xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/RegAllocFast.cpp (revision 66fd12cf4896eb08ad8e7a2627537f84ead84dd3)
1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This register allocator allocates registers to a basic block at a
10 /// time, attempting to keep values in registers and reusing registers as
11 /// appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/IndexedMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/SparseSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/RegAllocCommon.h"
32 #include "llvm/CodeGen/RegAllocRegistry.h"
33 #include "llvm/CodeGen/RegisterClassInfo.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/InitializePasses.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cassert>
45 #include <tuple>
46 #include <vector>
47 
48 using namespace llvm;
49 
50 #define DEBUG_TYPE "regalloc"
51 
52 STATISTIC(NumStores, "Number of stores added");
53 STATISTIC(NumLoads , "Number of loads added");
54 STATISTIC(NumCoalesced, "Number of copies coalesced");
55 
56 // FIXME: Remove this switch when all testcases are fixed!
57 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs",
58                                        cl::Hidden);
59 
60 static RegisterRegAlloc
61   fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
62 
63 namespace {
64 
65   class RegAllocFast : public MachineFunctionPass {
66   public:
67     static char ID;
68 
69     RegAllocFast(const RegClassFilterFunc F = allocateAllRegClasses,
70                  bool ClearVirtRegs_ = true) :
71       MachineFunctionPass(ID),
72       ShouldAllocateClass(F),
73       StackSlotForVirtReg(-1),
74       ClearVirtRegs(ClearVirtRegs_) {
75     }
76 
77   private:
78     MachineFrameInfo *MFI;
79     MachineRegisterInfo *MRI;
80     const TargetRegisterInfo *TRI;
81     const TargetInstrInfo *TII;
82     RegisterClassInfo RegClassInfo;
83     const RegClassFilterFunc ShouldAllocateClass;
84 
85     /// Basic block currently being allocated.
86     MachineBasicBlock *MBB;
87 
88     /// Maps virtual regs to the frame index where these values are spilled.
89     IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
90 
91     bool ClearVirtRegs;
92 
93     /// Everything we know about a live virtual register.
94     struct LiveReg {
95       MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
96       Register VirtReg;                ///< Virtual register number.
97       MCPhysReg PhysReg = 0;           ///< Currently held here.
98       bool LiveOut = false;            ///< Register is possibly live out.
99       bool Reloaded = false;           ///< Register was reloaded.
100       bool Error = false;              ///< Could not allocate.
101 
102       explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {}
103 
104       unsigned getSparseSetIndex() const {
105         return Register::virtReg2Index(VirtReg);
106       }
107     };
108 
109     using LiveRegMap = SparseSet<LiveReg>;
110     /// This map contains entries for each virtual register that is currently
111     /// available in a physical register.
112     LiveRegMap LiveVirtRegs;
113 
114     /// Stores assigned virtual registers present in the bundle MI.
115     DenseMap<Register, MCPhysReg> BundleVirtRegsMap;
116 
117     DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap;
118     /// List of DBG_VALUE that we encountered without the vreg being assigned
119     /// because they were placed after the last use of the vreg.
120     DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues;
121 
122     /// Has a bit set for every virtual register for which it was determined
123     /// that it is alive across blocks.
124     BitVector MayLiveAcrossBlocks;
125 
126     /// State of a register unit.
127     enum RegUnitState {
128       /// A free register is not currently in use and can be allocated
129       /// immediately without checking aliases.
130       regFree,
131 
132       /// A pre-assigned register has been assigned before register allocation
133       /// (e.g., setting up a call parameter).
134       regPreAssigned,
135 
136       /// Used temporarily in reloadAtBegin() to mark register units that are
137       /// live-in to the basic block.
138       regLiveIn,
139 
140       /// A register state may also be a virtual register number, indication
141       /// that the physical register is currently allocated to a virtual
142       /// register. In that case, LiveVirtRegs contains the inverse mapping.
143     };
144 
145     /// Maps each physical register to a RegUnitState enum or virtual register.
146     std::vector<unsigned> RegUnitStates;
147 
148     SmallVector<MachineInstr *, 32> Coalesced;
149 
150     using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>;
151     /// Set of register units that are used in the current instruction, and so
152     /// cannot be allocated.
153     RegUnitSet UsedInInstr;
154     RegUnitSet PhysRegUses;
155     SmallVector<uint16_t, 8> DefOperandIndexes;
156     // Register masks attached to the current instruction.
157     SmallVector<const uint32_t *> RegMasks;
158 
159     void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);
160     bool isPhysRegFree(MCPhysReg PhysReg) const;
161 
162     /// Mark a physreg as used in this instruction.
163     void markRegUsedInInstr(MCPhysReg PhysReg) {
164       for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
165         UsedInInstr.insert(*Units);
166     }
167 
168     // Check if physreg is clobbered by instruction's regmask(s).
169     bool isClobberedByRegMasks(MCPhysReg PhysReg) const {
170       return llvm::any_of(RegMasks, [PhysReg](const uint32_t *Mask) {
171         return MachineOperand::clobbersPhysReg(Mask, PhysReg);
172       });
173     }
174 
175     /// Check if a physreg or any of its aliases are used in this instruction.
176     bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const {
177       if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg))
178         return true;
179       for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
180         if (UsedInInstr.count(*Units))
181           return true;
182         if (LookAtPhysRegUses && PhysRegUses.count(*Units))
183           return true;
184       }
185       return false;
186     }
187 
188     /// Mark physical register as being used in a register use operand.
189     /// This is only used by the special livethrough handling code.
190     void markPhysRegUsedInInstr(MCPhysReg PhysReg) {
191       for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
192         PhysRegUses.insert(*Units);
193     }
194 
195     /// Remove mark of physical register being used in the instruction.
