicBlock::const_iterator A, 345 MachineBasicBlock::const_iterator B) { 346 auto MBBEnd = MBB.end(); 347 if (B == MBBEnd) 348 return true; 349 350 MachineBasicBlock::const_iterator I = MBB.begin(); 351 for (; &*I != A && &*I != B; ++I) 352 ; 353 354 return &*I == A; 355 } 356 357 /// Returns false if \p VirtReg is known to not live out of the current block. 358 bool RegAllocFast::mayLiveOut(Register VirtReg) { 359 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) { 360 // Cannot be live-out if there are no successors. 361 return !MBB->succ_empty(); 362 } 363 364 const MachineInstr *SelfLoopDef = nullptr; 365 366 // If this block loops back to itself, it is necessary to check whether the 367 // use comes after the def. 368 if (MBB->isSuccessor(MBB)) { 369 // Find the first def in the self loop MBB. 370 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 371 if (DefInst.getParent() != MBB) { 372 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 373 return true; 374 } else { 375 if (!SelfLoopDef || dominates(*MBB, DefInst.getIterator(), SelfLoopDef)) 376 SelfLoopDef = &DefInst; 377 } 378 } 379 if (!SelfLoopDef) { 380 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 381 return true; 382 } 383 } 384 385 // See if the first \p Limit uses of the register are all in the current 386 // block. 387 static const unsigned Limit = 8; 388 unsigned C = 0; 389 for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) { 390 if (UseInst.getParent() != MBB || ++C >= Limit) { 391 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 392 // Cannot be live-out if there are no successors. 393 return !MBB->succ_empty(); 394 } 395 396 if (SelfLoopDef) { 397 // Try to handle some simple cases to avoid spilling and reloading every 398 // value inside a self looping block. 399 if (SelfLoopDef == &UseInst || 400 !dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) { 401 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 402 return true; 403 } 404 } 405 } 406 407 return false; 408 } 409 410 /// Returns false if \p VirtReg is known to not be live into the current block. 411 bool RegAllocFast::mayLiveIn(Register VirtReg) { 412 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) 413 return !MBB->pred_empty(); 414 415 // See if the first \p Limit def of the register are all in the current block. 416 static const unsigned Limit = 8; 417 unsigned C = 0; 418 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 419 if (DefInst.getParent() != MBB || ++C >= Limit) { 420 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 421 return !MBB->pred_empty(); 422 } 423 } 424 425 return false; 426 } 427 428 /// Insert spill instruction for \p AssignedReg before \p Before. Update 429 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 430 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg, 431 MCPhysReg AssignedReg, bool Kill, bool LiveOut) { 432 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) 433 << " in " << printReg(AssignedReg, TRI)); 434 int FI = getStackSpaceFor(VirtReg); 435 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 436 437 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 438 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI, 439 VirtReg); 440 ++NumStores; 441 442 MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator(); 443 444 // When we spill a virtual register, we will have spill instructions behind 445 // every definition of it, meaning we can switch all the DBG_VALUEs over 446 // to just reference the stack slot. 447 SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg]; 448 SmallMapVector<MachineInstr *, SmallVector<const MachineOperand *>, 2> 449 SpilledOperandsMap; 450 for (MachineOperand *MO : LRIDbgOperands) 451 SpilledOperandsMap[MO->getParent()].push_back(MO); 452 for (auto MISpilledOperands : SpilledOperandsMap) { 453 MachineInstr &DBG = *MISpilledOperands.first; 454 // We don't have enough support for tracking operands of DBG_VALUE_LISTs. 455 if (DBG.isDebugValueList()) 456 continue; 457 MachineInstr *NewDV = buildDbgValueForSpill( 458 *MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second); 459 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 460 (void)NewDV; 461 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 462 463 if (LiveOut) { 464 // We need to insert a DBG_VALUE at the end of the block if the spill slot 465 // is live out, but there is another use of the value after the 466 // spill. This will allow LiveDebugValues to see the correct live out 467 // value to propagate to the successors. 468 MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV); 469 MBB->insert(FirstTerm, ClonedDV); 470 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n"); 471 } 472 473 // Rewrite unassigned dbg_values to use the stack slot. 474 // TODO We can potentially do this for list debug values as well if we know 475 // how the dbg_values are getting unassigned. 476 if (DBG.isNonListDebugValue()) { 477 MachineOperand &MO = DBG.getDebugOperand(0); 478 if (MO.isReg() && MO.getReg() == 0) { 479 updateDbgValueForSpill(DBG, FI, 0); 480 } 481 } 482 } 483 // Now this register is spilled there is should not be any DBG_VALUE 484 // pointing to this register because they are all pointing to spilled value 485 // now. 486 LRIDbgOperands.clear(); 487 } 488 489 /// Insert reload instruction for \p PhysReg before \p Before. 