1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/SparseSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/RegAllocRegistry.h" 31 #include "llvm/CodeGen/RegisterClassInfo.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/MC/MCInstrDesc.h" 40 #include "llvm/MC/MCRegisterInfo.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <cassert> 48 #include <tuple> 49 #include <vector> 50 51 using namespace llvm; 52 53 #define DEBUG_TYPE "regalloc" 54 55 STATISTIC(NumStores, "Number of stores added"); 56 STATISTIC(NumLoads , "Number of loads added"); 57 STATISTIC(NumCoalesced, "Number of copies coalesced"); 58 59 static RegisterRegAlloc 60 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 61 62 namespace { 63 64 class RegAllocFast : public MachineFunctionPass { 65 public: 66 static char ID; 67 68 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {} 69 70 private: 71 MachineFrameInfo *MFI; 72 MachineRegisterInfo *MRI; 73 const TargetRegisterInfo *TRI; 74 const TargetInstrInfo *TII; 75 RegisterClassInfo RegClassInfo; 76 77 /// Basic block currently being allocated. 78 MachineBasicBlock *MBB; 79 80 /// Maps virtual regs to the frame index where these values are spilled. 81 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 82 83 /// Everything we know about a live virtual register. 84 struct LiveReg { 85 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 86 Register VirtReg; ///< Virtual register number. 87 MCPhysReg PhysReg = 0; ///< Currently held here. 88 unsigned short LastOpNum = 0; ///< OpNum on LastUse. 89 bool Dirty = false; ///< Register needs spill. 90 91 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {} 92 93 unsigned getSparseSetIndex() const { 94 return Register::virtReg2Index(VirtReg); 95 } 96 }; 97 98 using LiveRegMap = SparseSet<LiveReg>; 99 /// This map contains entries for each virtual register that is currently 100 /// available in a physical register. 101 LiveRegMap LiveVirtRegs; 102 103 DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap; 104 105 /// Has a bit set for every virtual register for which it was determined 106 /// that it is alive across blocks. 107 BitVector MayLiveAcrossBlocks; 108 109 /// State of a physical register. 110 enum RegState { 111 /// A disabled register is not available for allocation, but an alias may 112 /// be in use. A register can only be moved out of the disabled state if 113 /// all aliases are disabled. 114 regDisabled, 115 116 /// A free register is not currently in use and can be allocated 117 /// immediately without checking aliases. 118 regFree, 119 120 /// A reserved register has been assigned explicitly (e.g., setting up a 121 /// call parameter), and it remains reserved until it is used. 122 regReserved 123 124 /// A register state may also be a virtual register number, indication 125 /// that the physical register is currently allocated to a virtual 126 /// register. In that case, LiveVirtRegs contains the inverse mapping. 127 }; 128 129 /// Maps each physical register to a RegState enum or a virtual register. 130 std::vector<unsigned> PhysRegState; 131 132 SmallVector<Register, 16> VirtDead; 133 SmallVector<MachineInstr *, 32> Coalesced; 134 135 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 136 /// Set of register units that are used in the current instruction, and so 137 /// cannot be allocated. 138 RegUnitSet UsedInInstr; 139 140 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 141 142 /// Mark a physreg as used in this instruction. 143 void markRegUsedInInstr(MCPhysReg PhysReg) { 144 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 145 UsedInInstr.insert(*Units); 146 } 147 148 /// Check if a physreg or any of its aliases are used in this instruction. 149 bool isRegUsedInInstr(MCPhysReg PhysReg) const { 150 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 151 if (UsedInInstr.count(*Units)) 152 return true; 153 return false; 154 } 155 156 enum : unsigned { 157 spillClean = 50, 158 spillDirty = 100, 159 spillPrefBonus = 20, 160 spillImpossible = ~0u 161 }; 162 163 public: 164 StringRef getPassName() const override { return "Fast Register Allocator"; } 165 166 void getAnalysisUsage(AnalysisUsage &AU) const override { 167 AU.setPreservesCFG(); 168 MachineFunctionPass::getAnalysisUsage(AU); 169 } 170 171 MachineFunctionProperties getRequiredProperties() const override { 172 return MachineFunctionProperties().set( 173 MachineFunctionProperties::Property::NoPHIs); 174 } 175 176 MachineFunctionProperties getSetProperties() const override { 177 return MachineFunctionProperties().set( 178 MachineFunctionProperties::Property::NoVRegs); 179 } 180 181 private: 182 bool runOnMachineFunction(MachineFunction &MF) override; 183 184 void allocateBasicBlock(MachineBasicBlock &MBB); 185 void allocateInstruction(MachineInstr &MI); 186 void handleDebugValue(MachineInstr &MI); 187 void handleThroughOperands(MachineInstr &MI, 188 SmallVectorImpl<Register> &VirtDead); 189 bool isLastUseOfLocalReg(const MachineOperand &MO) const; 190 191 void addKillFlag(const LiveReg &LRI); 192 void killVirtReg(LiveReg &LR); 193 void killVirtReg(Register VirtReg); 194 void spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR); 195 void spillVirtReg(MachineBasicBlock::iterator MI, Register VirtReg); 196 197 void usePhysReg(MachineOperand &MO); 198 void definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg, 199 RegState NewState); 200 unsigned calcSpillCost(MCPhysReg PhysReg) const; 201 void assignVirtToPhysReg(LiveReg &, MCPhysReg PhysReg); 202 203 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) { 204 