1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/RegAllocFast.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/IndexedMap.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/SparseSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/RegAllocCommon.h" 33 #include "llvm/CodeGen/RegAllocRegistry.h" 34 #include "llvm/CodeGen/RegisterClassInfo.h" 35 #include "llvm/CodeGen/TargetInstrInfo.h" 36 #include "llvm/CodeGen/TargetOpcodes.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/InitializePasses.h" 40 #include "llvm/MC/MCRegisterInfo.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include <cassert> 46 #include <tuple> 47 #include <vector> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "regalloc" 52 53 STATISTIC(NumStores, "Number of stores added"); 54 STATISTIC(NumLoads, "Number of loads added"); 55 STATISTIC(NumCoalesced, "Number of copies coalesced"); 56 57 // FIXME: Remove this switch when all testcases are fixed! 58 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs", 59 cl::Hidden); 60 61 static RegisterRegAlloc fastRegAlloc("fast", "fast register allocator", 62 createFastRegisterAllocator); 63 64 namespace { 65 66 /// Assign ascending index for instructions in machine basic block. The index 67 /// can be used to determine dominance between instructions in same MBB. 68 class InstrPosIndexes { 69 public: 70 void unsetInitialized() { IsInitialized = false; } 71 72 void init(const MachineBasicBlock &MBB) { 73 CurMBB = &MBB; 74 Instr2PosIndex.clear(); 75 uint64_t LastIndex = 0; 76 for (const MachineInstr &MI : MBB) { 77 LastIndex += InstrDist; 78 Instr2PosIndex[&MI] = LastIndex; 79 } 80 } 81 82 /// Set \p Index to index of \p MI. If \p MI is new inserted, it try to assign 83 /// index without affecting existing instruction's index. Return true if all 84 /// instructions index has been reassigned. 85 bool getIndex(const MachineInstr &MI, uint64_t &Index) { 86 if (!IsInitialized) { 87 init(*MI.getParent()); 88 IsInitialized = true; 89 Index = Instr2PosIndex.at(&MI); 90 return true; 91 } 92 93 assert(MI.getParent() == CurMBB && "MI is not in CurMBB"); 94 auto It = Instr2PosIndex.find(&MI); 95 if (It != Instr2PosIndex.end()) { 96 Index = It->second; 97 return false; 98 } 99 100 // Distance is the number of consecutive unassigned instructions including 101 // MI. Start is the first instruction of them. End is the next of last 102 // instruction of them. 103 // e.g. 104 // |Instruction| A | B | C | MI | D | E | 105 // | Index | 1024 | | | | | 2048 | 106 // 107 // In this case, B, C, MI, D are unassigned. Distance is 4, Start is B, End 108 // is E. 109 unsigned Distance = 1; 110 MachineBasicBlock::const_iterator Start = MI.getIterator(), 111 End = std::next(Start); 112 while (Start != CurMBB->begin() && 113 !Instr2PosIndex.count(&*std::prev(Start))) { 114 --Start; 115 ++Distance; 116 } 117 while (End != CurMBB->end() && !Instr2PosIndex.count(&*(End))) { 118 ++End; 119 ++Distance; 120 } 121 122 // LastIndex is initialized to last used index prior to MI or zero. 123 // In previous example, LastIndex is 1024, EndIndex is 2048; 124 uint64_t LastIndex = 125 Start == CurMBB->begin() ? 0 : Instr2PosIndex.at(&*std::prev(Start)); 126 uint64_t Step; 127 if (End == CurMBB->end()) 128 Step = static_cast<uint64_t>(InstrDist); 129 else { 130 // No instruction uses index zero. 131 uint64_t EndIndex = Instr2PosIndex.at(&*End); 132 assert(EndIndex > LastIndex && "Index must be ascending order"); 133 unsigned NumAvailableIndexes = EndIndex - LastIndex - 1; 134 // We want index gap between two adjacent MI is as same as possible. Given 135 // total A available indexes, D is number of consecutive unassigned 136 // instructions, S is the step. 137 // |<- S-1 -> MI <- S-1 -> MI <- A-S*D ->| 138 // There're S-1 available indexes between unassigned instruction and its 139 // predecessor. There're A-S*D available indexes between the last 140 // unassigned instruction and its successor. 141 // Ideally, we want 142 // S-1 = A-S*D 143 // then 144 // S = (A+1)/(D+1) 145 // An valid S must be integer greater than zero, so 146 // S <= (A+1)/(D+1) 147 // => 148 // A-S*D >= 0 149 // That means we can safely use (A+1)/(D+1) as step. 150 // In previous example, Step is 204, Index of B, C, MI, D is 1228, 1432, 151 // 1636, 1840. 152 Step = (NumAvailableIndexes + 1) / (Distance + 1); 153 } 154 155 // Reassign index for all instructions if number of new inserted 156 // instructions exceed slot or all instructions are new. 157 if (LLVM_UNLIKELY(!Step || (!LastIndex && Step == InstrDist))) { 158 init(*CurMBB); 159 Index = Instr2PosIndex.at(&MI); 160 return true; 161 } 162 163 for (auto I = Start; I != End; ++I) { 164 LastIndex += Step; 165 Instr2PosIndex[&*I] = LastIndex; 166 } 167 Index = Instr2PosIndex.at(&MI); 168 return false; 169 } 170 171 private: 172 bool IsInitialized = false; 173 enum { InstrDist = 1024 }; 174 const MachineBasicBlock *CurMBB = nullptr; 175 DenseMap<const MachineInstr *, uint64_t> Instr2PosIndex; 176 }; 177 178 class RegAllocFastImpl { 179 public: 180 RegAllocFastImpl(const RegAllocFilterFunc F = nullptr, 181 bool ClearVirtRegs_ = true) 182 : ShouldAllocateRegisterImpl(F), StackSlotForVirtReg(-1), 183 ClearVirtRegs(ClearVirtRegs_) {} 184 185 private: 186 MachineFrameInfo *MFI = nullptr; 187 MachineRegisterInfo *MRI = nullptr; 188 const TargetRegisterInfo *TRI = nullptr; 189 const TargetInstrInfo *TII = nullptr; 190 RegisterClassInfo RegClassInfo; 191 const RegAllocFilterFunc ShouldAllocateRegisterImpl; 192 193 /// Basic block currently being allocated. 194 MachineBasicBlock *MBB = nullptr; 195 196 /// Maps virtual regs to the frame index where these values are spilled. 197 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 198 199 /// Everything we know about a live virtual register. 200 struct LiveReg { 201 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 202 Register VirtReg; ///< Virtual register number. 203 MCPhysReg PhysReg = 0; ///< Currently held here. 204 bool LiveOut = false; ///< Register is possibly live out. 205 bool Reloaded = false; ///< Register was reloaded. 206 bool Error = false; ///< Could not allocate. 207 208 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {} 209 210 unsigned getSparseSetIndex() const { 211 return Register::virtReg2Index(VirtReg); 212 } 213 }; 214 215 using LiveRegMap = SparseSet<LiveReg, identity<unsigned>, uint16_t>; 216 /// This map contains entries for each virtual register that is currently 217 /// available in a physical register. 218 LiveRegMap LiveVirtRegs; 219 220 /// Stores assigned virtual registers present in the bundle MI. 221 DenseMap<Register, MCPhysReg> BundleVirtRegsMap; 222 223 DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap; 224 /// List of DBG_VALUE that we encountered without the vreg being assigned 225 /// because they were placed after the last use of the vreg. 226 DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues; 227 228 /// Has a bit set for every virtual register for which it was determined 229 /// that it is alive across blocks. 230 BitVector MayLiveAcrossBlocks; 231 232 /// State of a register unit. 233 enum RegUnitState { 234 /// A free register is not currently in use and can be allocated 235 /// immediately without checking aliases. 236 regFree, 237 238 /// A pre-assigned register has been assigned before register allocation 239 /// (e.g., setting up a call parameter). 240 regPreAssigned, 241 242 /// Used temporarily in reloadAtBegin() to mark register units that are 243 /// live-in to the basic block. 244 regLiveIn, 245 246 /// A register state may also be a virtual register number, indication 247 /// that the physical register is currently allocated to a virtual 248 /// register. In that case, LiveVirtRegs contains the inverse mapping. 249 }; 250 251 /// Maps each physical register to a RegUnitState enum or virtual register. 