1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/SparseSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/RegAllocCommon.h" 32 #include "llvm/CodeGen/RegAllocRegistry.h" 33 #include "llvm/CodeGen/RegisterClassInfo.h" 34 #include "llvm/CodeGen/TargetInstrInfo.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/TargetSubtargetInfo.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <cassert> 45 #include <tuple> 46 #include <vector> 47 48 using namespace llvm; 49 50 #define DEBUG_TYPE "regalloc" 51 52 STATISTIC(NumStores, "Number of stores added"); 53 STATISTIC(NumLoads, "Number of loads added"); 54 STATISTIC(NumCoalesced, "Number of copies coalesced"); 55 56 // FIXME: Remove this switch when all testcases are fixed! 57 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs", 58 cl::Hidden); 59 60 static RegisterRegAlloc fastRegAlloc("fast", "fast register allocator", 61 createFastRegisterAllocator); 62 63 namespace { 64 65 /// Assign ascending index for instructions in machine basic block. The index 66 /// can be used to determine dominance between instructions in same MBB. 67 class InstrPosIndexes { 68 public: 69 void unsetInitialized() { IsInitialized = false; } 70 71 void init(const MachineBasicBlock &MBB) { 72 CurMBB = &MBB; 73 Instr2PosIndex.clear(); 74 uint64_t LastIndex = 0; 75 for (const MachineInstr &MI : MBB) { 76 LastIndex += InstrDist; 77 Instr2PosIndex[&MI] = LastIndex; 78 } 79 } 80 81 /// Set \p Index to index of \p MI. If \p MI is new inserted, it try to assign 82 /// index without affecting existing instruction's index. Return true if all 83 /// instructions index has been reassigned. 84 bool getIndex(const MachineInstr &MI, uint64_t &Index) { 85 if (!IsInitialized) { 86 init(*MI.getParent()); 87 IsInitialized = true; 88 Index = Instr2PosIndex.at(&MI); 89 return true; 90 } 91 92 assert(MI.getParent() == CurMBB && "MI is not in CurMBB"); 93 auto It = Instr2PosIndex.find(&MI); 94 if (It != Instr2PosIndex.end()) { 95 Index = It->second; 96 return false; 97 } 98 99 // Distance is the number of consecutive unassigned instructions including 100 // MI. Start is the first instruction of them. End is the next of last 101 // instruction of them. 102 // e.g. 103 // |Instruction| A | B | C | MI | D | E | 104 // | Index | 1024 | | | | | 2048 | 105 // 106 // In this case, B, C, MI, D are unassigned. Distance is 4, Start is B, End 107 // is E. 108 unsigned Distance = 1; 109 MachineBasicBlock::const_iterator Start = MI.getIterator(), 110 End = std::next(Start); 111 while (Start != CurMBB->begin() && 112 !Instr2PosIndex.count(&*std::prev(Start))) { 113 --Start; 114 ++Distance; 115 } 116 while (End != CurMBB->end() && !Instr2PosIndex.count(&*(End))) { 117 ++End; 118 ++Distance; 119 } 120 121 // LastIndex is initialized to last used index prior to MI or zero. 122 // In previous example, LastIndex is 1024, EndIndex is 2048; 123 uint64_t LastIndex = 124 Start == CurMBB->begin() ? 0 : Instr2PosIndex.at(&*std::prev(Start)); 125 uint64_t Step; 126 if (End == CurMBB->end()) 127 Step = static_cast<uint64_t>(InstrDist); 128 else { 129 // No instruction uses index zero. 130 uint64_t EndIndex = Instr2PosIndex.at(&*End); 131 assert(EndIndex > LastIndex && "Index must be ascending order"); 132 unsigned NumAvailableIndexes = EndIndex - LastIndex - 1; 133 // We want index gap between two adjacent MI is as same as possible. Given 134 // total A available indexes, D is number of consecutive unassigned 135 // instructions, S is the step. 136 // |<- S-1 -> MI <- S-1 -> MI <- A-S*D ->| 137 // There're S-1 available indexes between unassigned instruction and its 138 // predecessor. There're A-S*D available indexes between the last 139 // unassigned instruction and its successor. 140 // Ideally, we want 141 // S-1 = A-S*D 142 // then 143 // S = (A+1)/(D+1) 144 // An valid S must be integer greater than zero, so 145 // S <= (A+1)/(D+1) 146 // => 147 // A-S*D >= 0 148 // That means we can safely use (A+1)/(D+1) as step. 149 // In previous example, Step is 204, Index of B, C, MI, D is 1228, 1432, 150 // 1636, 1840. 151 Step = (NumAvailableIndexes + 1) / (Distance + 1); 152 } 153 154 // Reassign index for all instructions if number of new inserted 155 // instructions exceed slot or all instructions are new. 156 if (LLVM_UNLIKELY(!Step || (!LastIndex && Step == InstrDist))) { 157 init(*CurMBB); 158 Index = Instr2PosIndex.at(&MI); 159 return true; 160 } 161 162 for (auto I = Start; I != End; ++I) { 163 LastIndex += Step; 164 Instr2PosIndex[&*I] = LastIndex; 165 } 166 Index = Instr2PosIndex.at(&MI); 167 return false; 168 } 169 170 private: 171 bool IsInitialized = false; 172 enum { InstrDist = 1024 }; 173 const MachineBasicBlock *CurMBB = nullptr; 174 DenseMap<const MachineInstr *, uint64_t> Instr2PosIndex; 175 }; 176 177 class RegAllocFast : public MachineFunctionPass { 178 public: 179 static char ID; 180 181 RegAllocFast(const RegClassFilterFunc F = allocateAllRegClasses, 182 bool ClearVirtRegs_ = true) 183 : MachineFunctionPass(ID), ShouldAllocateClass(F), 184 StackSlotForVirtReg(-1), ClearVirtRegs(ClearVirtRegs_) {} 185 186 private: 187 MachineFrameInfo *MFI = nullptr; 188 MachineRegisterInfo *MRI = nullptr; 189 const TargetRegisterInfo *TRI = nullptr; 190 const TargetInstrInfo *TII = nullptr; 191 RegisterClassInfo RegClassInfo; 192 const RegClassFilterFunc ShouldAllocateClass; 193 194 /// Basic block currently being allocated. 195 MachineBasicBlock *MBB = nullptr; 196 197 /// Maps virtual regs to the frame index where these values are spilled. 198 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 199 200 bool ClearVirtRegs; 201 202 /// Everything we know about a live virtual register. 203 struct LiveReg { 204 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 205 Register VirtReg; ///< Virtual register number. 206 MCPhysReg PhysReg = 0; ///< Currently held here. 207 bool LiveOut = false; ///< Register is possibly live out. 208 bool Reloaded = false; ///< Register was reloaded. 209 bool Error = false; ///< Could not allocate. 210 211 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {} 212 213 unsigned getSparseSetIndex() const { 214 return Register::virtReg2Index(VirtReg); 215 } 216 }; 217 218 using LiveRegMap = SparseSet<LiveReg, identity<unsigned>, uint16_t>; 219 /// This map contains entries for each virtual register that is currently 220 /// available in a physical register. 221 LiveRegMap LiveVirtRegs; 222 223 /// Stores assigned virtual registers present in the bundle MI. 224 DenseMap<Register, MCPhysReg> BundleVirtRegsMap; 225 226 DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap; 227 /// List of DBG_VALUE that we encountered without the vreg being assigned 228 /// because they were placed after the last use of the vreg. 229 DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues; 230 231 /// Has a bit set for every virtual register for which it was determined 232 /// that it is alive across blocks. 233 BitVector MayLiveAcrossBlocks; 234 235 /// State of a register unit. 236 enum RegUnitState { 237 /// A free register is not currently in use and can be allocated 238 /// immediately without checking aliases. 239 regFree, 240 241 /// A pre-assigned register has been assigned before register allocation 242 /// (e.g., setting up a call parameter). 243 regPreAssigned, 244 245 /// Used temporarily in reloadAtBegin() to mark register units that are 246 /// live-in to the basic block. 