490 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg, 491 MCPhysReg PhysReg) { 492 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 493 << printReg(PhysReg, TRI) << '\n'); 494 int FI = getStackSpaceFor(VirtReg); 495 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 496 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI, VirtReg); 497 ++NumLoads; 498 } 499 500 /// Get basic block begin insertion point. 501 /// This is not just MBB.begin() because surprisingly we have EH_LABEL 502 /// instructions marking the begin of a basic block. This means we must insert 503 /// new instructions after such labels... 504 MachineBasicBlock::iterator 505 RegAllocFast::getMBBBeginInsertionPoint( 506 MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const { 507 MachineBasicBlock::iterator I = MBB.begin(); 508 while (I != MBB.end()) { 509 if (I->isLabel()) { 510 ++I; 511 continue; 512 } 513 514 // Most reloads should be inserted after prolog instructions. 515 if (!TII->isBasicBlockPrologue(*I)) 516 break; 517 518 // However if a prolog instruction reads a register that needs to be 519 // reloaded, the reload should be inserted before the prolog. 520 for (MachineOperand &MO : I->operands()) { 521 if (MO.isReg()) 522 PrologLiveIns.insert(MO.getReg()); 523 } 524 525 ++I; 526 } 527 528 return I; 529 } 530 531 /// Reload all currently assigned virtual registers. 532 void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) { 533 if (LiveVirtRegs.empty()) 534 return; 535 536 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 537 MCPhysReg Reg = P.PhysReg; 538 // Set state to live-in. This possibly overrides mappings to virtual 539 // registers but we don't care anymore at this point. 540 setPhysRegState(Reg, regLiveIn); 541 } 542 543 544 SmallSet<Register, 2> PrologLiveIns; 545 546 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 547 // of spilling here is deterministic, if arbitrary. 548 MachineBasicBlock::iterator InsertBefore 549 = getMBBBeginInsertionPoint(MBB, PrologLiveIns); 550 for (const LiveReg &LR : LiveVirtRegs) { 551 MCPhysReg PhysReg = LR.PhysReg; 552 if (PhysReg == 0) 553 continue; 554 555 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 556 if (RegUnitStates[FirstUnit] == regLiveIn) 557 continue; 558 559 assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) && 560 "no reload in start block. Missing vreg def?"); 561 562 if (PrologLiveIns.count(PhysReg)) { 563 // FIXME: Theoretically this should use an insert point skipping labels 564 // but I'm not sure how labels should interact with prolog instruction 565 // that need reloads. 566 reload(MBB.begin(), LR.VirtReg, PhysReg); 567 } else 568 reload(InsertBefore, LR.VirtReg, PhysReg); 569 } 570 LiveVirtRegs.clear(); 571 } 572 573 /// Handle the direct use of a physical register. Check that the register is 574 /// not used by a virtreg. Kill the physreg, marking it free. This may add 575 /// implicit kills to MO->getParent() and invalidate MO. 576 bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) { 577 assert(Register::isPhysicalRegister(Reg) && "expected physreg"); 578 bool displacedAny = displacePhysReg(MI, Reg); 579 setPhysRegState(Reg, regPreAssigned); 580 markRegUsedInInstr(Reg); 581 return displacedAny; 582 } 583 584 bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) { 585 bool displacedAny = displacePhysReg(MI, Reg); 586 setPhysRegState(Reg, regPreAssigned); 587 return displacedAny; 588 } 589 590 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 591 /// similar to defineVirtReg except the physreg is reserved instead of 592 /// allocated. 593 bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) { 594 bool displacedAny = false; 595 596 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 597 unsigned Unit = *UI; 598 switch (unsigned VirtReg = RegUnitStates[Unit]) { 599 default: { 600 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 601 assert(LRI != LiveVirtRegs.end() && "datastructures in sync"); 602 MachineBasicBlock::iterator ReloadBefore = 603 std::next((MachineBasicBlock::iterator)MI.getIterator()); 604 reload(ReloadBefore, VirtReg, LRI->PhysReg); 605 606 setPhysRegState(LRI->PhysReg, regFree); 607 LRI->PhysReg = 0; 608 LRI->Reloaded = true; 609 displacedAny = true; 610 break; 611 } 612 case regPreAssigned: 613 RegUnitStates[Unit] = regFree; 614 displacedAny = true; 615 break; 616 case regFree: 617 break; 618 } 619 } 620 return displacedAny; 621 } 622 623 void RegAllocFast::freePhysReg(MCPhysReg PhysReg) { 624 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':'); 625 626 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 627 switch (unsigned VirtReg = RegUnitStates[FirstUnit]) { 628 case regFree: 629 LLVM_DEBUG(dbgs() << '\n'); 630 return; 631 case regPreAssigned: 632 LLVM_DEBUG(dbgs() << '\n'); 633 setPhysRegState(PhysReg, regFree); 634 return; 635 default: { 636 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 637 assert(LRI != LiveVirtRegs.end()); 638 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n'); 639 setPhysRegState(LRI->PhysReg, regFree); 640 LRI->PhysReg = 0; 641 } 642 return; 643 } 644 } 645 646 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 647 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 648 /// disabled - it can be allocated directly. 