xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/RegAllocFast.cpp (revision 9a7f7b2480a9f332f7f7f19ee00dc1606dfd2265)
1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This register allocator allocates registers to a basic block at a
10 /// time, attempting to keep values in registers and reusing registers as
11 /// appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/IndexedMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/SparseSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/RegAllocCommon.h"
32 #include "llvm/CodeGen/RegAllocRegistry.h"
33 #include "llvm/CodeGen/RegisterClassInfo.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/InitializePasses.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cassert>
45 #include <tuple>
46 #include <vector>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "regalloc"
51 
52 STATISTIC(NumStores, "Number of stores added");
53 STATISTIC(NumLoads, "Number of loads added");
54 STATISTIC(NumCoalesced, "Number of copies coalesced");
55 
56 // FIXME: Remove this switch when all testcases are fixed!
57 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs",
58                                        cl::Hidden);
59 
60 static RegisterRegAlloc fastRegAlloc("fast", "fast register allocator",
61                                      createFastRegisterAllocator);
62 
63 namespace {
64 
65 /// Assign ascending index for instructions in machine basic block. The index
66 /// can be used to determine dominance between instructions in same MBB.
67 class InstrPosIndexes {
68 public:
69   void unsetInitialized() { IsInitialized = false; }
70 
71   void init(const MachineBasicBlock &MBB) {
72     CurMBB = &MBB;
73     Instr2PosIndex.clear();
74     uint64_t LastIndex = 0;
75     for (const MachineInstr &MI : MBB) {
76       LastIndex += InstrDist;
77       Instr2PosIndex[&MI] = LastIndex;
78     }
79   }
80 
81   /// Set \p Index to index of \p MI. If \p MI is new inserted, it try to assign
82   /// index without affecting existing instruction's index. Return true if all
83   /// instructions index has been reassigned.
84   bool getIndex(const MachineInstr &MI, uint64_t &Index) {
85     if (!IsInitialized) {
86       init(*MI.getParent());
87       IsInitialized = true;
88       Index = Instr2PosIndex.at(&MI);
89       return true;
90     }
91 
92     assert(MI.getParent() == CurMBB && "MI is not in CurMBB");
93     auto It = Instr2PosIndex.find(&MI);
94     if (It != Instr2PosIndex.end()) {
95       Index = It->second;
96       return false;
97     }
98 
99     // Distance is the number of consecutive unassigned instructions including
100     // MI. Start is the first instruction of them. End is the next of last
101     // instruction of them.
102     // e.g.
103     // |Instruction|  A   |  B   |  C   |  MI  |  D   |  E   |
104     // |   Index   | 1024 |      |      |      |      | 2048 |
105     //
106     // In this case, B, C, MI, D are unassigned. Distance is 4, Start is B, End
107     // is E.
108     unsigned Distance = 1;
109     MachineBasicBlock::const_iterator Start = MI.getIterator(),
110                                       End = std::next(Start);
111     while (Start != CurMBB->begin() &&
112            !Instr2PosIndex.count(&*std::prev(Start))) {
113       --Start;
114       ++Distance;
115     }
116     while (End != CurMBB->end() && !Instr2PosIndex.count(&*(End))) {
117       ++End;
118       ++Distance;
119     }
120 
121     // LastIndex is initialized to last used index prior to MI or zero.
122     // In previous example, LastIndex is 1024, EndIndex is 2048;
123     uint64_t LastIndex =
124         Start == CurMBB->begin() ? 0 : Instr2PosIndex.at(&*std::prev(Start));
125     uint64_t Step;
126     if (End == CurMBB->end())
127       Step = static_cast<uint64_t>(InstrDist);
128     else {
129       // No instruction uses index zero.
130       uint64_t EndIndex = Instr2PosIndex.at(&*End);
131       assert(EndIndex > LastIndex && "Index must be ascending order");
132       unsigned NumAvailableIndexes = EndIndex - LastIndex - 1;
133       // We want index gap between two adjacent MI is as same as possible. Given
134       // total A available indexes, D is number of consecutive unassigned
135       // instructions, S is the step.
136       // |<- S-1 -> MI <- S-1 -> MI <- A-S*D ->|
137       // There're S-1 available indexes between unassigned instruction and its
138       // predecessor. There're A-S*D available indexes between the last
139       // unassigned instruction and its successor.
140       // Ideally, we want
141       //    S-1 = A-S*D
142       // then
143       //    S = (A+1)/(D+1)
144       // An valid S must be integer greater than zero, so
145       //    S <= (A+1)/(D+1)
146       // =>
147       //    A-S*D >= 0
148       // That means we can safely use (A+1)/(D+1) as step.
149       // In previous example, Step is 204, Index of B, C, MI, D is 1228, 1432,
150       // 1636, 1840.
151       Step = (NumAvailableIndexes + 1) / (Distance + 1);
152     }
153 
154     // Reassign index for all instructions if number of new inserted
155     // instructions exceed slot or all instructions are new.
156     if (LLVM_UNLIKELY(!Step || (!LastIndex && Step == InstrDist))) {
157       init(*CurMBB);
158       Index = Instr2PosIndex.at(&MI);
159       return true;
160     }
161 
162     for (auto I = Start; I != End; ++I) {
163       LastIndex += Step;
164       Instr2PosIndex[&*I] = LastIndex;
165     }
166     Index = Instr2PosIndex.at(&MI);
167     return false;
168   }
169 
170 private:
171   bool IsInitialized = false;
172   enum { InstrDist = 1024 };
173   const MachineBasicBlock *CurMBB = nullptr;
174   DenseMap<const MachineInstr *, uint64_t> Instr2PosIndex;
175 };
176 
177 class RegAllocFast : public MachineFunctionPass {
178 public:
179   static char ID;
180 
181   RegAllocFast(const RegClassFilterFunc F = allocateAllRegClasses,
182                bool ClearVirtRegs_ = true)
183       : MachineFunctionPass(ID), ShouldAllocateClass(F),
184         StackSlotForVirtReg(-1), ClearVirtRegs(ClearVirtRegs_) {}
185 
186 private:
187   MachineFrameInfo *MFI = nullptr;
188   MachineRegisterInfo *MRI = nullptr;
189   const TargetRegisterInfo *TRI = nullptr;
190   const TargetInstrInfo *TII = nullptr;
191   RegisterClassInfo RegClassInfo;
192   const RegClassFilterFunc ShouldAllocateClass;
193 
194   /// Basic block currently being allocated.
195   MachineBasicBlock *MBB = nullptr;
196 
197   /// Maps virtual regs to the frame index where these values are spilled.
198   IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
199 
200   bool ClearVirtRegs;
201 
202   /// Everything we know about a live virtual register.
203   struct LiveReg {
204     MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
205     Register VirtReg;                ///< Virtual register number.
206     MCPhysReg PhysReg = 0;           ///< Currently held here.
207     bool LiveOut = false;            ///< Register is possibly live out.
208     bool Reloaded = false;           ///< Register was reloaded.
209     bool Error = false;              ///< Could not allocate.
210 
211     explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {}
212 
213     unsigned getSparseSetIndex() const {
214       return Register::virtReg2Index(VirtReg);
215     }
216   };
217 
218   using LiveRegMap = SparseSet<LiveReg, identity<unsigned>, uint16_t>;
219   /// This map contains entries for each virtual register that is currently
220   /// available in a physical register.
221   LiveRegMap LiveVirtRegs;
222 
223   /// Stores assigned virtual registers present in the bundle MI.
224   DenseMap<Register, MCPhysReg> BundleVirtRegsMap;
225 
226   DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap;
227   /// List of DBG_VALUE that we encountered without the vreg being assigned
228   /// because they were placed after the last use of the vreg.
229   DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues;
230 
231   /// Has a bit set for every virtual register for which it was determined
232   /// that it is alive across blocks.
233   BitVector MayLiveAcrossBlocks;
234 
235   /// State of a register unit.