247 regLiveIn, 248 249 /// A register state may also be a virtual register number, indication 250 /// that the physical register is currently allocated to a virtual 251 /// register. In that case, LiveVirtRegs contains the inverse mapping. 252 }; 253 254 /// Maps each physical register to a RegUnitState enum or virtual register. 255 std::vector<unsigned> RegUnitStates; 256 257 SmallVector<MachineInstr *, 32> Coalesced; 258 259 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 260 /// Set of register units that are used in the current instruction, and so 261 /// cannot be allocated. 262 RegUnitSet UsedInInstr; 263 RegUnitSet PhysRegUses; 264 SmallVector<uint16_t, 8> DefOperandIndexes; 265 // Register masks attached to the current instruction. 266 SmallVector<const uint32_t *> RegMasks; 267 268 // Assign index for each instruction to quickly determine dominance. 269 InstrPosIndexes PosIndexes; 270 271 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 272 bool isPhysRegFree(MCPhysReg PhysReg) const; 273 274 /// Mark a physreg as used in this instruction. 275 void markRegUsedInInstr(MCPhysReg PhysReg) { 276 for (MCRegUnit Unit : TRI->regunits(PhysReg)) 277 UsedInInstr.insert(Unit); 278 } 279 280 // Check if physreg is clobbered by instruction's regmask(s). 281 bool isClobberedByRegMasks(MCPhysReg PhysReg) const { 282 return llvm::any_of(RegMasks, [PhysReg](const uint32_t *Mask) { 283 return MachineOperand::clobbersPhysReg(Mask, PhysReg); 284 }); 285 } 286 287 /// Check if a physreg or any of its aliases are used in this instruction. 288 bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const { 289 if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg)) 290 return true; 291 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 292 if (UsedInInstr.count(Unit)) 293 return true; 294 if (LookAtPhysRegUses && PhysRegUses.count(Unit)) 295 return true; 296 } 297 return false; 298 } 299 300 /// Mark physical register as being used in a register use operand. 301 /// This is only used by the special livethrough handling code. 302 void markPhysRegUsedInInstr(MCPhysReg PhysReg) { 303 for (MCRegUnit Unit : TRI->regunits(PhysReg)) 304 PhysRegUses.insert(Unit); 305 } 306 307 /// Remove mark of physical register being used in the instruction. 308 void unmarkRegUsedInInstr(MCPhysReg PhysReg) { 309 for (MCRegUnit Unit : TRI->regunits(PhysReg)) 310 UsedInInstr.erase(Unit); 311 } 312 313 enum : unsigned { 314 spillClean = 50, 315 spillDirty = 100, 316 spillPrefBonus = 20, 317 spillImpossible = ~0u 318 }; 319 320 public: 321 StringRef getPassName() const override { return "Fast Register Allocator"; } 322 323 void getAnalysisUsage(AnalysisUsage &AU) const override { 324 AU.setPreservesCFG(); 325 MachineFunctionPass::getAnalysisUsage(AU); 326 } 327 328 MachineFunctionProperties getRequiredProperties() const override { 329 return MachineFunctionProperties().set( 330 MachineFunctionProperties::Property::NoPHIs); 331 } 332 333 MachineFunctionProperties getSetProperties() const override { 334 if (ClearVirtRegs) { 335 return MachineFunctionProperties().set( 336 MachineFunctionProperties::Property::NoVRegs); 337 } 338 339 return MachineFunctionProperties(); 340 } 341 342 MachineFunctionProperties getClearedProperties() const override { 343 return MachineFunctionProperties().set( 344 MachineFunctionProperties::Property::IsSSA); 345 } 346 347 private: 348 bool runOnMachineFunction(MachineFunction &MF) override; 349 350 void allocateBasicBlock(MachineBasicBlock &MBB); 351 352 void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 353 Register Reg) const; 354 355 void findAndSortDefOperandIndexes(const MachineInstr &MI); 356 357 void allocateInstruction(MachineInstr &MI); 358 void handleDebugValue(MachineInstr &MI); 359 void handleBundle(MachineInstr &MI); 360 361 bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 362 bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 363 bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 364 void freePhysReg(MCPhysReg PhysReg); 365 366 unsigned calcSpillCost(MCPhysReg PhysReg) const; 367 368 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) { 369 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 370 } 371 372 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const { 373 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 374 } 375 376 void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg); 377 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint, 378 bool LookAtPhysRegUses = false); 379 void allocVirtRegUndef(MachineOperand &MO); 380 void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg, 381 MCPhysReg Reg); 382 bool defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 383 Register VirtReg); 384 bool defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 385 bool LookAtPhysRegUses = false); 386 bool useVirtReg(MachineInstr &MI, MachineOperand &MO, Register VirtReg); 387 388 MachineBasicBlock::iterator 389 getMBBBeginInsertionPoint(MachineBasicBlock &MBB, 390 SmallSet<Register, 2> &PrologLiveIns) const; 391 392 void reloadAtBegin(MachineBasicBlock &MBB); 393 bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 394 395 Register traceCopies(Register VirtReg) const; 396 Register traceCopyChain(Register Reg) const; 397 398 bool shouldAllocateRegister(const Register Reg) const; 399 int getStackSpaceFor(Register VirtReg); 400 void spill(MachineBasicBlock::iterator Before, Register VirtReg, 401 MCPhysReg AssignedReg, bool Kill, bool LiveOut); 402 void reload(MachineBasicBlock::iterator Before, Register VirtReg, 403 MCPhysReg PhysReg); 404 405 bool mayLiveOut(Register VirtReg); 406 bool mayLiveIn(Register VirtReg); 407 408 void dumpState() const; 409 }; 410 411 } // end anonymous namespace 412 413 char RegAllocFast::ID = 0; 414 415 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 416 false) 417 418 bool RegAllocFast::shouldAllocateRegister(const Register Reg) const { 419 assert(Reg.isVirtual()); 420 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 421 return ShouldAllocateClass(*TRI, RC); 422 } 423 424 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 425 for (MCRegUnit Unit : TRI->regunits(PhysReg)) 426 RegUnitStates[Unit] = NewState; 427 } 428 429 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const { 430 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 431 if (RegUnitStates[Unit] != regFree) 432 return false; 433 } 434 return true; 435 } 436 437 /// This allocates space for the specified virtual register to be held on the 438 /// stack. 439 int RegAllocFast::getStackSpaceFor(Register VirtReg) { 440 // Find the location Reg would belong... 441 int SS = StackSlotForVirtReg[VirtReg]; 442 // Already has space allocated? 443 if (SS != -1) 444 return SS; 445 446 // Allocate a new stack object for this spill location... 447 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 448 unsigned Size = TRI->getSpillSize(RC); 449 Align Alignment = TRI->getSpillAlign(RC); 450 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment); 451 452 // Assign the slot. 453 StackSlotForVirtReg[VirtReg] = FrameIdx; 454 return FrameIdx; 455 } 456 457 static bool dominates(InstrPosIndexes &PosIndexes, const MachineInstr &A, 458 const MachineInstr &B) { 459 uint64_t IndexA, IndexB; 460 PosIndexes.getIndex(A, IndexA); 461 if (LLVM_UNLIKELY(PosIndexes.getIndex(B, IndexB))) 462 PosIndexes.getIndex(A, IndexA); 463 return IndexA < IndexB; 464 } 465 466 /// Returns false if \p VirtReg is known to not live out of the current block. 