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 205 } 206 207 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const { 208 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 209 } 210 211 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint); 212 void allocVirtRegUndef(MachineOperand &MO); 213 MCPhysReg defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 214 Register Hint); 215 LiveReg &reloadVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 216 Register Hint); 217 void spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut); 218 bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 219 220 Register traceCopies(Register VirtReg) const; 221 Register traceCopyChain(Register Reg) const; 222 223 int getStackSpaceFor(Register VirtReg); 224 void spill(MachineBasicBlock::iterator Before, Register VirtReg, 225 MCPhysReg AssignedReg, bool Kill); 226 void reload(MachineBasicBlock::iterator Before, Register VirtReg, 227 MCPhysReg PhysReg); 228 229 bool mayLiveOut(Register VirtReg); 230 bool mayLiveIn(Register VirtReg); 231 232 void dumpState(); 233 }; 234 235 } // end anonymous namespace 236 237 char RegAllocFast::ID = 0; 238 239 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 240 false) 241 242 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 243 PhysRegState[PhysReg] = NewState; 244 } 245 246 /// This allocates space for the specified virtual register to be held on the 247 /// stack. 248 int RegAllocFast::getStackSpaceFor(Register VirtReg) { 249 // Find the location Reg would belong... 250 int SS = StackSlotForVirtReg[VirtReg]; 251 // Already has space allocated? 252 if (SS != -1) 253 return SS; 254 255 // Allocate a new stack object for this spill location... 256 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 257 unsigned Size = TRI->getSpillSize(RC); 258 Align Alignment = TRI->getSpillAlign(RC); 259 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment); 260 261 // Assign the slot. 262 StackSlotForVirtReg[VirtReg] = FrameIdx; 263 return FrameIdx; 264 } 265 266 /// Returns false if \p VirtReg is known to not live out of the current block. 267 bool RegAllocFast::mayLiveOut(Register VirtReg) { 268 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) { 269 // Cannot be live-out if there are no successors. 270 return !MBB->succ_empty(); 271 } 272 273 // If this block loops back to itself, it would be necessary to check whether 274 // the use comes after the def. 275 if (MBB->isSuccessor(MBB)) { 276 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 277 return true; 278 } 279 280 // See if the first \p Limit uses of the register are all in the current 281 // block. 282 static const unsigned Limit = 8; 283 unsigned C = 0; 284 for (const MachineInstr &UseInst : MRI->reg_nodbg_instructions(VirtReg)) { 285 if (UseInst.getParent() != MBB || ++C >= Limit) { 286 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 287 // Cannot be live-out if there are no successors. 288 return !MBB->succ_empty(); 289 } 290 } 291 292 return false; 293 } 294 295 /// Returns false if \p VirtReg is known to not be live into the current block. 296 bool RegAllocFast::mayLiveIn(Register VirtReg) { 297 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) 298 return !MBB->pred_empty(); 299 300 // See if the first \p Limit def of the register are all in the current block. 301 static const unsigned Limit = 8; 302 unsigned C = 0; 303 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 304 if (DefInst.getParent() != MBB || ++C >= Limit) { 305 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 306 return !MBB->pred_empty(); 307 } 308 } 309 310 return false; 311 } 312 313 /// Insert spill instruction for \p AssignedReg before \p Before. Update 314 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 315 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg, 316 MCPhysReg AssignedReg, bool Kill) { 317 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) 318 << " in " << printReg(AssignedReg, TRI)); 319 int FI = getStackSpaceFor(VirtReg); 320 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 321 322 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 323 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI); 324 ++NumStores; 325 326 // If this register is used by DBG_VALUE then insert new DBG_VALUE to 327 // identify spilled location as the place to find corresponding variable's 328 // value. 329 SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg]; 330 for (MachineInstr *DBG : LRIDbgValues) { 331 MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI); 332 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 333 (void)NewDV; 334 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 335 } 336 // Now this register is spilled there is should not be any DBG_VALUE 337 // pointing to this register because they are all pointing to spilled value 338 // now. 339 LRIDbgValues.clear(); 340 } 341 342 /// Insert reload instruction for \p PhysReg before \p Before. 343 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg, 344 MCPhysReg PhysReg) { 345 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 346 << printReg(PhysReg, TRI) << '\n'); 347 int FI = getStackSpaceFor(VirtReg); 348 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 349 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI); 350 ++NumLoads; 351 } 352 353 /// Return true if MO is the only remaining reference to its virtual register, 354 /// and it is guaranteed to be a block-local register. 355 bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const { 356 // If the register has ever been spilled or reloaded, we conservatively assume 357 // it is a global register used in multiple blocks. 