649 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 650 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 651 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 652 switch (unsigned VirtReg = RegUnitStates[*UI]) { 653 case regFree: 654 break; 655 case regPreAssigned: 656 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned " 657 << printReg(PhysReg, TRI) << '\n'); 658 return spillImpossible; 659 default: { 660 bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 || 661 findLiveVirtReg(VirtReg)->LiveOut; 662 return SureSpill ? spillClean : spillDirty; 663 } 664 } 665 } 666 return 0; 667 } 668 669 void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition, 670 Register VirtReg, MCPhysReg Reg) { 671 auto UDBGValIter = DanglingDbgValues.find(VirtReg); 672 if (UDBGValIter == DanglingDbgValues.end()) 673 return; 674 675 SmallVectorImpl<MachineInstr*> &Dangling = UDBGValIter->second; 676 for (MachineInstr *DbgValue : Dangling) { 677 assert(DbgValue->isDebugValue()); 678 if (!DbgValue->hasDebugOperandForReg(VirtReg)) 679 continue; 680 681 // Test whether the physreg survives from the definition to the DBG_VALUE. 682 MCPhysReg SetToReg = Reg; 683 unsigned Limit = 20; 684 for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()), 685 E = DbgValue->getIterator(); I != E; ++I) { 686 if (I->modifiesRegister(Reg, TRI) || --Limit == 0) { 687 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 688 << '\n'); 689 SetToReg = 0; 690 break; 691 } 692 } 693 for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) { 694 MO.setReg(SetToReg); 695 if (SetToReg != 0) 696 MO.setIsRenamable(); 697 } 698 } 699 Dangling.clear(); 700 } 701 702 /// This method updates local state so that we know that PhysReg is the 703 /// proper container for VirtReg now. The physical register must not be used 704 /// for anything else when this is called. 705 void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR, 706 MCPhysReg PhysReg) { 707 Register VirtReg = LR.VirtReg; 708 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 709 << printReg(PhysReg, TRI) << '\n'); 710 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 711 assert(PhysReg != 0 && "Trying to assign no register"); 712 LR.PhysReg = PhysReg; 713 setPhysRegState(PhysReg, VirtReg); 714 715 assignDanglingDebugValues(AtMI, VirtReg, PhysReg); 716 } 717 718 static bool isCoalescable(const MachineInstr &MI) { 719 return MI.isFullCopy(); 720 } 721 722 Register RegAllocFast::traceCopyChain(Register Reg) const { 723 static const unsigned ChainLengthLimit = 3; 724 unsigned C = 0; 725 do { 726 if (Reg.isPhysical()) 727 return Reg; 728 assert(Reg.isVirtual()); 729 730 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); 731 if (!VRegDef || !isCoalescable(*VRegDef)) 732 return 0; 733 Reg = VRegDef->getOperand(1).getReg(); 734 } while (++C <= ChainLengthLimit); 735 return 0; 736 } 737 738 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the 739 /// chain of copies to check whether we reach a physical register we can 740 /// coalesce with. 741 Register RegAllocFast::traceCopies(Register VirtReg) const { 742 static const unsigned DefLimit = 3; 743 unsigned C = 0; 744 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { 745 if (isCoalescable(MI)) { 746 Register Reg = MI.getOperand(1).getReg(); 747 Reg = traceCopyChain(Reg); 748 if (Reg.isValid()) 749 return Reg; 750 } 751 752 if (++C >= DefLimit) 753 break; 754 } 755 return Register(); 756 } 757 758 /// Allocates a physical register for VirtReg. 759 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, 760 Register Hint0, bool LookAtPhysRegUses) { 761 const Register VirtReg = LR.VirtReg; 762 assert(LR.PhysReg == 0); 763 764 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 765 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 766 << " in class " << TRI->getRegClassName(&RC) 767 << " with hint " << printReg(Hint0, TRI) << '\n'); 768 769 // Take hint when possible. 770 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) && 771 !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) { 772 // Take hint if the register is currently free. 773 if (isPhysRegFree(Hint0)) { 774 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 775 << '\n'); 776 assignVirtToPhysReg(MI, LR, Hint0); 777 return; 778 } else { 779 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI) 780 << " occupied\n"); 781 } 782 } else { 783 Hint0 = Register(); 784 } 785 786 787 // Try other hint. 788 Register Hint1 = traceCopies(VirtReg); 789 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) && 790 !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) { 791 // Take hint if the register is currently free. 792 if (isPhysRegFree(Hint1)) { 793 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 794 << '\n'); 795 assignVirtToPhysReg(MI, LR, Hint1); 796 return; 797 } else { 798 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI) 799 << " occupied\n"); 800 } 801 } else { 802 Hint1 = Register(); 803 } 804 805 MCPhysReg BestReg = 0; 806 unsigned BestCost = spillImpossible; 807 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 808 for (MCPhysReg PhysReg : AllocationOrder) { 809 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 810 if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) { 811 LLVM_DEBUG(dbgs() << "already used in instr.