236   enum RegUnitState {
237     /// A free register is not currently in use and can be allocated
238     /// immediately without checking aliases.
239     regFree,
240 
241     /// A pre-assigned register has been assigned before register allocation
242     /// (e.g., setting up a call parameter).
243     regPreAssigned,
244 
245     /// Used temporarily in reloadAtBegin() to mark register units that are
246     /// live-in to the basic block.
247     regLiveIn,
248 
249     /// A register state may also be a virtual register number, indication
250     /// that the physical register is currently allocated to a virtual
251     /// register. In that case, LiveVirtRegs contains the inverse mapping.
252   };
253 
254   /// Maps each physical register to a RegUnitState enum or virtual register.
255   std::vector<unsigned> RegUnitStates;
256 
257   SmallVector<MachineInstr *, 32> Coalesced;
258 
259   using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>;
260   /// Set of register units that are used in the current instruction, and so
261   /// cannot be allocated.
262   RegUnitSet UsedInInstr;
263   RegUnitSet PhysRegUses;
264   SmallVector<uint16_t, 8> DefOperandIndexes;
265   // Register masks attached to the current instruction.
266   SmallVector<const uint32_t *> RegMasks;
267 
268   // Assign index for each instruction to quickly determine dominance.
269   InstrPosIndexes PosIndexes;
270 
271   void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);
272   bool isPhysRegFree(MCPhysReg PhysReg) const;
273 
274   /// Mark a physreg as used in this instruction.
275   void markRegUsedInInstr(MCPhysReg PhysReg) {
276     for (MCRegUnit Unit : TRI->regunits(PhysReg))
277       UsedInInstr.insert(Unit);
278   }
279 
280   // Check if physreg is clobbered by instruction's regmask(s).
281   bool isClobberedByRegMasks(MCPhysReg PhysReg) const {
282     return llvm::any_of(RegMasks, [PhysReg](const uint32_t *Mask) {
283       return MachineOperand::clobbersPhysReg(Mask, PhysReg);
284     });
285   }
286 
287   /// Check if a physreg or any of its aliases are used in this instruction.
288   bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const {
289     if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg))
290       return true;
291     for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
292       if (UsedInInstr.count(Unit))
293         return true;
294       if (LookAtPhysRegUses && PhysRegUses.count(Unit))
295         return true;
296     }
297     return false;
298   }
299 
300   /// Mark physical register as being used in a register use operand.
301   /// This is only used by the special livethrough handling code.
302   void markPhysRegUsedInInstr(MCPhysReg PhysReg) {
303     for (MCRegUnit Unit : TRI->regunits(PhysReg))
304       PhysRegUses.insert(Unit);
305   }
306 
307   /// Remove mark of physical register being used in the instruction.
308   void unmarkRegUsedInInstr(MCPhysReg PhysReg) {
309     for (MCRegUnit Unit : TRI->regunits(PhysReg))
310       UsedInInstr.erase(Unit);
311   }
312 
313   enum : unsigned {
314     spillClean = 50,
315     spillDirty = 100,
316     spillPrefBonus = 20,
317     spillImpossible = ~0u
318   };
319 
320 public:
321   StringRef getPassName() const override { return "Fast Register Allocator"; }
322 
323   void getAnalysisUsage(AnalysisUsage &AU) const override {
324     AU.setPreservesCFG();
325     MachineFunctionPass::getAnalysisUsage(AU);
326   }
327 
328   MachineFunctionProperties getRequiredProperties() const override {
329     return MachineFunctionProperties().set(
330         MachineFunctionProperties::Property::NoPHIs);
331   }
332 
333   MachineFunctionProperties getSetProperties() const override {
334     if (ClearVirtRegs) {
335       return MachineFunctionProperties().set(
336           MachineFunctionProperties::Property::NoVRegs);
337     }
338 
339     return MachineFunctionProperties();
340   }
341 
342   MachineFunctionProperties getClearedProperties() const override {
343     return MachineFunctionProperties().set(
344         MachineFunctionProperties::Property::IsSSA);
345   }
346 
347 private:
348   bool runOnMachineFunction(MachineFunction &MF) override;
349 
350   void allocateBasicBlock(MachineBasicBlock &MBB);
351 
352   void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts,
353                             Register Reg) const;
354 
355   void findAndSortDefOperandIndexes(const MachineInstr &MI);
356 
357   void allocateInstruction(MachineInstr &MI);
358   void handleDebugValue(MachineInstr &MI);
359   void handleBundle(MachineInstr &MI);
360 
361   bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
362   bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
363   bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
364   void freePhysReg(MCPhysReg PhysReg);
365 
366   unsigned calcSpillCost(MCPhysReg PhysReg) const;
367 
368   LiveRegMap::iterator findLiveVirtReg(Register VirtReg) {
369     return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
370   }
371 
372   LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const {
373     return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
374   }
375 
376   void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg);
377   void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint,
378                     bool LookAtPhysRegUses = false);
379   void allocVirtRegUndef(MachineOperand &MO);
380   void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg,
381                                  MCPhysReg Reg);
382   bool defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
383                                 Register VirtReg);
384   bool defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg,
385                      bool LookAtPhysRegUses = false);
386   bool useVirtReg(MachineInstr &MI, MachineOperand &MO, Register VirtReg);
387 
388   MachineBasicBlock::iterator
389   getMBBBeginInsertionPoint(MachineBasicBlock &MBB,
390                             SmallSet<Register, 2> &PrologLiveIns) const;
391 
392   void reloadAtBegin(MachineBasicBlock &MBB);
393   bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);
394 
395   Register traceCopies(Register VirtReg) const;
396   Register traceCopyChain(Register Reg) const;
397 
398   bool shouldAllocateRegister(const Register Reg) const;
399   int getStackSpaceFor(Register VirtReg);
400   void spill(MachineBasicBlock::iterator Before, Register VirtReg,
401              MCPhysReg AssignedReg, bool Kill, bool LiveOut);
402   void reload(MachineBasicBlock::iterator Before, Register VirtReg,
403               MCPhysReg PhysReg);
404 
405   bool mayLiveOut(Register VirtReg);
406   bool mayLiveIn(Register VirtReg);
407 
408   void dumpState() const;
409 };
410 
411 } // end anonymous namespace
412 
413 char RegAllocFast::ID = 0;
414 
415 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
416                 false)
417 
418 bool RegAllocFast::shouldAllocateRegister(const Register Reg) const {
419   assert(Reg.isVirtual());
420   const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
421   return ShouldAllocateClass(*TRI, RC);
422 }
423 
424 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
425   for (MCRegUnit Unit : TRI->regunits(PhysReg))
426     RegUnitStates[Unit] = NewState;
427 }
428 
429 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const {
430   for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
431     if (RegUnitStates[Unit] != regFree)
432       return false;
433   }
434   return true;
435 }
436 
437 /// This allocates space for the specified virtual register to be held on the
438 /// stack.
439 int RegAllocFast::getStackSpaceFor(Register VirtReg) {
440   // Find the location Reg would belong...
441   int SS = StackSlotForVirtReg[VirtReg];
442   // Already has space allocated?
443   if (SS != -1)
444     return SS;
445 
446   // Allocate a new stack object for this spill location...
447   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
448   unsigned Size = TRI->getSpillSize(RC);
449   Align Alignment = TRI->getSpillAlign(RC);
450   int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment);
451 
452   // Assign the slot.
453   StackSlotForVirtReg[VirtReg] = FrameIdx;
454   return FrameIdx;
455 }
456 
457 static bool dominates(InstrPosIndexes &PosIndexes, const MachineInstr &A,
458                       const MachineInstr &B) {
459   uint64_t IndexA, IndexB;
460   PosIndexes.getIndex(A, IndexA);
461   if (LLVM_UNLIKELY(PosIndexes.getIndex(B, IndexB)))
462     PosIndexes.getIndex(A, IndexA);
463   return IndexA < IndexB;
464 }
465 
466 /// Returns false if \p VirtReg is known to not live out of the current block.