467 bool RegAllocFast::mayLiveOut(Register VirtReg) { 468 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) { 469 // Cannot be live-out if there are no successors. 470 return !MBB->succ_empty(); 471 } 472 473 const MachineInstr *SelfLoopDef = nullptr; 474 475 // If this block loops back to itself, it is necessary to check whether the 476 // use comes after the def. 477 if (MBB->isSuccessor(MBB)) { 478 // Find the first def in the self loop MBB. 479 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 480 if (DefInst.getParent() != MBB) { 481 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 482 return true; 483 } else { 484 if (!SelfLoopDef || dominates(PosIndexes, DefInst, *SelfLoopDef)) 485 SelfLoopDef = &DefInst; 486 } 487 } 488 if (!SelfLoopDef) { 489 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 490 return true; 491 } 492 } 493 494 // See if the first \p Limit uses of the register are all in the current 495 // block. 496 static const unsigned Limit = 8; 497 unsigned C = 0; 498 for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) { 499 if (UseInst.getParent() != MBB || ++C >= Limit) { 500 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 501 // Cannot be live-out if there are no successors. 502 return !MBB->succ_empty(); 503 } 504 505 if (SelfLoopDef) { 506 // Try to handle some simple cases to avoid spilling and reloading every 507 // value inside a self looping block. 508 if (SelfLoopDef == &UseInst || 509 !dominates(PosIndexes, *SelfLoopDef, UseInst)) { 510 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 511 return true; 512 } 513 } 514 } 515 516 return false; 517 } 518 519 /// Returns false if \p VirtReg is known to not be live into the current block. 520 bool RegAllocFast::mayLiveIn(Register VirtReg) { 521 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) 522 return !MBB->pred_empty(); 523 524 // See if the first \p Limit def of the register are all in the current block. 525 static const unsigned Limit = 8; 526 unsigned C = 0; 527 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 528 if (DefInst.getParent() != MBB || ++C >= Limit) { 529 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 530 return !MBB->pred_empty(); 531 } 532 } 533 534 return false; 535 } 536 537 /// Insert spill instruction for \p AssignedReg before \p Before. Update 538 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 539 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg, 540 MCPhysReg AssignedReg, bool Kill, bool LiveOut) { 541 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) << " in " 542 << printReg(AssignedReg, TRI)); 543 int FI = getStackSpaceFor(VirtReg); 544 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 545 546 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 547 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI, 548 VirtReg); 549 ++NumStores; 550 551 MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator(); 552 553 // When we spill a virtual register, we will have spill instructions behind 554 // every definition of it, meaning we can switch all the DBG_VALUEs over 555 // to just reference the stack slot. 556 SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg]; 557 SmallMapVector<MachineInstr *, SmallVector<const MachineOperand *>, 2> 558 SpilledOperandsMap; 559 for (MachineOperand *MO : LRIDbgOperands) 560 SpilledOperandsMap[MO->getParent()].push_back(MO); 561 for (auto MISpilledOperands : SpilledOperandsMap) { 562 MachineInstr &DBG = *MISpilledOperands.first; 563 // We don't have enough support for tracking operands of DBG_VALUE_LISTs. 564 if (DBG.isDebugValueList()) 565 continue; 566 MachineInstr *NewDV = buildDbgValueForSpill( 567 *MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second); 568 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 569 (void)NewDV; 570 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 571 572 if (LiveOut) { 573 // We need to insert a DBG_VALUE at the end of the block if the spill slot 574 // is live out, but there is another use of the value after the 575 // spill. This will allow LiveDebugValues to see the correct live out 576 // value to propagate to the successors. 577 MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV); 578 MBB->insert(FirstTerm, ClonedDV); 579 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n"); 580 } 581 582 // Rewrite unassigned dbg_values to use the stack slot. 583 // TODO We can potentially do this for list debug values as well if we know 584 // how the dbg_values are getting unassigned. 585 if (DBG.isNonListDebugValue()) { 586 MachineOperand &MO = DBG.getDebugOperand(0); 587 if (MO.isReg() && MO.getReg() == 0) { 588 updateDbgValueForSpill(DBG, FI, 0); 589 } 590 } 591 } 592 // Now this register is spilled there is should not be any DBG_VALUE 593 // pointing to this register because they are all pointing to spilled value 594 // now. 595 LRIDbgOperands.clear(); 596 } 597 598 /// Insert reload instruction for \p PhysReg before \p Before. 599 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg, 600 MCPhysReg PhysReg) { 601 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 602 << printReg(PhysReg, TRI) << '\n'); 603 int FI = getStackSpaceFor(VirtReg); 604 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 605 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI, VirtReg); 606 ++NumLoads; 607 } 608 609 /// Get basic block begin insertion point. 610 /// This is not just MBB.begin() because surprisingly we have EH_LABEL 611 /// instructions marking the begin of a basic block. This means we must insert 612 /// new instructions after such labels... 613 MachineBasicBlock::iterator RegAllocFast::getMBBBeginInsertionPoint( 614 MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const { 615 MachineBasicBlock::iterator I = MBB.begin(); 616 while (I != MBB.end()) { 617 if (I->isLabel()) { 618 ++I; 619 continue; 620 } 621 622 // Most reloads should be inserted after prolog instructions. 623 if (!TII->isBasicBlockPrologue(*I)) 624 break; 625 626 // However if a prolog instruction reads a register that needs to be 627 // reloaded, the reload should be inserted before the prolog. 628 for (MachineOperand &MO : I->operands()) { 629 if (MO.isReg()) 630 PrologLiveIns.insert(MO.getReg()); 631 } 632 633 ++I; 634 } 635 636 return I; 637 } 638 639 /// Reload all currently assigned virtual registers. 640 void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) { 641 if (LiveVirtRegs.empty()) 642 return; 643 644 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 645 MCPhysReg Reg = P.PhysReg; 646 // Set state to live-in. This possibly overrides mappings to virtual 647 // registers but we don't care anymore at this point. 648 setPhysRegState(Reg, regLiveIn); 649 } 650 651 SmallSet<Register, 2> PrologLiveIns; 652 653 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 654 // of spilling here is deterministic, if arbitrary. 655 MachineBasicBlock::iterator InsertBefore = 656 getMBBBeginInsertionPoint(MBB, PrologLiveIns); 657 for (const LiveReg &LR : LiveVirtRegs) { 658 MCPhysReg PhysReg = LR.PhysReg; 659 if (PhysReg == 0) 660 continue; 661 662 MCRegister FirstUnit = *TRI->regunits(PhysReg).begin(); 663 if (RegUnitStates[FirstUnit] == regLiveIn) 664 continue; 665 666 assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) && 667 "no reload in start block. Missing vreg def?"); 668 669 if (PrologLiveIns.count(PhysReg)) { 670 // FIXME: Theoretically this should use an insert point skipping labels 671 // but I'm not sure how labels should interact with prolog instruction 672 // that need reloads. 