\n"); 812 continue; 813 } 814 815 unsigned Cost = calcSpillCost(PhysReg); 816 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 817 // Immediate take a register with cost 0. 818 if (Cost == 0) { 819 assignVirtToPhysReg(MI, LR, PhysReg); 820 return; 821 } 822 823 if (PhysReg == Hint0 || PhysReg == Hint1) 824 Cost -= spillPrefBonus; 825 826 if (Cost < BestCost) { 827 BestReg = PhysReg; 828 BestCost = Cost; 829 } 830 } 831 832 if (!BestReg) { 833 // Nothing we can do: Report an error and keep going with an invalid 834 // allocation. 835 if (MI.isInlineAsm()) 836 MI.emitError("inline assembly requires more registers than available"); 837 else 838 MI.emitError("ran out of registers during register allocation"); 839 840 LR.Error = true; 841 LR.PhysReg = 0; 842 return; 843 } 844 845 displacePhysReg(MI, BestReg); 846 assignVirtToPhysReg(MI, LR, BestReg); 847 } 848 849 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) { 850 assert(MO.isUndef() && "expected undef use"); 851 Register VirtReg = MO.getReg(); 852 assert(VirtReg.isVirtual() && "Expected virtreg"); 853 if (!shouldAllocateRegister(VirtReg)) 854 return; 855 856 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 857 MCPhysReg PhysReg; 858 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 859 PhysReg = LRI->PhysReg; 860 } else { 861 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 862 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 863 assert(!AllocationOrder.empty() && "Allocation order must not be empty"); 864 PhysReg = AllocationOrder[0]; 865 } 866 867 unsigned SubRegIdx = MO.getSubReg(); 868 if (SubRegIdx != 0) { 869 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); 870 MO.setSubReg(0); 871 } 872 MO.setReg(PhysReg); 873 MO.setIsRenamable(true); 874 } 875 876 /// Variation of defineVirtReg() with special handling for livethrough regs 877 /// (tied or earlyclobber) that may interfere with preassigned uses. 878 void RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 879 Register VirtReg) { 880 if (!shouldAllocateRegister(VirtReg)) 881 return; 882 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 883 if (LRI != LiveVirtRegs.end()) { 884 MCPhysReg PrevReg = LRI->PhysReg; 885 if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) { 886 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI) 887 << " (tied/earlyclobber resolution)\n"); 888 freePhysReg(PrevReg); 889 LRI->PhysReg = 0; 890 allocVirtReg(MI, *LRI, 0, true); 891 MachineBasicBlock::iterator InsertBefore = 892 std::next((MachineBasicBlock::iterator)MI.getIterator()); 893 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to " 894 << printReg(PrevReg, TRI) << '\n'); 895 BuildMI(*MBB, InsertBefore, MI.getDebugLoc(), 896 TII->get(TargetOpcode::COPY), PrevReg) 897 .addReg(LRI->PhysReg, llvm::RegState::Kill); 898 } 899 MachineOperand &MO = MI.getOperand(OpNum); 900 if (MO.getSubReg() && !MO.isUndef()) { 901 LRI->LastUse = &MI; 902 } 903 } 904 return defineVirtReg(MI, OpNum, VirtReg, true); 905 } 906 907 /// Allocates a register for VirtReg definition. Typically the register is 908 /// already assigned from a use of the virtreg, however we still need to 909 /// perform an allocation if: 910 /// - It is a dead definition without any uses. 911 /// - The value is live out and all uses are in different basic blocks. 912 void RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, 913 Register VirtReg, bool LookAtPhysRegUses) { 914 assert(VirtReg.isVirtual() && "Not a virtual register"); 915 if (!shouldAllocateRegister(VirtReg)) 916 return; 917 MachineOperand &MO = MI.getOperand(OpNum); 918 LiveRegMap::iterator LRI; 919 bool New; 920 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 921 if (New) { 922 if (!MO.isDead()) { 923 if (mayLiveOut(VirtReg)) { 924 LRI->LiveOut = true; 925 } else { 926 // It is a dead def without the dead flag; add the flag now. 927 MO.setIsDead(true); 928 } 929 } 930 } 931 if (LRI->PhysReg == 0) 932 allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses); 933 else { 934 assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) && 935 "TODO: preassign mismatch"); 936 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI) 937 << " use existing assignment to " 938 << printReg(LRI->PhysReg, TRI) << '\n'); 939 } 940 941 MCPhysReg PhysReg = LRI->PhysReg; 942 assert(PhysReg != 0 && "Register not assigned"); 943 if (LRI->Reloaded || LRI->LiveOut) { 944 if (!MI.isImplicitDef()) { 945 MachineBasicBlock::iterator SpillBefore = 946 std::next((MachineBasicBlock::iterator)MI.getIterator()); 947 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut << " RL: " 948 << LRI->Reloaded << '\n'); 949 bool Kill = LRI->LastUse == nullptr; 950 spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut); 951 LRI->LastUse = nullptr; 952 } 953 LRI->LiveOut = false; 954 LRI->Reloaded = false; 955 } 956 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 957 BundleVirtRegsMap[VirtReg] = PhysReg; 958 } 959 markRegUsedInInstr(PhysReg); 960 setPhysReg(MI, MO, PhysReg); 961 } 962 963 /// Allocates a register for a VirtReg use. 964 void RegAllocFast::useVirtReg(MachineInstr &MI, unsigned OpNum, 965 Register VirtReg) { 966 assert(VirtReg.isVirtual() && "Not a virtual register"); 967 if (!shouldAllocateRegister(VirtReg)) 968 return; 969 MachineOperand &MO = MI.getOperand(OpNum); 970 LiveRegMap::iterator LRI; 971 bool New; 972 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 973 if (New) { 974 MachineOperand &MO = MI.getOperand(OpNum); 975 if (!MO.isKill()) { 976 if (mayLiveOut(VirtReg)) { 977 LRI->LiveOut = true; 978 } else { 979 // It is a last (killing) use without the kill flag; add the flag now. 980 MO.setIsKill(true); 981 } 982 } 983 } else { 984 assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag"); 985 } 986 987 // If necessary allocate a register. 