467 bool RegAllocFast::mayLiveOut(Register VirtReg) {
468   if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) {
469     // Cannot be live-out if there are no successors.
470     return !MBB->succ_empty();
471   }
472 
473   const MachineInstr *SelfLoopDef = nullptr;
474 
475   // If this block loops back to itself, it is necessary to check whether the
476   // use comes after the def.
477   if (MBB->isSuccessor(MBB)) {
478     // Find the first def in the self loop MBB.
479     for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
480       if (DefInst.getParent() != MBB) {
481         MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
482         return true;
483       } else {
484         if (!SelfLoopDef || dominates(PosIndexes, DefInst, *SelfLoopDef))
485           SelfLoopDef = &DefInst;
486       }
487     }
488     if (!SelfLoopDef) {
489       MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
490       return true;
491     }
492   }
493 
494   // See if the first \p Limit uses of the register are all in the current
495   // block.
496   static const unsigned Limit = 8;
497   unsigned C = 0;
498   for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) {
499     if (UseInst.getParent() != MBB || ++C >= Limit) {
500       MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
501       // Cannot be live-out if there are no successors.
502       return !MBB->succ_empty();
503     }
504 
505     if (SelfLoopDef) {
506       // Try to handle some simple cases to avoid spilling and reloading every
507       // value inside a self looping block.
508       if (SelfLoopDef == &UseInst ||
509           !dominates(PosIndexes, *SelfLoopDef, UseInst)) {
510         MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
511         return true;
512       }
513     }
514   }
515 
516   return false;
517 }
518 
519 /// Returns false if \p VirtReg is known to not be live into the current block.
520 bool RegAllocFast::mayLiveIn(Register VirtReg) {
521   if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg)))
522     return !MBB->pred_empty();
523 
524   // See if the first \p Limit def of the register are all in the current block.
525   static const unsigned Limit = 8;
526   unsigned C = 0;
527   for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
528     if (DefInst.getParent() != MBB || ++C >= Limit) {
529       MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
530       return !MBB->pred_empty();
531     }
532   }
533 
534   return false;
535 }
536 
537 /// Insert spill instruction for \p AssignedReg before \p Before. Update
538 /// DBG_VALUEs with \p VirtReg operands with the stack slot.
539 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg,
540                          MCPhysReg AssignedReg, bool Kill, bool LiveOut) {
541   LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) << " in "
542                     << printReg(AssignedReg, TRI));
543   int FI = getStackSpaceFor(VirtReg);
544   LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');
545 
546   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
547   TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI,
548                            VirtReg);
549   ++NumStores;
550 
551   MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator();
552 
553   // When we spill a virtual register, we will have spill instructions behind
554   // every definition of it, meaning we can switch all the DBG_VALUEs over
555   // to just reference the stack slot.
556   SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg];
557   SmallMapVector<MachineInstr *, SmallVector<const MachineOperand *>, 2>
558       SpilledOperandsMap;
559   for (MachineOperand *MO : LRIDbgOperands)
560     SpilledOperandsMap[MO->getParent()].push_back(MO);
561   for (auto MISpilledOperands : SpilledOperandsMap) {
562     MachineInstr &DBG = *MISpilledOperands.first;
563     // We don't have enough support for tracking operands of DBG_VALUE_LISTs.
564     if (DBG.isDebugValueList())
565       continue;
566     MachineInstr *NewDV = buildDbgValueForSpill(
567         *MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second);
568     assert(NewDV->getParent() == MBB && "dangling parent pointer");
569     (void)NewDV;
570     LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);
571 
572     if (LiveOut) {
573       // We need to insert a DBG_VALUE at the end of the block if the spill slot
574       // is live out, but there is another use of the value after the
575       // spill. This will allow LiveDebugValues to see the correct live out
576       // value to propagate to the successors.
577       MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV);
578       MBB->insert(FirstTerm, ClonedDV);
579       LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n");
580     }
581 
582     // Rewrite unassigned dbg_values to use the stack slot.
583     // TODO We can potentially do this for list debug values as well if we know
584     // how the dbg_values are getting unassigned.
585     if (DBG.isNonListDebugValue()) {
586       MachineOperand &MO = DBG.getDebugOperand(0);
587       if (MO.isReg() && MO.getReg() == 0) {
588         updateDbgValueForSpill(DBG, FI, 0);
589       }
590     }
591   }
592   // Now this register is spilled there is should not be any DBG_VALUE
593   // pointing to this register because they are all pointing to spilled value
594   // now.
595   LRIDbgOperands.clear();
596 }
597 
598 /// Insert reload instruction for \p PhysReg before \p Before.
599 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg,
600                           MCPhysReg PhysReg) {
601   LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
602                     << printReg(PhysReg, TRI) << '\n');
603   int FI = getStackSpaceFor(VirtReg);
604   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
605   TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI, VirtReg);
606   ++NumLoads;
607 }
608 
609 /// Get basic block begin insertion point.
610 /// This is not just MBB.begin() because surprisingly we have EH_LABEL
611 /// instructions marking the begin of a basic block. This means we must insert
612 /// new instructions after such labels...
613 MachineBasicBlock::iterator RegAllocFast::getMBBBeginInsertionPoint(
614     MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const {
615   MachineBasicBlock::iterator I = MBB.begin();
616   while (I != MBB.end()) {
617     if (I->isLabel()) {
618       ++I;
619       continue;
620     }
621 
622     // Most reloads should be inserted after prolog instructions.
623     if (!TII->isBasicBlockPrologue(*I))
624       break;
625 
626     // However if a prolog instruction reads a register that needs to be
627     // reloaded, the reload should be inserted before the prolog.
628     for (MachineOperand &MO : I->operands()) {
629       if (MO.isReg())
630         PrologLiveIns.insert(MO.getReg());
631     }
632 
633     ++I;
634   }
635 
636   return I;
637 }
638 
639 /// Reload all currently assigned virtual registers.
640 void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) {
641   if (LiveVirtRegs.empty())
642     return;
643 
644   for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
645     MCPhysReg Reg = P.PhysReg;
646     // Set state to live-in. This possibly overrides mappings to virtual
647     // registers but we don't care anymore at this point.
648     setPhysRegState(Reg, regLiveIn);
649   }
650 
651   SmallSet<Register, 2> PrologLiveIns;
652 
653   // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
654   // of spilling here is deterministic, if arbitrary.
655   MachineBasicBlock::iterator InsertBefore =
656       getMBBBeginInsertionPoint(MBB, PrologLiveIns);
657   for (const LiveReg &LR : LiveVirtRegs) {
658     MCPhysReg PhysReg = LR.PhysReg;
659     if (PhysReg == 0)
660       continue;
661 
662     MCRegister FirstUnit = *TRI->regunits(PhysReg).begin();
663     if (RegUnitStates[FirstUnit] == regLiveIn)
664       continue;
665 
666     assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) &&
667            "no reload in start block. Missing vreg def?");
668 
669     if (PrologLiveIns.count(PhysReg)) {
670       // FIXME: Theoretically this should use an insert point skipping labels
671       // but I'm not sure how labels should interact with prolog instruction
672       // that need reloads.
673       reload(MBB.begin(), LR.VirtReg, PhysReg);
674     } else
675       reload(InsertBefore, LR.VirtReg, PhysReg);
676   }
677   LiveVirtRegs.clear();
678 }
679 
680 /// Handle the direct use of a physical register.  Check that the register is
681 /// not used by a virtreg. Kill the physreg, marking it free. This may add
682 /// implicit kills to MO->getParent() and invalidate MO.
683 bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) {
684   assert(Register::isPhysicalRegister(Reg) && "expected physreg");
685   bool displacedAny = displacePhysReg(MI, Reg);
686   setPhysRegState(Reg, regPreAssigned);
687   markRegUsedInInstr(Reg);
688   return displacedAny;
689 }
690 
691 bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) {
692   bool displacedAny = displacePhysReg(MI, Reg);
693   setPhysRegState(Reg, regPreAssigned);
694   return displacedAny;
695 }
696 
697 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very
698 /// similar to defineVirtReg except the physreg is reserved instead of
699 /// allocated.