252 std::vector<unsigned> RegUnitStates; 253 254 SmallVector<MachineInstr *, 32> Coalesced; 255 256 /// Track register units that are used in the current instruction, and so 257 /// cannot be allocated. 258 /// 259 /// In the first phase (tied defs/early clobber), we consider also physical 260 /// uses, afterwards, we don't. If the lowest bit isn't set, it's a solely 261 /// physical use (markPhysRegUsedInInstr), otherwise, it's a normal use. To 262 /// avoid resetting the entire vector after every instruction, we track the 263 /// instruction "generation" in the remaining 31 bits -- this means, that if 264 /// UsedInInstr[Idx] < InstrGen, the register unit is unused. InstrGen is 265 /// never zero and always incremented by two. 266 /// 267 /// Don't allocate inline storage: the number of register units is typically 268 /// quite large (e.g., AArch64 > 100, X86 > 200, AMDGPU > 1000). 269 uint32_t InstrGen; 270 SmallVector<unsigned, 0> UsedInInstr; 271 272 SmallVector<unsigned, 8> DefOperandIndexes; 273 // Register masks attached to the current instruction. 274 SmallVector<const uint32_t *> RegMasks; 275 276 // Assign index for each instruction to quickly determine dominance. 277 InstrPosIndexes PosIndexes; 278 279 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 280 bool isPhysRegFree(MCPhysReg PhysReg) const; 281 282 /// Mark a physreg as used in this instruction. 283 void markRegUsedInInstr(MCPhysReg PhysReg) { 284 for (MCRegUnit Unit : TRI->regunits(PhysReg)) 285 UsedInInstr[Unit] = InstrGen | 1; 286 } 287 288 // Check if physreg is clobbered by instruction's regmask(s). 289 bool isClobberedByRegMasks(MCPhysReg PhysReg) const { 290 return llvm::any_of(RegMasks, [PhysReg](const uint32_t *Mask) { 291 return MachineOperand::clobbersPhysReg(Mask, PhysReg); 292 }); 293 } 294 295 /// Check if a physreg or any of its aliases are used in this instruction. 296 bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const { 297 if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg)) 298 return true; 299 for (MCRegUnit Unit : TRI->regunits(PhysReg)) 300 if (UsedInInstr[Unit] >= (InstrGen | !LookAtPhysRegUses)) 301 return true; 302 return false; 303 } 304 305 /// Mark physical register as being used in a register use operand. 306 /// This is only used by the special livethrough handling code. 307 void markPhysRegUsedInInstr(MCPhysReg PhysReg) { 308 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 309 assert(UsedInInstr[Unit] <= InstrGen && "non-phys use before phys use?"); 310 UsedInInstr[Unit] = InstrGen; 311 } 312 } 313 314 /// Remove mark of physical register being used in the instruction. 315 void unmarkRegUsedInInstr(MCPhysReg PhysReg) { 316 for (MCRegUnit Unit : TRI->regunits(PhysReg)) 317 UsedInInstr[Unit] = 0; 318 } 319 320 enum : unsigned { 321 spillClean = 50, 322 spillDirty = 100, 323 spillPrefBonus = 20, 324 spillImpossible = ~0u 325 }; 326 327 public: 328 bool ClearVirtRegs; 329 330 bool runOnMachineFunction(MachineFunction &MF); 331 332 private: 333 void allocateBasicBlock(MachineBasicBlock &MBB); 334 335 void addRegClassDefCounts(MutableArrayRef<unsigned> RegClassDefCounts, 336 Register Reg) const; 337 338 void findAndSortDefOperandIndexes(const MachineInstr &MI); 339 340 void allocateInstruction(MachineInstr &MI); 341 void handleDebugValue(MachineInstr &MI); 342 void handleBundle(MachineInstr &MI); 343 344 bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 345 bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 346 bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 347 void freePhysReg(MCPhysReg PhysReg); 348 349 unsigned calcSpillCost(MCPhysReg PhysReg) const; 350 351 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) { 352 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 353 } 354 355 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const { 356 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 357 } 358 359 void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg); 360 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint, 361 bool LookAtPhysRegUses = false); 362 void allocVirtRegUndef(MachineOperand &MO); 363 void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg, 364 MCPhysReg Reg); 365 bool defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 366 Register VirtReg); 367 bool defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 368 bool LookAtPhysRegUses = false); 369 bool useVirtReg(MachineInstr &MI, MachineOperand &MO, Register VirtReg); 370 371 MachineBasicBlock::iterator 372 getMBBBeginInsertionPoint(MachineBasicBlock &MBB, 373 SmallSet<Register, 2> &PrologLiveIns) const; 374 375 void reloadAtBegin(MachineBasicBlock &MBB); 376 bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 377 378 Register traceCopies(Register VirtReg) const; 379 Register traceCopyChain(Register Reg) const; 380 381 bool shouldAllocateRegister(const Register Reg) const; 382 int getStackSpaceFor(Register VirtReg); 383 void spill(MachineBasicBlock::iterator Before, Register VirtReg, 384 MCPhysReg AssignedReg, bool Kill, bool LiveOut); 385 void reload(MachineBasicBlock::iterator Before, Register VirtReg, 386 MCPhysReg PhysReg); 387 388 bool mayLiveOut(Register VirtReg); 389 bool mayLiveIn(Register VirtReg); 390 391 void dumpState() const; 392 }; 393 394 class RegAllocFast : public MachineFunctionPass { 395 RegAllocFastImpl Impl; 396 397 public: 398 static char ID; 399 400 RegAllocFast(const RegAllocFilterFunc F = nullptr, bool ClearVirtRegs_ = true) 401 : MachineFunctionPass(ID), Impl(F, ClearVirtRegs_) {} 402 403 bool runOnMachineFunction(MachineFunction &MF) override { 404 return Impl.runOnMachineFunction(MF); 405 } 406 407 StringRef getPassName() const override { return "Fast Register Allocator"; } 408 409 void getAnalysisUsage(AnalysisUsage &AU) const override { 410 AU.setPreservesCFG(); 411 MachineFunctionPass::getAnalysisUsage(AU); 412 } 413 414 MachineFunctionProperties getRequiredProperties() const override { 415 return MachineFunctionProperties().set( 416 MachineFunctionProperties::Property::NoPHIs); 417 } 418 419 MachineFunctionProperties getSetProperties() const override { 420 if (Impl.ClearVirtRegs) { 421 return MachineFunctionProperties().set( 422 MachineFunctionProperties::Property::NoVRegs); 423 } 424 425 return MachineFunctionProperties(); 426 } 427 428 MachineFunctionProperties getClearedProperties() const override { 429 return MachineFunctionProperties().set( 430 MachineFunctionProperties::Property::IsSSA); 431 } 432 }; 433 434 } // end anonymous namespace 435 436 char RegAllocFast::ID = 0; 437 438 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 439 false) 440 441 bool RegAllocFastImpl::shouldAllocateRegister(const Register Reg) const { 442 assert(Reg.isVirtual()); 443 if (!ShouldAllocateRegisterImpl) 444 return true; 445 446 return ShouldAllocateRegisterImpl(*TRI, *MRI, Reg); 447 } 448 449 void RegAllocFastImpl::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 450 for (MCRegUnit Unit : TRI->regunits(PhysReg)) 451 RegUnitStates[Unit] = NewState; 452 } 453 454 bool RegAllocFastImpl::isPhysRegFree(MCPhysReg PhysReg) const { 455 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 456 if (RegUnitStates[Unit] != regFree) 457 return false; 458 } 459 return true; 460 } 461 462 /// This allocates space for the specified virtual register to be held on the 463 /// stack. 464 int RegAllocFastImpl::getStackSpaceFor(Register VirtReg) { 465 // Find the location Reg would belong... 466 int SS = StackSlotForVirtReg[VirtReg]; 467 // Already has space allocated? 468 if (SS != -1) 469 return SS; 470 471 // Allocate a new stack object for this spill location... 