988 if (LRI->PhysReg == 0) { 989 assert(!MO.isTied() && "tied op should be allocated"); 990 Register Hint; 991 if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) { 992 Hint = MI.getOperand(0).getReg(); 993 if (Hint.isVirtual()) { 994 assert(!shouldAllocateRegister(Hint)); 995 Hint = Register(); 996 } else { 997 assert(Hint.isPhysical() && 998 "Copy destination should already be assigned"); 999 } 1000 } 1001 allocVirtReg(MI, *LRI, Hint, false); 1002 if (LRI->Error) { 1003 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 1004 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 1005 setPhysReg(MI, MO, *AllocationOrder.begin()); 1006 return; 1007 } 1008 } 1009 1010 LRI->LastUse = &MI; 1011 1012 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1013 BundleVirtRegsMap[VirtReg] = LRI->PhysReg; 1014 } 1015 markRegUsedInInstr(LRI->PhysReg); 1016 setPhysReg(MI, MO, LRI->PhysReg); 1017 } 1018 1019 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 1020 /// may invalidate any operand pointers. Return true if the operand kills its 1021 /// register. 1022 void RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, 1023 MCPhysReg PhysReg) { 1024 if (!MO.getSubReg()) { 1025 MO.setReg(PhysReg); 1026 MO.setIsRenamable(true); 1027 return; 1028 } 1029 1030 // Handle subregister index. 1031 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister()); 1032 MO.setIsRenamable(true); 1033 // Note: We leave the subreg number around a little longer in case of defs. 1034 // This is so that the register freeing logic in allocateInstruction can still 1035 // recognize this as subregister defs. The code there will clear the number. 1036 if (!MO.isDef()) 1037 MO.setSubReg(0); 1038 1039 // A kill flag implies killing the full register. Add corresponding super 1040 // register kill. 1041 if (MO.isKill()) { 1042 MI.addRegisterKilled(PhysReg, TRI, true); 1043 return; 1044 } 1045 1046 // A <def,read-undef> of a sub-register requires an implicit def of the full 1047 // register. 1048 if (MO.isDef() && MO.isUndef()) { 1049 if (MO.isDead()) 1050 MI.addRegisterDead(PhysReg, TRI, true); 1051 else 1052 MI.addRegisterDefined(PhysReg, TRI); 1053 } 1054 } 1055 1056 #ifndef NDEBUG 1057 1058 void RegAllocFast::dumpState() const { 1059 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE; 1060 ++Unit) { 1061 switch (unsigned VirtReg = RegUnitStates[Unit]) { 1062 case regFree: 1063 break; 1064 case regPreAssigned: 1065 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]"; 1066 break; 1067 case regLiveIn: 1068 llvm_unreachable("Should not have regLiveIn in map"); 1069 default: { 1070 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg); 1071 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 1072 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry"); 1073 if (I->LiveOut || I->Reloaded) { 1074 dbgs() << '['; 1075 if (I->LiveOut) dbgs() << 'O'; 1076 if (I->Reloaded) dbgs() << 'R'; 1077 dbgs() << ']'; 1078 } 1079 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present"); 1080 break; 1081 } 1082 } 1083 } 1084 dbgs() << '\n'; 1085 // Check that LiveVirtRegs is the inverse. 1086 for (const LiveReg &LR : LiveVirtRegs) { 1087 Register VirtReg = LR.VirtReg; 1088 assert(VirtReg.isVirtual() && "Bad map key"); 1089 MCPhysReg PhysReg = LR.PhysReg; 1090 if (PhysReg != 0) { 1091 assert(Register::isPhysicalRegister(PhysReg) && 1092 "mapped to physreg"); 1093 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 1094 assert(RegUnitStates[*UI] == VirtReg && "inverse map valid"); 1095 } 1096 } 1097 } 1098 } 1099 #endif 1100 1101 /// Count number of defs consumed from each register class by \p Reg 1102 void RegAllocFast::addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 1103 Register Reg) const { 1104 assert(RegClassDefCounts.size() == TRI->getNumRegClasses()); 1105 1106 if (Reg.isVirtual()) { 1107 if (!shouldAllocateRegister(Reg)) 1108 return; 1109 const TargetRegisterClass *OpRC = MRI->getRegClass(Reg); 1110 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1111 RCIdx != RCIdxEnd; ++RCIdx) { 1112 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1113 // FIXME: Consider aliasing sub/super registers. 1114 if (OpRC->hasSubClassEq(IdxRC)) 1115 ++RegClassDefCounts[RCIdx]; 1116 } 1117 1118 return; 1119 } 1120 1121 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1122 RCIdx != RCIdxEnd; ++RCIdx) { 1123 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1124 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 1125 if (IdxRC->contains(*Alias)) { 1126 ++RegClassDefCounts[RCIdx]; 1127 break; 1128 } 1129 } 1130 } 1131 } 1132 1133 void RegAllocFast::allocateInstruction(MachineInstr &MI) { 1134 // The basic algorithm here is: 1135 // 1. Mark registers of def operands as free 1136 // 2. Allocate registers to use operands and place reload instructions for 1137 // registers displaced by the allocation. 