1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/SparseSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/RegAllocCommon.h" 32 #include "llvm/CodeGen/RegAllocRegistry.h" 33 #include "llvm/CodeGen/RegisterClassInfo.h" 34 #include "llvm/CodeGen/TargetInstrInfo.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/TargetSubtargetInfo.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/Metadata.h" 40 #include "llvm/InitializePasses.h" 41 #include "llvm/MC/MCInstrDesc.h" 42 #include "llvm/MC/MCRegisterInfo.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <cassert> 50 #include <tuple> 51 #include <vector> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "regalloc" 56 57 STATISTIC(NumStores, "Number of stores added"); 58 STATISTIC(NumLoads , "Number of loads added"); 59 STATISTIC(NumCoalesced, "Number of copies coalesced"); 60 61 // FIXME: Remove this switch when all testcases are fixed! 62 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs", 63 cl::Hidden); 64 65 static RegisterRegAlloc 66 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 67 68 namespace { 69 70 class RegAllocFast : public MachineFunctionPass { 71 public: 72 static char ID; 73 74 RegAllocFast(const RegClassFilterFunc F = allocateAllRegClasses, 75 bool ClearVirtRegs_ = true) : 76 MachineFunctionPass(ID), 77 ShouldAllocateClass(F), 78 StackSlotForVirtReg(-1), 79 ClearVirtRegs(ClearVirtRegs_) { 80 } 81 82 private: 83 MachineFrameInfo *MFI; 84 MachineRegisterInfo *MRI; 85 const TargetRegisterInfo *TRI; 86 const TargetInstrInfo *TII; 87 RegisterClassInfo RegClassInfo; 88 const RegClassFilterFunc ShouldAllocateClass; 89 90 /// Basic block currently being allocated. 91 MachineBasicBlock *MBB; 92 93 /// Maps virtual regs to the frame index where these values are spilled. 94 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 95 96 bool ClearVirtRegs; 97 98 /// Everything we know about a live virtual register. 99 struct LiveReg { 100 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 101 Register VirtReg; ///< Virtual register number. 102 MCPhysReg PhysReg = 0; ///< Currently held here. 103 bool LiveOut = false; ///< Register is possibly live out. 104 bool Reloaded = false; ///< Register was reloaded. 105 bool Error = false; ///< Could not allocate. 106 107 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {} 108 109 unsigned getSparseSetIndex() const { 110 return Register::virtReg2Index(VirtReg); 111 } 112 }; 113 114 using LiveRegMap = SparseSet<LiveReg>; 115 /// This map contains entries for each virtual register that is currently 116 /// available in a physical register. 117 LiveRegMap LiveVirtRegs; 118 119 /// Stores assigned virtual registers present in the bundle MI. 120 DenseMap<Register, MCPhysReg> BundleVirtRegsMap; 121 122 DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap; 123 /// List of DBG_VALUE that we encountered without the vreg being assigned 124 /// because they were placed after the last use of the vreg. 125 DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues; 126 127 /// Has a bit set for every virtual register for which it was determined 128 /// that it is alive across blocks. 129 BitVector MayLiveAcrossBlocks; 130 131 /// State of a register unit. 132 enum RegUnitState { 133 /// A free register is not currently in use and can be allocated 134 /// immediately without checking aliases. 135 regFree, 136 137 /// A pre-assigned register has been assigned before register allocation 138 /// (e.g., setting up a call parameter). 139 regPreAssigned, 140 141 /// Used temporarily in reloadAtBegin() to mark register units that are 142 /// live-in to the basic block. 143 regLiveIn, 144 145 /// A register state may also be a virtual register number, indication 146 /// that the physical register is currently allocated to a virtual 147 /// register. In that case, LiveVirtRegs contains the inverse mapping. 148 }; 149 150 /// Maps each physical register to a RegUnitState enum or virtual register. 151 std::vector<unsigned> RegUnitStates; 152 153 SmallVector<MachineInstr *, 32> Coalesced; 154 155 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 156 /// Set of register units that are used in the current instruction, and so 157 /// cannot be allocated. 158 RegUnitSet UsedInInstr; 159 RegUnitSet PhysRegUses; 160 SmallVector<uint16_t, 8> DefOperandIndexes; 161 // Register masks attached to the current instruction. 162 SmallVector<const uint32_t *> RegMasks; 163 164 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 165 bool isPhysRegFree(MCPhysReg PhysReg) const; 166 167 /// Mark a physreg as used in this instruction. 168 void markRegUsedInInstr(MCPhysReg PhysReg) { 169 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 170 UsedInInstr.insert(*Units); 171 } 172 173 // Check if physreg is clobbered by instruction's regmask(s). 174 bool isClobberedByRegMasks(MCPhysReg PhysReg) const { 175 return llvm::any_of(RegMasks, [PhysReg](const uint32_t *Mask) { 176 return MachineOperand::clobbersPhysReg(Mask, PhysReg); 177 }); 178 } 179 180 /// Check if a physreg or any of its aliases are used in this instruction. 