472 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 473 unsigned Size = TRI->getSpillSize(RC); 474 Align Alignment = TRI->getSpillAlign(RC); 475 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment); 476 477 // Assign the slot. 478 StackSlotForVirtReg[VirtReg] = FrameIdx; 479 return FrameIdx; 480 } 481 482 static bool dominates(InstrPosIndexes &PosIndexes, const MachineInstr &A, 483 const MachineInstr &B) { 484 uint64_t IndexA, IndexB; 485 PosIndexes.getIndex(A, IndexA); 486 if (LLVM_UNLIKELY(PosIndexes.getIndex(B, IndexB))) 487 PosIndexes.getIndex(A, IndexA); 488 return IndexA < IndexB; 489 } 490 491 /// Returns false if \p VirtReg is known to not live out of the current block. 492 bool RegAllocFastImpl::mayLiveOut(Register VirtReg) { 493 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) { 494 // Cannot be live-out if there are no successors. 495 return !MBB->succ_empty(); 496 } 497 498 const MachineInstr *SelfLoopDef = nullptr; 499 500 // If this block loops back to itself, it is necessary to check whether the 501 // use comes after the def. 502 if (MBB->isSuccessor(MBB)) { 503 // Find the first def in the self loop MBB. 504 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 505 if (DefInst.getParent() != MBB) { 506 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 507 return true; 508 } else { 509 if (!SelfLoopDef || dominates(PosIndexes, DefInst, *SelfLoopDef)) 510 SelfLoopDef = &DefInst; 511 } 512 } 513 if (!SelfLoopDef) { 514 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 515 return true; 516 } 517 } 518 519 // See if the first \p Limit uses of the register are all in the current 520 // block. 521 static const unsigned Limit = 8; 522 unsigned C = 0; 523 for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) { 524 if (UseInst.getParent() != MBB || ++C >= Limit) { 525 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 526 // Cannot be live-out if there are no successors. 527 return !MBB->succ_empty(); 528 } 529 530 if (SelfLoopDef) { 531 // Try to handle some simple cases to avoid spilling and reloading every 532 // value inside a self looping block. 533 if (SelfLoopDef == &UseInst || 534 !dominates(PosIndexes, *SelfLoopDef, UseInst)) { 535 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 536 return true; 537 } 538 } 539 } 540 541 return false; 542 } 543 544 /// Returns false if \p VirtReg is known to not be live into the current block. 545 bool RegAllocFastImpl::mayLiveIn(Register VirtReg) { 546 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) 547 return !MBB->pred_empty(); 548 549 // See if the first \p Limit def of the register are all in the current block. 550 static const unsigned Limit = 8; 551 unsigned C = 0; 552 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 553 if (DefInst.getParent() != MBB || ++C >= Limit) { 554 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 555 return !MBB->pred_empty(); 556 } 557 } 558 559 return false; 560 } 561 562 /// Insert spill instruction for \p AssignedReg before \p Before. Update 563 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 564 void RegAllocFastImpl::spill(MachineBasicBlock::iterator Before, 565 Register VirtReg, MCPhysReg AssignedReg, bool Kill, 566 bool LiveOut) { 567 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) << " in " 568 << printReg(AssignedReg, TRI)); 569 int FI = getStackSpaceFor(VirtReg); 570 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 571 572 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 573 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI, 574 VirtReg); 575 ++NumStores; 576 577 MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator(); 578 579 // When we spill a virtual register, we will have spill instructions behind 580 // every definition of it, meaning we can switch all the DBG_VALUEs over 581 // to just reference the stack slot. 582 SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg]; 583 SmallMapVector<MachineInstr *, SmallVector<const MachineOperand *>, 2> 584 SpilledOperandsMap; 585 for (MachineOperand *MO : LRIDbgOperands) 586 SpilledOperandsMap[MO->getParent()].push_back(MO); 587 for (auto MISpilledOperands : SpilledOperandsMap) { 588 MachineInstr &DBG = *MISpilledOperands.first; 589 // We don't have enough support for tracking operands of DBG_VALUE_LISTs. 590 if (DBG.isDebugValueList()) 591 continue; 592 MachineInstr *NewDV = buildDbgValueForSpill( 593 *MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second); 594 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 595 (void)NewDV; 596 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 597 598 if (LiveOut) { 599 // We need to insert a DBG_VALUE at the end of the block if the spill slot 600 // is live out, but there is another use of the value after the 601 // spill. This will allow LiveDebugValues to see the correct live out 602 // value to propagate to the successors. 603 MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV); 604 MBB->insert(FirstTerm, ClonedDV); 605 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n"); 606 } 607 608 // Rewrite unassigned dbg_values to use the stack slot. 609 // TODO We can potentially do this for list debug values as well if we know 610 // how the dbg_values are getting unassigned. 611 if (DBG.isNonListDebugValue()) { 612 MachineOperand &MO = DBG.getDebugOperand(0); 613 if (MO.isReg() && MO.getReg() == 0) { 614 updateDbgValueForSpill(DBG, FI, 0); 615 } 616 } 617 } 618 // Now this register is spilled there is should not be any DBG_VALUE 619 // pointing to this register because they are all pointing to spilled value 620 // now. 621 LRIDbgOperands.clear(); 622 } 623 624 /// Insert reload instruction for \p PhysReg before \p Before. 625 void RegAllocFastImpl::reload(MachineBasicBlock::iterator Before, 626 Register VirtReg, MCPhysReg PhysReg) { 627 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 628 << printReg(PhysReg, TRI) << '\n'); 629 int FI = getStackSpaceFor(VirtReg); 630 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 631 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI, VirtReg); 632 ++NumLoads; 633 } 634 635 /// Get basic block begin insertion point. 636 /// This is not just MBB.begin() because surprisingly we have EH_LABEL 637 /// instructions marking the begin of a basic block. This means we must insert 638 /// new instructions after such labels... 639 MachineBasicBlock::iterator RegAllocFastImpl::getMBBBeginInsertionPoint( 640 MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const { 641 MachineBasicBlock::iterator I = MBB.begin(); 642 while (I != MBB.end()) { 643 if (I->isLabel()) { 644 ++I; 645 continue; 646 } 647 648 // Most reloads should be inserted after prolog instructions. 649 if (!TII->isBasicBlockPrologue(*I)) 650 break; 651 652 // However if a prolog instruction reads a register that needs to be 653 // reloaded, the reload should be inserted before the prolog. 654 for (MachineOperand &MO : I->operands()) { 655 if (MO.isReg()) 656 PrologLiveIns.insert(MO.getReg()); 657 } 658 659 ++I; 660 } 661 662 return I; 663 } 664 665 /// Reload all currently assigned virtual registers. 666 void RegAllocFastImpl::reloadAtBegin(MachineBasicBlock &MBB) { 667 if (LiveVirtRegs.empty()) 668 return; 669 670 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 671 MCPhysReg Reg = P.PhysReg; 672 // Set state to live-in. This possibly overrides mappings to virtual 673 // registers but we don't care anymore at this point. 674 setPhysRegState(Reg, regLiveIn); 675 } 676 677 SmallSet<Register, 2> PrologLiveIns; 678 679 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 680 // of spilling here is deterministic, if arbitrary. 