1138 // 1139 // However we need to handle some corner cases: 1140 // - pre-assigned defs and uses need to be handled before the other def/use 1141 // operands are processed to avoid the allocation heuristics clashing with 1142 // the pre-assignment. 1143 // - The "free def operands" step has to come last instead of first for tied 1144 // operands and early-clobbers. 1145 1146 UsedInInstr.clear(); 1147 RegMasks.clear(); 1148 BundleVirtRegsMap.clear(); 1149 1150 auto TiedOpIsUndef = [&](const MachineOperand &MO, unsigned Idx) { 1151 assert(MO.isTied()); 1152 unsigned TiedIdx = MI.findTiedOperandIdx(Idx); 1153 const MachineOperand &TiedMO = MI.getOperand(TiedIdx); 1154 return TiedMO.isUndef(); 1155 }; 1156 // Scan for special cases; Apply pre-assigned register defs to state. 1157 bool HasPhysRegUse = false; 1158 bool HasRegMask = false; 1159 bool HasVRegDef = false; 1160 bool HasDef = false; 1161 bool HasEarlyClobber = false; 1162 bool NeedToAssignLiveThroughs = false; 1163 for (unsigned I = 0; I < MI.getNumOperands(); ++I) { 1164 MachineOperand &MO = MI.getOperand(I); 1165 if (MO.isReg()) { 1166 Register Reg = MO.getReg(); 1167 if (Reg.isVirtual()) { 1168 if (!shouldAllocateRegister(Reg)) 1169 continue; 1170 if (MO.isDef()) { 1171 HasDef = true; 1172 HasVRegDef = true; 1173 if (MO.isEarlyClobber()) { 1174 HasEarlyClobber = true; 1175 NeedToAssignLiveThroughs = true; 1176 } 1177 if ((MO.isTied() && !TiedOpIsUndef(MO, I)) || 1178 (MO.getSubReg() != 0 && !MO.isUndef())) 1179 NeedToAssignLiveThroughs = true; 1180 } 1181 } else if (Reg.isPhysical()) { 1182 if (!MRI->isReserved(Reg)) { 1183 if (MO.isDef()) { 1184 HasDef = true; 1185 bool displacedAny = definePhysReg(MI, Reg); 1186 if (MO.isEarlyClobber()) 1187 HasEarlyClobber = true; 1188 if (!displacedAny) 1189 MO.setIsDead(true); 1190 } 1191 if (MO.readsReg()) 1192 HasPhysRegUse = true; 1193 } 1194 } 1195 } else if (MO.isRegMask()) { 1196 HasRegMask = true; 1197 RegMasks.push_back(MO.getRegMask()); 1198 } 1199 } 1200 1201 // Allocate virtreg defs. 1202 if (HasDef) { 1203 if (HasVRegDef) { 1204 // Special handling for early clobbers, tied operands or subregister defs: 1205 // Compared to "normal" defs these: 1206 // - Must not use a register that is pre-assigned for a use operand. 1207 // - In order to solve tricky inline assembly constraints we change the 1208 // heuristic to figure out a good operand order before doing 1209 // assignments. 1210 if (NeedToAssignLiveThroughs) { 1211 DefOperandIndexes.clear(); 1212 PhysRegUses.clear(); 1213 1214 // Track number of defs which may consume a register from the class. 1215 std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0); 1216 assert(RegClassDefCounts[0] == 0); 1217 1218 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n"); 1219 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1220 const MachineOperand &MO = MI.getOperand(I); 1221 if (!MO.isReg()) 1222 continue; 1223 Register Reg = MO.getReg(); 1224 if (MO.readsReg()) { 1225 if (Reg.isPhysical()) { 1226 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) 1227 << '\n'); 1228 markPhysRegUsedInInstr(Reg); 1229 } 1230 } 1231 1232 if (MO.isDef()) { 1233 if (Reg.isVirtual() && shouldAllocateRegister(Reg)) 1234 DefOperandIndexes.push_back(I); 1235 1236 addRegClassDefCounts(RegClassDefCounts, Reg); 1237 } 1238 } 1239 1240 llvm::sort(DefOperandIndexes, [&](uint16_t I0, uint16_t I1) { 1241 const MachineOperand &MO0 = MI.getOperand(I0); 1242 const MachineOperand &MO1 = MI.getOperand(I1); 1243 Register Reg0 = MO0.getReg(); 1244 Register Reg1 = MO1.getReg(); 1245 const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0); 1246 const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1); 1247 1248 // Identify regclass that are easy to use up completely just in this 1249 // instruction. 1250 unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size(); 1251 unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size(); 1252 1253 bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()]; 1254 bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()]; 1255 if (SmallClass0 > SmallClass1) 1256 return true; 1257 if (SmallClass0 < SmallClass1) 1258 return false; 1259 1260 // Allocate early clobbers and livethrough operands first. 1261 bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() || 1262 (MO0.getSubReg() == 0 && !MO0.isUndef()); 1263 bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() || 1264 (MO1.getSubReg() == 0 && !MO1.isUndef()); 1265 if (Livethrough0 > Livethrough1) 1266 return true; 1267 if (Livethrough0 < Livethrough1) 1268 return false; 1269 1270 // Tie-break rule: operand index. 1271 return I0 < I1; 1272 }); 1273 1274 for (uint16_t OpIdx : DefOperandIndexes) { 1275 MachineOperand &MO = MI.getOperand(OpIdx); 1276 LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n'); 1277 unsigned Reg = MO.getReg(); 1278 if (MO.isEarlyClobber() || 1279 (MO.isTied() && !TiedOpIsUndef(MO, OpIdx)) || 1280 (MO.getSubReg() && !MO.isUndef())) { 1281 defineLiveThroughVirtReg(MI, OpIdx, Reg); 1282 } else { 1283 defineVirtReg(MI, OpIdx, Reg); 1284 } 1285 } 1286 } else { 1287 // Assign virtual register defs. 1288 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1289 MachineOperand &MO = MI.getOperand(I); 1290 if (!MO.isReg() || !MO.isDef()) 1291 continue; 1292 Register Reg = MO.getReg(); 1293 if (Reg.isVirtual()) 1294 defineVirtReg(MI, I, Reg); 1295 } 1296 } 1297 } 1298 1299 // Free registers occupied by defs. 1300 // Iterate operands in reverse order, so we see the implicit super register 1301 // defs first (we added them earlier in case of <def,read-undef>). 