358 if (StackSlotForVirtReg[MO.getReg()] != -1) 359 return false; 360 361 // Check that the use/def chain has exactly one operand - MO. 362 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); 363 if (&*I != &MO) 364 return false; 365 return ++I == MRI->reg_nodbg_end(); 366 } 367 368 /// Set kill flags on last use of a virtual register. 369 void RegAllocFast::addKillFlag(const LiveReg &LR) { 370 if (!LR.LastUse) return; 371 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); 372 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { 373 if (MO.getReg() == LR.PhysReg) 374 MO.setIsKill(); 375 // else, don't do anything we are problably redefining a 376 // subreg of this register and given we don't track which 377 // lanes are actually dead, we cannot insert a kill flag here. 378 // Otherwise we may end up in a situation like this: 379 // ... = (MO) physreg:sub1, implicit killed physreg 380 // ... <== Here we would allow later pass to reuse physreg:sub1 381 // which is potentially wrong. 382 // LR:sub0 = ... 383 // ... = LR.sub1 <== This is going to use physreg:sub1 384 } 385 } 386 387 /// Mark virtreg as no longer available. 388 void RegAllocFast::killVirtReg(LiveReg &LR) { 389 addKillFlag(LR); 390 assert(PhysRegState[LR.PhysReg] == LR.VirtReg && 391 "Broken RegState mapping"); 392 setPhysRegState(LR.PhysReg, regFree); 393 LR.PhysReg = 0; 394 } 395 396 /// Mark virtreg as no longer available. 397 void RegAllocFast::killVirtReg(Register VirtReg) { 398 assert(Register::isVirtualRegister(VirtReg) && 399 "killVirtReg needs a virtual register"); 400 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 401 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) 402 killVirtReg(*LRI); 403 } 404 405 /// This method spills the value specified by VirtReg into the corresponding 406 /// stack slot if needed. 407 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, 408 Register VirtReg) { 409 assert(Register::isVirtualRegister(VirtReg) && 410 "Spilling a physical register is illegal!"); 411 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 412 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 413 "Spilling unmapped virtual register"); 414 spillVirtReg(MI, *LRI); 415 } 416 417 /// Do the actual work of spilling. 418 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR) { 419 assert(PhysRegState[LR.PhysReg] == LR.VirtReg && "Broken RegState mapping"); 420 421 if (LR.Dirty) { 422 // If this physreg is used by the instruction, we want to kill it on the 423 // instruction, not on the spill. 424 bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI; 425 LR.Dirty = false; 426 427 spill(MI, LR.VirtReg, LR.PhysReg, SpillKill); 428 429 if (SpillKill) 430 LR.LastUse = nullptr; // Don't kill register again 431 } 432 killVirtReg(LR); 433 } 434 435 /// Spill all dirty virtregs without killing them. 436 void RegAllocFast::spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut) { 437 if (LiveVirtRegs.empty()) 438 return; 439 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 440 // of spilling here is deterministic, if arbitrary. 441 for (LiveReg &LR : LiveVirtRegs) { 442 if (!LR.PhysReg) 443 continue; 444 if (OnlyLiveOut && !mayLiveOut(LR.VirtReg)) 445 continue; 446 spillVirtReg(MI, LR); 447 } 448 LiveVirtRegs.clear(); 449 } 450 451 /// Handle the direct use of a physical register. Check that the register is 452 /// not used by a virtreg. Kill the physreg, marking it free. This may add 453 /// implicit kills to MO->getParent() and invalidate MO. 454 void RegAllocFast::usePhysReg(MachineOperand &MO) { 455 // Ignore undef uses. 456 if (MO.isUndef()) 457 return; 458 459 Register PhysReg = MO.getReg(); 460 assert(PhysReg.isPhysical() && "Bad usePhysReg operand"); 461 462 markRegUsedInInstr(PhysReg); 463 switch (PhysRegState[PhysReg]) { 464 case regDisabled: 465 break; 466 case regReserved: 467 PhysRegState[PhysReg] = regFree; 468 LLVM_FALLTHROUGH; 469 case regFree: 470 MO.setIsKill(); 471 return; 472 default: 473 // The physreg was allocated to a virtual register. That means the value we 474 // wanted has been clobbered. 475 llvm_unreachable("Instruction uses an allocated register"); 476 } 477 478 // Maybe a superregister is reserved? 479 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 480 MCPhysReg Alias = *AI; 481 switch (PhysRegState[Alias]) { 482 case regDisabled: 483 break; 484 case regReserved: 485 // Either PhysReg is a subregister of Alias and we mark the 486 // whole register as free, or PhysReg is the superregister of 487 // Alias and we mark all the aliases as disabled before freeing 488 // PhysReg. 489 // In the latter case, since PhysReg was disabled, this means that 490 // its value is defined only by physical sub-registers. This check 491 // is performed by the assert of the default case in this loop. 492 // Note: The value of the superregister may only be partial 493 // defined, that is why regDisabled is a valid state for aliases. 494 assert((TRI->isSuperRegister(PhysReg, Alias) || 495 TRI->isSuperRegister(Alias, PhysReg)) && 496 "Instruction is not using a subregister of a reserved register"); 497 LLVM_FALLTHROUGH; 498 case regFree: 499 if (TRI->isSuperRegister(PhysReg, Alias)) { 500 // Leave the superregister in the working set. 501 setPhysRegState(Alias, regFree); 502 MO.getParent()->addRegisterKilled(Alias, TRI, true); 503 return; 504 } 505 // Some other alias was in the working set - clear it. 506 setPhysRegState(Alias, regDisabled); 507 break; 508 default: 509 llvm_unreachable("Instruction uses an alias of an allocated register"); 510 } 511 } 512 513 // All aliases are disabled, bring register into working set. 514 setPhysRegState(PhysReg, regFree); 515 MO.setIsKill(); 516 } 517 518 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 519 /// similar to defineVirtReg except the physreg is reserved instead of 520 /// allocated. 