681 MachineBasicBlock::iterator InsertBefore = 682 getMBBBeginInsertionPoint(MBB, PrologLiveIns); 683 for (const LiveReg &LR : LiveVirtRegs) { 684 MCPhysReg PhysReg = LR.PhysReg; 685 if (PhysReg == 0) 686 continue; 687 688 MCRegister FirstUnit = *TRI->regunits(PhysReg).begin(); 689 if (RegUnitStates[FirstUnit] == regLiveIn) 690 continue; 691 692 assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) && 693 "no reload in start block. Missing vreg def?"); 694 695 if (PrologLiveIns.count(PhysReg)) { 696 // FIXME: Theoretically this should use an insert point skipping labels 697 // but I'm not sure how labels should interact with prolog instruction 698 // that need reloads. 699 reload(MBB.begin(), LR.VirtReg, PhysReg); 700 } else 701 reload(InsertBefore, LR.VirtReg, PhysReg); 702 } 703 LiveVirtRegs.clear(); 704 } 705 706 /// Handle the direct use of a physical register. Check that the register is 707 /// not used by a virtreg. Kill the physreg, marking it free. This may add 708 /// implicit kills to MO->getParent() and invalidate MO. 709 bool RegAllocFastImpl::usePhysReg(MachineInstr &MI, MCPhysReg Reg) { 710 assert(Register::isPhysicalRegister(Reg) && "expected physreg"); 711 bool displacedAny = displacePhysReg(MI, Reg); 712 setPhysRegState(Reg, regPreAssigned); 713 markRegUsedInInstr(Reg); 714 return displacedAny; 715 } 716 717 bool RegAllocFastImpl::definePhysReg(MachineInstr &MI, MCPhysReg Reg) { 718 bool displacedAny = displacePhysReg(MI, Reg); 719 setPhysRegState(Reg, regPreAssigned); 720 return displacedAny; 721 } 722 723 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 724 /// similar to defineVirtReg except the physreg is reserved instead of 725 /// allocated. 726 bool RegAllocFastImpl::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) { 727 bool displacedAny = false; 728 729 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 730 switch (unsigned VirtReg = RegUnitStates[Unit]) { 731 default: { 732 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 733 assert(LRI != LiveVirtRegs.end() && "datastructures in sync"); 734 MachineBasicBlock::iterator ReloadBefore = 735 std::next((MachineBasicBlock::iterator)MI.getIterator()); 736 reload(ReloadBefore, VirtReg, LRI->PhysReg); 737 738 setPhysRegState(LRI->PhysReg, regFree); 739 LRI->PhysReg = 0; 740 LRI->Reloaded = true; 741 displacedAny = true; 742 break; 743 } 744 case regPreAssigned: 745 RegUnitStates[Unit] = regFree; 746 displacedAny = true; 747 break; 748 case regFree: 749 break; 750 } 751 } 752 return displacedAny; 753 } 754 755 void RegAllocFastImpl::freePhysReg(MCPhysReg PhysReg) { 756 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':'); 757 758 MCRegister FirstUnit = *TRI->regunits(PhysReg).begin(); 759 switch (unsigned VirtReg = RegUnitStates[FirstUnit]) { 760 case regFree: 761 LLVM_DEBUG(dbgs() << '\n'); 762 return; 763 case regPreAssigned: 764 LLVM_DEBUG(dbgs() << '\n'); 765 setPhysRegState(PhysReg, regFree); 766 return; 767 default: { 768 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 769 assert(LRI != LiveVirtRegs.end()); 770 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n'); 771 setPhysRegState(LRI->PhysReg, regFree); 772 LRI->PhysReg = 0; 773 } 774 return; 775 } 776 } 777 778 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 779 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 780 /// disabled - it can be allocated directly. 781 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 782 unsigned RegAllocFastImpl::calcSpillCost(MCPhysReg PhysReg) const { 783 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 784 switch (unsigned VirtReg = RegUnitStates[Unit]) { 785 case regFree: 786 break; 787 case regPreAssigned: 788 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned " 789 << printReg(PhysReg, TRI) << '\n'); 790 return spillImpossible; 791 default: { 792 bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 || 793 findLiveVirtReg(VirtReg)->LiveOut; 794 return SureSpill ? spillClean : spillDirty; 795 } 796 } 797 } 798 return 0; 799 } 800 801 void RegAllocFastImpl::assignDanglingDebugValues(MachineInstr &Definition, 802 Register VirtReg, 803 MCPhysReg Reg) { 804 auto UDBGValIter = DanglingDbgValues.find(VirtReg); 805 if (UDBGValIter == DanglingDbgValues.end()) 806 return; 807 808 SmallVectorImpl<MachineInstr *> &Dangling = UDBGValIter->second; 809 for (MachineInstr *DbgValue : Dangling) { 810 assert(DbgValue->isDebugValue()); 811 if (!DbgValue->hasDebugOperandForReg(VirtReg)) 812 continue; 813 814 // Test whether the physreg survives from the definition to the DBG_VALUE. 815 MCPhysReg SetToReg = Reg; 816 unsigned Limit = 20; 817 for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()), 818 E = DbgValue->getIterator(); 819 I != E; ++I) { 820 if (I->modifiesRegister(Reg, TRI) || --Limit == 0) { 821 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 822 << '\n'); 823 SetToReg = 0; 824 break; 825 } 826 } 827 for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) { 828 MO.setReg(SetToReg); 829 if (SetToReg != 0) 830 MO.setIsRenamable(); 831 } 832 } 833 Dangling.clear(); 834 } 835 836 /// This method updates local state so that we know that PhysReg is the 837 /// proper container for VirtReg now. The physical register must not be used 838 /// for anything else when this is called. 839 void RegAllocFastImpl::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR, 840 MCPhysReg PhysReg) { 841 Register VirtReg = LR.VirtReg; 842 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 843 << printReg(PhysReg, TRI) << '\n'); 844 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 845 assert(PhysReg != 0 && "Trying to assign no register"); 846 LR.PhysReg = PhysReg; 847 setPhysRegState(PhysReg, VirtReg); 848 849 assignDanglingDebugValues(AtMI, VirtReg, PhysReg); 850 } 851 852 static bool isCoalescable(const MachineInstr &MI) { return MI.isFullCopy(); } 853 854 Register RegAllocFastImpl::traceCopyChain(Register Reg) const { 855 static const unsigned ChainLengthLimit = 3; 856 unsigned C = 0; 857 do { 858 if (Reg.isPhysical()) 859 return Reg; 860 assert(Reg.isVirtual()); 861 862 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); 863 if (!VRegDef || !isCoalescable(*VRegDef)) 864 return 0; 865 Reg = VRegDef->getOperand(1).getReg(); 866 } while (++C <= ChainLengthLimit); 867 return 0; 868 } 869 870 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the 871 /// chain of copies to check whether we reach a physical register we can 872 /// coalesce with. 873 Register RegAllocFastImpl::traceCopies(Register VirtReg) const { 874 static const unsigned DefLimit = 3; 875 unsigned C = 0; 876 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { 877 if (isCoalescable(MI)) { 878 Register Reg = MI.getOperand(1).getReg(); 879 Reg = traceCopyChain(Reg); 880 if (Reg.isValid()) 881 return Reg; 882 } 883 884 if (++C >= DefLimit) 885 break; 886 } 887 return Register(); 888 } 889 890 /// Allocates a physical register for VirtReg. 891 void RegAllocFastImpl::allocVirtReg(MachineInstr &MI, LiveReg &LR, 892 Register Hint0, bool LookAtPhysRegUses) { 893 const Register VirtReg = LR.VirtReg; 894 assert(LR.PhysReg == 0); 895 896 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 897 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 898 << " in class " << TRI->getRegClassName(&RC) 899 << " with hint " << printReg(Hint0, TRI) << '\n'); 900 901 // Take hint when possible. 902 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) && 903 !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) { 904 // Take hint if the register is currently free. 905 if (isPhysRegFree(Hint0)) { 906 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 907 << '\n'); 908 assignVirtToPhysReg(MI, LR, Hint0); 909 return; 910 } else { 911 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI) 912 << " occupied\n"); 913 } 914 } else { 915 Hint0 = Register(); 916 } 917 918 // Try other hint. 919 Register Hint1 = traceCopies(VirtReg); 920 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) && 921 !