1302 for (signed I = MI.getNumOperands() - 1; I >= 0; --I) { 1303 MachineOperand &MO = MI.getOperand(I); 1304 if (!MO.isReg() || !MO.isDef()) 1305 continue; 1306 1307 // subreg defs don't free the full register. We left the subreg number 1308 // around as a marker in setPhysReg() to recognize this case here. 1309 if (MO.getSubReg() != 0) { 1310 MO.setSubReg(0); 1311 continue; 1312 } 1313 1314 assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) && 1315 "tied def assigned to clobbered register"); 1316 1317 // Do not free tied operands and early clobbers. 1318 if ((MO.isTied() && !TiedOpIsUndef(MO, I)) || MO.isEarlyClobber()) 1319 continue; 1320 Register Reg = MO.getReg(); 1321 if (!Reg) 1322 continue; 1323 if (Reg.isVirtual()) { 1324 assert(!shouldAllocateRegister(Reg)); 1325 continue; 1326 } 1327 assert(Reg.isPhysical()); 1328 if (MRI->isReserved(Reg)) 1329 continue; 1330 freePhysReg(Reg); 1331 unmarkRegUsedInInstr(Reg); 1332 } 1333 } 1334 1335 // Displace clobbered registers. 1336 if (HasRegMask) { 1337 assert(!RegMasks.empty() && "expected RegMask"); 1338 // MRI bookkeeping. 1339 for (const auto *RM : RegMasks) 1340 MRI->addPhysRegsUsedFromRegMask(RM); 1341 1342 // Displace clobbered registers. 1343 for (const LiveReg &LR : LiveVirtRegs) { 1344 MCPhysReg PhysReg = LR.PhysReg; 1345 if (PhysReg != 0 && isClobberedByRegMasks(PhysReg)) 1346 displacePhysReg(MI, PhysReg); 1347 } 1348 } 1349 1350 // Apply pre-assigned register uses to state. 1351 if (HasPhysRegUse) { 1352 for (MachineOperand &MO : MI.operands()) { 1353 if (!MO.isReg() || !MO.readsReg()) 1354 continue; 1355 Register Reg = MO.getReg(); 1356 if (!Reg.isPhysical()) 1357 continue; 1358 if (MRI->isReserved(Reg)) 1359 continue; 1360 bool displacedAny = usePhysReg(MI, Reg); 1361 if (!displacedAny) 1362 MO.setIsKill(true); 1363 } 1364 } 1365 1366 // Allocate virtreg uses and insert reloads as necessary. 1367 bool HasUndefUse = false; 1368 for (unsigned I = 0; I < MI.getNumOperands(); ++I) { 1369 MachineOperand &MO = MI.getOperand(I); 1370 if (!MO.isReg() || !MO.isUse()) 1371 continue; 1372 Register Reg = MO.getReg(); 1373 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) 1374 continue; 1375 1376 if (MO.isUndef()) { 1377 HasUndefUse = true; 1378 continue; 1379 } 1380 1381 1382 // Populate MayLiveAcrossBlocks in case the use block is allocated before 1383 // the def block (removing the vreg uses). 1384 mayLiveIn(Reg); 1385 1386 1387 assert(!MO.isInternalRead() && "Bundles not supported"); 1388 assert(MO.readsReg() && "reading use"); 1389 useVirtReg(MI, I, Reg); 1390 } 1391 1392 // Allocate undef operands. This is a separate step because in a situation 1393 // like ` = OP undef %X, %X` both operands need the same register assign 1394 // so we should perform the normal assignment first. 1395 if (HasUndefUse) { 1396 for (MachineOperand &MO : MI.uses()) { 1397 if (!MO.isReg() || !MO.isUse()) 1398 continue; 1399 Register Reg = MO.getReg(); 1400 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) 1401 continue; 1402 1403 assert(MO.isUndef() && "Should only have undef virtreg uses left"); 1404 allocVirtRegUndef(MO); 1405 } 1406 } 1407 1408 // Free early clobbers. 1409 if (HasEarlyClobber) { 1410 for (MachineOperand &MO : llvm::reverse(MI.operands())) { 1411 if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber()) 1412 continue; 1413 assert(!MO.getSubReg() && "should be already handled in def processing"); 1414 1415 Register Reg = MO.getReg(); 1416 if (!Reg) 1417 continue; 1418 if (Reg.isVirtual()) { 1419 assert(!shouldAllocateRegister(Reg)); 1420 continue; 1421 } 1422 assert(Reg.isPhysical() && "should have register assigned"); 1423 1424 // We sometimes get odd situations like: 1425 // early-clobber %x0 = INSTRUCTION %x0 1426 // which is semantically questionable as the early-clobber should 1427 // apply before the use. But in practice we consider the use to 1428 // happen before the early clobber now. Don't free the early clobber 1429 // register in this case. 1430 if (MI.readsRegister(Reg, TRI)) 1431 continue; 1432 1433 freePhysReg(Reg); 1434 } 1435 } 1436 1437 LLVM_DEBUG(dbgs() << "<< " << MI); 1438 if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() && 1439 MI.getNumOperands() == 2) { 1440 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1441 Coalesced.push_back(&MI); 1442 } 1443 } 1444 1445 void RegAllocFast::handleDebugValue(MachineInstr &MI) { 1446 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1447 // mostly constants and frame indices. 1448 for (Register Reg : MI.getUsedDebugRegs()) { 1449 if (!Reg.isVirtual()) 1450 continue; 1451 if (!shouldAllocateRegister(Reg)) 1452 continue; 1453 1454 // Already spilled to a stackslot? 