673 reload(MBB.begin(), LR.VirtReg, PhysReg); 674 } else 675 reload(InsertBefore, LR.VirtReg, PhysReg); 676 } 677 LiveVirtRegs.clear(); 678 } 679 680 /// Handle the direct use of a physical register. Check that the register is 681 /// not used by a virtreg. Kill the physreg, marking it free. This may add 682 /// implicit kills to MO->getParent() and invalidate MO. 683 bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) { 684 assert(Register::isPhysicalRegister(Reg) && "expected physreg"); 685 bool displacedAny = displacePhysReg(MI, Reg); 686 setPhysRegState(Reg, regPreAssigned); 687 markRegUsedInInstr(Reg); 688 return displacedAny; 689 } 690 691 bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) { 692 bool displacedAny = displacePhysReg(MI, Reg); 693 setPhysRegState(Reg, regPreAssigned); 694 return displacedAny; 695 } 696 697 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 698 /// similar to defineVirtReg except the physreg is reserved instead of 699 /// allocated. 700 bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) { 701 bool displacedAny = false; 702 703 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 704 switch (unsigned VirtReg = RegUnitStates[Unit]) { 705 default: { 706 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 707 assert(LRI != LiveVirtRegs.end() && "datastructures in sync"); 708 MachineBasicBlock::iterator ReloadBefore = 709 std::next((MachineBasicBlock::iterator)MI.getIterator()); 710 reload(ReloadBefore, VirtReg, LRI->PhysReg); 711 712 setPhysRegState(LRI->PhysReg, regFree); 713 LRI->PhysReg = 0; 714 LRI->Reloaded = true; 715 displacedAny = true; 716 break; 717 } 718 case regPreAssigned: 719 RegUnitStates[Unit] = regFree; 720 displacedAny = true; 721 break; 722 case regFree: 723 break; 724 } 725 } 726 return displacedAny; 727 } 728 729 void RegAllocFast::freePhysReg(MCPhysReg PhysReg) { 730 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':'); 731 732 MCRegister FirstUnit = *TRI->regunits(PhysReg).begin(); 733 switch (unsigned VirtReg = RegUnitStates[FirstUnit]) { 734 case regFree: 735 LLVM_DEBUG(dbgs() << '\n'); 736 return; 737 case regPreAssigned: 738 LLVM_DEBUG(dbgs() << '\n'); 739 setPhysRegState(PhysReg, regFree); 740 return; 741 default: { 742 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 743 assert(LRI != LiveVirtRegs.end()); 744 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n'); 745 setPhysRegState(LRI->PhysReg, regFree); 746 LRI->PhysReg = 0; 747 } 748 return; 749 } 750 } 751 752 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 753 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 754 /// disabled - it can be allocated directly. 755 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 756 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 757 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 758 switch (unsigned VirtReg = RegUnitStates[Unit]) { 759 case regFree: 760 break; 761 case regPreAssigned: 762 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned " 763 << printReg(PhysReg, TRI) << '\n'); 764 return spillImpossible; 765 default: { 766 bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 || 767 findLiveVirtReg(VirtReg)->LiveOut; 768 return SureSpill ? spillClean : spillDirty; 769 } 770 } 771 } 772 return 0; 773 } 774 775 void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition, 776 Register VirtReg, MCPhysReg Reg) { 777 auto UDBGValIter = DanglingDbgValues.find(VirtReg); 778 if (UDBGValIter == DanglingDbgValues.end()) 779 return; 780 781 SmallVectorImpl<MachineInstr *> &Dangling = UDBGValIter->second; 782 for (MachineInstr *DbgValue : Dangling) { 783 assert(DbgValue->isDebugValue()); 784 if (!DbgValue->hasDebugOperandForReg(VirtReg)) 785 continue; 786 787 // Test whether the physreg survives from the definition to the DBG_VALUE. 788 MCPhysReg SetToReg = Reg; 789 unsigned Limit = 20; 790 for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()), 791 E = DbgValue->getIterator(); 792 I != E; ++I) { 793 if (I->modifiesRegister(Reg, TRI) || --Limit == 0) { 794 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 795 << '\n'); 796 SetToReg = 0; 797 break; 798 } 799 } 800 for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) { 801 MO.setReg(SetToReg); 802 if (SetToReg != 0) 803 MO.setIsRenamable(); 804 } 805 } 806 Dangling.clear(); 807 } 808 809 /// This method updates local state so that we know that PhysReg is the 810 /// proper container for VirtReg now. The physical register must not be used 811 /// for anything else when this is called. 812 void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR, 813 MCPhysReg PhysReg) { 814 Register VirtReg = LR.VirtReg; 815 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 816 << printReg(PhysReg, TRI) << '\n'); 817 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 818 assert(PhysReg != 0 && "Trying to assign no register"); 819 LR.PhysReg = PhysReg; 820 setPhysRegState(PhysReg, VirtReg); 821 822 assignDanglingDebugValues(AtMI, VirtReg, PhysReg); 823 } 824 825 static bool isCoalescable(const MachineInstr &MI) { return MI.isFullCopy(); } 826 827 Register RegAllocFast::traceCopyChain(Register Reg) const { 828 static const unsigned ChainLengthLimit = 3; 829 unsigned C = 0; 830 do { 831 if (Reg.isPhysical()) 832 return Reg; 833 assert(Reg.isVirtual()); 834 835 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); 836 if (!VRegDef || !isCoalescable(*VRegDef)) 837 return 0; 838 Reg = VRegDef->getOperand(1).getReg(); 839 } while (++C <= ChainLengthLimit); 840 return 0; 841 } 842 843 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the 844 /// chain of copies to check whether we reach a physical register we can 845 /// coalesce with. 846 Register RegAllocFast::traceCopies(Register VirtReg) const { 847 static const unsigned DefLimit = 3; 848 unsigned C = 0; 849 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { 850 if (isCoalescable(MI)) { 851 Register Reg = MI.getOperand(1).getReg(); 852 Reg = traceCopyChain(Reg); 853 if (Reg.isValid()) 854 return Reg; 855 } 856 857 if (++C >= DefLimit) 858 break; 859 } 860 return Register(); 861 } 862 863 /// Allocates a physical register for VirtReg. 864 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint0, 865 bool LookAtPhysRegUses) { 866 const Register VirtReg = LR.VirtReg; 867 assert(LR.PhysReg == 0); 868 869 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 870 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 871 << " in class " << TRI->getRegClassName(&RC) 872 << " with hint " << printReg(Hint0, TRI) << '\n'); 873 874 // Take hint when possible. 875 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) && 876 !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) { 877 // Take hint if the register is currently free. 878 if (isPhysRegFree(Hint0)) { 879 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 880 << '\n'); 881 assignVirtToPhysReg(MI, LR, Hint0); 882 return; 883 } else { 884 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI) 885 << " occupied\n"); 886 } 887 } else { 888 Hint0 = Register(); 889 } 890 891 // Try other hint. 892 Register Hint1 = traceCopies(VirtReg); 893 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) && 894 !