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) { 922 // Take hint if the register is currently free. 923 if (isPhysRegFree(Hint1)) { 924 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 925 << '\n'); 926 assignVirtToPhysReg(MI, LR, Hint1); 927 return; 928 } else { 929 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI) 930 << " occupied\n"); 931 } 932 } else { 933 Hint1 = Register(); 934 } 935 936 MCPhysReg BestReg = 0; 937 unsigned BestCost = spillImpossible; 938 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 939 for (MCPhysReg PhysReg : AllocationOrder) { 940 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 941 if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) { 942 LLVM_DEBUG(dbgs() << "already used in instr.\n"); 943 continue; 944 } 945 946 unsigned Cost = calcSpillCost(PhysReg); 947 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 948 // Immediate take a register with cost 0. 949 if (Cost == 0) { 950 assignVirtToPhysReg(MI, LR, PhysReg); 951 return; 952 } 953 954 if (PhysReg == Hint0 || PhysReg == Hint1) 955 Cost -= spillPrefBonus; 956 957 if (Cost < BestCost) { 958 BestReg = PhysReg; 959 BestCost = Cost; 960 } 961 } 962 963 if (!BestReg) { 964 // Nothing we can do: Report an error and keep going with an invalid 965 // allocation. 966 if (MI.isInlineAsm()) 967 MI.emitError("inline assembly requires more registers than available"); 968 else 969 MI.emitError("ran out of registers during register allocation"); 970 971 LR.Error = true; 972 LR.PhysReg = 0; 973 return; 974 } 975 976 displacePhysReg(MI, BestReg); 977 assignVirtToPhysReg(MI, LR, BestReg); 978 } 979 980 void RegAllocFastImpl::allocVirtRegUndef(MachineOperand &MO) { 981 assert(MO.isUndef() && "expected undef use"); 982 Register VirtReg = MO.getReg(); 983 assert(VirtReg.isVirtual() && "Expected virtreg"); 984 if (!shouldAllocateRegister(VirtReg)) 985 return; 986 987 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 988 MCPhysReg PhysReg; 989 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 990 PhysReg = LRI->PhysReg; 991 } else { 992 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 993 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 994 assert(!AllocationOrder.empty() && "Allocation order must not be empty"); 995 PhysReg = AllocationOrder[0]; 996 } 997 998 unsigned SubRegIdx = MO.getSubReg(); 999 if (SubRegIdx != 0) { 1000 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); 1001 MO.setSubReg(0); 1002 } 1003 MO.setReg(PhysReg); 1004 MO.setIsRenamable(true); 1005 } 1006 1007 /// Variation of defineVirtReg() with special handling for livethrough regs 1008 /// (tied or earlyclobber) that may interfere with preassigned uses. 1009 /// \return true if MI's MachineOperands were re-arranged/invalidated. 1010 bool RegAllocFastImpl::defineLiveThroughVirtReg(MachineInstr &MI, 1011 unsigned OpNum, 1012 Register VirtReg) { 1013 if (!shouldAllocateRegister(VirtReg)) 1014 return false; 1015 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 1016 if (LRI != LiveVirtRegs.end()) { 1017 MCPhysReg PrevReg = LRI->PhysReg; 1018 if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) { 1019 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI) 1020 << " (tied/earlyclobber resolution)\n"); 1021 freePhysReg(PrevReg); 1022 LRI->PhysReg = 0; 1023 allocVirtReg(MI, *LRI, 0, true); 1024 MachineBasicBlock::iterator InsertBefore = 1025 std::next((MachineBasicBlock::iterator)MI.getIterator()); 1026 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to " 1027 << printReg(PrevReg, TRI) << '\n'); 1028 BuildMI(*MBB, InsertBefore, MI.getDebugLoc(), 1029 TII->get(TargetOpcode::COPY), PrevReg) 1030 .addReg(LRI->PhysReg, llvm::RegState::Kill); 1031 } 1032 MachineOperand &MO = MI.getOperand(OpNum); 1033 if (MO.getSubReg() && !MO.isUndef()) { 1034 LRI->LastUse = &MI; 1035 } 1036 } 1037 return defineVirtReg(MI, OpNum, VirtReg, true); 1038 } 1039 1040 /// Allocates a register for VirtReg definition. Typically the register is 1041 /// already assigned from a use of the virtreg, however we still need to 1042 /// perform an allocation if: 1043 /// - It is a dead definition without any uses. 1044 /// - The value is live out and all uses are in different basic blocks. 1045 /// 1046 /// \return true if MI's MachineOperands were re-arranged/invalidated. 1047 bool RegAllocFastImpl::defineVirtReg(MachineInstr &MI, unsigned OpNum, 1048 Register VirtReg, bool LookAtPhysRegUses) { 1049 assert(VirtReg.isVirtual() && "Not a virtual register"); 1050 if (!shouldAllocateRegister(VirtReg)) 1051 return false; 1052 MachineOperand &MO = MI.getOperand(OpNum); 1053 LiveRegMap::iterator LRI; 1054 bool New; 1055 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 1056 if (New) { 1057 if (!MO.isDead()) { 1058 if (mayLiveOut(VirtReg)) { 1059 LRI->LiveOut = true; 1060 } else { 1061 // It is a dead def without the dead flag; add the flag now. 1062 MO.setIsDead(true); 1063 } 1064 } 1065 } 1066 if (LRI->PhysReg == 0) { 1067 allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses); 1068 // If no physical register is available for LRI, we assign one at random 1069 // and bail out of this function immediately. 1070 if (LRI->Error) { 1071 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 1072 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 1073 if (AllocationOrder.empty()) 1074 return setPhysReg(MI, MO, MCRegister::NoRegister); 1075 return setPhysReg(MI, MO, *AllocationOrder.begin()); 1076 } 1077 } else { 1078 assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) && 1079 "TODO: preassign mismatch"); 1080 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI) 1081 << " use existing assignment to " 1082 << printReg(LRI->PhysReg, TRI) << '\n'); 1083 } 1084 1085 MCPhysReg PhysReg = LRI->PhysReg; 1086 if (LRI->Reloaded || LRI->LiveOut) { 1087 if (!MI.isImplicitDef()) { 1088 MachineBasicBlock::iterator SpillBefore = 1089 std::next((MachineBasicBlock::iterator)MI.getIterator()); 1090 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut 1091 << " RL: " << LRI->Reloaded << '\n'); 1092 bool Kill = LRI->LastUse == nullptr; 1093 spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut); 1094 1095 // We need to place additional spills for each indirect destination of an 1096 // INLINEASM_BR. 1097 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) { 1098 int FI = StackSlotForVirtReg[VirtReg]; 1099 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 1100 for (MachineOperand &MO : MI.operands()) { 1101 if (MO.isMBB()) { 1102 MachineBasicBlock *Succ = MO.getMBB(); 1103 TII->storeRegToStackSlot(*Succ, Succ->begin(), PhysReg, Kill, FI, 1104 &RC, TRI, VirtReg); 1105 ++NumStores; 1106 Succ->addLiveIn(PhysReg); 1107 } 1108 } 1109 } 1110 1111 LRI->LastUse = nullptr; 1112 } 1113 LRI->LiveOut = false; 1114 LRI->Reloaded = false; 1115 } 1116 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1117 BundleVirtRegsMap[VirtReg] = PhysReg; 1118 } 1119 markRegUsedInInstr(PhysReg); 1120 return setPhysReg(MI, MO, PhysReg); 1121 } 1122 1123 /// Allocates a register for a VirtReg use. 1124 /// \return true if MI's MachineOperands were re-arranged/invalidated. 1125 bool RegAllocFastImpl::useVirtReg(MachineInstr &MI, MachineOperand &MO, 1126 Register VirtReg) { 1127 assert(VirtReg.isVirtual() && "Not a virtual register"); 1128 if (!shouldAllocateRegister(VirtReg)) 1129 return false; 1130 LiveRegMap::iterator LRI; 1131 bool New; 1132 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 1133 if (New) { 1134 if (!MO.isKill()) { 1135 if (mayLiveOut(VirtReg)) { 1136 LRI->LiveOut = true; 1137 } else { 1138 // It is a last (killing) use without the kill flag; add the flag now. 1139 MO.setIsKill(true); 1140 } 1141 } 1142 } else { 1143 assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag"); 1144 } 1145 1146 // If necessary allocate a register. 