1455 int SS = StackSlotForVirtReg[Reg]; 1456 if (SS != -1) { 1457 // Modify DBG_VALUE now that the value is in a spill slot. 1458 updateDbgValueForSpill(MI, SS, Reg); 1459 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI); 1460 continue; 1461 } 1462 1463 // See if this virtual register has already been allocated to a physical 1464 // register or spilled to a stack slot. 1465 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1466 SmallVector<MachineOperand *> DbgOps; 1467 for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg)) 1468 DbgOps.push_back(&Op); 1469 1470 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1471 // Update every use of Reg within MI. 1472 for (auto &RegMO : DbgOps) 1473 setPhysReg(MI, *RegMO, LRI->PhysReg); 1474 } else { 1475 DanglingDbgValues[Reg].push_back(&MI); 1476 } 1477 1478 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1479 // that future spills of Reg will have DBG_VALUEs. 1480 LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end()); 1481 } 1482 } 1483 1484 void RegAllocFast::handleBundle(MachineInstr &MI) { 1485 MachineBasicBlock::instr_iterator BundledMI = MI.getIterator(); 1486 ++BundledMI; 1487 while (BundledMI->isBundledWithPred()) { 1488 for (MachineOperand &MO : BundledMI->operands()) { 1489 if (!MO.isReg()) 1490 continue; 1491 1492 Register Reg = MO.getReg(); 1493 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) 1494 continue; 1495 1496 DenseMap<Register, MCPhysReg>::iterator DI; 1497 DI = BundleVirtRegsMap.find(Reg); 1498 assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register"); 1499 1500 setPhysReg(MI, MO, DI->second); 1501 } 1502 1503 ++BundledMI; 1504 } 1505 } 1506 1507 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 1508 this->MBB = &MBB; 1509 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1510 1511 RegUnitStates.assign(TRI->getNumRegUnits(), regFree); 1512 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1513 1514 for (const auto &LiveReg : MBB.liveouts()) 1515 setPhysRegState(LiveReg.PhysReg, regPreAssigned); 1516 1517 Coalesced.clear(); 1518 1519 // Traverse block in reverse order allocating instructions one by one. 1520 for (MachineInstr &MI : reverse(MBB)) { 1521 LLVM_DEBUG( 1522 dbgs() << "\n>> " << MI << "Regs:"; 1523 dumpState() 1524 ); 1525 1526 // Special handling for debug values. Note that they are not allowed to 1527 // affect codegen of the other instructions in any way. 1528 if (MI.isDebugValue()) { 1529 handleDebugValue(MI); 1530 continue; 1531 } 1532 1533 allocateInstruction(MI); 1534 1535 // Once BUNDLE header is assigned registers, same assignments need to be 1536 // done for bundled MIs. 1537 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1538 handleBundle(MI); 1539 } 1540 } 1541 1542 LLVM_DEBUG( 1543 dbgs() << "Begin Regs:"; 1544 dumpState() 1545 ); 1546 1547 // Spill all physical registers holding virtual registers now. 1548 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n"); 1549 reloadAtBegin(MBB); 1550 1551 // Erase all the coalesced copies. We are delaying it until now because 1552 // LiveVirtRegs might refer to the instrs. 1553 for (MachineInstr *MI : Coalesced) 1554 MBB.erase(MI); 1555 NumCoalesced += Coalesced.size(); 1556 1557 for (auto &UDBGPair : DanglingDbgValues) { 1558 for (MachineInstr *DbgValue : UDBGPair.second) { 1559 assert(DbgValue->isDebugValue() && "expected DBG_VALUE"); 1560 // Nothing to do if the vreg was spilled in the meantime. 1561 if (!DbgValue->hasDebugOperandForReg(UDBGPair.first)) 1562 continue; 1563 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 1564 << '\n'); 1565 DbgValue->setDebugValueUndef(); 1566 } 1567 } 1568 DanglingDbgValues.clear(); 1569 1570 LLVM_DEBUG(MBB.dump()); 1571 } 1572 1573 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1574 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1575 << "********** Function: " << MF.getName() << '\n'); 1576 MRI = &MF.getRegInfo(); 1577 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1578 TRI = STI.getRegisterInfo(); 1579 TII = STI.getInstrInfo(); 1580 MFI = &MF.getFrameInfo(); 1581 MRI->freezeReservedRegs(MF); 1582 RegClassInfo.runOnMachineFunction(MF); 1583 unsigned NumRegUnits = TRI->getNumRegUnits(); 1584 UsedInInstr.clear(); 1585 UsedInInstr.setUniverse(NumRegUnits); 1586 PhysRegUses.clear(); 1587 PhysRegUses.setUniverse(NumRegUnits); 1588 1589 // initialize the virtual->physical register map to have a 'null' 1590 // mapping for all virtual registers 1591 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1592 StackSlotForVirtReg.resize(NumVirtRegs); 1593 LiveVirtRegs.setUniverse(NumVirtRegs); 1594 MayLiveAcrossBlocks.clear(); 1595 MayLiveAcrossBlocks.resize(NumVirtRegs); 1596 1597 // Loop over all of the basic blocks, eliminating virtual register references 1598 for (MachineBasicBlock &MBB : MF) 1599 allocateBasicBlock(MBB); 1600 1601 if (ClearVirtRegs) { 1602 // All machine operands and other references to virtual registers have been 1603 // replaced. Remove the virtual registers. 1604 MRI->clearVirtRegs(); 1605 } 1606 1607 StackSlotForVirtReg.clear(); 1608 LiveDbgValueMap.clear(); 1609 return true; 1610 } 1611 1612 FunctionPass *llvm::createFastRegisterAllocator() { 1613 return new RegAllocFast(); 1614 } 1615 1616 FunctionPass *llvm::createFastRegisterAllocator(RegClassFilterFunc Ftor, 1617 bool ClearVirtRegs) { 1618 return new RegAllocFast(Ftor, ClearVirtRegs); 1619 } 1620