196     void unmarkRegUsedInInstr(MCPhysReg PhysReg) {
197       for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
198         UsedInInstr.erase(*Units);
199     }
200 
201     enum : unsigned {
202       spillClean = 50,
203       spillDirty = 100,
204       spillPrefBonus = 20,
205       spillImpossible = ~0u
206     };
207 
208   public:
209     StringRef getPassName() const override { return "Fast Register Allocator"; }
210 
211     void getAnalysisUsage(AnalysisUsage &AU) const override {
212       AU.setPreservesCFG();
213       MachineFunctionPass::getAnalysisUsage(AU);
214     }
215 
216     MachineFunctionProperties getRequiredProperties() const override {
217       return MachineFunctionProperties().set(
218           MachineFunctionProperties::Property::NoPHIs);
219     }
220 
221     MachineFunctionProperties getSetProperties() const override {
222       if (ClearVirtRegs) {
223         return MachineFunctionProperties().set(
224           MachineFunctionProperties::Property::NoVRegs);
225       }
226 
227       return MachineFunctionProperties();
228     }
229 
230     MachineFunctionProperties getClearedProperties() const override {
231       return MachineFunctionProperties().set(
232         MachineFunctionProperties::Property::IsSSA);
233     }
234 
235   private:
236     bool runOnMachineFunction(MachineFunction &MF) override;
237 
238     void allocateBasicBlock(MachineBasicBlock &MBB);
239 
240     void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts,
241                               Register Reg) const;
242 
243     void allocateInstruction(MachineInstr &MI);
244     void handleDebugValue(MachineInstr &MI);
245     void handleBundle(MachineInstr &MI);
246 
247     bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
248     bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
249     bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
250     void freePhysReg(MCPhysReg PhysReg);
251 
252     unsigned calcSpillCost(MCPhysReg PhysReg) const;
253 
254     LiveRegMap::iterator findLiveVirtReg(Register VirtReg) {
255       return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
256     }
257 
258     LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const {
259       return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
260     }
261 
262     void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg);
263     void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint,
264                       bool LookAtPhysRegUses = false);
265     void allocVirtRegUndef(MachineOperand &MO);
266     void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg,
267                                    MCPhysReg Reg);
268     void defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
269                                   Register VirtReg);
270     void defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg,
271                        bool LookAtPhysRegUses = false);
272     void useVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg);
273 
274     MachineBasicBlock::iterator
275     getMBBBeginInsertionPoint(MachineBasicBlock &MBB,
276                               SmallSet<Register, 2> &PrologLiveIns) const;
277 
278     void reloadAtBegin(MachineBasicBlock &MBB);
279     void setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);
280 
281     Register traceCopies(Register VirtReg) const;
282     Register traceCopyChain(Register Reg) const;
283 
284     bool shouldAllocateRegister(const Register Reg) const;
285     int getStackSpaceFor(Register VirtReg);
286     void spill(MachineBasicBlock::iterator Before, Register VirtReg,
287                MCPhysReg AssignedReg, bool Kill, bool LiveOut);
288     void reload(MachineBasicBlock::iterator Before, Register VirtReg,
289                 MCPhysReg PhysReg);
290 
291     bool mayLiveOut(Register VirtReg);
292     bool mayLiveIn(Register VirtReg);
293 
294     void dumpState() const;
295   };
296 
297 } // end anonymous namespace
298 
299 char RegAllocFast::ID = 0;
300 
301 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
302                 false)
303 
304 bool RegAllocFast::shouldAllocateRegister(const Register Reg) const {
305   assert(Reg.isVirtual());
306   const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
307   return ShouldAllocateClass(*TRI, RC);
308 }
309 
310 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
311   for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI)
312     RegUnitStates[*UI] = NewState;
313 }
314 
315 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const {
316   for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
317     if (RegUnitStates[*UI] != regFree)
318       return false;
319   }
320   return true;
321 }
322 
323 /// This allocates space for the specified virtual register to be held on the
324 /// stack.
325 int RegAllocFast::getStackSpaceFor(Register VirtReg) {
326   // Find the location Reg would belong...
327   int SS = StackSlotForVirtReg[VirtReg];
328   // Already has space allocated?
329   if (SS != -1)
330     return SS;
331 
332   // Allocate a new stack object for this spill location...
333   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
334   unsigned Size = TRI->getSpillSize(RC);
335   Align Alignment = TRI->getSpillAlign(RC);
336   int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment);
337 
338   // Assign the slot.
339   StackSlotForVirtReg[VirtReg] = FrameIdx;
340   return FrameIdx;
341 }
342 
343 static bool dominates(MachineBasicBlock &MBB,
344                       MachineBasicBlock::const_iterator A,
345                       MachineBasicBlock::const_iterator B) {
346   auto MBBEnd = MBB.end();
347   if (B == MBBEnd)
348     return true;
349 
350   MachineBasicBlock::const_iterator I = MBB.begin();
351   for (; &*I != A && &*I != B; ++I)
352     ;
353 
354   return &*I == A;
355 }
356 
357 /// Returns false if \p VirtReg is known to not live out of the current block.
358 bool RegAllocFast::mayLiveOut(Register VirtReg) {
359   if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) {
360     // Cannot be live-out if there are no successors.
361     return !MBB->succ_empty();
362   }
363 
364   const MachineInstr *SelfLoopDef = nullptr;
365 
366   // If this block loops back to itself, it is necessary to check whether the
367   // use comes after the def.
368   if (MBB->isSuccessor(MBB)) {
369     // Find the first def in the self loop MBB.
370     for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
371       if (DefInst.getParent() != MBB) {
372         MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
373         return true;
374       } else {
375         if (!SelfLoopDef || dominates(*MBB, DefInst.getIterator(), SelfLoopDef))
376           SelfLoopDef = &DefInst;
377       }
378     }
379     if (!SelfLoopDef) {
380       MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
381       return true;
382     }
383   }
384 
385   // See if the first \p Limit uses of the register are all in the current
386   // block.
387   static const unsigned Limit = 8;
388   unsigned C = 0;
389   for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) {
390     if (UseInst.getParent() != MBB || ++C >= Limit) {
391       MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
392       // Cannot be live-out if there are no successors.
393       return !MBB->succ_empty();
394     }
395 
396     if (SelfLoopDef) {
397       // Try to handle some simple cases to avoid spilling and reloading every
398       // value inside a self looping block.
399       if (SelfLoopDef == &UseInst ||
400           !dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) {
401         MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
402         return true;
403       }
404     }
405   }
406 
407   return false;
408 }
409 
410 /// Returns false if \p VirtReg is known to not be live into the current block.
411 bool RegAllocFast::mayLiveIn(Register VirtReg) {
412   if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg)))
413     return !MBB->pred_empty();
414 
415   // See if the first \p Limit def of the register are all in the current block.
416   static const unsigned Limit = 8;
417   unsigned C = 0;
418   for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
419     if (DefInst.getParent() != MBB || ++C >= Limit) {
420       MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
421       return !MBB->pred_empty();
422     }
423   }
424 
425   return false;
426 }
427 
428 /// Insert spill instruction for \p AssignedReg before \p Before. Update
429 /// DBG_VALUEs with \p VirtReg operands with the stack slot.
430 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg,
431                          MCPhysReg AssignedReg, bool Kill, bool LiveOut) {
432   LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI)
433                     << " in " << printReg(AssignedReg, TRI));
434   int FI = getStackSpaceFor(VirtReg);
435   LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');
436 
437   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
438   TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI,
439                            VirtReg);
440   ++NumStores;
441 
442   MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator();
443 
444   // When we spill a virtual register, we will have spill instructions behind
445   // every definition of it, meaning we can switch all the DBG_VALUEs over
446   // to just reference the stack slot.
447   SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg];
448   SmallMapVector<MachineInstr *, SmallVector<const MachineOperand *>, 2>
449       SpilledOperandsMap;
450   for (MachineOperand *MO : LRIDbgOperands)
451     SpilledOperandsMap[MO->getParent()].push_back(MO);
452   for (auto MISpilledOperands : SpilledOperandsMap) {
453     MachineInstr &DBG = *MISpilledOperands.first;
454     // We don't have enough support for tracking operands of DBG_VALUE_LISTs.