181 bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const { 182 if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg)) 183 return true; 184 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 185 if (UsedInInstr.count(*Units)) 186 return true; 187 if (LookAtPhysRegUses && PhysRegUses.count(*Units)) 188 return true; 189 } 190 return false; 191 } 192 193 /// Mark physical register as being used in a register use operand. 194 /// This is only used by the special livethrough handling code. 195 void markPhysRegUsedInInstr(MCPhysReg PhysReg) { 196 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 197 PhysRegUses.insert(*Units); 198 } 199 200 /// Remove mark of physical register being used in the instruction. 201 void unmarkRegUsedInInstr(MCPhysReg PhysReg) { 202 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 203 UsedInInstr.erase(*Units); 204 } 205 206 enum : unsigned { 207 spillClean = 50, 208 spillDirty = 100, 209 spillPrefBonus = 20, 210 spillImpossible = ~0u 211 }; 212 213 public: 214 StringRef getPassName() const override { return "Fast Register Allocator"; } 215 216 void getAnalysisUsage(AnalysisUsage &AU) const override { 217 AU.setPreservesCFG(); 218 MachineFunctionPass::getAnalysisUsage(AU); 219 } 220 221 MachineFunctionProperties getRequiredProperties() const override { 222 return MachineFunctionProperties().set( 223 MachineFunctionProperties::Property::NoPHIs); 224 } 225 226 MachineFunctionProperties getSetProperties() const override { 227 if (ClearVirtRegs) { 228 return MachineFunctionProperties().set( 229 MachineFunctionProperties::Property::NoVRegs); 230 } 231 232 return MachineFunctionProperties(); 233 } 234 235 MachineFunctionProperties getClearedProperties() const override { 236 return MachineFunctionProperties().set( 237 MachineFunctionProperties::Property::IsSSA); 238 } 239 240 private: 241 bool runOnMachineFunction(MachineFunction &MF) override; 242 243 void allocateBasicBlock(MachineBasicBlock &MBB); 244 245 void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 246 Register Reg) const; 247 248 void allocateInstruction(MachineInstr &MI); 249 void handleDebugValue(MachineInstr &MI); 250 void handleBundle(MachineInstr &MI); 251 252 bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 253 bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 254 bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 255 void freePhysReg(MCPhysReg PhysReg); 256 257 unsigned calcSpillCost(MCPhysReg PhysReg) const; 258 259 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) { 260 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 261 } 262 263 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const { 264 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 265 } 266 267 void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg); 268 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint, 269 bool LookAtPhysRegUses = false); 270 void allocVirtRegUndef(MachineOperand &MO); 271 void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg, 272 MCPhysReg Reg); 273 void defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 274 Register VirtReg); 275 void defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 276 bool LookAtPhysRegUses = false); 277 void useVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg); 278 279 MachineBasicBlock::iterator 280 getMBBBeginInsertionPoint(MachineBasicBlock &MBB, 281 SmallSet<Register, 2> &PrologLiveIns) const; 282 283 void reloadAtBegin(MachineBasicBlock &MBB); 284 void setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 285 286 Register traceCopies(Register VirtReg) const; 287 Register traceCopyChain(Register Reg) const; 288 289 int getStackSpaceFor(Register VirtReg); 290 void spill(MachineBasicBlock::iterator Before, Register VirtReg, 291 MCPhysReg AssignedReg, bool Kill, bool LiveOut); 292 void reload(MachineBasicBlock::iterator Before, Register VirtReg, 293 MCPhysReg PhysReg); 294 295 bool mayLiveOut(Register VirtReg); 296 bool mayLiveIn(Register VirtReg); 297 298 void dumpState() const; 299 }; 300 301 } // end anonymous namespace 302 303 char RegAllocFast::ID = 0; 304 305 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 306 false) 307 308 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 309 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) 310 RegUnitStates[*UI] = NewState; 311 } 312 313 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const { 314 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 315 if (RegUnitStates[*UI] != regFree) 316 return false; 317 } 318 return true; 319 } 320 321 /// This allocates space for the specified virtual register to be held on the 322 /// stack. 323 int RegAllocFast::getStackSpaceFor(Register VirtReg) { 324 // Find the location Reg would belong... 325 int SS = StackSlotForVirtReg[VirtReg]; 326 // Already has space allocated? 327 if (SS != -1) 328 return SS; 329 330 // Allocate a new stack object for this spill location... 