700 bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) {
701   bool displacedAny = false;
702 
703   for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
704     switch (unsigned VirtReg = RegUnitStates[Unit]) {
705     default: {
706       LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
707       assert(LRI != LiveVirtRegs.end() && "datastructures in sync");
708       MachineBasicBlock::iterator ReloadBefore =
709           std::next((MachineBasicBlock::iterator)MI.getIterator());
710       reload(ReloadBefore, VirtReg, LRI->PhysReg);
711 
712       setPhysRegState(LRI->PhysReg, regFree);
713       LRI->PhysReg = 0;
714       LRI->Reloaded = true;
715       displacedAny = true;
716       break;
717     }
718     case regPreAssigned:
719       RegUnitStates[Unit] = regFree;
720       displacedAny = true;
721       break;
722     case regFree:
723       break;
724     }
725   }
726   return displacedAny;
727 }
728 
729 void RegAllocFast::freePhysReg(MCPhysReg PhysReg) {
730   LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':');
731 
732   MCRegister FirstUnit = *TRI->regunits(PhysReg).begin();
733   switch (unsigned VirtReg = RegUnitStates[FirstUnit]) {
734   case regFree:
735     LLVM_DEBUG(dbgs() << '\n');
736     return;
737   case regPreAssigned:
738     LLVM_DEBUG(dbgs() << '\n');
739     setPhysRegState(PhysReg, regFree);
740     return;
741   default: {
742     LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
743     assert(LRI != LiveVirtRegs.end());
744     LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n');
745     setPhysRegState(LRI->PhysReg, regFree);
746     LRI->PhysReg = 0;
747   }
748     return;
749   }
750 }
751 
752 /// Return the cost of spilling clearing out PhysReg and aliases so it is free
753 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
754 /// disabled - it can be allocated directly.
755 /// \returns spillImpossible when PhysReg or an alias can't be spilled.
756 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const {
757   for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
758     switch (unsigned VirtReg = RegUnitStates[Unit]) {
759     case regFree:
760       break;
761     case regPreAssigned:
762       LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned "
763                         << printReg(PhysReg, TRI) << '\n');
764       return spillImpossible;
765     default: {
766       bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 ||
767                        findLiveVirtReg(VirtReg)->LiveOut;
768       return SureSpill ? spillClean : spillDirty;
769     }
770     }
771   }
772   return 0;
773 }
774 
775 void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition,
776                                              Register VirtReg, MCPhysReg Reg) {
777   auto UDBGValIter = DanglingDbgValues.find(VirtReg);
778   if (UDBGValIter == DanglingDbgValues.end())
779     return;
780 
781   SmallVectorImpl<MachineInstr *> &Dangling = UDBGValIter->second;
782   for (MachineInstr *DbgValue : Dangling) {
783     assert(DbgValue->isDebugValue());
784     if (!DbgValue->hasDebugOperandForReg(VirtReg))
785       continue;
786 
787     // Test whether the physreg survives from the definition to the DBG_VALUE.
788     MCPhysReg SetToReg = Reg;
789     unsigned Limit = 20;
790     for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()),
791                                      E = DbgValue->getIterator();
792          I != E; ++I) {
793       if (I->modifiesRegister(Reg, TRI) || --Limit == 0) {
794         LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
795                           << '\n');
796         SetToReg = 0;
797         break;
798       }
799     }
800     for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) {
801       MO.setReg(SetToReg);
802       if (SetToReg != 0)
803         MO.setIsRenamable();
804     }
805   }
806   Dangling.clear();
807 }
808 
809 /// This method updates local state so that we know that PhysReg is the
810 /// proper container for VirtReg now.  The physical register must not be used
811 /// for anything else when this is called.
812 void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR,
813                                        MCPhysReg PhysReg) {
814   Register VirtReg = LR.VirtReg;
815   LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
816                     << printReg(PhysReg, TRI) << '\n');
817   assert(LR.PhysReg == 0 && "Already assigned a physreg");
818   assert(PhysReg != 0 && "Trying to assign no register");
819   LR.PhysReg = PhysReg;
820   setPhysRegState(PhysReg, VirtReg);
821 
822   assignDanglingDebugValues(AtMI, VirtReg, PhysReg);
823 }
824 
825 static bool isCoalescable(const MachineInstr &MI) { return MI.isFullCopy(); }
826 
827 Register RegAllocFast::traceCopyChain(Register Reg) const {
828   static const unsigned ChainLengthLimit = 3;
829   unsigned C = 0;
830   do {
831     if (Reg.isPhysical())
832       return Reg;
833     assert(Reg.isVirtual());
834 
835     MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg);
836     if (!VRegDef || !isCoalescable(*VRegDef))
837       return 0;
838     Reg = VRegDef->getOperand(1).getReg();
839   } while (++C <= ChainLengthLimit);
840   return 0;
841 }
842 
843 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the
844 /// chain of copies to check whether we reach a physical register we can
845 /// coalesce with.
846 Register RegAllocFast::traceCopies(Register VirtReg) const {
847   static const unsigned DefLimit = 3;
848   unsigned C = 0;
849   for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) {
850     if (isCoalescable(MI)) {
851       Register Reg = MI.getOperand(1).getReg();
852       Reg = traceCopyChain(Reg);
853       if (Reg.isValid())
854         return Reg;
855     }
856 
857     if (++C >= DefLimit)
858       break;
859   }
860   return Register();
861 }
862 
863 /// Allocates a physical register for VirtReg.
864 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint0,
865                                 bool LookAtPhysRegUses) {
866   const Register VirtReg = LR.VirtReg;
867   assert(LR.PhysReg == 0);
868 
869   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
870   LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
871                     << " in class " << TRI->getRegClassName(&RC)
872                     << " with hint " << printReg(Hint0, TRI) << '\n');
873 
874   // Take hint when possible.
875   if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) &&
876       !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) {
877     // Take hint if the register is currently free.
878     if (isPhysRegFree(Hint0)) {
879       LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
880                         << '\n');
881       assignVirtToPhysReg(MI, LR, Hint0);
882       return;
883     } else {
884       LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI)
885                         << " occupied\n");
886     }
887   } else {
888     Hint0 = Register();
889   }
890 
891   // Try other hint.
892   Register Hint1 = traceCopies(VirtReg);
893   if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) &&
894       !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) {
895     // Take hint if the register is currently free.
896     if (isPhysRegFree(Hint1)) {
897       LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
898                         << '\n');
899       assignVirtToPhysReg(MI, LR, Hint1);
900       return;
901     } else {
902       LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI)
903                         << " occupied\n");
904     }
905   } else {
906     Hint1 = Register();
907   }
908 
909   MCPhysReg BestReg = 0;
910   unsigned BestCost = spillImpossible;
911   ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
912   for (MCPhysReg PhysReg : AllocationOrder) {
913     LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
914     if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) {
915       LLVM_DEBUG(dbgs() << "already used in instr.\n");
916       continue;
917     }
918 
919     unsigned Cost = calcSpillCost(PhysReg);
920     LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
921     // Immediate take a register with cost 0.
922     if (Cost == 0) {
923       assignVirtToPhysReg(MI, LR, PhysReg);
924       return;
925     }
926 
927     if (PhysReg == Hint0 || PhysReg == Hint1)
928       Cost -= spillPrefBonus;
929 
930     if (Cost < BestCost) {
931       BestReg = PhysReg;
932       BestCost = Cost;
933     }
934   }
935 
936   if (!BestReg) {
937     // Nothing we can do: Report an error and keep going with an invalid
938     // allocation.