455     if (DBG.isDebugValueList())
456       continue;
457     MachineInstr *NewDV = buildDbgValueForSpill(
458         *MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second);
459     assert(NewDV->getParent() == MBB && "dangling parent pointer");
460     (void)NewDV;
461     LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);
462 
463     if (LiveOut) {
464       // We need to insert a DBG_VALUE at the end of the block if the spill slot
465       // is live out, but there is another use of the value after the
466       // spill. This will allow LiveDebugValues to see the correct live out
467       // value to propagate to the successors.
468       MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV);
469       MBB->insert(FirstTerm, ClonedDV);
470       LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n");
471     }
472 
473     // Rewrite unassigned dbg_values to use the stack slot.
474     // TODO We can potentially do this for list debug values as well if we know
475     // how the dbg_values are getting unassigned.
476     if (DBG.isNonListDebugValue()) {
477       MachineOperand &MO = DBG.getDebugOperand(0);
478       if (MO.isReg() && MO.getReg() == 0) {
479         updateDbgValueForSpill(DBG, FI, 0);
480       }
481     }
482   }
483   // Now this register is spilled there is should not be any DBG_VALUE
484   // pointing to this register because they are all pointing to spilled value
485   // now.
486   LRIDbgOperands.clear();
487 }
488 
489 /// Insert reload instruction for \p PhysReg before \p Before.
490 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg,
491                           MCPhysReg PhysReg) {
492   LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
493                     << printReg(PhysReg, TRI) << '\n');
494   int FI = getStackSpaceFor(VirtReg);
495   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
496   TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI, VirtReg);
497   ++NumLoads;
498 }
499 
500 /// Get basic block begin insertion point.
501 /// This is not just MBB.begin() because surprisingly we have EH_LABEL
502 /// instructions marking the begin of a basic block. This means we must insert
503 /// new instructions after such labels...
504 MachineBasicBlock::iterator
505 RegAllocFast::getMBBBeginInsertionPoint(
506   MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const {
507   MachineBasicBlock::iterator I = MBB.begin();
508   while (I != MBB.end()) {
509     if (I->isLabel()) {
510       ++I;
511       continue;
512     }
513 
514     // Most reloads should be inserted after prolog instructions.
515     if (!TII->isBasicBlockPrologue(*I))
516       break;
517 
518     // However if a prolog instruction reads a register that needs to be
519     // reloaded, the reload should be inserted before the prolog.
520     for (MachineOperand &MO : I->operands()) {
521       if (MO.isReg())
522         PrologLiveIns.insert(MO.getReg());
523     }
524 
525     ++I;
526   }
527 
528   return I;
529 }
530 
531 /// Reload all currently assigned virtual registers.
532 void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) {
533   if (LiveVirtRegs.empty())
534     return;
535 
536   for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
537     MCPhysReg Reg = P.PhysReg;
538     // Set state to live-in. This possibly overrides mappings to virtual
539     // registers but we don't care anymore at this point.
540     setPhysRegState(Reg, regLiveIn);
541   }
542 
543 
544   SmallSet<Register, 2> PrologLiveIns;
545 
546   // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
547   // of spilling here is deterministic, if arbitrary.
548   MachineBasicBlock::iterator InsertBefore
549     = getMBBBeginInsertionPoint(MBB, PrologLiveIns);
550   for (const LiveReg &LR : LiveVirtRegs) {
551     MCPhysReg PhysReg = LR.PhysReg;
552     if (PhysReg == 0)
553       continue;
554 
555     MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI);
556     if (RegUnitStates[FirstUnit] == regLiveIn)
557       continue;
558 
559     assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) &&
560            "no reload in start block. Missing vreg def?");
561 
562     if (PrologLiveIns.count(PhysReg)) {
563       // FIXME: Theoretically this should use an insert point skipping labels
564       // but I'm not sure how labels should interact with prolog instruction
565       // that need reloads.
566       reload(MBB.begin(), LR.VirtReg, PhysReg);
567     } else
568       reload(InsertBefore, LR.VirtReg, PhysReg);
569   }
570   LiveVirtRegs.clear();
571 }
572 
573 /// Handle the direct use of a physical register.  Check that the register is
574 /// not used by a virtreg. Kill the physreg, marking it free. This may add
575 /// implicit kills to MO->getParent() and invalidate MO.
576 bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) {
577   assert(Register::isPhysicalRegister(Reg) && "expected physreg");
578   bool displacedAny = displacePhysReg(MI, Reg);
579   setPhysRegState(Reg, regPreAssigned);
580   markRegUsedInInstr(Reg);
581   return displacedAny;
582 }
583 
584 bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) {
585   bool displacedAny = displacePhysReg(MI, Reg);
586   setPhysRegState(Reg, regPreAssigned);
587   return displacedAny;
588 }
589 
590 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very
591 /// similar to defineVirtReg except the physreg is reserved instead of
592 /// allocated.
593 bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) {
594   bool displacedAny = false;
595 
596   for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
597     unsigned Unit = *UI;
598     switch (unsigned VirtReg = RegUnitStates[Unit]) {
599     default: {
600       LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
601       assert(LRI != LiveVirtRegs.end() && "datastructures in sync");
602       MachineBasicBlock::iterator ReloadBefore =
603           std::next((MachineBasicBlock::iterator)MI.getIterator());
604       reload(ReloadBefore, VirtReg, LRI->PhysReg);
605 
606       setPhysRegState(LRI->PhysReg, regFree);
607       LRI->PhysReg = 0;
608       LRI->Reloaded = true;
609       displacedAny = true;
610       break;
611     }
612     case regPreAssigned:
613       RegUnitStates[Unit] = regFree;
614       displacedAny = true;
615       break;
616     case regFree:
617       break;
618     }
619   }
620   return displacedAny;
621 }
622 
623 void RegAllocFast::freePhysReg(MCPhysReg PhysReg) {
624   LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':');
625 
626   MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI);
627   switch (unsigned VirtReg = RegUnitStates[FirstUnit]) {
628   case regFree:
629     LLVM_DEBUG(dbgs() << '\n');
630     return;
631   case regPreAssigned:
632     LLVM_DEBUG(dbgs() << '\n');
633     setPhysRegState(PhysReg, regFree);
634     return;
635   default: {
636       LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
637       assert(LRI != LiveVirtRegs.end());
638       LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n');
639       setPhysRegState(LRI->PhysReg, regFree);
640       LRI->PhysReg = 0;
641     }
642     return;
643   }
644 }
645 
646 /// Return the cost of spilling clearing out PhysReg and aliases so it is free
647 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
648 /// disabled - it can be allocated directly.
649 /// \returns spillImpossible when PhysReg or an alias can't be spilled.