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) { 895 // Take hint if the register is currently free. 896 if (isPhysRegFree(Hint1)) { 897 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 898 << '\n'); 899 assignVirtToPhysReg(MI, LR, Hint1); 900 return; 901 } else { 902 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI) 903 << " occupied\n"); 904 } 905 } else { 906 Hint1 = Register(); 907 } 908 909 MCPhysReg BestReg = 0; 910 unsigned BestCost = spillImpossible; 911 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 912 for (MCPhysReg PhysReg : AllocationOrder) { 913 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 914 if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) { 915 LLVM_DEBUG(dbgs() << "already used in instr.\n"); 916 continue; 917 } 918 919 unsigned Cost = calcSpillCost(PhysReg); 920 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 921 // Immediate take a register with cost 0. 922 if (Cost == 0) { 923 assignVirtToPhysReg(MI, LR, PhysReg); 924 return; 925 } 926 927 if (PhysReg == Hint0 || PhysReg == Hint1) 928 Cost -= spillPrefBonus; 929 930 if (Cost < BestCost) { 931 BestReg = PhysReg; 932 BestCost = Cost; 933 } 934 } 935 936 if (!BestReg) { 937 // Nothing we can do: Report an error and keep going with an invalid 938 // allocation. 939 if (MI.isInlineAsm()) 940 MI.emitError("inline assembly requires more registers than available"); 941 else 942 MI.emitError("ran out of registers during register allocation"); 943 944 LR.Error = true; 945 LR.PhysReg = 0; 946 return; 947 } 948 949 displacePhysReg(MI, BestReg); 950 assignVirtToPhysReg(MI, LR, BestReg); 951 } 952 953 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) { 954 assert(MO.isUndef() && "expected undef use"); 955 Register VirtReg = MO.getReg(); 956 assert(VirtReg.isVirtual() && "Expected virtreg"); 957 if (!shouldAllocateRegister(VirtReg)) 958 return; 959 960 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 961 MCPhysReg PhysReg; 962 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 963 PhysReg = LRI->PhysReg; 964 } else { 965 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 966 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 967 assert(!AllocationOrder.empty() && "Allocation order must not be empty"); 968 PhysReg = AllocationOrder[0]; 969 } 970 971 unsigned SubRegIdx = MO.getSubReg(); 972 if (SubRegIdx != 0) { 973 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); 974 MO.setSubReg(0); 975 } 976 MO.setReg(PhysReg); 977 MO.setIsRenamable(true); 978 } 979 980 /// Variation of defineVirtReg() with special handling for livethrough regs 981 /// (tied or earlyclobber) that may interfere with preassigned uses. 982 /// \return true if MI's MachineOperands were re-arranged/invalidated. 983 bool RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 984 Register VirtReg) { 985 if (!shouldAllocateRegister(VirtReg)) 986 return false; 987 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 988 if (LRI != LiveVirtRegs.end()) { 989 MCPhysReg PrevReg = LRI->PhysReg; 990 if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) { 991 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI) 992 << " (tied/earlyclobber resolution)\n"); 993 freePhysReg(PrevReg); 994 LRI->PhysReg = 0; 995 allocVirtReg(MI, *LRI, 0, true); 996 MachineBasicBlock::iterator InsertBefore = 997 std::next((MachineBasicBlock::iterator)MI.getIterator()); 998 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to " 999 << printReg(PrevReg, TRI) << '\n'); 1000 BuildMI(*MBB, InsertBefore, MI.getDebugLoc(), 1001 TII->get(TargetOpcode::COPY), PrevReg) 1002 .addReg(LRI->PhysReg, llvm::RegState::Kill); 1003 } 1004 MachineOperand &MO = MI.getOperand(OpNum); 1005 if (MO.getSubReg() && !MO.isUndef()) { 1006 LRI->LastUse = &MI; 1007 } 1008 } 1009 return defineVirtReg(MI, OpNum, VirtReg, true); 1010 } 1011 1012 /// Allocates a register for VirtReg definition. Typically the register is 1013 /// already assigned from a use of the virtreg, however we still need to 1014 /// perform an allocation if: 1015 /// - It is a dead definition without any uses. 1016 /// - The value is live out and all uses are in different basic blocks. 1017 /// 1018 /// \return true if MI's MachineOperands were re-arranged/invalidated. 1019 bool RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, 1020 Register VirtReg, bool LookAtPhysRegUses) { 1021 assert(VirtReg.isVirtual() && "Not a virtual register"); 1022 if (!shouldAllocateRegister(VirtReg)) 1023 return false; 1024 MachineOperand &MO = MI.getOperand(OpNum); 1025 LiveRegMap::iterator LRI; 1026 bool New; 1027 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 1028 if (New) { 1029 if (!MO.isDead()) { 1030 if (mayLiveOut(VirtReg)) { 1031 LRI->LiveOut = true; 1032 } else { 1033 // It is a dead def without the dead flag; add the flag now. 1034 MO.setIsDead(true); 1035 } 1036 } 1037 } 1038 if (LRI->PhysReg == 0) { 1039 allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses); 1040 // If no physical register is available for LRI, we assign one at random 1041 // and bail out of this function immediately. 1042 if (LRI->Error) { 1043 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 1044 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 1045 if (AllocationOrder.empty()) 1046 return setPhysReg(MI, MO, MCRegister::NoRegister); 1047 return setPhysReg(MI, MO, *AllocationOrder.begin()); 1048 } 1049 } else { 1050 assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) && 1051 "TODO: preassign mismatch"); 1052 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI) 1053 << " use existing assignment to " 1054 << printReg(LRI->PhysReg, TRI) << '\n'); 1055 } 1056 1057 MCPhysReg PhysReg = LRI->PhysReg; 1058 if (LRI->Reloaded || LRI->LiveOut) { 1059 if (!MI.isImplicitDef()) { 1060 MachineBasicBlock::iterator SpillBefore = 1061 std::next((MachineBasicBlock::iterator)MI.getIterator()); 1062 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut 1063 << " RL: " << LRI->Reloaded << '\n'); 1064 bool Kill = LRI->LastUse == nullptr; 1065 spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut); 1066 1067 // We need to place additional spills for each indirect destination of an 1068 // INLINEASM_BR. 1069 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) { 1070 int FI = StackSlotForVirtReg[VirtReg]; 1071 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 1072 for (MachineOperand &MO : MI.operands()) { 1073 if (MO.isMBB()) { 1074 MachineBasicBlock *Succ = MO.getMBB(); 1075 TII->storeRegToStackSlot(*Succ, Succ->begin(), PhysReg, Kill, FI, 1076 &RC, TRI, VirtReg); 1077 ++NumStores; 1078 Succ->addLiveIn(PhysReg); 1079 } 1080 } 1081 } 1082 1083 LRI->LastUse = nullptr; 1084 } 1085 LRI->LiveOut = false; 1086 LRI->Reloaded = false; 1087 } 1088 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1089 BundleVirtRegsMap[VirtReg] = PhysReg; 1090 } 1091 markRegUsedInInstr(PhysReg); 1092 return setPhysReg(MI, MO, PhysReg); 1093 } 1094 1095 /// Allocates a register for a VirtReg use. 1096 /// \return true if MI's MachineOperands were re-arranged/invalidated. 1097 bool RegAllocFast::useVirtReg(MachineInstr &MI, MachineOperand &MO, 1098 Register VirtReg) { 1099 assert(VirtReg.isVirtual() && "Not a virtual register"); 1100 if (!shouldAllocateRegister(VirtReg)) 1101 return false; 1102 LiveRegMap::iterator LRI; 1103 bool New; 1104 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 1105 if (New) { 1106 if (!MO.isKill()) { 1107 if (mayLiveOut(VirtReg)) { 1108 LRI->LiveOut = true; 1109 } else { 1110 // It is a last (killing) use without the kill flag; add the flag now. 1111 MO.setIsKill(true); 1112 } 1113 } 1114 } else { 1115 assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag"); 1116 } 1117 1118 // If necessary allocate a register. 