939     if (MI.isInlineAsm())
940       MI.emitError("inline assembly requires more registers than available");
941     else
942       MI.emitError("ran out of registers during register allocation");
943 
944     LR.Error = true;
945     LR.PhysReg = 0;
946     return;
947   }
948 
949   displacePhysReg(MI, BestReg);
950   assignVirtToPhysReg(MI, LR, BestReg);
951 }
952 
953 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) {
954   assert(MO.isUndef() && "expected undef use");
955   Register VirtReg = MO.getReg();
956   assert(VirtReg.isVirtual() && "Expected virtreg");
957   if (!shouldAllocateRegister(VirtReg))
958     return;
959 
960   LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
961   MCPhysReg PhysReg;
962   if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
963     PhysReg = LRI->PhysReg;
964   } else {
965     const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
966     ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
967     assert(!AllocationOrder.empty() && "Allocation order must not be empty");
968     PhysReg = AllocationOrder[0];
969   }
970 
971   unsigned SubRegIdx = MO.getSubReg();
972   if (SubRegIdx != 0) {
973     PhysReg = TRI->getSubReg(PhysReg, SubRegIdx);
974     MO.setSubReg(0);
975   }
976   MO.setReg(PhysReg);
977   MO.setIsRenamable(true);
978 }
979 
980 /// Variation of defineVirtReg() with special handling for livethrough regs
981 /// (tied or earlyclobber) that may interfere with preassigned uses.
982 /// \return true if MI's MachineOperands were re-arranged/invalidated.
983 bool RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
984                                             Register VirtReg) {
985   if (!shouldAllocateRegister(VirtReg))
986     return false;
987   LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
988   if (LRI != LiveVirtRegs.end()) {
989     MCPhysReg PrevReg = LRI->PhysReg;
990     if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) {
991       LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI)
992                         << " (tied/earlyclobber resolution)\n");
993       freePhysReg(PrevReg);
994       LRI->PhysReg = 0;
995       allocVirtReg(MI, *LRI, 0, true);
996       MachineBasicBlock::iterator InsertBefore =
997           std::next((MachineBasicBlock::iterator)MI.getIterator());
998       LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to "
999                         << printReg(PrevReg, TRI) << '\n');
1000       BuildMI(*MBB, InsertBefore, MI.getDebugLoc(),
1001               TII->get(TargetOpcode::COPY), PrevReg)
1002           .addReg(LRI->PhysReg, llvm::RegState::Kill);
1003     }
1004     MachineOperand &MO = MI.getOperand(OpNum);
1005     if (MO.getSubReg() && !MO.isUndef()) {
1006       LRI->LastUse = &MI;
1007     }
1008   }
1009   return defineVirtReg(MI, OpNum, VirtReg, true);
1010 }
1011 
1012 /// Allocates a register for VirtReg definition. Typically the register is
1013 /// already assigned from a use of the virtreg, however we still need to
1014 /// perform an allocation if:
1015 /// - It is a dead definition without any uses.
1016 /// - The value is live out and all uses are in different basic blocks.
1017 ///
1018 /// \return true if MI's MachineOperands were re-arranged/invalidated.
1019 bool RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum,
1020                                  Register VirtReg, bool LookAtPhysRegUses) {
1021   assert(VirtReg.isVirtual() && "Not a virtual register");
1022   if (!shouldAllocateRegister(VirtReg))
1023     return false;
1024   MachineOperand &MO = MI.getOperand(OpNum);
1025   LiveRegMap::iterator LRI;
1026   bool New;
1027   std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
1028   if (New) {
1029     if (!MO.isDead()) {
1030       if (mayLiveOut(VirtReg)) {
1031         LRI->LiveOut = true;
1032       } else {
1033         // It is a dead def without the dead flag; add the flag now.
1034         MO.setIsDead(true);
1035       }
1036     }
1037   }
1038   if (LRI->PhysReg == 0) {
1039     allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses);
1040     // If no physical register is available for LRI, we assign one at random
1041     // and bail out of this function immediately.
1042     if (LRI->Error) {
1043       const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
1044       ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
1045       if (AllocationOrder.empty())
1046         return setPhysReg(MI, MO, MCRegister::NoRegister);
1047       return setPhysReg(MI, MO, *AllocationOrder.begin());
1048     }
1049   } else {
1050     assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) &&
1051            "TODO: preassign mismatch");
1052     LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI)
1053                       << " use existing assignment to "
1054                       << printReg(LRI->PhysReg, TRI) << '\n');
1055   }
1056 
1057   MCPhysReg PhysReg = LRI->PhysReg;
1058   if (LRI->Reloaded || LRI->LiveOut) {
1059     if (!MI.isImplicitDef()) {
1060       MachineBasicBlock::iterator SpillBefore =
1061           std::next((MachineBasicBlock::iterator)MI.getIterator());
1062       LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut
1063                         << " RL: " << LRI->Reloaded << '\n');
1064       bool Kill = LRI->LastUse == nullptr;
1065       spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut);
1066 
1067       // We need to place additional spills for each indirect destination of an
1068       // INLINEASM_BR.
1069       if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) {
1070         int FI = StackSlotForVirtReg[VirtReg];
1071         const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
1072         for (MachineOperand &MO : MI.operands()) {
1073           if (MO.isMBB()) {
1074             MachineBasicBlock *Succ = MO.getMBB();
1075             TII->storeRegToStackSlot(*Succ, Succ->begin(), PhysReg, Kill, FI,
1076                                      &RC, TRI, VirtReg);
1077             ++NumStores;
1078             Succ->addLiveIn(PhysReg);
1079           }
1080         }
1081       }
1082 
1083       LRI->LastUse = nullptr;
1084     }
1085     LRI->LiveOut = false;
1086     LRI->Reloaded = false;
1087   }
1088   if (MI.getOpcode() == TargetOpcode::BUNDLE) {
1089     BundleVirtRegsMap[VirtReg] = PhysReg;
1090   }
1091   markRegUsedInInstr(PhysReg);
1092   return setPhysReg(MI, MO, PhysReg);
1093 }
1094 
1095 /// Allocates a register for a VirtReg use.
1096 /// \return true if MI's MachineOperands were re-arranged/invalidated.
1097 bool RegAllocFast::useVirtReg(MachineInstr &MI, MachineOperand &MO,
1098                               Register VirtReg) {
1099   assert(VirtReg.isVirtual() && "Not a virtual register");
1100   if (!shouldAllocateRegister(VirtReg))
1101     return false;
1102   LiveRegMap::iterator LRI;
1103   bool New;
1104   std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
1105   if (New) {
1106     if (!MO.isKill()) {
1107       if (mayLiveOut(VirtReg)) {
1108         LRI->LiveOut = true;
1109       } else {
1110         // It is a last (killing) use without the kill flag; add the flag now.
1111         MO.setIsKill(true);
1112       }
1113     }
1114   } else {
1115     assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag");
1116   }
1117 
1118   // If necessary allocate a register.
1119   if (LRI->PhysReg == 0) {
1120     assert(!MO.isTied() && "tied op should be allocated");
1121     Register Hint;
1122     if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) {
1123       Hint = MI.getOperand(0).getReg();
1124       if (Hint.isVirtual()) {
1125         assert(!shouldAllocateRegister(Hint));
1126         Hint = Register();
1127       } else {
1128         assert(Hint.isPhysical() &&
1129                "Copy destination should already be assigned");
1130       }
1131     }
1132     allocVirtReg(MI, *LRI, Hint, false);
1133     if (LRI->Error) {
1134       const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
1135       ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
1136       if (AllocationOrder.empty())
1137         return setPhysReg(MI, MO, MCRegister::NoRegister);
1138       return setPhysReg(MI, MO, *AllocationOrder.begin());
1139     }
1140   }
1141 
1142   LRI->LastUse = &MI;
1143 
1144   if (MI.getOpcode() == TargetOpcode::BUNDLE) {
1145     BundleVirtRegsMap[VirtReg] = LRI->PhysReg;
1146   }
1147   markRegUsedInInstr(LRI->PhysReg);
1148   return setPhysReg(MI, MO, LRI->PhysReg);
1149 }
1150 
1151 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs.
1152 /// \return true if MI's MachineOperands were re-arranged/invalidated.