521 void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI, 522 MCPhysReg PhysReg, RegState NewState) { 523 markRegUsedInInstr(PhysReg); 524 switch (Register VirtReg = PhysRegState[PhysReg]) { 525 case regDisabled: 526 break; 527 default: 528 spillVirtReg(MI, VirtReg); 529 LLVM_FALLTHROUGH; 530 case regFree: 531 case regReserved: 532 setPhysRegState(PhysReg, NewState); 533 return; 534 } 535 536 // This is a disabled register, disable all aliases. 537 setPhysRegState(PhysReg, NewState); 538 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 539 MCPhysReg Alias = *AI; 540 switch (Register VirtReg = PhysRegState[Alias]) { 541 case regDisabled: 542 break; 543 default: 544 spillVirtReg(MI, VirtReg); 545 LLVM_FALLTHROUGH; 546 case regFree: 547 case regReserved: 548 setPhysRegState(Alias, regDisabled); 549 if (TRI->isSuperRegister(PhysReg, Alias)) 550 return; 551 break; 552 } 553 } 554 } 555 556 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 557 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 558 /// disabled - it can be allocated directly. 559 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 560 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 561 if (isRegUsedInInstr(PhysReg)) { 562 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) 563 << " is already used in instr.\n"); 564 return spillImpossible; 565 } 566 switch (Register VirtReg = PhysRegState[PhysReg]) { 567 case regDisabled: 568 break; 569 case regFree: 570 return 0; 571 case regReserved: 572 LLVM_DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding " 573 << printReg(PhysReg, TRI) << " is reserved already.\n"); 574 return spillImpossible; 575 default: { 576 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 577 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 578 "Missing VirtReg entry"); 579 return LRI->Dirty ? spillDirty : spillClean; 580 } 581 } 582 583 // This is a disabled register, add up cost of aliases. 584 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is disabled.\n"); 585 unsigned Cost = 0; 586 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 587 MCPhysReg Alias = *AI; 588 switch (Register VirtReg = PhysRegState[Alias]) { 589 case regDisabled: 590 break; 591 case regFree: 592 ++Cost; 593 break; 594 case regReserved: 595 return spillImpossible; 596 default: { 597 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 598 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 599 "Missing VirtReg entry"); 600 Cost += LRI->Dirty ? spillDirty : spillClean; 601 break; 602 } 603 } 604 } 605 return Cost; 606 } 607 608 /// This method updates local state so that we know that PhysReg is the 609 /// proper container for VirtReg now. The physical register must not be used 610 /// for anything else when this is called. 611 void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) { 612 Register VirtReg = LR.VirtReg; 613 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 614 << printReg(PhysReg, TRI) << '\n'); 615 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 616 assert(PhysReg != 0 && "Trying to assign no register"); 617 LR.PhysReg = PhysReg; 618 setPhysRegState(PhysReg, VirtReg); 619 } 620 621 static bool isCoalescable(const MachineInstr &MI) { 622 return MI.isFullCopy(); 623 } 624 625 Register RegAllocFast::traceCopyChain(Register Reg) const { 626 static const unsigned ChainLengthLimit = 3; 627 unsigned C = 0; 628 do { 629 if (Reg.isPhysical()) 630 return Reg; 631 assert(Reg.isVirtual()); 632 633 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); 634 if (!VRegDef || !isCoalescable(*VRegDef)) 635 return 0; 636 Reg = VRegDef->getOperand(1).getReg(); 637 } while (++C <= ChainLengthLimit); 638 return 0; 639 } 640 641 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the 642 /// chain of copies to check whether we reach a physical register we can 643 /// coalesce with. 644 Register RegAllocFast::traceCopies(Register VirtReg) const { 645 static const unsigned DefLimit = 3; 646 unsigned C = 0; 647 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { 648 if (isCoalescable(MI)) { 649 Register Reg = MI.getOperand(1).getReg(); 650 Reg = traceCopyChain(Reg); 651 if (Reg.isValid()) 652 return Reg; 653 } 654 655 if (++C >= DefLimit) 656 break; 657 } 658 return Register(); 659 } 660 661 /// Allocates a physical register for VirtReg. 662 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint0) { 663 const Register VirtReg = LR.VirtReg; 664 665 assert(Register::isVirtualRegister(VirtReg) && 666 "Can only allocate virtual registers"); 667 668 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 669 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 670 << " in class " << TRI->getRegClassName(&RC) 671 << " with hint " << printReg(Hint0, TRI) << '\n'); 672 673 // Take hint when possible. 674 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && 675 RC.contains(Hint0)) { 676 // Ignore the hint if we would have to spill a dirty register. 