1119 if (LRI->PhysReg == 0) { 1120 assert(!MO.isTied() && "tied op should be allocated"); 1121 Register Hint; 1122 if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) { 1123 Hint = MI.getOperand(0).getReg(); 1124 if (Hint.isVirtual()) { 1125 assert(!shouldAllocateRegister(Hint)); 1126 Hint = Register(); 1127 } else { 1128 assert(Hint.isPhysical() && 1129 "Copy destination should already be assigned"); 1130 } 1131 } 1132 allocVirtReg(MI, *LRI, Hint, false); 1133 if (LRI->Error) { 1134 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 1135 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 1136 if (AllocationOrder.empty()) 1137 return setPhysReg(MI, MO, MCRegister::NoRegister); 1138 return setPhysReg(MI, MO, *AllocationOrder.begin()); 1139 } 1140 } 1141 1142 LRI->LastUse = &MI; 1143 1144 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1145 BundleVirtRegsMap[VirtReg] = LRI->PhysReg; 1146 } 1147 markRegUsedInInstr(LRI->PhysReg); 1148 return setPhysReg(MI, MO, LRI->PhysReg); 1149 } 1150 1151 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. 1152 /// \return true if MI's MachineOperands were re-arranged/invalidated. 1153 bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, 1154 MCPhysReg PhysReg) { 1155 if (!MO.getSubReg()) { 1156 MO.setReg(PhysReg); 1157 MO.setIsRenamable(true); 1158 return false; 1159 } 1160 1161 // Handle subregister index. 1162 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister()); 1163 MO.setIsRenamable(true); 1164 // Note: We leave the subreg number around a little longer in case of defs. 1165 // This is so that the register freeing logic in allocateInstruction can still 1166 // recognize this as subregister defs. The code there will clear the number. 1167 if (!MO.isDef()) 1168 MO.setSubReg(0); 1169 1170 // A kill flag implies killing the full register. Add corresponding super 1171 // register kill. 1172 if (MO.isKill()) { 1173 MI.addRegisterKilled(PhysReg, TRI, true); 1174 // Conservatively assume implicit MOs were re-arranged 1175 return true; 1176 } 1177 1178 // A <def,read-undef> of a sub-register requires an implicit def of the full 1179 // register. 1180 if (MO.isDef() && MO.isUndef()) { 1181 if (MO.isDead()) 1182 MI.addRegisterDead(PhysReg, TRI, true); 1183 else 1184 MI.addRegisterDefined(PhysReg, TRI); 1185 // Conservatively assume implicit MOs were re-arranged 1186 return true; 1187 } 1188 return false; 1189 } 1190 1191 #ifndef NDEBUG 1192 1193 void RegAllocFast::dumpState() const { 1194 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE; 1195 ++Unit) { 1196 switch (unsigned VirtReg = RegUnitStates[Unit]) { 1197 case regFree: 1198 break; 1199 case regPreAssigned: 1200 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]"; 1201 break; 1202 case regLiveIn: 1203 llvm_unreachable("Should not have regLiveIn in map"); 1204 default: { 1205 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg); 1206 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 1207 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry"); 1208 if (I->LiveOut || I->Reloaded) { 1209 dbgs() << '['; 1210 if (I->LiveOut) 1211 dbgs() << 'O'; 1212 if (I->Reloaded) 1213 dbgs() << 'R'; 1214 dbgs() << ']'; 1215 } 1216 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present"); 1217 break; 1218 } 1219 } 1220 } 1221 dbgs() << '\n'; 1222 // Check that LiveVirtRegs is the inverse. 1223 for (const LiveReg &LR : LiveVirtRegs) { 1224 Register VirtReg = LR.VirtReg; 1225 assert(VirtReg.isVirtual() && "Bad map key"); 1226 MCPhysReg PhysReg = LR.PhysReg; 1227 if (PhysReg != 0) { 1228 assert(Register::isPhysicalRegister(PhysReg) && "mapped to physreg"); 1229 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 1230 assert(RegUnitStates[Unit] == VirtReg && "inverse map valid"); 1231 } 1232 } 1233 } 1234 } 1235 #endif 1236 1237 /// Count number of defs consumed from each register class by \p Reg 1238 void RegAllocFast::addRegClassDefCounts( 1239 std::vector<unsigned> &RegClassDefCounts, Register Reg) const { 1240 assert(RegClassDefCounts.size() == TRI->getNumRegClasses()); 1241 1242 if (Reg.isVirtual()) { 1243 if (!shouldAllocateRegister(Reg)) 1244 return; 1245 const TargetRegisterClass *OpRC = MRI->getRegClass(Reg); 1246 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1247 RCIdx != RCIdxEnd; ++RCIdx) { 1248 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1249 // FIXME: Consider aliasing sub/super registers. 1250 if (OpRC->hasSubClassEq(IdxRC)) 1251 ++RegClassDefCounts[RCIdx]; 1252 } 1253 1254 return; 1255 } 1256 1257 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1258 RCIdx != RCIdxEnd; ++RCIdx) { 1259 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1260 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 1261 if (IdxRC->contains(*Alias)) { 1262 ++RegClassDefCounts[RCIdx]; 1263 break; 1264 } 1265 } 1266 } 1267 } 1268 1269 /// Compute \ref DefOperandIndexes so it contains the indices of "def" operands 1270 /// that are to be allocated. Those are ordered in a way that small classes, 1271 /// early clobbers and livethroughs are allocated first. 1272 void RegAllocFast::findAndSortDefOperandIndexes(const MachineInstr &MI) { 1273 DefOperandIndexes.clear(); 1274 1275 // Track number of defs which may consume a register from the class. 1276 std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0); 1277 assert(RegClassDefCounts[0] == 0); 1278 1279 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n"); 1280 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1281 const MachineOperand &MO = MI.getOperand(I); 1282 if (!MO.isReg()) 1283 continue; 1284 Register Reg = MO.getReg(); 1285 if (MO.readsReg()) { 1286 if (Reg.isPhysical()) { 1287 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) << '\n'); 1288 markPhysRegUsedInInstr(Reg); 1289 } 1290 } 1291 1292 if (MO.isDef()) { 1293 if (Reg.isVirtual() && shouldAllocateRegister(Reg)) 1294 DefOperandIndexes.push_back(I); 1295 1296 addRegClassDefCounts(RegClassDefCounts, Reg); 1297 } 1298 } 1299 1300 llvm::sort(DefOperandIndexes, [&](uint16_t I0, uint16_t I1) { 1301 const MachineOperand &MO0 = MI.getOperand(I0); 1302 const MachineOperand &MO1 = MI.getOperand(I1); 1303 Register Reg0 = MO0.getReg(); 1304 Register Reg1 = MO1.getReg(); 1305 const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0); 1306 const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1); 1307 1308 // Identify regclass that are easy to use up completely just in this 1309 // instruction. 1310 unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size(); 1311 unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size(); 1312 1313 bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()]; 1314 bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()]; 1315 if (SmallClass0 > SmallClass1) 1316 return true; 1317 if (SmallClass0 < SmallClass1) 1318 return false; 1319 1320 // Allocate early clobbers and livethrough operands first. 1321 bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() || 1322 (MO0.getSubReg() == 0 && !MO0.isUndef()); 1323 bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() || 1324 (MO1.getSubReg() == 0 && !MO1.isUndef()); 1325 if (Livethrough0 > Livethrough1) 1326 return true; 1327 if (Livethrough0 < Livethrough1) 1328 return false; 1329 1330 // Tie-break rule: operand index. 