1153 bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO,
1154                               MCPhysReg PhysReg) {
1155   if (!MO.getSubReg()) {
1156     MO.setReg(PhysReg);
1157     MO.setIsRenamable(true);
1158     return false;
1159   }
1160 
1161   // Handle subregister index.
1162   MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister());
1163   MO.setIsRenamable(true);
1164   // Note: We leave the subreg number around a little longer in case of defs.
1165   // This is so that the register freeing logic in allocateInstruction can still
1166   // recognize this as subregister defs. The code there will clear the number.
1167   if (!MO.isDef())
1168     MO.setSubReg(0);
1169 
1170   // A kill flag implies killing the full register. Add corresponding super
1171   // register kill.
1172   if (MO.isKill()) {
1173     MI.addRegisterKilled(PhysReg, TRI, true);
1174     // Conservatively assume implicit MOs were re-arranged
1175     return true;
1176   }
1177 
1178   // A <def,read-undef> of a sub-register requires an implicit def of the full
1179   // register.
1180   if (MO.isDef() && MO.isUndef()) {
1181     if (MO.isDead())
1182       MI.addRegisterDead(PhysReg, TRI, true);
1183     else
1184       MI.addRegisterDefined(PhysReg, TRI);
1185     // Conservatively assume implicit MOs were re-arranged
1186     return true;
1187   }
1188   return false;
1189 }
1190 
1191 #ifndef NDEBUG
1192 
1193 void RegAllocFast::dumpState() const {
1194   for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE;
1195        ++Unit) {
1196     switch (unsigned VirtReg = RegUnitStates[Unit]) {
1197     case regFree:
1198       break;
1199     case regPreAssigned:
1200       dbgs() << " " << printRegUnit(Unit, TRI) << "[P]";
1201       break;
1202     case regLiveIn:
1203       llvm_unreachable("Should not have regLiveIn in map");
1204     default: {
1205       dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg);
1206       LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
1207       assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry");
1208       if (I->LiveOut || I->Reloaded) {
1209         dbgs() << '[';
1210         if (I->LiveOut)
1211           dbgs() << 'O';
1212         if (I->Reloaded)
1213           dbgs() << 'R';
1214         dbgs() << ']';
1215       }
1216       assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present");
1217       break;
1218     }
1219     }
1220   }
1221   dbgs() << '\n';
1222   // Check that LiveVirtRegs is the inverse.
1223   for (const LiveReg &LR : LiveVirtRegs) {
1224     Register VirtReg = LR.VirtReg;
1225     assert(VirtReg.isVirtual() && "Bad map key");
1226     MCPhysReg PhysReg = LR.PhysReg;
1227     if (PhysReg != 0) {
1228       assert(Register::isPhysicalRegister(PhysReg) && "mapped to physreg");
1229       for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
1230         assert(RegUnitStates[Unit] == VirtReg && "inverse map valid");
1231       }
1232     }
1233   }
1234 }
1235 #endif
1236 
1237 /// Count number of defs consumed from each register class by \p Reg
1238 void RegAllocFast::addRegClassDefCounts(
1239     std::vector<unsigned> &RegClassDefCounts, Register Reg) const {
1240   assert(RegClassDefCounts.size() == TRI->getNumRegClasses());
1241 
1242   if (Reg.isVirtual()) {
1243     if (!shouldAllocateRegister(Reg))
1244       return;
1245     const TargetRegisterClass *OpRC = MRI->getRegClass(Reg);
1246     for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
1247          RCIdx != RCIdxEnd; ++RCIdx) {
1248       const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
1249       // FIXME: Consider aliasing sub/super registers.
1250       if (OpRC->hasSubClassEq(IdxRC))
1251         ++RegClassDefCounts[RCIdx];
1252     }
1253 
1254     return;
1255   }
1256 
1257   for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
1258        RCIdx != RCIdxEnd; ++RCIdx) {
1259     const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
1260     for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
1261       if (IdxRC->contains(*Alias)) {
1262         ++RegClassDefCounts[RCIdx];
1263         break;
1264       }
1265     }
1266   }
1267 }
1268 
1269 /// Compute \ref DefOperandIndexes so it contains the indices of "def" operands
1270 /// that are to be allocated. Those are ordered in a way that small classes,
1271 /// early clobbers and livethroughs are allocated first.
1272 void RegAllocFast::findAndSortDefOperandIndexes(const MachineInstr &MI) {
1273   DefOperandIndexes.clear();
1274 
1275   // Track number of defs which may consume a register from the class.
1276   std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0);
1277   assert(RegClassDefCounts[0] == 0);
1278 
1279   LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n");
1280   for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
1281     const MachineOperand &MO = MI.getOperand(I);
1282     if (!MO.isReg())
1283       continue;
1284     Register Reg = MO.getReg();
1285     if (MO.readsReg()) {
1286       if (Reg.isPhysical()) {
1287         LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) << '\n');
1288         markPhysRegUsedInInstr(Reg);
1289       }
1290     }
1291 
1292     if (MO.isDef()) {
1293       if (Reg.isVirtual() && shouldAllocateRegister(Reg))
1294         DefOperandIndexes.push_back(I);
1295 
1296       addRegClassDefCounts(RegClassDefCounts, Reg);
1297     }
1298   }
1299 
1300   llvm::sort(DefOperandIndexes, [&](uint16_t I0, uint16_t I1) {
1301     const MachineOperand &MO0 = MI.getOperand(I0);
1302     const MachineOperand &MO1 = MI.getOperand(I1);
1303     Register Reg0 = MO0.getReg();
1304     Register Reg1 = MO1.getReg();
1305     const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0);
1306     const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1);
1307 
1308     // Identify regclass that are easy to use up completely just in this
1309     // instruction.
1310     unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size();
1311     unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size();
1312 
1313     bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()];
1314     bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()];
1315     if (SmallClass0 > SmallClass1)
1316       return true;
1317     if (SmallClass0 < SmallClass1)
1318       return false;
1319 
1320     // Allocate early clobbers and livethrough operands first.
1321     bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() ||
1322                         (MO0.getSubReg() == 0 && !MO0.isUndef());
1323     bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() ||
1324                         (MO1.getSubReg() == 0 && !MO1.isUndef());
1325     if (Livethrough0 > Livethrough1)
1326       return true;
1327     if (Livethrough0 < Livethrough1)
1328       return false;
1329 
1330     // Tie-break rule: operand index.
1331     return I0 < I1;
1332   });
1333 }
1334 
1335 // Returns true if MO is tied and the operand it's tied to is not Undef (not
1336 // Undef is not the same thing as Def).
1337 static bool isTiedToNotUndef(const MachineOperand &MO) {
1338   if (!MO.isTied())
1339     return false;
1340   const MachineInstr &MI = *MO.getParent();
1341   unsigned TiedIdx = MI.findTiedOperandIdx(MI.getOperandNo(&MO));
1342   const MachineOperand &TiedMO = MI.getOperand(TiedIdx);
1343   return !TiedMO.isUndef();
1344 }
1345 
1346 void RegAllocFast::allocateInstruction(MachineInstr &MI) {
1347   // The basic algorithm here is:
1348   // 1. Mark registers of def operands as free
1349   // 2. Allocate registers to use operands and place reload instructions for
1350   //    registers displaced by the allocation.
1351   //
1352   // However we need to handle some corner cases:
1353   // - pre-assigned defs and uses need to be handled before the other def/use
1354   //   operands are processed to avoid the allocation heuristics clashing with
1355   //   the pre-assignment.
1356   // - The "free def operands" step has to come last instead of first for tied
1357   //   operands and early-clobbers.
1358 
1359   UsedInInstr.clear();
1360   RegMasks.clear();
1361   BundleVirtRegsMap.clear();
1362 
1363   // Scan for special cases; Apply pre-assigned register defs to state.