1147 if (LRI->PhysReg == 0) { 1148 assert(!MO.isTied() && "tied op should be allocated"); 1149 Register Hint; 1150 if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) { 1151 Hint = MI.getOperand(0).getReg(); 1152 if (Hint.isVirtual()) { 1153 assert(!shouldAllocateRegister(Hint)); 1154 Hint = Register(); 1155 } else { 1156 assert(Hint.isPhysical() && 1157 "Copy destination should already be assigned"); 1158 } 1159 } 1160 allocVirtReg(MI, *LRI, Hint, false); 1161 if (LRI->Error) { 1162 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 1163 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 1164 if (AllocationOrder.empty()) 1165 return setPhysReg(MI, MO, MCRegister::NoRegister); 1166 return setPhysReg(MI, MO, *AllocationOrder.begin()); 1167 } 1168 } 1169 1170 LRI->LastUse = &MI; 1171 1172 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1173 BundleVirtRegsMap[VirtReg] = LRI->PhysReg; 1174 } 1175 markRegUsedInInstr(LRI->PhysReg); 1176 return setPhysReg(MI, MO, LRI->PhysReg); 1177 } 1178 1179 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. 1180 /// \return true if MI's MachineOperands were re-arranged/invalidated. 1181 bool RegAllocFastImpl::setPhysReg(MachineInstr &MI, MachineOperand &MO, 1182 MCPhysReg PhysReg) { 1183 if (!MO.getSubReg()) { 1184 MO.setReg(PhysReg); 1185 MO.setIsRenamable(true); 1186 return false; 1187 } 1188 1189 // Handle subregister index. 1190 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister()); 1191 MO.setIsRenamable(true); 1192 // Note: We leave the subreg number around a little longer in case of defs. 1193 // This is so that the register freeing logic in allocateInstruction can still 1194 // recognize this as subregister defs. The code there will clear the number. 1195 if (!MO.isDef()) 1196 MO.setSubReg(0); 1197 1198 // A kill flag implies killing the full register. Add corresponding super 1199 // register kill. 1200 if (MO.isKill()) { 1201 MI.addRegisterKilled(PhysReg, TRI, true); 1202 // Conservatively assume implicit MOs were re-arranged 1203 return true; 1204 } 1205 1206 // A <def,read-undef> of a sub-register requires an implicit def of the full 1207 // register. 1208 if (MO.isDef() && MO.isUndef()) { 1209 if (MO.isDead()) 1210 MI.addRegisterDead(PhysReg, TRI, true); 1211 else 1212 MI.addRegisterDefined(PhysReg, TRI); 1213 // Conservatively assume implicit MOs were re-arranged 1214 return true; 1215 } 1216 return false; 1217 } 1218 1219 #ifndef NDEBUG 1220 1221 void RegAllocFastImpl::dumpState() const { 1222 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE; 1223 ++Unit) { 1224 switch (unsigned VirtReg = RegUnitStates[Unit]) { 1225 case regFree: 1226 break; 1227 case regPreAssigned: 1228 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]"; 1229 break; 1230 case regLiveIn: 1231 llvm_unreachable("Should not have regLiveIn in map"); 1232 default: { 1233 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg); 1234 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 1235 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry"); 1236 if (I->LiveOut || I->Reloaded) { 1237 dbgs() << '['; 1238 if (I->LiveOut) 1239 dbgs() << 'O'; 1240 if (I->Reloaded) 1241 dbgs() << 'R'; 1242 dbgs() << ']'; 1243 } 1244 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present"); 1245 break; 1246 } 1247 } 1248 } 1249 dbgs() << '\n'; 1250 // Check that LiveVirtRegs is the inverse. 1251 for (const LiveReg &LR : LiveVirtRegs) { 1252 Register VirtReg = LR.VirtReg; 1253 assert(VirtReg.isVirtual() && "Bad map key"); 1254 MCPhysReg PhysReg = LR.PhysReg; 1255 if (PhysReg != 0) { 1256 assert(Register::isPhysicalRegister(PhysReg) && "mapped to physreg"); 1257 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 1258 assert(RegUnitStates[Unit] == VirtReg && "inverse map valid"); 1259 } 1260 } 1261 } 1262 } 1263 #endif 1264 1265 /// Count number of defs consumed from each register class by \p Reg 1266 void RegAllocFastImpl::addRegClassDefCounts( 1267 MutableArrayRef<unsigned> RegClassDefCounts, Register Reg) const { 1268 assert(RegClassDefCounts.size() == TRI->getNumRegClasses()); 1269 1270 if (Reg.isVirtual()) { 1271 if (!shouldAllocateRegister(Reg)) 1272 return; 1273 const TargetRegisterClass *OpRC = MRI->getRegClass(Reg); 1274 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1275 RCIdx != RCIdxEnd; ++RCIdx) { 1276 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1277 // FIXME: Consider aliasing sub/super registers. 1278 if (OpRC->hasSubClassEq(IdxRC)) 1279 ++RegClassDefCounts[RCIdx]; 1280 } 1281 1282 return; 1283 } 1284 1285 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1286 RCIdx != RCIdxEnd; ++RCIdx) { 1287 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1288 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 1289 if (IdxRC->contains(*Alias)) { 1290 ++RegClassDefCounts[RCIdx]; 1291 break; 1292 } 1293 } 1294 } 1295 } 1296 1297 /// Compute \ref DefOperandIndexes so it contains the indices of "def" operands 1298 /// that are to be allocated. Those are ordered in a way that small classes, 1299 /// early clobbers and livethroughs are allocated first. 1300 void RegAllocFastImpl::findAndSortDefOperandIndexes(const MachineInstr &MI) { 1301 DefOperandIndexes.clear(); 1302 1303 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n"); 1304 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1305 const MachineOperand &MO = MI.getOperand(I); 1306 if (!MO.isReg()) 1307 continue; 1308 Register Reg = MO.getReg(); 1309 if (MO.readsReg()) { 1310 if (Reg.isPhysical()) { 1311 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) << '\n'); 1312 markPhysRegUsedInInstr(Reg); 1313 } 1314 } 1315 1316 if (MO.isDef() && Reg.isVirtual() && shouldAllocateRegister(Reg)) 1317 DefOperandIndexes.push_back(I); 1318 } 1319 1320 // Most instructions only have one virtual def, so there's no point in 1321 // computing the possible number of defs for every register class. 1322 if (DefOperandIndexes.size() <= 1) 1323 return; 1324 1325 // Track number of defs which may consume a register from the class. This is 1326 // used to assign registers for possibly-too-small classes first. Example: 1327 // defs are eax, 3 * gr32_abcd, 2 * gr32 => we want to assign the gr32_abcd 1328 // registers first so that the gr32 don't use the gr32_abcd registers before 1329 // we assign these. 1330 SmallVector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0); 1331 1332 for (const MachineOperand &MO : MI.operands()) 1333 if (MO.isReg() && MO.isDef()) 1334 addRegClassDefCounts(RegClassDefCounts, MO.getReg()); 1335 1336 llvm::sort(DefOperandIndexes, [&](unsigned I0, unsigned I1) { 1337 const MachineOperand &MO0 = MI.getOperand(I0); 1338 const MachineOperand &MO1 = MI.getOperand(I1); 1339 Register Reg0 = MO0.getReg(); 1340 Register Reg1 = MO1.getReg(); 1341 const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0); 1342 const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1); 1343 1344 // Identify regclass that are easy to use up completely just in this 1345 // instruction. 1346 unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size(); 1347 unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size(); 1348 1349 bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()]; 1350 bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()]; 1351 if (SmallClass0 > SmallClass1) 1352 return true; 1353 if (SmallClass0 < SmallClass1) 1354 return false; 1355 1356 // Allocate early clobbers and livethrough operands first. 1357 bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() || 1358 (MO0.getSubReg() == 0 && !MO0.isUndef()); 1359 bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() || 1360 (MO1.getSubReg() == 0 && !MO1.isUndef()); 1361 if (Livethrough0 > Livethrough1) 1362 return true; 1363 if (Livethrough0 < Livethrough1) 1364 return false; 1365 1366 // Tie-break rule: operand index. 1367 return I0 < I1; 1368 }); 1369 } 1370 1371 // Returns true if MO is tied and the operand it's tied to is not Undef (not 1372 // Undef is not the same thing as Def). 