1331 return I0 < I1; 1332 }); 1333 } 1334 1335 // Returns true if MO is tied and the operand it's tied to is not Undef (not 1336 // Undef is not the same thing as Def). 1337 static bool isTiedToNotUndef(const MachineOperand &MO) { 1338 if (!MO.isTied()) 1339 return false; 1340 const MachineInstr &MI = *MO.getParent(); 1341 unsigned TiedIdx = MI.findTiedOperandIdx(MI.getOperandNo(&MO)); 1342 const MachineOperand &TiedMO = MI.getOperand(TiedIdx); 1343 return !TiedMO.isUndef(); 1344 } 1345 1346 void RegAllocFast::allocateInstruction(MachineInstr &MI) { 1347 // The basic algorithm here is: 1348 // 1. Mark registers of def operands as free 1349 // 2. Allocate registers to use operands and place reload instructions for 1350 // registers displaced by the allocation. 1351 // 1352 // However we need to handle some corner cases: 1353 // - pre-assigned defs and uses need to be handled before the other def/use 1354 // operands are processed to avoid the allocation heuristics clashing with 1355 // the pre-assignment. 1356 // - The "free def operands" step has to come last instead of first for tied 1357 // operands and early-clobbers. 1358 1359 UsedInInstr.clear(); 1360 RegMasks.clear(); 1361 BundleVirtRegsMap.clear(); 1362 1363 // Scan for special cases; Apply pre-assigned register defs to state. 1364 bool HasPhysRegUse = false; 1365 bool HasRegMask = false; 1366 bool HasVRegDef = false; 1367 bool HasDef = false; 1368 bool HasEarlyClobber = false; 1369 bool NeedToAssignLiveThroughs = false; 1370 for (MachineOperand &MO : MI.operands()) { 1371 if (MO.isReg()) { 1372 Register Reg = MO.getReg(); 1373 if (Reg.isVirtual()) { 1374 if (!shouldAllocateRegister(Reg)) 1375 continue; 1376 if (MO.isDef()) { 1377 HasDef = true; 1378 HasVRegDef = true; 1379 if (MO.isEarlyClobber()) { 1380 HasEarlyClobber = true; 1381 NeedToAssignLiveThroughs = true; 1382 } 1383 if (isTiedToNotUndef(MO) || (MO.getSubReg() != 0 && !MO.isUndef())) 1384 NeedToAssignLiveThroughs = true; 1385 } 1386 } else if (Reg.isPhysical()) { 1387 if (!MRI->isReserved(Reg)) { 1388 if (MO.isDef()) { 1389 HasDef = true; 1390 bool displacedAny = definePhysReg(MI, Reg); 1391 if (MO.isEarlyClobber()) 1392 HasEarlyClobber = true; 1393 if (!displacedAny) 1394 MO.setIsDead(true); 1395 } 1396 if (MO.readsReg()) 1397 HasPhysRegUse = true; 1398 } 1399 } 1400 } else if (MO.isRegMask()) { 1401 HasRegMask = true; 1402 RegMasks.push_back(MO.getRegMask()); 1403 } 1404 } 1405 1406 // Allocate virtreg defs. 1407 if (HasDef) { 1408 if (HasVRegDef) { 1409 // Note that Implicit MOs can get re-arranged by defineVirtReg(), so loop 1410 // multiple times to ensure no operand is missed. 1411 bool ReArrangedImplicitOps = true; 1412 1413 // Special handling for early clobbers, tied operands or subregister defs: 1414 // Compared to "normal" defs these: 1415 // - Must not use a register that is pre-assigned for a use operand. 1416 // - In order to solve tricky inline assembly constraints we change the 1417 // heuristic to figure out a good operand order before doing 1418 // assignments. 1419 if (NeedToAssignLiveThroughs) { 1420 PhysRegUses.clear(); 1421 1422 while (ReArrangedImplicitOps) { 1423 ReArrangedImplicitOps = false; 1424 findAndSortDefOperandIndexes(MI); 1425 for (uint16_t OpIdx : DefOperandIndexes) { 1426 MachineOperand &MO = MI.getOperand(OpIdx); 1427 LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n'); 1428 Register Reg = MO.getReg(); 1429 if (MO.isEarlyClobber() || isTiedToNotUndef(MO) || 1430 (MO.getSubReg() && !MO.isUndef())) { 1431 ReArrangedImplicitOps = defineLiveThroughVirtReg(MI, OpIdx, Reg); 1432 } else { 1433 ReArrangedImplicitOps = defineVirtReg(MI, OpIdx, Reg); 1434 } 1435 // Implicit operands of MI were re-arranged, 1436 // re-compute DefOperandIndexes. 1437 if (ReArrangedImplicitOps) 1438 break; 1439 } 1440 } 1441 } else { 1442 // Assign virtual register defs. 1443 while (ReArrangedImplicitOps) { 1444 ReArrangedImplicitOps = false; 1445 for (MachineOperand &MO : MI.operands()) { 1446 if (!MO.isReg() || !MO.isDef()) 1447 continue; 1448 Register Reg = MO.getReg(); 1449 if (Reg.isVirtual()) { 1450 ReArrangedImplicitOps = 1451 defineVirtReg(MI, MI.getOperandNo(&MO), Reg); 1452 if (ReArrangedImplicitOps) 1453 break; 1454 } 1455 } 1456 } 1457 } 1458 } 1459 1460 // Free registers occupied by defs. 1461 // Iterate operands in reverse order, so we see the implicit super register 1462 // defs first (we added them earlier in case of <def,read-undef>). 1463 for (MachineOperand &MO : reverse(MI.operands())) { 1464 if (!MO.isReg() || !MO.isDef()) 1465 continue; 1466 1467 Register Reg = MO.getReg(); 1468 1469 // subreg defs don't free the full register. We left the subreg number 1470 // around as a marker in setPhysReg() to recognize this case here. 1471 if (Reg.isPhysical() && MO.getSubReg() != 0) { 1472 MO.setSubReg(0); 1473 continue; 1474 } 1475 1476 assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) && 1477 "tied def assigned to clobbered register"); 1478 1479 // Do not free tied operands and early clobbers. 1480 if (isTiedToNotUndef(MO) || MO.isEarlyClobber()) 1481 continue; 1482 if (!Reg) 1483 continue; 1484 if (Reg.isVirtual()) { 1485 assert(!shouldAllocateRegister(Reg)); 1486 continue; 1487 } 1488 assert(Reg.isPhysical()); 1489 if (MRI->isReserved(Reg)) 1490 continue; 1491 freePhysReg(Reg); 1492 unmarkRegUsedInInstr(Reg); 1493 } 1494 } 1495 1496 // Displace clobbered registers. 1497 if (HasRegMask) { 1498 assert(!RegMasks.empty() && "expected RegMask"); 1499 // MRI bookkeeping. 1500 for (const auto *RM : RegMasks) 1501 MRI->addPhysRegsUsedFromRegMask(RM); 1502 1503 // Displace clobbered registers. 1504 for (const LiveReg &LR : LiveVirtRegs) { 1505 MCPhysReg PhysReg = LR.PhysReg; 1506 if (PhysReg != 0 && isClobberedByRegMasks(PhysReg)) 1507 displacePhysReg(MI, PhysReg); 1508 } 1509 } 1510 1511 // Apply pre-assigned register uses to state. 1512 if (HasPhysRegUse) { 1513 for (MachineOperand &MO : MI.operands()) { 1514 if (!MO.isReg() || !MO.readsReg()) 1515 continue; 1516 Register Reg = MO.getReg(); 1517 if (!Reg.isPhysical()) 1518 continue; 1519 if (MRI->isReserved(Reg)) 1520 continue; 1521 if (!usePhysReg(MI, Reg)) 1522 MO.setIsKill(true); 1523 } 1524 } 1525 1526 // Allocate virtreg uses and insert reloads as necessary. 1527 // Implicit MOs can get moved/removed by useVirtReg(), so loop multiple 1528 // times to ensure no operand is missed. 1529 bool HasUndefUse = false; 1530 bool ReArrangedImplicitMOs = true; 1531 while (ReArrangedImplicitMOs) { 1532 ReArrangedImplicitMOs = false; 1533 for (MachineOperand &MO : MI.operands()) { 1534 if (!MO.isReg() || !MO.isUse()) 1535 continue; 1536 Register Reg = MO.getReg(); 1537 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) 1538 continue; 1539 1540 if (MO.isUndef()) { 1541 HasUndefUse = true; 1542 continue; 1543 } 1544 1545 // Populate MayLiveAcrossBlocks in case the use block is allocated before 1546 // the def block (removing the vreg uses). 1547 mayLiveIn(Reg); 1548 1549 assert(!MO.isInternalRead() && "Bundles not supported"); 1550 assert(MO.readsReg() && "reading use"); 1551 ReArrangedImplicitMOs = useVirtReg(MI, MO, Reg); 1552 if (ReArrangedImplicitMOs) 1553 break; 1554 } 1555 } 1556 1557 // Allocate undef operands. This is a separate step because in a situation 1558 // like ` = OP undef %X, %X` both operands need the same register assign 1559 // so we should perform the normal assignment first. 