1364   bool HasPhysRegUse = false;
1365   bool HasRegMask = false;
1366   bool HasVRegDef = false;
1367   bool HasDef = false;
1368   bool HasEarlyClobber = false;
1369   bool NeedToAssignLiveThroughs = false;
1370   for (MachineOperand &MO : MI.operands()) {
1371     if (MO.isReg()) {
1372       Register Reg = MO.getReg();
1373       if (Reg.isVirtual()) {
1374         if (!shouldAllocateRegister(Reg))
1375           continue;
1376         if (MO.isDef()) {
1377           HasDef = true;
1378           HasVRegDef = true;
1379           if (MO.isEarlyClobber()) {
1380             HasEarlyClobber = true;
1381             NeedToAssignLiveThroughs = true;
1382           }
1383           if (isTiedToNotUndef(MO) || (MO.getSubReg() != 0 && !MO.isUndef()))
1384             NeedToAssignLiveThroughs = true;
1385         }
1386       } else if (Reg.isPhysical()) {
1387         if (!MRI->isReserved(Reg)) {
1388           if (MO.isDef()) {
1389             HasDef = true;
1390             bool displacedAny = definePhysReg(MI, Reg);
1391             if (MO.isEarlyClobber())
1392               HasEarlyClobber = true;
1393             if (!displacedAny)
1394               MO.setIsDead(true);
1395           }
1396           if (MO.readsReg())
1397             HasPhysRegUse = true;
1398         }
1399       }
1400     } else if (MO.isRegMask()) {
1401       HasRegMask = true;
1402       RegMasks.push_back(MO.getRegMask());
1403     }
1404   }
1405 
1406   // Allocate virtreg defs.
1407   if (HasDef) {
1408     if (HasVRegDef) {
1409       // Note that Implicit MOs can get re-arranged by defineVirtReg(), so loop
1410       // multiple times to ensure no operand is missed.
1411       bool ReArrangedImplicitOps = true;
1412 
1413       // Special handling for early clobbers, tied operands or subregister defs:
1414       // Compared to "normal" defs these:
1415       // - Must not use a register that is pre-assigned for a use operand.
1416       // - In order to solve tricky inline assembly constraints we change the
1417       //   heuristic to figure out a good operand order before doing
1418       //   assignments.
1419       if (NeedToAssignLiveThroughs) {
1420         PhysRegUses.clear();
1421 
1422         while (ReArrangedImplicitOps) {
1423           ReArrangedImplicitOps = false;
1424           findAndSortDefOperandIndexes(MI);
1425           for (uint16_t OpIdx : DefOperandIndexes) {
1426             MachineOperand &MO = MI.getOperand(OpIdx);
1427             LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n');
1428             Register Reg = MO.getReg();
1429             if (MO.isEarlyClobber() || isTiedToNotUndef(MO) ||
1430                 (MO.getSubReg() && !MO.isUndef())) {
1431               ReArrangedImplicitOps = defineLiveThroughVirtReg(MI, OpIdx, Reg);
1432             } else {
1433               ReArrangedImplicitOps = defineVirtReg(MI, OpIdx, Reg);
1434             }
1435             // Implicit operands of MI were re-arranged,
1436             // re-compute DefOperandIndexes.
1437             if (ReArrangedImplicitOps)
1438               break;
1439           }
1440         }
1441       } else {
1442         // Assign virtual register defs.
1443         while (ReArrangedImplicitOps) {
1444           ReArrangedImplicitOps = false;
1445           for (MachineOperand &MO : MI.operands()) {
1446             if (!MO.isReg() || !MO.isDef())
1447               continue;
1448             Register Reg = MO.getReg();
1449             if (Reg.isVirtual()) {
1450               ReArrangedImplicitOps =
1451                   defineVirtReg(MI, MI.getOperandNo(&MO), Reg);
1452               if (ReArrangedImplicitOps)
1453                 break;
1454             }
1455           }
1456         }
1457       }
1458     }
1459 
1460     // Free registers occupied by defs.
1461     // Iterate operands in reverse order, so we see the implicit super register
1462     // defs first (we added them earlier in case of <def,read-undef>).
1463     for (MachineOperand &MO : reverse(MI.operands())) {
1464       if (!MO.isReg() || !MO.isDef())
1465         continue;
1466 
1467       Register Reg = MO.getReg();
1468 
1469       // subreg defs don't free the full register. We left the subreg number
1470       // around as a marker in setPhysReg() to recognize this case here.
1471       if (Reg.isPhysical() && MO.getSubReg() != 0) {
1472         MO.setSubReg(0);
1473         continue;
1474       }
1475 
1476       assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) &&
1477              "tied def assigned to clobbered register");
1478 
1479       // Do not free tied operands and early clobbers.
1480       if (isTiedToNotUndef(MO) || MO.isEarlyClobber())
1481         continue;
1482       if (!Reg)
1483         continue;
1484       if (Reg.isVirtual()) {
1485         assert(!shouldAllocateRegister(Reg));
1486         continue;
1487       }
1488       assert(Reg.isPhysical());
1489       if (MRI->isReserved(Reg))
1490         continue;
1491       freePhysReg(Reg);
1492       unmarkRegUsedInInstr(Reg);
1493     }
1494   }
1495 
1496   // Displace clobbered registers.
1497   if (HasRegMask) {
1498     assert(!RegMasks.empty() && "expected RegMask");
1499     // MRI bookkeeping.
1500     for (const auto *RM : RegMasks)
1501       MRI->addPhysRegsUsedFromRegMask(RM);
1502 
1503     // Displace clobbered registers.
1504     for (const LiveReg &LR : LiveVirtRegs) {
1505       MCPhysReg PhysReg = LR.PhysReg;
1506       if (PhysReg != 0 && isClobberedByRegMasks(PhysReg))
1507         displacePhysReg(MI, PhysReg);
1508     }
1509   }
1510 
1511   // Apply pre-assigned register uses to state.
1512   if (HasPhysRegUse) {
1513     for (MachineOperand &MO : MI.operands()) {
1514       if (!MO.isReg() || !MO.readsReg())
1515         continue;
1516       Register Reg = MO.getReg();
1517       if (!Reg.isPhysical())
1518         continue;
1519       if (MRI->isReserved(Reg))
1520         continue;
1521       if (!usePhysReg(MI, Reg))
1522         MO.setIsKill(true);
1523     }
1524   }
1525 
1526   // Allocate virtreg uses and insert reloads as necessary.
1527   // Implicit MOs can get moved/removed by useVirtReg(), so loop multiple
1528   // times to ensure no operand is missed.
1529   bool HasUndefUse = false;
1530   bool ReArrangedImplicitMOs = true;
1531   while (ReArrangedImplicitMOs) {
1532     ReArrangedImplicitMOs = false;
1533     for (MachineOperand &MO : MI.operands()) {
1534       if (!MO.isReg() || !MO.isUse())
1535         continue;
1536       Register Reg = MO.getReg();
1537       if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
1538         continue;
1539 
1540       if (MO.isUndef()) {
1541         HasUndefUse = true;
1542         continue;
1543       }
1544 
1545       // Populate MayLiveAcrossBlocks in case the use block is allocated before
1546       // the def block (removing the vreg uses).
1547       mayLiveIn(Reg);
1548 
1549       assert(!MO.isInternalRead() && "Bundles not supported");
1550       assert(MO.readsReg() && "reading use");
1551       ReArrangedImplicitMOs = useVirtReg(MI, MO, Reg);
1552       if (ReArrangedImplicitMOs)
1553         break;
1554     }
1555   }
1556 
1557   // Allocate undef operands. This is a separate step because in a situation
1558   // like  ` = OP undef %X, %X`    both operands need the same register assign
1559   // so we should perform the normal assignment first.
1560   if (HasUndefUse) {
1561     for (MachineOperand &MO : MI.all_uses()) {
1562       Register Reg = MO.getReg();
1563       if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
1564         continue;
1565 
1566       assert(MO.isUndef() && "Should only have undef virtreg uses left");
1567       allocVirtRegUndef(MO);
1568     }
1569   }
1570 
1571   // Free early clobbers.