650 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const {
651   for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
652     switch (unsigned VirtReg = RegUnitStates[*UI]) {
653     case regFree:
654       break;
655     case regPreAssigned:
656       LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned "
657                         << printReg(PhysReg, TRI) << '\n');
658       return spillImpossible;
659     default: {
660       bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 ||
661                        findLiveVirtReg(VirtReg)->LiveOut;
662       return SureSpill ? spillClean : spillDirty;
663     }
664     }
665   }
666   return 0;
667 }
668 
669 void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition,
670                                              Register VirtReg, MCPhysReg Reg) {
671   auto UDBGValIter = DanglingDbgValues.find(VirtReg);
672   if (UDBGValIter == DanglingDbgValues.end())
673     return;
674 
675   SmallVectorImpl<MachineInstr*> &Dangling = UDBGValIter->second;
676   for (MachineInstr *DbgValue : Dangling) {
677     assert(DbgValue->isDebugValue());
678     if (!DbgValue->hasDebugOperandForReg(VirtReg))
679       continue;
680 
681     // Test whether the physreg survives from the definition to the DBG_VALUE.
682     MCPhysReg SetToReg = Reg;
683     unsigned Limit = 20;
684     for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()),
685          E = DbgValue->getIterator(); I != E; ++I) {
686       if (I->modifiesRegister(Reg, TRI) || --Limit == 0) {
687         LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
688                    << '\n');
689         SetToReg = 0;
690         break;
691       }
692     }
693     for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) {
694       MO.setReg(SetToReg);
695       if (SetToReg != 0)
696         MO.setIsRenamable();
697     }
698   }
699   Dangling.clear();
700 }
701 
702 /// This method updates local state so that we know that PhysReg is the
703 /// proper container for VirtReg now.  The physical register must not be used
704 /// for anything else when this is called.
705 void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR,
706                                        MCPhysReg PhysReg) {
707   Register VirtReg = LR.VirtReg;
708   LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
709                     << printReg(PhysReg, TRI) << '\n');
710   assert(LR.PhysReg == 0 && "Already assigned a physreg");
711   assert(PhysReg != 0 && "Trying to assign no register");
712   LR.PhysReg = PhysReg;
713   setPhysRegState(PhysReg, VirtReg);
714 
715   assignDanglingDebugValues(AtMI, VirtReg, PhysReg);
716 }
717 
718 static bool isCoalescable(const MachineInstr &MI) {
719   return MI.isFullCopy();
720 }
721 
722 Register RegAllocFast::traceCopyChain(Register Reg) const {
723   static const unsigned ChainLengthLimit = 3;
724   unsigned C = 0;
725   do {
726     if (Reg.isPhysical())
727       return Reg;
728     assert(Reg.isVirtual());
729 
730     MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg);
731     if (!VRegDef || !isCoalescable(*VRegDef))
732       return 0;
733     Reg = VRegDef->getOperand(1).getReg();
734   } while (++C <= ChainLengthLimit);
735   return 0;
736 }
737 
738 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the
739 /// chain of copies to check whether we reach a physical register we can
740 /// coalesce with.
741 Register RegAllocFast::traceCopies(Register VirtReg) const {
742   static const unsigned DefLimit = 3;
743   unsigned C = 0;
744   for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) {
745     if (isCoalescable(MI)) {
746       Register Reg = MI.getOperand(1).getReg();
747       Reg = traceCopyChain(Reg);
748       if (Reg.isValid())
749         return Reg;
750     }
751 
752     if (++C >= DefLimit)
753       break;
754   }
755   return Register();
756 }
757 
758 /// Allocates a physical register for VirtReg.
759 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR,
760                                 Register Hint0, bool LookAtPhysRegUses) {
761   const Register VirtReg = LR.VirtReg;
762   assert(LR.PhysReg == 0);
763 
764   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
765   LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
766                     << " in class " << TRI->getRegClassName(&RC)
767                     << " with hint " << printReg(Hint0, TRI) << '\n');
768 
769   // Take hint when possible.
770   if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) &&
771       !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) {
772     // Take hint if the register is currently free.
773     if (isPhysRegFree(Hint0)) {
774       LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
775                         << '\n');
776       assignVirtToPhysReg(MI, LR, Hint0);
777       return;
778     } else {
779       LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI)
780                         << " occupied\n");
781     }
782   } else {
783     Hint0 = Register();
784   }
785 
786 
787   // Try other hint.
788   Register Hint1 = traceCopies(VirtReg);
789   if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) &&
790       !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) {
791     // Take hint if the register is currently free.
792     if (isPhysRegFree(Hint1)) {
793       LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
794                  << '\n');
795       assignVirtToPhysReg(MI, LR, Hint1);
796       return;
797     } else {
798       LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI)
799                  << " occupied\n");
800     }
801   } else {
802     Hint1 = Register();
803   }
804 
805   MCPhysReg BestReg = 0;
806   unsigned BestCost = spillImpossible;
807   ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
808   for (MCPhysReg PhysReg : AllocationOrder) {
809     LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
810     if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) {
811       LLVM_DEBUG(dbgs() << "already used in instr.\n");
812       continue;
813     }
814 
815     unsigned Cost = calcSpillCost(PhysReg);
816     LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
817     // Immediate take a register with cost 0.
818     if (Cost == 0) {
819       assignVirtToPhysReg(MI, LR, PhysReg);
820       return;
821     }
822 
823     if (PhysReg == Hint0 || PhysReg == Hint1)
824       Cost -= spillPrefBonus;
825 
826     if (Cost < BestCost) {
827       BestReg = PhysReg;
828       BestCost = Cost;
829     }
830   }
831 
832   if (!BestReg) {
833     // Nothing we can do: Report an error and keep going with an invalid
834     // allocation.
835     if (MI.isInlineAsm())
836       MI.emitError("inline assembly requires more registers than available");
837     else
838       MI.emitError("ran out of registers during register allocation");
839 
840     LR.Error = true;
841     LR.PhysReg = 0;
842     return;
843   }
844 
845   displacePhysReg(MI, BestReg);
846   assignVirtToPhysReg(MI, LR, BestReg);
847 }
848 
849 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) {
850   assert(MO.isUndef() && "expected undef use");
851   Register VirtReg = MO.getReg();
852   assert(VirtReg.isVirtual() && "Expected virtreg");
853   if (!shouldAllocateRegister(VirtReg))
854     return;
855 
856   LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
857   MCPhysReg PhysReg;
858   if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
859     PhysReg = LRI->PhysReg;
860   } else {
861     const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
862     ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
863     assert(!AllocationOrder.empty() && "Allocation order must not be empty");
864     PhysReg = AllocationOrder[0];
865   }
866 
867   unsigned SubRegIdx = MO.getSubReg();
868   if (SubRegIdx != 0) {
869     PhysReg = TRI->getSubReg(PhysReg, SubRegIdx);
870     MO.setSubReg(0);
871   }
872   MO.setReg(PhysReg);
873   MO.setIsRenamable(true);
874 }
875 
876 /// Variation of defineVirtReg() with special handling for livethrough regs
877 /// (tied or earlyclobber) that may interfere with preassigned uses.