1373 static bool isTiedToNotUndef(const MachineOperand &MO) { 1374 if (!MO.isTied()) 1375 return false; 1376 const MachineInstr &MI = *MO.getParent(); 1377 unsigned TiedIdx = MI.findTiedOperandIdx(MI.getOperandNo(&MO)); 1378 const MachineOperand &TiedMO = MI.getOperand(TiedIdx); 1379 return !TiedMO.isUndef(); 1380 } 1381 1382 void RegAllocFastImpl::allocateInstruction(MachineInstr &MI) { 1383 // The basic algorithm here is: 1384 // 1. Mark registers of def operands as free 1385 // 2. Allocate registers to use operands and place reload instructions for 1386 // registers displaced by the allocation. 1387 // 1388 // However we need to handle some corner cases: 1389 // - pre-assigned defs and uses need to be handled before the other def/use 1390 // operands are processed to avoid the allocation heuristics clashing with 1391 // the pre-assignment. 1392 // - The "free def operands" step has to come last instead of first for tied 1393 // operands and early-clobbers. 1394 1395 InstrGen += 2; 1396 // In the event we ever get more than 2**31 instructions... 1397 if (LLVM_UNLIKELY(InstrGen == 0)) { 1398 UsedInInstr.assign(UsedInInstr.size(), 0); 1399 InstrGen = 2; 1400 } 1401 RegMasks.clear(); 1402 BundleVirtRegsMap.clear(); 1403 1404 // Scan for special cases; Apply pre-assigned register defs to state. 1405 bool HasPhysRegUse = false; 1406 bool HasRegMask = false; 1407 bool HasVRegDef = false; 1408 bool HasDef = false; 1409 bool HasEarlyClobber = false; 1410 bool NeedToAssignLiveThroughs = false; 1411 for (MachineOperand &MO : MI.operands()) { 1412 if (MO.isReg()) { 1413 Register Reg = MO.getReg(); 1414 if (Reg.isVirtual()) { 1415 if (!shouldAllocateRegister(Reg)) 1416 continue; 1417 if (MO.isDef()) { 1418 HasDef = true; 1419 HasVRegDef = true; 1420 if (MO.isEarlyClobber()) { 1421 HasEarlyClobber = true; 1422 NeedToAssignLiveThroughs = true; 1423 } 1424 if (isTiedToNotUndef(MO) || (MO.getSubReg() != 0 && !MO.isUndef())) 1425 NeedToAssignLiveThroughs = true; 1426 } 1427 } else if (Reg.isPhysical()) { 1428 if (!MRI->isReserved(Reg)) { 1429 if (MO.isDef()) { 1430 HasDef = true; 1431 bool displacedAny = definePhysReg(MI, Reg); 1432 if (MO.isEarlyClobber()) 1433 HasEarlyClobber = true; 1434 if (!displacedAny) 1435 MO.setIsDead(true); 1436 } 1437 if (MO.readsReg()) 1438 HasPhysRegUse = true; 1439 } 1440 } 1441 } else if (MO.isRegMask()) { 1442 HasRegMask = true; 1443 RegMasks.push_back(MO.getRegMask()); 1444 } 1445 } 1446 1447 // Allocate virtreg defs. 1448 if (HasDef) { 1449 if (HasVRegDef) { 1450 // Note that Implicit MOs can get re-arranged by defineVirtReg(), so loop 1451 // multiple times to ensure no operand is missed. 1452 bool ReArrangedImplicitOps = true; 1453 1454 // Special handling for early clobbers, tied operands or subregister defs: 1455 // Compared to "normal" defs these: 1456 // - Must not use a register that is pre-assigned for a use operand. 1457 // - In order to solve tricky inline assembly constraints we change the 1458 // heuristic to figure out a good operand order before doing 1459 // assignments. 1460 if (NeedToAssignLiveThroughs) { 1461 while (ReArrangedImplicitOps) { 1462 ReArrangedImplicitOps = false; 1463 findAndSortDefOperandIndexes(MI); 1464 for (unsigned OpIdx : DefOperandIndexes) { 1465 MachineOperand &MO = MI.getOperand(OpIdx); 1466 LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n'); 1467 Register Reg = MO.getReg(); 1468 if (MO.isEarlyClobber() || isTiedToNotUndef(MO) || 1469 (MO.getSubReg() && !MO.isUndef())) { 1470 ReArrangedImplicitOps = defineLiveThroughVirtReg(MI, OpIdx, Reg); 1471 } else { 1472 ReArrangedImplicitOps = defineVirtReg(MI, OpIdx, Reg); 1473 } 1474 // Implicit operands of MI were re-arranged, 1475 // re-compute DefOperandIndexes. 1476 if (ReArrangedImplicitOps) 1477 break; 1478 } 1479 } 1480 } else { 1481 // Assign virtual register defs. 1482 while (ReArrangedImplicitOps) { 1483 ReArrangedImplicitOps = false; 1484 for (MachineOperand &MO : MI.operands()) { 1485 if (!MO.isReg() || !MO.isDef()) 1486 continue; 1487 Register Reg = MO.getReg(); 1488 if (Reg.isVirtual()) { 1489 ReArrangedImplicitOps = 1490 defineVirtReg(MI, MI.getOperandNo(&MO), Reg); 1491 if (ReArrangedImplicitOps) 1492 break; 1493 } 1494 } 1495 } 1496 } 1497 } 1498 1499 // Free registers occupied by defs. 1500 // Iterate operands in reverse order, so we see the implicit super register 1501 // defs first (we added them earlier in case of <def,read-undef>). 1502 for (MachineOperand &MO : reverse(MI.operands())) { 1503 if (!MO.isReg() || !MO.isDef()) 1504 continue; 1505 1506 Register Reg = MO.getReg(); 1507 1508 // subreg defs don't free the full register. We left the subreg number 1509 // around as a marker in setPhysReg() to recognize this case here. 1510 if (Reg.isPhysical() && MO.getSubReg() != 0) { 1511 MO.setSubReg(0); 1512 continue; 1513 } 1514 1515 assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) && 1516 "tied def assigned to clobbered register"); 1517 1518 // Do not free tied operands and early clobbers. 1519 if (isTiedToNotUndef(MO) || MO.isEarlyClobber()) 1520 continue; 1521 if (!Reg) 1522 continue; 1523 if (Reg.isVirtual()) { 1524 assert(!shouldAllocateRegister(Reg)); 1525 continue; 1526 } 1527 assert(Reg.isPhysical()); 1528 if (MRI->isReserved(Reg)) 1529 continue; 1530 freePhysReg(Reg); 1531 unmarkRegUsedInInstr(Reg); 1532 } 1533 } 1534 1535 // Displace clobbered registers. 1536 if (HasRegMask) { 1537 assert(!RegMasks.empty() && "expected RegMask"); 1538 // MRI bookkeeping. 1539 for (const auto *RM : RegMasks) 1540 MRI->addPhysRegsUsedFromRegMask(RM); 1541 1542 // Displace clobbered registers. 1543 for (const LiveReg &LR : LiveVirtRegs) { 1544 MCPhysReg PhysReg = LR.PhysReg; 1545 if (PhysReg != 0 && isClobberedByRegMasks(PhysReg)) 1546 displacePhysReg(MI, PhysReg); 1547 } 1548 } 1549 1550 // Apply pre-assigned register uses to state. 1551 if (HasPhysRegUse) { 1552 for (MachineOperand &MO : MI.operands()) { 1553 if (!MO.isReg() || !MO.readsReg()) 1554 continue; 1555 Register Reg = MO.getReg(); 1556 if (!Reg.isPhysical()) 1557 continue; 1558 if (MRI->isReserved(Reg)) 1559 continue; 1560 if (!usePhysReg(MI, Reg)) 1561 MO.setIsKill(true); 1562 } 1563 } 1564 1565 // Allocate virtreg uses and insert reloads as necessary. 1566 // Implicit MOs can get moved/removed by useVirtReg(), so loop multiple 1567 // times to ensure no operand is missed. 1568 bool HasUndefUse = false; 1569 bool ReArrangedImplicitMOs = true; 1570 while (ReArrangedImplicitMOs) { 1571 ReArrangedImplicitMOs = false; 1572 for (MachineOperand &MO : MI.operands()) { 1573 if (!MO.isReg() || !MO.isUse()) 1574 continue; 1575 Register Reg = MO.getReg(); 1576 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) 1577 continue; 1578 1579 if (MO.isUndef()) { 1580 HasUndefUse = true; 1581 continue; 1582 } 1583 1584 // Populate MayLiveAcrossBlocks in case the use block is allocated before 1585 // the def block (removing the vreg uses). 1586 mayLiveIn(Reg); 1587 1588 assert(!MO.isInternalRead() && "Bundles not supported"); 1589 assert(MO.readsReg() && "reading use"); 1590 ReArrangedImplicitMOs = useVirtReg(MI, MO, Reg); 1591 if (ReArrangedImplicitMOs) 1592 break; 1593 } 1594 } 1595 1596 // Allocate undef operands. This is a separate step because in a situation 1597 // like ` = OP undef %X, %X` both operands need the same register assign 1598 // so we should perform the normal assignment first. 1599 if (HasUndefUse) { 1600 for (MachineOperand &MO : MI.all_uses()) { 1601 Register Reg = MO.getReg(); 1602 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) 1603 continue; 1604 1605 assert(MO.isUndef() && "Should only have undef virtreg uses left"); 1606 allocVirtRegUndef(MO); 1607 } 1608 } 1609 1610 // Free early clobbers. 