1572   if (HasEarlyClobber) {
1573     for (MachineOperand &MO : reverse(MI.all_defs())) {
1574       if (!MO.isEarlyClobber())
1575         continue;
1576       assert(!MO.getSubReg() && "should be already handled in def processing");
1577 
1578       Register Reg = MO.getReg();
1579       if (!Reg)
1580         continue;
1581       if (Reg.isVirtual()) {
1582         assert(!shouldAllocateRegister(Reg));
1583         continue;
1584       }
1585       assert(Reg.isPhysical() && "should have register assigned");
1586 
1587       // We sometimes get odd situations like:
1588       //    early-clobber %x0 = INSTRUCTION %x0
1589       // which is semantically questionable as the early-clobber should
1590       // apply before the use. But in practice we consider the use to
1591       // happen before the early clobber now. Don't free the early clobber
1592       // register in this case.
1593       if (MI.readsRegister(Reg, TRI))
1594         continue;
1595 
1596       freePhysReg(Reg);
1597     }
1598   }
1599 
1600   LLVM_DEBUG(dbgs() << "<< " << MI);
1601   if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
1602       MI.getNumOperands() == 2) {
1603     LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
1604     Coalesced.push_back(&MI);
1605   }
1606 }
1607 
1608 void RegAllocFast::handleDebugValue(MachineInstr &MI) {
1609   // Ignore DBG_VALUEs that aren't based on virtual registers. These are
1610   // mostly constants and frame indices.
1611   assert(MI.isDebugValue() && "not a DBG_VALUE*");
1612   for (const auto &MO : MI.debug_operands()) {
1613     if (!MO.isReg())
1614       continue;
1615     Register Reg = MO.getReg();
1616     if (!Reg.isVirtual())
1617       continue;
1618     if (!shouldAllocateRegister(Reg))
1619       continue;
1620 
1621     // Already spilled to a stackslot?
1622     int SS = StackSlotForVirtReg[Reg];
1623     if (SS != -1) {
1624       // Modify DBG_VALUE now that the value is in a spill slot.
1625       updateDbgValueForSpill(MI, SS, Reg);
1626       LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI);
1627       continue;
1628     }
1629 
1630     // See if this virtual register has already been allocated to a physical
1631     // register or spilled to a stack slot.
1632     LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
1633     SmallVector<MachineOperand *> DbgOps;
1634     for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg))
1635       DbgOps.push_back(&Op);
1636 
1637     if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
1638       // Update every use of Reg within MI.
1639       for (auto &RegMO : DbgOps)
1640         setPhysReg(MI, *RegMO, LRI->PhysReg);
1641     } else {
1642       DanglingDbgValues[Reg].push_back(&MI);
1643     }
1644 
1645     // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
1646     // that future spills of Reg will have DBG_VALUEs.
1647     LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end());
1648   }
1649 }
1650 
1651 void RegAllocFast::handleBundle(MachineInstr &MI) {
1652   MachineBasicBlock::instr_iterator BundledMI = MI.getIterator();
1653   ++BundledMI;
1654   while (BundledMI->isBundledWithPred()) {
1655     for (MachineOperand &MO : BundledMI->operands()) {
1656       if (!MO.isReg())
1657         continue;
1658 
1659       Register Reg = MO.getReg();
1660       if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
1661         continue;
1662 
1663       DenseMap<Register, MCPhysReg>::iterator DI;
1664       DI = BundleVirtRegsMap.find(Reg);
1665       assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register");
1666 
1667       setPhysReg(MI, MO, DI->second);
1668     }
1669 
1670     ++BundledMI;
1671   }
1672 }
1673 
1674 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) {
1675   this->MBB = &MBB;
1676   LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);
1677 
1678   PosIndexes.unsetInitialized();
1679   RegUnitStates.assign(TRI->getNumRegUnits(), regFree);
1680   assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
1681 
1682   for (const auto &LiveReg : MBB.liveouts())
1683     setPhysRegState(LiveReg.PhysReg, regPreAssigned);
1684 
1685   Coalesced.clear();
1686 
1687   // Traverse block in reverse order allocating instructions one by one.
1688   for (MachineInstr &MI : reverse(MBB)) {
1689     LLVM_DEBUG(dbgs() << "\n>> " << MI << "Regs:"; dumpState());
1690 
1691     // Special handling for debug values. Note that they are not allowed to
1692     // affect codegen of the other instructions in any way.
1693     if (MI.isDebugValue()) {
1694       handleDebugValue(MI);
1695       continue;
1696     }
1697 
1698     allocateInstruction(MI);
1699 
1700     // Once BUNDLE header is assigned registers, same assignments need to be
1701     // done for bundled MIs.
1702     if (MI.getOpcode() == TargetOpcode::BUNDLE) {
1703       handleBundle(MI);
1704     }
1705   }
1706 
1707   LLVM_DEBUG(dbgs() << "Begin Regs:"; dumpState());
1708 
1709   // Spill all physical registers holding virtual registers now.
1710   LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n");
1711   reloadAtBegin(MBB);
1712 
1713   // Erase all the coalesced copies. We are delaying it until now because
1714   // LiveVirtRegs might refer to the instrs.
1715   for (MachineInstr *MI : Coalesced)
1716     MBB.erase(MI);
1717   NumCoalesced += Coalesced.size();
1718 
1719   for (auto &UDBGPair : DanglingDbgValues) {
1720     for (MachineInstr *DbgValue : UDBGPair.second) {
1721       assert(DbgValue->isDebugValue() && "expected DBG_VALUE");
1722       // Nothing to do if the vreg was spilled in the meantime.
1723       if (!DbgValue->hasDebugOperandForReg(UDBGPair.first))
1724         continue;
1725       LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
1726                         << '\n');
1727       DbgValue->setDebugValueUndef();
1728     }
1729   }
1730   DanglingDbgValues.clear();
1731 
1732   LLVM_DEBUG(MBB.dump());
1733 }
1734 
1735 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) {
1736   LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1737                     << "********** Function: " << MF.getName() << '\n');
1738   MRI = &MF.getRegInfo();
1739   const TargetSubtargetInfo &STI = MF.getSubtarget();
1740   TRI = STI.getRegisterInfo();
1741   TII = STI.getInstrInfo();
1742   MFI = &MF.getFrameInfo();
1743   MRI->freezeReservedRegs(MF);
1744   RegClassInfo.runOnMachineFunction(MF);
1745   unsigned NumRegUnits = TRI->getNumRegUnits();
1746   UsedInInstr.clear();
1747   UsedInInstr.setUniverse(NumRegUnits);
1748   PhysRegUses.clear();
1749   PhysRegUses.setUniverse(NumRegUnits);
1750 
1751   // initialize the virtual->physical register map to have a 'null'
1752   // mapping for all virtual registers
1753   unsigned NumVirtRegs = MRI->getNumVirtRegs();
1754   StackSlotForVirtReg.resize(NumVirtRegs);
1755   LiveVirtRegs.setUniverse(NumVirtRegs);
1756   MayLiveAcrossBlocks.clear();
1757   MayLiveAcrossBlocks.resize(NumVirtRegs);
1758 
1759   // Loop over all of the basic blocks, eliminating virtual register references
1760   for (MachineBasicBlock &MBB : MF)
1761     allocateBasicBlock(MBB);
1762 
1763   if (ClearVirtRegs) {
1764     // All machine operands and other references to virtual registers have been
1765     // replaced. Remove the virtual registers.
1766     MRI->clearVirtRegs();
1767   }
1768 
1769   StackSlotForVirtReg.clear();
1770   LiveDbgValueMap.clear();
1771   return true;
1772 }
1773 
1774 FunctionPass *llvm::createFastRegisterAllocator() { return new RegAllocFast(); }
1775 
1776 FunctionPass *llvm::createFastRegisterAllocator(RegClassFilterFunc Ftor,
1777                                                 bool ClearVirtRegs) {
1778   return new RegAllocFast(Ftor, ClearVirtRegs);
1779 }
1780