878 void RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
879                                             Register VirtReg) {
880   if (!shouldAllocateRegister(VirtReg))
881     return;
882   LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
883   if (LRI != LiveVirtRegs.end()) {
884     MCPhysReg PrevReg = LRI->PhysReg;
885     if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) {
886       LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI)
887                         << " (tied/earlyclobber resolution)\n");
888       freePhysReg(PrevReg);
889       LRI->PhysReg = 0;
890       allocVirtReg(MI, *LRI, 0, true);
891       MachineBasicBlock::iterator InsertBefore =
892         std::next((MachineBasicBlock::iterator)MI.getIterator());
893       LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to "
894                         << printReg(PrevReg, TRI) << '\n');
895       BuildMI(*MBB, InsertBefore, MI.getDebugLoc(),
896               TII->get(TargetOpcode::COPY), PrevReg)
897         .addReg(LRI->PhysReg, llvm::RegState::Kill);
898     }
899     MachineOperand &MO = MI.getOperand(OpNum);
900     if (MO.getSubReg() && !MO.isUndef()) {
901       LRI->LastUse = &MI;
902     }
903   }
904   return defineVirtReg(MI, OpNum, VirtReg, true);
905 }
906 
907 /// Allocates a register for VirtReg definition. Typically the register is
908 /// already assigned from a use of the virtreg, however we still need to
909 /// perform an allocation if:
910 /// - It is a dead definition without any uses.
911 /// - The value is live out and all uses are in different basic blocks.
912 void RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum,
913                                  Register VirtReg, bool LookAtPhysRegUses) {
914   assert(VirtReg.isVirtual() && "Not a virtual register");
915   if (!shouldAllocateRegister(VirtReg))
916     return;
917   MachineOperand &MO = MI.getOperand(OpNum);
918   LiveRegMap::iterator LRI;
919   bool New;
920   std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
921   if (New) {
922     if (!MO.isDead()) {
923       if (mayLiveOut(VirtReg)) {
924         LRI->LiveOut = true;
925       } else {
926         // It is a dead def without the dead flag; add the flag now.
927         MO.setIsDead(true);
928       }
929     }
930   }
931   if (LRI->PhysReg == 0)
932     allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses);
933   else {
934     assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) &&
935            "TODO: preassign mismatch");
936     LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI)
937                       << " use existing assignment to "
938                       << printReg(LRI->PhysReg, TRI) << '\n');
939   }
940 
941   MCPhysReg PhysReg = LRI->PhysReg;
942   assert(PhysReg != 0 && "Register not assigned");
943   if (LRI->Reloaded || LRI->LiveOut) {
944     if (!MI.isImplicitDef()) {
945       MachineBasicBlock::iterator SpillBefore =
946           std::next((MachineBasicBlock::iterator)MI.getIterator());
947       LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut << " RL: "
948                         << LRI->Reloaded << '\n');
949       bool Kill = LRI->LastUse == nullptr;
950       spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut);
951       LRI->LastUse = nullptr;
952     }
953     LRI->LiveOut = false;
954     LRI->Reloaded = false;
955   }
956   if (MI.getOpcode() == TargetOpcode::BUNDLE) {
957     BundleVirtRegsMap[VirtReg] = PhysReg;
958   }
959   markRegUsedInInstr(PhysReg);
960   setPhysReg(MI, MO, PhysReg);
961 }
962 
963 /// Allocates a register for a VirtReg use.
964 void RegAllocFast::useVirtReg(MachineInstr &MI, unsigned OpNum,
965                               Register VirtReg) {
966   assert(VirtReg.isVirtual() && "Not a virtual register");
967   if (!shouldAllocateRegister(VirtReg))
968     return;
969   MachineOperand &MO = MI.getOperand(OpNum);
970   LiveRegMap::iterator LRI;
971   bool New;
972   std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
973   if (New) {
974     MachineOperand &MO = MI.getOperand(OpNum);
975     if (!MO.isKill()) {
976       if (mayLiveOut(VirtReg)) {
977         LRI->LiveOut = true;
978       } else {
979         // It is a last (killing) use without the kill flag; add the flag now.
980         MO.setIsKill(true);
981       }
982     }
983   } else {
984     assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag");
985   }
986 
987   // If necessary allocate a register.
988   if (LRI->PhysReg == 0) {
989     assert(!MO.isTied() && "tied op should be allocated");
990     Register Hint;
991     if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) {
992       Hint = MI.getOperand(0).getReg();
993       if (Hint.isVirtual()) {
994         assert(!shouldAllocateRegister(Hint));
995         Hint = Register();
996       } else {
997         assert(Hint.isPhysical() &&
998                "Copy destination should already be assigned");
999       }
1000     }
1001     allocVirtReg(MI, *LRI, Hint, false);
1002     if (LRI->Error) {
1003       const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
1004       ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
1005       setPhysReg(MI, MO, *AllocationOrder.begin());
1006       return;
1007     }
1008   }
1009 
1010   LRI->LastUse = &MI;
1011 
1012   if (MI.getOpcode() == TargetOpcode::BUNDLE) {
1013     BundleVirtRegsMap[VirtReg] = LRI->PhysReg;
1014   }
1015   markRegUsedInInstr(LRI->PhysReg);
1016   setPhysReg(MI, MO, LRI->PhysReg);
1017 }
1018 
1019 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This
1020 /// may invalidate any operand pointers.  Return true if the operand kills its
1021 /// register.
1022 void RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO,
1023                               MCPhysReg PhysReg) {
1024   if (!MO.getSubReg()) {
1025     MO.setReg(PhysReg);
1026     MO.setIsRenamable(true);
1027     return;
1028   }
1029 
1030   // Handle subregister index.
1031   MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister());
1032   MO.setIsRenamable(true);
1033   // Note: We leave the subreg number around a little longer in case of defs.
1034   // This is so that the register freeing logic in allocateInstruction can still
1035   // recognize this as subregister defs. The code there will clear the number.
1036   if (!MO.isDef())
1037     MO.setSubReg(0);
1038 
1039   // A kill flag implies killing the full register. Add corresponding super
1040   // register kill.
1041   if (MO.isKill()) {
1042     MI.addRegisterKilled(PhysReg, TRI, true);
1043     return;
1044   }
1045 
1046   // A <def,read-undef> of a sub-register requires an implicit def of the full
1047   // register.