677 unsigned Cost = calcSpillCost(Hint0); 678 if (Cost < spillDirty) { 679 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 680 << '\n'); 681 if (Cost) 682 definePhysReg(MI, Hint0, regFree); 683 assignVirtToPhysReg(LR, Hint0); 684 return; 685 } else { 686 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 687 << "occupied\n"); 688 } 689 } else { 690 Hint0 = Register(); 691 } 692 693 // Try other hint. 694 Register Hint1 = traceCopies(VirtReg); 695 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && 696 RC.contains(Hint1) && !isRegUsedInInstr(Hint1)) { 697 // Ignore the hint if we would have to spill a dirty register. 698 unsigned Cost = calcSpillCost(Hint1); 699 if (Cost < spillDirty) { 700 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 701 << '\n'); 702 if (Cost) 703 definePhysReg(MI, Hint1, regFree); 704 assignVirtToPhysReg(LR, Hint1); 705 return; 706 } else { 707 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 708 << "occupied\n"); 709 } 710 } else { 711 Hint1 = Register(); 712 } 713 714 MCPhysReg BestReg = 0; 715 unsigned BestCost = spillImpossible; 716 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 717 for (MCPhysReg PhysReg : AllocationOrder) { 718 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 719 unsigned Cost = calcSpillCost(PhysReg); 720 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 721 // Immediate take a register with cost 0. 722 if (Cost == 0) { 723 assignVirtToPhysReg(LR, PhysReg); 724 return; 725 } 726 727 if (PhysReg == Hint1 || PhysReg == Hint0) 728 Cost -= spillPrefBonus; 729 730 if (Cost < BestCost) { 731 BestReg = PhysReg; 732 BestCost = Cost; 733 } 734 } 735 736 if (!BestReg) { 737 // Nothing we can do: Report an error and keep going with an invalid 738 // allocation. 739 if (MI.isInlineAsm()) 740 MI.emitError("inline assembly requires more registers than available"); 741 else 742 MI.emitError("ran out of registers during register allocation"); 743 definePhysReg(MI, *AllocationOrder.begin(), regFree); 744 assignVirtToPhysReg(LR, *AllocationOrder.begin()); 745 return; 746 } 747 748 definePhysReg(MI, BestReg, regFree); 749 assignVirtToPhysReg(LR, BestReg); 750 } 751 752 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) { 753 assert(MO.isUndef() && "expected undef use"); 754 Register VirtReg = MO.getReg(); 755 assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg"); 756 757 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 758 MCPhysReg PhysReg; 759 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 760 PhysReg = LRI->PhysReg; 761 } else { 762 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 763 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 764 assert(!AllocationOrder.empty() && "Allocation order must not be empty"); 765 PhysReg = AllocationOrder[0]; 766 } 767 768 unsigned SubRegIdx = MO.getSubReg(); 769 if (SubRegIdx != 0) { 770 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); 771 MO.setSubReg(0); 772 } 773 MO.setReg(PhysReg); 774 MO.setIsRenamable(true); 775 } 776 777 /// Allocates a register for VirtReg and mark it as dirty. 778 MCPhysReg RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, 779 Register VirtReg, Register Hint) { 780 assert(Register::isVirtualRegister(VirtReg) && "Not a virtual register"); 781 LiveRegMap::iterator LRI; 782 bool New; 783 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 784 if (!LRI->PhysReg) { 785 // If there is no hint, peek at the only use of this register. 786 if ((!Hint || !Hint.isPhysical()) && 787 MRI->hasOneNonDBGUse(VirtReg)) { 788 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg); 789 // It's a copy, use the destination register as a hint. 790 if (UseMI.isCopyLike()) 791 Hint = UseMI.getOperand(0).getReg(); 792 } 793 allocVirtReg(MI, *LRI, Hint); 794 } else if (LRI->LastUse) { 795 // Redefining a live register - kill at the last use, unless it is this 796 // instruction defining VirtReg multiple times. 797 if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) 798 addKillFlag(*LRI); 799 } 800 assert(LRI->PhysReg && "Register not assigned"); 801 LRI->LastUse = &MI; 802 LRI->LastOpNum = OpNum; 803 LRI->Dirty = true; 804 markRegUsedInInstr(LRI->PhysReg); 805 return LRI->PhysReg; 806 } 807 808 /// Make sure VirtReg is available in a physreg and return it. 809 RegAllocFast::LiveReg &RegAllocFast::reloadVirtReg(MachineInstr &MI, 810 unsigned OpNum, 811 Register VirtReg, 812 Register Hint) { 813 assert(Register::isVirtualRegister(VirtReg) && "Not a virtual register"); 814 LiveRegMap::iterator LRI; 815 bool New; 816 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 817 MachineOperand &MO = MI.getOperand(OpNum); 818 if (!LRI->PhysReg) { 819 allocVirtReg(MI, *LRI, Hint); 820 reload(MI, VirtReg, LRI->PhysReg); 821 } else if (LRI->Dirty) { 822 if (isLastUseOfLocalReg(MO)) { 823 LLVM_DEBUG(dbgs() << "Killing last use: " << MO << '\n'); 824 if (MO.isUse()) 825 MO.setIsKill(); 826 else 827 MO.setIsDead(); 828 } else if (MO.isKill()) { 829 LLVM_DEBUG(dbgs() << "Clearing dubious kill: " << MO << '\n'); 830 MO.setIsKill(false); 831 } else if (MO.isDead()) { 832 LLVM_DEBUG(dbgs() << "Clearing dubious dead: " << MO << '\n'); 833 MO.setIsDead(false); 834 } 835 } else if (MO.isKill()) { 836 // We must remove kill flags from uses of reloaded registers because the 837 // register would be killed immediately, and there might be a second use: 838 // %foo = OR killed %x, %x 839 // This would cause a second reload of %x into a different register. 840 LLVM_DEBUG(dbgs() << "Clearing clean kill: " << MO << '\n'); 841 MO.setIsKill(false); 842 } else if (MO.isDead()) { 843 LLVM_DEBUG(dbgs() << "Clearing clean dead: " << MO << '\n'); 844 MO.setIsDead(false); 845 } 846 assert(LRI->PhysReg && "Register not assigned"); 847 LRI->LastUse = &MI; 848 LRI->LastOpNum = OpNum; 849 markRegUsedInInstr(LRI->PhysReg); 850 return *LRI; 851 } 852 853 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 854 /// may invalidate any operand pointers. Return true if the operand kills its 855 /// register. 