1611 if (HasEarlyClobber) { 1612 for (MachineOperand &MO : reverse(MI.all_defs())) { 1613 if (!MO.isEarlyClobber()) 1614 continue; 1615 assert(!MO.getSubReg() && "should be already handled in def processing"); 1616 1617 Register Reg = MO.getReg(); 1618 if (!Reg) 1619 continue; 1620 if (Reg.isVirtual()) { 1621 assert(!shouldAllocateRegister(Reg)); 1622 continue; 1623 } 1624 assert(Reg.isPhysical() && "should have register assigned"); 1625 1626 // We sometimes get odd situations like: 1627 // early-clobber %x0 = INSTRUCTION %x0 1628 // which is semantically questionable as the early-clobber should 1629 // apply before the use. But in practice we consider the use to 1630 // happen before the early clobber now. Don't free the early clobber 1631 // register in this case. 1632 if (MI.readsRegister(Reg, TRI)) 1633 continue; 1634 1635 freePhysReg(Reg); 1636 } 1637 } 1638 1639 LLVM_DEBUG(dbgs() << "<< " << MI); 1640 if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() && 1641 MI.getNumOperands() == 2) { 1642 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1643 Coalesced.push_back(&MI); 1644 } 1645 } 1646 1647 void RegAllocFastImpl::handleDebugValue(MachineInstr &MI) { 1648 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1649 // mostly constants and frame indices. 1650 assert(MI.isDebugValue() && "not a DBG_VALUE*"); 1651 for (const auto &MO : MI.debug_operands()) { 1652 if (!MO.isReg()) 1653 continue; 1654 Register Reg = MO.getReg(); 1655 if (!Reg.isVirtual()) 1656 continue; 1657 if (!shouldAllocateRegister(Reg)) 1658 continue; 1659 1660 // Already spilled to a stackslot? 1661 int SS = StackSlotForVirtReg[Reg]; 1662 if (SS != -1) { 1663 // Modify DBG_VALUE now that the value is in a spill slot. 1664 updateDbgValueForSpill(MI, SS, Reg); 1665 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI); 1666 continue; 1667 } 1668 1669 // See if this virtual register has already been allocated to a physical 1670 // register or spilled to a stack slot. 1671 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1672 SmallVector<MachineOperand *> DbgOps; 1673 for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg)) 1674 DbgOps.push_back(&Op); 1675 1676 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1677 // Update every use of Reg within MI. 1678 for (auto &RegMO : DbgOps) 1679 setPhysReg(MI, *RegMO, LRI->PhysReg); 1680 } else { 1681 DanglingDbgValues[Reg].push_back(&MI); 1682 } 1683 1684 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1685 // that future spills of Reg will have DBG_VALUEs. 1686 LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end()); 1687 } 1688 } 1689 1690 void RegAllocFastImpl::handleBundle(MachineInstr &MI) { 1691 MachineBasicBlock::instr_iterator BundledMI = MI.getIterator(); 1692 ++BundledMI; 1693 while (BundledMI->isBundledWithPred()) { 1694 for (MachineOperand &MO : BundledMI->operands()) { 1695 if (!MO.isReg()) 1696 continue; 1697 1698 Register Reg = MO.getReg(); 1699 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) 1700 continue; 1701 1702 DenseMap<Register, MCPhysReg>::iterator DI; 1703 DI = BundleVirtRegsMap.find(Reg); 1704 assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register"); 1705 1706 setPhysReg(MI, MO, DI->second); 1707 } 1708 1709 ++BundledMI; 1710 } 1711 } 1712 1713 void RegAllocFastImpl::allocateBasicBlock(MachineBasicBlock &MBB) { 1714 this->MBB = &MBB; 1715 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1716 1717 PosIndexes.unsetInitialized(); 1718 RegUnitStates.assign(TRI->getNumRegUnits(), regFree); 1719 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1720 1721 for (const auto &LiveReg : MBB.liveouts()) 1722 setPhysRegState(LiveReg.PhysReg, regPreAssigned); 1723 1724 Coalesced.clear(); 1725 1726 // Traverse block in reverse order allocating instructions one by one. 1727 for (MachineInstr &MI : reverse(MBB)) { 1728 LLVM_DEBUG(dbgs() << "\n>> " << MI << "Regs:"; dumpState()); 1729 1730 // Special handling for debug values. Note that they are not allowed to 1731 // affect codegen of the other instructions in any way. 1732 if (MI.isDebugValue()) { 1733 handleDebugValue(MI); 1734 continue; 1735 } 1736 1737 allocateInstruction(MI); 1738 1739 // Once BUNDLE header is assigned registers, same assignments need to be 1740 // done for bundled MIs. 1741 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1742 handleBundle(MI); 1743 } 1744 } 1745 1746 LLVM_DEBUG(dbgs() << "Begin Regs:"; dumpState()); 1747 1748 // Spill all physical registers holding virtual registers now. 1749 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n"); 1750 reloadAtBegin(MBB); 1751 1752 // Erase all the coalesced copies. We are delaying it until now because 1753 // LiveVirtRegs might refer to the instrs. 1754 for (MachineInstr *MI : Coalesced) 1755 MBB.erase(MI); 1756 NumCoalesced += Coalesced.size(); 1757 1758 for (auto &UDBGPair : DanglingDbgValues) { 1759 for (MachineInstr *DbgValue : UDBGPair.second) { 1760 assert(DbgValue->isDebugValue() && "expected DBG_VALUE"); 1761 // Nothing to do if the vreg was spilled in the meantime. 1762 if (!DbgValue->hasDebugOperandForReg(UDBGPair.first)) 1763 continue; 1764 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 1765 << '\n'); 1766 DbgValue->setDebugValueUndef(); 1767 } 1768 } 1769 DanglingDbgValues.clear(); 1770 1771 LLVM_DEBUG(MBB.dump()); 1772 } 1773 1774 bool RegAllocFastImpl::runOnMachineFunction(MachineFunction &MF) { 1775 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1776 << "********** Function: " << MF.getName() << '\n'); 1777 MRI = &MF.getRegInfo(); 1778 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1779 TRI = STI.getRegisterInfo(); 1780 TII = STI.getInstrInfo(); 1781 MFI = &MF.getFrameInfo(); 1782 MRI->freezeReservedRegs(); 1783 RegClassInfo.runOnMachineFunction(MF); 1784 unsigned NumRegUnits = TRI->getNumRegUnits(); 1785 InstrGen = 0; 1786 UsedInInstr.assign(NumRegUnits, 0); 1787 1788 // initialize the virtual->physical register map to have a 'null' 1789 // mapping for all virtual registers 1790 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1791 StackSlotForVirtReg.resize(NumVirtRegs); 1792 LiveVirtRegs.setUniverse(NumVirtRegs); 1793 MayLiveAcrossBlocks.clear(); 1794 MayLiveAcrossBlocks.resize(NumVirtRegs); 1795 1796 // Loop over all of the basic blocks, eliminating virtual register references 1797 for (MachineBasicBlock &MBB : MF) 1798 allocateBasicBlock(MBB); 1799 1800 if (ClearVirtRegs) { 1801 // All machine operands and other references to virtual registers have been 1802 // replaced. Remove the virtual registers. 1803 MRI->clearVirtRegs(); 1804 } 1805 1806 StackSlotForVirtReg.clear(); 1807 LiveDbgValueMap.clear(); 1808 return true; 1809 } 1810 1811 PreservedAnalyses RegAllocFastPass::run(MachineFunction &MF, 1812 MachineFunctionAnalysisManager &) { 1813 MFPropsModifier _(*this, MF); 1814 RegAllocFastImpl Impl(Opts.Filter, Opts.ClearVRegs); 1815 bool Changed = Impl.runOnMachineFunction(MF); 1816 if (!Changed) 1817 return PreservedAnalyses::all(); 1818 auto PA = getMachineFunctionPassPreservedAnalyses(); 1819 PA.preserveSet<CFGAnalyses>(); 1820 return PA; 1821 } 1822 1823 void RegAllocFastPass::printPipeline( 1824 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1825 bool PrintFilterName = Opts.FilterName != "all"; 1826 bool PrintNoClearVRegs = !Opts.ClearVRegs; 1827 bool PrintSemicolon = PrintFilterName && PrintNoClearVRegs; 1828 1829 OS << "regallocfast"; 1830 if (PrintFilterName || PrintNoClearVRegs) { 1831 OS << '<'; 1832 if (PrintFilterName) 1833 OS << "filter=" << Opts.FilterName; 1834 if (PrintSemicolon) 1835 OS << ';'; 1836 if (PrintNoClearVRegs) 1837 OS << "no-clear-vregs"; 1838 OS << '>'; 1839 } 1840 } 1841 1842 FunctionPass *llvm::createFastRegisterAllocator() { return new RegAllocFast(); } 1843 1844 FunctionPass *llvm::createFastRegisterAllocator(RegAllocFilterFunc Ftor, 1845 bool ClearVirtRegs) { 1846 return new RegAllocFast(Ftor, ClearVirtRegs); 1847 } 1848