1048   if (MO.isDef() && MO.isUndef()) {
1049     if (MO.isDead())
1050       MI.addRegisterDead(PhysReg, TRI, true);
1051     else
1052       MI.addRegisterDefined(PhysReg, TRI);
1053   }
1054 }
1055 
1056 #ifndef NDEBUG
1057 
1058 void RegAllocFast::dumpState() const {
1059   for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE;
1060        ++Unit) {
1061     switch (unsigned VirtReg = RegUnitStates[Unit]) {
1062     case regFree:
1063       break;
1064     case regPreAssigned:
1065       dbgs() << " " << printRegUnit(Unit, TRI) << "[P]";
1066       break;
1067     case regLiveIn:
1068       llvm_unreachable("Should not have regLiveIn in map");
1069     default: {
1070       dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg);
1071       LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
1072       assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry");
1073       if (I->LiveOut || I->Reloaded) {
1074         dbgs() << '[';
1075         if (I->LiveOut) dbgs() << 'O';
1076         if (I->Reloaded) dbgs() << 'R';
1077         dbgs() << ']';
1078       }
1079       assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present");
1080       break;
1081     }
1082     }
1083   }
1084   dbgs() << '\n';
1085   // Check that LiveVirtRegs is the inverse.
1086   for (const LiveReg &LR : LiveVirtRegs) {
1087     Register VirtReg = LR.VirtReg;
1088     assert(VirtReg.isVirtual() && "Bad map key");
1089     MCPhysReg PhysReg = LR.PhysReg;
1090     if (PhysReg != 0) {
1091       assert(Register::isPhysicalRegister(PhysReg) &&
1092              "mapped to physreg");
1093       for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
1094         assert(RegUnitStates[*UI] == VirtReg && "inverse map valid");
1095       }
1096     }
1097   }
1098 }
1099 #endif
1100 
1101 /// Count number of defs consumed from each register class by \p Reg
1102 void RegAllocFast::addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts,
1103                                         Register Reg) const {
1104   assert(RegClassDefCounts.size() == TRI->getNumRegClasses());
1105 
1106   if (Reg.isVirtual()) {
1107     if (!shouldAllocateRegister(Reg))
1108       return;
1109     const TargetRegisterClass *OpRC = MRI->getRegClass(Reg);
1110     for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
1111          RCIdx != RCIdxEnd; ++RCIdx) {
1112       const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
1113       // FIXME: Consider aliasing sub/super registers.
1114       if (OpRC->hasSubClassEq(IdxRC))
1115         ++RegClassDefCounts[RCIdx];
1116     }
1117 
1118     return;
1119   }
1120 
1121   for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
1122        RCIdx != RCIdxEnd; ++RCIdx) {
1123     const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
1124     for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
1125       if (IdxRC->contains(*Alias)) {
1126         ++RegClassDefCounts[RCIdx];
1127         break;
1128       }
1129     }
1130   }
1131 }
1132 
1133 void RegAllocFast::allocateInstruction(MachineInstr &MI) {
1134   // The basic algorithm here is:
1135   // 1. Mark registers of def operands as free
1136   // 2. Allocate registers to use operands and place reload instructions for
1137   //    registers displaced by the allocation.
1138   //
1139   // However we need to handle some corner cases:
1140   // - pre-assigned defs and uses need to be handled before the other def/use
1141   //   operands are processed to avoid the allocation heuristics clashing with
1142   //   the pre-assignment.
1143   // - The "free def operands" step has to come last instead of first for tied
1144   //   operands and early-clobbers.
1145 
1146   UsedInInstr.clear();
1147   RegMasks.clear();
1148   BundleVirtRegsMap.clear();
1149 
1150   auto TiedOpIsUndef = [&](const MachineOperand &MO, unsigned Idx) {
1151     assert(MO.isTied());
1152     unsigned TiedIdx = MI.findTiedOperandIdx(Idx);
1153     const MachineOperand &TiedMO = MI.getOperand(TiedIdx);
1154     return TiedMO.isUndef();
1155   };
1156   // Scan for special cases; Apply pre-assigned register defs to state.
1157   bool HasPhysRegUse = false;
1158   bool HasRegMask = false;
1159   bool HasVRegDef = false;
1160   bool HasDef = false;
1161   bool HasEarlyClobber = false;
1162   bool NeedToAssignLiveThroughs = false;
1163   for (unsigned I = 0; I < MI.getNumOperands(); ++I) {
1164     MachineOperand &MO = MI.getOperand(I);
1165     if (MO.isReg()) {
1166       Register Reg = MO.getReg();
1167       if (Reg.isVirtual()) {
1168         if (!shouldAllocateRegister(Reg))
1169           continue;
1170         if (MO.isDef()) {
1171           HasDef = true;
1172           HasVRegDef = true;
1173           if (MO.isEarlyClobber()) {
1174             HasEarlyClobber = true;
1175             NeedToAssignLiveThroughs = true;
1176           }
1177           if ((MO.isTied() && !TiedOpIsUndef(MO, I)) ||
1178               (MO.getSubReg() != 0 && !MO.isUndef()))
1179             NeedToAssignLiveThroughs = true;
1180         }
1181       } else if (Reg.isPhysical()) {
1182         if (!MRI->isReserved(Reg)) {
1183           if (MO.isDef()) {
1184             HasDef = true;
1185             bool displacedAny = definePhysReg(MI, Reg);
1186             if (MO.isEarlyClobber())
1187               HasEarlyClobber = true;
1188             if (!displacedAny)
1189               MO.setIsDead(true);
1190           }
1191           if (MO.readsReg())
1192             HasPhysRegUse = true;
1193         }
1194       }
1195     } else if (MO.isRegMask()) {
1196       HasRegMask = true;
1197       RegMasks.push_back(MO.getRegMask());
1198     }
1199   }
1200 
1201   // Allocate virtreg defs.
1202   if (HasDef) {
1203     if (HasVRegDef) {
1204       // Special handling for early clobbers, tied operands or subregister defs:
1205       // Compared to "normal" defs these:
1206       // - Must not use a register that is pre-assigned for a use operand.
1207       // - In order to solve tricky inline assembly constraints we change the
1208       //   heuristic to figure out a good operand order before doing
1209       //   assignments.
1210       if (NeedToAssignLiveThroughs) {
1211         DefOperandIndexes.clear();
1212         PhysRegUses.clear();
1213 
1214         // Track number of defs which may consume a register from the class.
1215         std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0);
1216         assert(RegClassDefCounts[0] == 0);
1217 
1218         LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n");
1219         for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
1220           const MachineOperand &MO = MI.getOperand(I);
1221           if (!MO.isReg())
1222             continue;
1223           Register Reg = MO.getReg();
1224           if (MO.readsReg()) {
1225             if (Reg.isPhysical()) {
1226               LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI)
1227                                 << '\n');
1228               markPhysRegUsedInInstr(Reg);
1229             }
1230           }
1231 
1232           if (MO.isDef()) {
1233             if (Reg.isVirtual() && shouldAllocateRegister(Reg))
1234               DefOperandIndexes.push_back(I);
1235 
1236             addRegClassDefCounts(RegClassDefCounts, Reg);
1237           }
1238         }
1239 
1240         llvm::sort(DefOperandIndexes, [&](uint16_t I0, uint16_t I1) {
1241           const MachineOperand &MO0 = MI.getOperand(I0);
1242           const MachineOperand &MO1 = MI.getOperand(I1);
1243           Register Reg0 = MO0.getReg();
1244           Register Reg1 = MO1.getReg();
1245           const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0);
1246           const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1);
1247 
1248           // Identify regclass that are easy to use up completely just in this
1249           // instruction.