856 bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, 857 MCPhysReg PhysReg) { 858 bool Dead = MO.isDead(); 859 if (!MO.getSubReg()) { 860 MO.setReg(PhysReg); 861 MO.setIsRenamable(true); 862 return MO.isKill() || Dead; 863 } 864 865 // Handle subregister index. 866 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : Register()); 867 MO.setIsRenamable(true); 868 MO.setSubReg(0); 869 870 // A kill flag implies killing the full register. Add corresponding super 871 // register kill. 872 if (MO.isKill()) { 873 MI.addRegisterKilled(PhysReg, TRI, true); 874 return true; 875 } 876 877 // A <def,read-undef> of a sub-register requires an implicit def of the full 878 // register. 879 if (MO.isDef() && MO.isUndef()) 880 MI.addRegisterDefined(PhysReg, TRI); 881 882 return Dead; 883 } 884 885 // Handles special instruction operand like early clobbers and tied ops when 886 // there are additional physreg defines. 887 void RegAllocFast::handleThroughOperands(MachineInstr &MI, 888 SmallVectorImpl<Register> &VirtDead) { 889 LLVM_DEBUG(dbgs() << "Scanning for through registers:"); 890 SmallSet<Register, 8> ThroughRegs; 891 for (const MachineOperand &MO : MI.operands()) { 892 if (!MO.isReg()) continue; 893 Register Reg = MO.getReg(); 894 if (!Reg.isVirtual()) 895 continue; 896 if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) || 897 (MO.getSubReg() && MI.readsVirtualRegister(Reg))) { 898 if (ThroughRegs.insert(Reg).second) 899 LLVM_DEBUG(dbgs() << ' ' << printReg(Reg)); 900 } 901 } 902 903 // If any physreg defines collide with preallocated through registers, 904 // we must spill and reallocate. 905 LLVM_DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); 906 for (const MachineOperand &MO : MI.operands()) { 907 if (!MO.isReg() || !MO.isDef()) continue; 908 Register Reg = MO.getReg(); 909 if (!Reg || !Reg.isPhysical()) 910 continue; 911 markRegUsedInInstr(Reg); 912 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 913 if (ThroughRegs.count(PhysRegState[*AI])) 914 definePhysReg(MI, *AI, regFree); 915 } 916 } 917 918 SmallVector<Register, 8> PartialDefs; 919 LLVM_DEBUG(dbgs() << "Allocating tied uses.\n"); 920 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 921 MachineOperand &MO = MI.getOperand(I); 922 if (!MO.isReg()) continue; 923 Register Reg = MO.getReg(); 924 if (!Register::isVirtualRegister(Reg)) 925 continue; 926 if (MO.isUse()) { 927 if (!MO.isTied()) continue; 928 LLVM_DEBUG(dbgs() << "Operand " << I << "(" << MO 929 << ") is tied to operand " << MI.findTiedOperandIdx(I) 930 << ".\n"); 931 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0); 932 MCPhysReg PhysReg = LR.PhysReg; 933 setPhysReg(MI, MO, PhysReg); 934 // Note: we don't update the def operand yet. That would cause the normal 935 // def-scan to attempt spilling. 936 } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) { 937 LLVM_DEBUG(dbgs() << "Partial redefine: " << MO << '\n'); 938 // Reload the register, but don't assign to the operand just yet. 939 // That would confuse the later phys-def processing pass. 940 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0); 941 PartialDefs.push_back(LR.PhysReg); 942 } 943 } 944 945 LLVM_DEBUG(dbgs() << "Allocating early clobbers.\n"); 946 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 947 const MachineOperand &MO = MI.getOperand(I); 948 if (!MO.isReg()) continue; 949 Register Reg = MO.getReg(); 950 if (!Register::isVirtualRegister(Reg)) 951 continue; 952 if (!MO.isEarlyClobber()) 953 continue; 954 // Note: defineVirtReg may invalidate MO. 955 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, 0); 956 if (setPhysReg(MI, MI.getOperand(I), PhysReg)) 957 VirtDead.push_back(Reg); 958 } 959 960 // Restore UsedInInstr to a state usable for allocating normal virtual uses. 961 UsedInInstr.clear(); 962 for (const MachineOperand &MO : MI.operands()) { 963 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; 964 Register Reg = MO.getReg(); 965 if (!Reg || !Reg.isPhysical()) 966 continue; 967 LLVM_DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI) 968 << " as used in instr\n"); 969 markRegUsedInInstr(Reg); 970 } 971 972 // Also mark PartialDefs as used to avoid reallocation. 973 for (Register PartialDef : PartialDefs) 974 markRegUsedInInstr(PartialDef); 975 } 976 977 #ifndef NDEBUG 978 void RegAllocFast::dumpState() { 979 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { 980 if (PhysRegState[Reg] == regDisabled) continue; 981 dbgs() << " " << printReg(Reg, TRI); 982 switch(PhysRegState[Reg]) { 983 case regFree: 984 break; 985 case regReserved: 986 dbgs() << "*"; 987 break; 988 default: { 989 dbgs() << '=' << printReg(PhysRegState[Reg]); 990 LiveRegMap::iterator LRI = findLiveVirtReg(PhysRegState[Reg]); 991 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 992 "Missing VirtReg entry"); 993 if (LRI->Dirty) 994 dbgs() << "*"; 995 assert(LRI->PhysReg == Reg && "Bad inverse map"); 996 break; 997 } 998 } 999 } 1000 dbgs() << '\n'; 1001 // Check that LiveVirtRegs is the inverse. 1002 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), 1003 e = LiveVirtRegs.end(); i != e; ++i) { 1004 if (!i->PhysReg) 1005 continue; 1006 assert(i->VirtReg.isVirtual() && "Bad map key"); 1007 assert(Register::isPhysicalRegister(i->PhysReg) && "Bad map value"); 1008 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map"); 1009 } 1010 } 1011 #endif 1012 1013 void RegAllocFast::allocateInstruction(MachineInstr &MI) { 1014 const MCInstrDesc &MCID = MI.getDesc(); 1015 1016 // If this is a copy, we may be able to coalesce. 