1560 if (HasUndefUse) { 1561 for (MachineOperand &MO : MI.all_uses()) { 1562 Register Reg = MO.getReg(); 1563 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) 1564 continue; 1565 1566 assert(MO.isUndef() && "Should only have undef virtreg uses left"); 1567 allocVirtRegUndef(MO); 1568 } 1569 } 1570 1571 // Free early clobbers. 1572 if (HasEarlyClobber) { 1573 for (MachineOperand &MO : reverse(MI.all_defs())) { 1574 if (!MO.isEarlyClobber()) 1575 continue; 1576 assert(!MO.getSubReg() && "should be already handled in def processing"); 1577 1578 Register Reg = MO.getReg(); 1579 if (!Reg) 1580 continue; 1581 if (Reg.isVirtual()) { 1582 assert(!shouldAllocateRegister(Reg)); 1583 continue; 1584 } 1585 assert(Reg.isPhysical() && "should have register assigned"); 1586 1587 // We sometimes get odd situations like: 1588 // early-clobber %x0 = INSTRUCTION %x0 1589 // which is semantically questionable as the early-clobber should 1590 // apply before the use. But in practice we consider the use to 1591 // happen before the early clobber now. Don't free the early clobber 1592 // register in this case. 1593 if (MI.readsRegister(Reg, TRI)) 1594 continue; 1595 1596 freePhysReg(Reg); 1597 } 1598 } 1599 1600 LLVM_DEBUG(dbgs() << "<< " << MI); 1601 if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() && 1602 MI.getNumOperands() == 2) { 1603 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1604 Coalesced.push_back(&MI); 1605 } 1606 } 1607 1608 void RegAllocFast::handleDebugValue(MachineInstr &MI) { 1609 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1610 // mostly constants and frame indices. 1611 assert(MI.isDebugValue() && "not a DBG_VALUE*"); 1612 for (const auto &MO : MI.debug_operands()) { 1613 if (!MO.isReg()) 1614 continue; 1615 Register Reg = MO.getReg(); 1616 if (!Reg.isVirtual()) 1617 continue; 1618 if (!shouldAllocateRegister(Reg)) 1619 continue; 1620 1621 // Already spilled to a stackslot? 1622 int SS = StackSlotForVirtReg[Reg]; 1623 if (SS != -1) { 1624 // Modify DBG_VALUE now that the value is in a spill slot. 1625 updateDbgValueForSpill(MI, SS, Reg); 1626 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI); 1627 continue; 1628 } 1629 1630 // See if this virtual register has already been allocated to a physical 1631 // register or spilled to a stack slot. 1632 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1633 SmallVector<MachineOperand *> DbgOps; 1634 for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg)) 1635 DbgOps.push_back(&Op); 1636 1637 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1638 // Update every use of Reg within MI. 1639 for (auto &RegMO : DbgOps) 1640 setPhysReg(MI, *RegMO, LRI->PhysReg); 1641 } else { 1642 DanglingDbgValues[Reg].push_back(&MI); 1643 } 1644 1645 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1646 // that future spills of Reg will have DBG_VALUEs. 1647 LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end()); 1648 } 1649 } 1650 1651 void RegAllocFast::handleBundle(MachineInstr &MI) { 1652 MachineBasicBlock::instr_iterator BundledMI = MI.getIterator(); 1653 ++BundledMI; 1654 while (BundledMI->isBundledWithPred()) { 1655 for (MachineOperand &MO : BundledMI->operands()) { 1656 if (!MO.isReg()) 1657 continue; 1658 1659 Register Reg = MO.getReg(); 1660 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) 1661 continue; 1662 1663 DenseMap<Register, MCPhysReg>::iterator DI; 1664 DI = BundleVirtRegsMap.find(Reg); 1665 assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register"); 1666 1667 setPhysReg(MI, MO, DI->second); 1668 } 1669 1670 ++BundledMI; 1671 } 1672 } 1673 1674 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 1675 this->MBB = &MBB; 1676 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1677 1678 PosIndexes.unsetInitialized(); 1679 RegUnitStates.assign(TRI->getNumRegUnits(), regFree); 1680 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1681 1682 for (const auto &LiveReg : MBB.liveouts()) 1683 setPhysRegState(LiveReg.PhysReg, regPreAssigned); 1684 1685 Coalesced.clear(); 1686 1687 // Traverse block in reverse order allocating instructions one by one. 1688 for (MachineInstr &MI : reverse(MBB)) { 1689 LLVM_DEBUG(dbgs() << "\n>> " << MI << "Regs:"; dumpState()); 1690 1691 // Special handling for debug values. Note that they are not allowed to 1692 // affect codegen of the other instructions in any way. 1693 if (MI.isDebugValue()) { 1694 handleDebugValue(MI); 1695 continue; 1696 } 1697 1698 allocateInstruction(MI); 1699 1700 // Once BUNDLE header is assigned registers, same assignments need to be 1701 // done for bundled MIs. 1702 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1703 handleBundle(MI); 1704 } 1705 } 1706 1707 LLVM_DEBUG(dbgs() << "Begin Regs:"; dumpState()); 1708 1709 // Spill all physical registers holding virtual registers now. 1710 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n"); 1711 reloadAtBegin(MBB); 1712 1713 // Erase all the coalesced copies. We are delaying it until now because 1714 // LiveVirtRegs might refer to the instrs. 1715 for (MachineInstr *MI : Coalesced) 1716 MBB.erase(MI); 1717 NumCoalesced += Coalesced.size(); 1718 1719 for (auto &UDBGPair : DanglingDbgValues) { 1720 for (MachineInstr *DbgValue : UDBGPair.second) { 1721 assert(DbgValue->isDebugValue() && "expected DBG_VALUE"); 1722 // Nothing to do if the vreg was spilled in the meantime. 1723 if (!DbgValue->hasDebugOperandForReg(UDBGPair.first)) 1724 continue; 1725 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 1726 << '\n'); 1727 DbgValue->setDebugValueUndef(); 1728 } 1729 } 1730 DanglingDbgValues.clear(); 1731 1732 LLVM_DEBUG(MBB.dump()); 1733 } 1734 1735 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1736 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1737 << "********** Function: " << MF.getName() << '\n'); 1738 MRI = &MF.getRegInfo(); 1739 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1740 TRI = STI.getRegisterInfo(); 1741 TII = STI.getInstrInfo(); 1742 MFI = &MF.getFrameInfo(); 1743 MRI->freezeReservedRegs(MF); 1744 RegClassInfo.runOnMachineFunction(MF); 1745 unsigned NumRegUnits = TRI->getNumRegUnits(); 1746 UsedInInstr.clear(); 1747 UsedInInstr.setUniverse(NumRegUnits); 1748 PhysRegUses.clear(); 1749 PhysRegUses.setUniverse(NumRegUnits); 1750 1751 // initialize the virtual->physical register map to have a 'null' 1752 // mapping for all virtual registers 1753 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1754 StackSlotForVirtReg.resize(NumVirtRegs); 1755 LiveVirtRegs.setUniverse(NumVirtRegs); 1756 MayLiveAcrossBlocks.clear(); 1757 MayLiveAcrossBlocks.resize(NumVirtRegs); 1758 1759 // Loop over all of the basic blocks, eliminating virtual register references 1760 for (MachineBasicBlock &MBB : MF) 1761 allocateBasicBlock(MBB); 1762 1763 if (ClearVirtRegs) { 1764 // All machine operands and other references to virtual registers have been 1765 // replaced. Remove the virtual registers. 1766 MRI->clearVirtRegs(); 1767 } 1768 1769 StackSlotForVirtReg.clear(); 1770 LiveDbgValueMap.clear(); 1771 return true; 1772 } 1773 1774 FunctionPass *llvm::createFastRegisterAllocator() { return new RegAllocFast(); } 1775 1776 FunctionPass *llvm::createFastRegisterAllocator(RegClassFilterFunc Ftor, 1777 bool ClearVirtRegs) { 1778 return new RegAllocFast(Ftor, ClearVirtRegs); 1779 } 1780