1250           unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size();
1251           unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size();
1252 
1253           bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()];
1254           bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()];
1255           if (SmallClass0 > SmallClass1)
1256             return true;
1257           if (SmallClass0 < SmallClass1)
1258             return false;
1259 
1260           // Allocate early clobbers and livethrough operands first.
1261           bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() ||
1262                               (MO0.getSubReg() == 0 && !MO0.isUndef());
1263           bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() ||
1264                               (MO1.getSubReg() == 0 && !MO1.isUndef());
1265           if (Livethrough0 > Livethrough1)
1266             return true;
1267           if (Livethrough0 < Livethrough1)
1268             return false;
1269 
1270           // Tie-break rule: operand index.
1271           return I0 < I1;
1272         });
1273 
1274         for (uint16_t OpIdx : DefOperandIndexes) {
1275           MachineOperand &MO = MI.getOperand(OpIdx);
1276           LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n');
1277           unsigned Reg = MO.getReg();
1278           if (MO.isEarlyClobber() ||
1279               (MO.isTied() && !TiedOpIsUndef(MO, OpIdx)) ||
1280               (MO.getSubReg() && !MO.isUndef())) {
1281             defineLiveThroughVirtReg(MI, OpIdx, Reg);
1282           } else {
1283             defineVirtReg(MI, OpIdx, Reg);
1284           }
1285         }
1286       } else {
1287         // Assign virtual register defs.
1288         for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
1289           MachineOperand &MO = MI.getOperand(I);
1290           if (!MO.isReg() || !MO.isDef())
1291             continue;
1292           Register Reg = MO.getReg();
1293           if (Reg.isVirtual())
1294             defineVirtReg(MI, I, Reg);
1295         }
1296       }
1297     }
1298 
1299     // Free registers occupied by defs.
1300     // Iterate operands in reverse order, so we see the implicit super register
1301     // defs first (we added them earlier in case of <def,read-undef>).
1302     for (signed I = MI.getNumOperands() - 1; I >= 0; --I) {
1303       MachineOperand &MO = MI.getOperand(I);
1304       if (!MO.isReg() || !MO.isDef())
1305         continue;
1306 
1307       // subreg defs don't free the full register. We left the subreg number
1308       // around as a marker in setPhysReg() to recognize this case here.
1309       if (MO.getSubReg() != 0) {
1310         MO.setSubReg(0);
1311         continue;
1312       }
1313 
1314       assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) &&
1315              "tied def assigned to clobbered register");
1316 
1317       // Do not free tied operands and early clobbers.
1318       if ((MO.isTied() && !TiedOpIsUndef(MO, I)) || MO.isEarlyClobber())
1319         continue;
1320       Register Reg = MO.getReg();
1321       if (!Reg)
1322         continue;
1323       if (Reg.isVirtual()) {
1324         assert(!shouldAllocateRegister(Reg));
1325         continue;
1326       }
1327       assert(Reg.isPhysical());
1328       if (MRI->isReserved(Reg))
1329         continue;
1330       freePhysReg(Reg);
1331       unmarkRegUsedInInstr(Reg);
1332     }
1333   }
1334 
1335   // Displace clobbered registers.
1336   if (HasRegMask) {
1337     assert(!RegMasks.empty() && "expected RegMask");
1338     // MRI bookkeeping.
1339     for (const auto *RM : RegMasks)
1340       MRI->addPhysRegsUsedFromRegMask(RM);
1341 
1342     // Displace clobbered registers.
1343     for (const LiveReg &LR : LiveVirtRegs) {
1344       MCPhysReg PhysReg = LR.PhysReg;
1345       if (PhysReg != 0 && isClobberedByRegMasks(PhysReg))
1346         displacePhysReg(MI, PhysReg);
1347     }
1348   }
1349 
1350   // Apply pre-assigned register uses to state.
1351   if (HasPhysRegUse) {
1352     for (MachineOperand &MO : MI.operands()) {
1353       if (!MO.isReg() || !MO.readsReg())
1354         continue;
1355       Register Reg = MO.getReg();
1356       if (!Reg.isPhysical())
1357         continue;
1358       if (MRI->isReserved(Reg))
1359         continue;
1360       bool displacedAny = usePhysReg(MI, Reg);
1361       if (!displacedAny)
1362         MO.setIsKill(true);
1363     }
1364   }
1365 
1366   // Allocate virtreg uses and insert reloads as necessary.
1367   bool HasUndefUse = false;
1368   for (unsigned I = 0; I < MI.getNumOperands(); ++I) {
1369     MachineOperand &MO = MI.getOperand(I);
1370     if (!MO.isReg() || !MO.isUse())
1371       continue;
1372     Register Reg = MO.getReg();
1373     if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
1374       continue;
1375 
1376     if (MO.isUndef()) {
1377       HasUndefUse = true;
1378       continue;
1379     }
1380 
1381 
1382     // Populate MayLiveAcrossBlocks in case the use block is allocated before
1383     // the def block (removing the vreg uses).
1384     mayLiveIn(Reg);
1385 
1386 
1387     assert(!MO.isInternalRead() && "Bundles not supported");
1388     assert(MO.readsReg() && "reading use");
1389     useVirtReg(MI, I, Reg);
1390   }
1391 
1392   // Allocate undef operands. This is a separate step because in a situation
1393   // like  ` = OP undef %X, %X`    both operands need the same register assign
1394   // so we should perform the normal assignment first.
1395   if (HasUndefUse) {
1396     for (MachineOperand &MO : MI.uses()) {
1397       if (!MO.isReg() || !MO.isUse())
1398         continue;
1399       Register Reg = MO.getReg();
1400       if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
1401         continue;
1402 
1403       assert(MO.isUndef() && "Should only have undef virtreg uses left");
1404       allocVirtRegUndef(MO);
1405     }
1406   }
1407 
1408   // Free early clobbers.
1409   if (HasEarlyClobber) {
1410     for (MachineOperand &MO : llvm::reverse(MI.operands())) {
1411       if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber())
1412         continue;
1413       assert(!MO.getSubReg() && "should be already handled in def processing");
1414 
1415       Register Reg = MO.getReg();
1416       if (!Reg)
1417         continue;
1418       if (Reg.isVirtual()) {
1419         assert(!shouldAllocateRegister(Reg));
1420         continue;
1421       }
1422       assert(Reg.isPhysical() && "should have register assigned");
1423 
1424       // We sometimes get odd situations like:
1425       //    early-clobber %x0 = INSTRUCTION %x0
1426       // which is semantically questionable as the early-clobber should
1427       // apply before the use. But in practice we consider the use to
1428       // happen before the early clobber now. Don't free the early clobber
1429       // register in this case.