1017 Register CopySrcReg; 1018 Register CopyDstReg; 1019 unsigned CopySrcSub = 0; 1020 unsigned CopyDstSub = 0; 1021 if (MI.isCopy()) { 1022 CopyDstReg = MI.getOperand(0).getReg(); 1023 CopySrcReg = MI.getOperand(1).getReg(); 1024 CopyDstSub = MI.getOperand(0).getSubReg(); 1025 CopySrcSub = MI.getOperand(1).getSubReg(); 1026 } 1027 1028 // Track registers used by instruction. 1029 UsedInInstr.clear(); 1030 1031 // First scan. 1032 // Mark physreg uses and early clobbers as used. 1033 // Find the end of the virtreg operands 1034 unsigned VirtOpEnd = 0; 1035 bool hasTiedOps = false; 1036 bool hasEarlyClobbers = false; 1037 bool hasPartialRedefs = false; 1038 bool hasPhysDefs = false; 1039 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1040 MachineOperand &MO = MI.getOperand(i); 1041 // Make sure MRI knows about registers clobbered by regmasks. 1042 if (MO.isRegMask()) { 1043 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 1044 continue; 1045 } 1046 if (!MO.isReg()) continue; 1047 Register Reg = MO.getReg(); 1048 if (!Reg) continue; 1049 if (Register::isVirtualRegister(Reg)) { 1050 VirtOpEnd = i+1; 1051 if (MO.isUse()) { 1052 hasTiedOps = hasTiedOps || 1053 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; 1054 } else { 1055 if (MO.isEarlyClobber()) 1056 hasEarlyClobbers = true; 1057 if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) 1058 hasPartialRedefs = true; 1059 } 1060 continue; 1061 } 1062 if (!MRI->isAllocatable(Reg)) continue; 1063 if (MO.isUse()) { 1064 usePhysReg(MO); 1065 } else if (MO.isEarlyClobber()) { 1066 definePhysReg(MI, Reg, 1067 (MO.isImplicit() || MO.isDead()) ? regFree : regReserved); 1068 hasEarlyClobbers = true; 1069 } else 1070 hasPhysDefs = true; 1071 } 1072 1073 // The instruction may have virtual register operands that must be allocated 1074 // the same register at use-time and def-time: early clobbers and tied 1075 // operands. If there are also physical defs, these registers must avoid 1076 // both physical defs and uses, making them more constrained than normal 1077 // operands. 1078 // Similarly, if there are multiple defs and tied operands, we must make 1079 // sure the same register is allocated to uses and defs. 1080 // We didn't detect inline asm tied operands above, so just make this extra 1081 // pass for all inline asm. 1082 if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || 1083 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { 1084 handleThroughOperands(MI, VirtDead); 1085 // Don't attempt coalescing when we have funny stuff going on. 1086 CopyDstReg = Register(); 1087 // Pretend we have early clobbers so the use operands get marked below. 1088 // This is not necessary for the common case of a single tied use. 1089 hasEarlyClobbers = true; 1090 } 1091 1092 // Second scan. 1093 // Allocate virtreg uses. 1094 bool HasUndefUse = false; 1095 for (unsigned I = 0; I != VirtOpEnd; ++I) { 1096 MachineOperand &MO = MI.getOperand(I); 1097 if (!MO.isReg()) continue; 1098 Register Reg = MO.getReg(); 1099 if (!Reg.isVirtual()) 1100 continue; 1101 if (MO.isUse()) { 1102 if (MO.isUndef()) { 1103 HasUndefUse = true; 1104 // There is no need to allocate a register for an undef use. 1105 continue; 1106 } 1107 1108 // Populate MayLiveAcrossBlocks in case the use block is allocated before 1109 // the def block (removing the vreg uses). 1110 mayLiveIn(Reg); 1111 1112 LiveReg &LR = reloadVirtReg(MI, I, Reg, CopyDstReg); 1113 MCPhysReg PhysReg = LR.PhysReg; 1114 CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0; 1115 if (setPhysReg(MI, MO, PhysReg)) 1116 killVirtReg(LR); 1117 } 1118 } 1119 1120 // Allocate undef operands. This is a separate step because in a situation 1121 // like ` = OP undef %X, %X` both operands need the same register assign 1122 // so we should perform the normal assignment first. 1123 if (HasUndefUse) { 1124 for (MachineOperand &MO : MI.uses()) { 1125 if (!MO.isReg() || !MO.isUse()) 1126 continue; 1127 Register Reg = MO.getReg(); 1128 if (!Reg.isVirtual()) 1129 continue; 1130 1131 assert(MO.isUndef() && "Should only have undef virtreg uses left"); 1132 allocVirtRegUndef(MO); 1133 } 1134 } 1135 1136 // Track registers defined by instruction - early clobbers and tied uses at 1137 // this point. 1138 UsedInInstr.clear(); 1139 if (hasEarlyClobbers) { 1140 for (const MachineOperand &MO : MI.operands()) { 1141 if (!MO.isReg()) continue; 1142 Register Reg = MO.getReg(); 1143 if (!Reg || !Reg.isPhysical()) 1144 continue; 1145 // Look for physreg defs and tied uses. 1146 if (!MO.isDef() && !MO.isTied()) continue; 1147 markRegUsedInInstr(Reg); 1148 } 1149 } 1150 1151 unsigned DefOpEnd = MI.getNumOperands(); 1152 if (MI.isCall()) { 1153 // Spill all virtregs before a call. This serves one purpose: If an 1154 // exception is thrown, the landing pad is going to expect to find 1155 // registers in their spill slots. 1156 // Note: although this is appealing to just consider all definitions 1157 // as call-clobbered, this is not correct because some of those 1158 // definitions may be used later on and we do not want to reuse 1159 // those for virtual registers in between. 1160 LLVM_DEBUG(dbgs() << " Spilling remaining registers before call.