1430       if (MI.readsRegister(Reg, TRI))
1431         continue;
1432 
1433       freePhysReg(Reg);
1434     }
1435   }
1436 
1437   LLVM_DEBUG(dbgs() << "<< " << MI);
1438   if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
1439       MI.getNumOperands() == 2) {
1440     LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
1441     Coalesced.push_back(&MI);
1442   }
1443 }
1444 
1445 void RegAllocFast::handleDebugValue(MachineInstr &MI) {
1446   // Ignore DBG_VALUEs that aren't based on virtual registers. These are
1447   // mostly constants and frame indices.
1448   for (Register Reg : MI.getUsedDebugRegs()) {
1449     if (!Reg.isVirtual())
1450       continue;
1451     if (!shouldAllocateRegister(Reg))
1452       continue;
1453 
1454     // Already spilled to a stackslot?
1455     int SS = StackSlotForVirtReg[Reg];
1456     if (SS != -1) {
1457       // Modify DBG_VALUE now that the value is in a spill slot.
1458       updateDbgValueForSpill(MI, SS, Reg);
1459       LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI);
1460       continue;
1461     }
1462 
1463     // See if this virtual register has already been allocated to a physical
1464     // register or spilled to a stack slot.
1465     LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
1466     SmallVector<MachineOperand *> DbgOps;
1467     for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg))
1468       DbgOps.push_back(&Op);
1469 
1470     if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
1471       // Update every use of Reg within MI.
1472       for (auto &RegMO : DbgOps)
1473         setPhysReg(MI, *RegMO, LRI->PhysReg);
1474     } else {
1475       DanglingDbgValues[Reg].push_back(&MI);
1476     }
1477 
1478     // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
1479     // that future spills of Reg will have DBG_VALUEs.
1480     LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end());
1481   }
1482 }
1483 
1484 void RegAllocFast::handleBundle(MachineInstr &MI) {
1485   MachineBasicBlock::instr_iterator BundledMI = MI.getIterator();
1486   ++BundledMI;
1487   while (BundledMI->isBundledWithPred()) {
1488     for (MachineOperand &MO : BundledMI->operands()) {
1489       if (!MO.isReg())
1490         continue;
1491 
1492       Register Reg = MO.getReg();
1493       if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
1494         continue;
1495 
1496       DenseMap<Register, MCPhysReg>::iterator DI;
1497       DI = BundleVirtRegsMap.find(Reg);
1498       assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register");
1499 
1500       setPhysReg(MI, MO, DI->second);
1501     }
1502 
1503     ++BundledMI;
1504   }
1505 }
1506 
1507 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) {
1508   this->MBB = &MBB;
1509   LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);
1510 
1511   RegUnitStates.assign(TRI->getNumRegUnits(), regFree);
1512   assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
1513 
1514   for (const auto &LiveReg : MBB.liveouts())
1515     setPhysRegState(LiveReg.PhysReg, regPreAssigned);
1516 
1517   Coalesced.clear();
1518 
1519   // Traverse block in reverse order allocating instructions one by one.
1520   for (MachineInstr &MI : reverse(MBB)) {
1521     LLVM_DEBUG(
1522       dbgs() << "\n>> " << MI << "Regs:";
1523       dumpState()
1524     );
1525 
1526     // Special handling for debug values. Note that they are not allowed to
1527     // affect codegen of the other instructions in any way.
1528     if (MI.isDebugValue()) {
1529       handleDebugValue(MI);
1530       continue;
1531     }
1532 
1533     allocateInstruction(MI);
1534 
1535     // Once BUNDLE header is assigned registers, same assignments need to be
1536     // done for bundled MIs.
1537     if (MI.getOpcode() == TargetOpcode::BUNDLE) {
1538       handleBundle(MI);
1539     }
1540   }
1541 
1542   LLVM_DEBUG(
1543     dbgs() << "Begin Regs:";
1544     dumpState()
1545   );
1546 
1547   // Spill all physical registers holding virtual registers now.
1548   LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n");
1549   reloadAtBegin(MBB);
1550 
1551   // Erase all the coalesced copies. We are delaying it until now because
1552   // LiveVirtRegs might refer to the instrs.
1553   for (MachineInstr *MI : Coalesced)
1554     MBB.erase(MI);
1555   NumCoalesced += Coalesced.size();
1556 
1557   for (auto &UDBGPair : DanglingDbgValues) {
1558     for (MachineInstr *DbgValue : UDBGPair.second) {
1559       assert(DbgValue->isDebugValue() && "expected DBG_VALUE");
1560       // Nothing to do if the vreg was spilled in the meantime.
1561       if (!DbgValue->hasDebugOperandForReg(UDBGPair.first))
1562         continue;
1563       LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
1564                  << '\n');
1565       DbgValue->setDebugValueUndef();
1566     }
1567   }
1568   DanglingDbgValues.clear();
1569 
1570   LLVM_DEBUG(MBB.dump());
1571 }
1572 
1573 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) {
1574   LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1575                     << "********** Function: " << MF.getName() << '\n');
1576   MRI = &MF.getRegInfo();
1577   const TargetSubtargetInfo &STI = MF.getSubtarget();
1578   TRI = STI.getRegisterInfo();
1579   TII = STI.getInstrInfo();
1580   MFI = &MF.getFrameInfo();
1581   MRI->freezeReservedRegs(MF);
1582   RegClassInfo.runOnMachineFunction(MF);
1583   unsigned NumRegUnits = TRI->getNumRegUnits();
1584   UsedInInstr.clear();
1585   UsedInInstr.setUniverse(NumRegUnits);
1586   PhysRegUses.clear();
1587   PhysRegUses.setUniverse(NumRegUnits);
1588 
1589   // initialize the virtual->physical register map to have a 'null'
1590   // mapping for all virtual registers
1591   unsigned NumVirtRegs = MRI->getNumVirtRegs();
1592   StackSlotForVirtReg.resize(NumVirtRegs);
1593   LiveVirtRegs.setUniverse(NumVirtRegs);
1594   MayLiveAcrossBlocks.clear();
1595   MayLiveAcrossBlocks.resize(NumVirtRegs);
1596 
1597   // Loop over all of the basic blocks, eliminating virtual register references
1598   for (MachineBasicBlock &MBB : MF)
1599     allocateBasicBlock(MBB);
1600 
1601   if (ClearVirtRegs) {
1602     // All machine operands and other references to virtual registers have been
1603     // replaced. Remove the virtual registers.
1604     MRI->clearVirtRegs();
1605   }
1606 
1607   StackSlotForVirtReg.clear();
1608   LiveDbgValueMap.clear();
1609   return true;
1610 }
1611 
1612 FunctionPass *llvm::createFastRegisterAllocator() {
1613   return new RegAllocFast();
1614 }
1615 
1616 FunctionPass *llvm::createFastRegisterAllocator(RegClassFilterFunc Ftor,
1617                                                 bool ClearVirtRegs) {
1618   return new RegAllocFast(Ftor, ClearVirtRegs);
1619 }
1620