\n"); 1161 spillAll(MI, /*OnlyLiveOut*/ false); 1162 } 1163 1164 // Third scan. 1165 // Mark all physreg defs as used before allocating virtreg defs. 1166 for (unsigned I = 0; I != DefOpEnd; ++I) { 1167 const MachineOperand &MO = MI.getOperand(I); 1168 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1169 continue; 1170 Register Reg = MO.getReg(); 1171 1172 if (!Reg || !Reg.isPhysical() || !MRI->isAllocatable(Reg)) 1173 continue; 1174 definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved); 1175 } 1176 1177 // Fourth scan. 1178 // Allocate defs and collect dead defs. 1179 for (unsigned I = 0; I != DefOpEnd; ++I) { 1180 const MachineOperand &MO = MI.getOperand(I); 1181 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1182 continue; 1183 Register Reg = MO.getReg(); 1184 1185 // We have already dealt with phys regs in the previous scan. 1186 if (Reg.isPhysical()) 1187 continue; 1188 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, CopySrcReg); 1189 if (setPhysReg(MI, MI.getOperand(I), PhysReg)) { 1190 VirtDead.push_back(Reg); 1191 CopyDstReg = Register(); // cancel coalescing; 1192 } else 1193 CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0; 1194 } 1195 1196 // Kill dead defs after the scan to ensure that multiple defs of the same 1197 // register are allocated identically. We didn't need to do this for uses 1198 // because we are crerating our own kill flags, and they are always at the 1199 // last use. 1200 for (Register VirtReg : VirtDead) 1201 killVirtReg(VirtReg); 1202 VirtDead.clear(); 1203 1204 LLVM_DEBUG(dbgs() << "<< " << MI); 1205 if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) { 1206 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1207 Coalesced.push_back(&MI); 1208 } 1209 } 1210 1211 void RegAllocFast::handleDebugValue(MachineInstr &MI) { 1212 MachineOperand &MO = MI.getDebugOperand(0); 1213 1214 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1215 // mostly constants and frame indices. 1216 if (!MO.isReg()) 1217 return; 1218 Register Reg = MO.getReg(); 1219 if (!Register::isVirtualRegister(Reg)) 1220 return; 1221 1222 // See if this virtual register has already been allocated to a physical 1223 // register or spilled to a stack slot. 1224 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1225 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1226 setPhysReg(MI, MO, LRI->PhysReg); 1227 } else { 1228 int SS = StackSlotForVirtReg[Reg]; 1229 if (SS != -1) { 1230 // Modify DBG_VALUE now that the value is in a spill slot. 1231 updateDbgValueForSpill(MI, SS); 1232 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << MI); 1233 return; 1234 } 1235 1236 // We can't allocate a physreg for a DebugValue, sorry! 1237 LLVM_DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 1238 MO.setReg(Register()); 1239 } 1240 1241 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1242 // that future spills of Reg will have DBG_VALUEs. 1243 LiveDbgValueMap[Reg].push_back(&MI); 1244 } 1245 1246 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 1247 this->MBB = &MBB; 1248 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1249 1250 PhysRegState.assign(TRI->getNumRegs(), regDisabled); 1251 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1252 1253 MachineBasicBlock::iterator MII = MBB.begin(); 1254 1255 // Add live-in registers as live. 1256 for (const MachineBasicBlock::RegisterMaskPair &LI : MBB.liveins()) 1257 if (MRI->isAllocatable(LI.PhysReg)) 1258 definePhysReg(MII, LI.PhysReg, regReserved); 1259 1260 VirtDead.clear(); 1261 Coalesced.clear(); 1262 1263 // Otherwise, sequentially allocate each instruction in the MBB. 1264 for (MachineInstr &MI : MBB) { 1265 LLVM_DEBUG( 1266 dbgs() << "\n>> " << MI << "Regs:"; 1267 dumpState() 1268 ); 1269 1270 // Special handling for debug values. Note that they are not allowed to 1271 // affect codegen of the other instructions in any way. 1272 if (MI.isDebugValue()) { 1273 handleDebugValue(MI); 1274 continue; 1275 } 1276 1277 allocateInstruction(MI); 1278 } 1279 1280 // Spill all physical registers holding virtual registers now. 1281 LLVM_DEBUG(dbgs() << "Spilling live registers at end of block.\n"); 1282 spillAll(MBB.getFirstTerminator(), /*OnlyLiveOut*/ true); 1283 1284 // Erase all the coalesced copies. We are delaying it until now because 1285 // LiveVirtRegs might refer to the instrs. 1286 for (MachineInstr *MI : Coalesced) 1287 MBB.erase(MI); 1288 NumCoalesced += Coalesced.size(); 1289 1290 LLVM_DEBUG(MBB.dump()); 1291 } 1292 1293 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1294 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1295 << "********** Function: " << MF.getName() << '\n'); 1296 MRI = &MF.getRegInfo(); 1297 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1298 TRI = STI.getRegisterInfo(); 1299 TII = STI.getInstrInfo(); 1300 MFI = &MF.getFrameInfo(); 1301 MRI->freezeReservedRegs(MF); 1302 RegClassInfo.runOnMachineFunction(MF); 1303 UsedInInstr.clear(); 1304 UsedInInstr.setUniverse(TRI->getNumRegUnits()); 1305 1306 // initialize the virtual->physical register map to have a 'null' 1307 // mapping for all virtual registers 1308 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1309 StackSlotForVirtReg.resize(NumVirtRegs); 1310 LiveVirtRegs.setUniverse(NumVirtRegs); 1311 MayLiveAcrossBlocks.clear(); 1312 MayLiveAcrossBlocks.resize(NumVirtRegs); 1313 1314 // Loop over all of the basic blocks, eliminating virtual register references 1315 for (MachineBasicBlock &MBB : MF) 1316 allocateBasicBlock(MBB); 1317 1318 // All machine operands and other references to virtual registers have been 1319 // replaced. Remove the virtual registers. 1320 MRI->clearVirtRegs(); 1321 1322 StackSlotForVirtReg.clear(); 1323 LiveDbgValueMap.clear(); 1324 return true; 1325 } 1326 1327 FunctionPass *llvm::createFastRegisterAllocator() { 1328 return new RegAllocFast(); 1329 } 1330