331 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 332 unsigned Size = TRI->getSpillSize(RC); 333 Align Alignment = TRI->getSpillAlign(RC); 334 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment); 335 336 // Assign the slot. 337 StackSlotForVirtReg[VirtReg] = FrameIdx; 338 return FrameIdx; 339 } 340 341 static bool dominates(MachineBasicBlock &MBB, 342 MachineBasicBlock::const_iterator A, 343 MachineBasicBlock::const_iterator B) { 344 auto MBBEnd = MBB.end(); 345 if (B == MBBEnd) 346 return true; 347 348 MachineBasicBlock::const_iterator I = MBB.begin(); 349 for (; &*I != A && &*I != B; ++I) 350 ; 351 352 return &*I == A; 353 } 354 355 /// Returns false if \p VirtReg is known to not live out of the current block. 356 bool RegAllocFast::mayLiveOut(Register VirtReg) { 357 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) { 358 // Cannot be live-out if there are no successors. 359 return !MBB->succ_empty(); 360 } 361 362 const MachineInstr *SelfLoopDef = nullptr; 363 364 // If this block loops back to itself, it is necessary to check whether the 365 // use comes after the def. 366 if (MBB->isSuccessor(MBB)) { 367 SelfLoopDef = MRI->getUniqueVRegDef(VirtReg); 368 if (!SelfLoopDef) { 369 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 370 return true; 371 } 372 } 373 374 // See if the first \p Limit uses of the register are all in the current 375 // block. 376 static const unsigned Limit = 8; 377 unsigned C = 0; 378 for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) { 379 if (UseInst.getParent() != MBB || ++C >= Limit) { 380 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 381 // Cannot be live-out if there are no successors. 382 return !MBB->succ_empty(); 383 } 384 385 if (SelfLoopDef) { 386 // Try to handle some simple cases to avoid spilling and reloading every 387 // value inside a self looping block. 388 if (SelfLoopDef == &UseInst || 389 !dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) { 390 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 391 return true; 392 } 393 } 394 } 395 396 return false; 397 } 398 399 /// Returns false if \p VirtReg is known to not be live into the current block. 400 bool RegAllocFast::mayLiveIn(Register VirtReg) { 401 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) 402 return !MBB->pred_empty(); 403 404 // See if the first \p Limit def of the register are all in the current block. 405 static const unsigned Limit = 8; 406 unsigned C = 0; 407 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 408 if (DefInst.getParent() != MBB || ++C >= Limit) { 409 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 410 return !MBB->pred_empty(); 411 } 412 } 413 414 return false; 415 } 416 417 /// Insert spill instruction for \p AssignedReg before \p Before. Update 418 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 419 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg, 420 MCPhysReg AssignedReg, bool Kill, bool LiveOut) { 421 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) 422 << " in " << printReg(AssignedReg, TRI)); 423 int FI = getStackSpaceFor(VirtReg); 424 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 425 426 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 427 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI); 428 ++NumStores; 429 430 MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator(); 431 432 // When we spill a virtual register, we will have spill instructions behind 433 // every definition of it, meaning we can switch all the DBG_VALUEs over 434 // to just reference the stack slot. 435 SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg]; 436 SmallMapVector<MachineInstr *, SmallVector<const MachineOperand *>, 2> 437 SpilledOperandsMap; 438 for (MachineOperand *MO : LRIDbgOperands) 439 SpilledOperandsMap[MO->getParent()].push_back(MO); 440 for (auto MISpilledOperands : SpilledOperandsMap) { 441 MachineInstr &DBG = *MISpilledOperands.first; 442 MachineInstr *NewDV = buildDbgValueForSpill( 443 *MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second); 444 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 445 (void)NewDV; 446 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 447 448 if (LiveOut) { 449 // We need to insert a DBG_VALUE at the end of the block if the spill slot 450 // is live out, but there is another use of the value after the 451 // spill. This will allow LiveDebugValues to see the correct live out 452 // value to propagate to the successors. 453 MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV); 454 MBB->insert(FirstTerm, ClonedDV); 455 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n"); 456 } 457 458 // Rewrite unassigned dbg_values to use the stack slot. 459 // TODO We can potentially do this for list debug values as well if we know 460 // how the dbg_values are getting unassigned. 461 if (DBG.isNonListDebugValue()) { 462 MachineOperand &MO = DBG.getDebugOperand(0); 463 if (MO.isReg() && MO.getReg() == 0) { 464 updateDbgValueForSpill(DBG, FI, 0); 465 } 466 } 467 } 468 // Now this register is spilled there is should not be any DBG_VALUE 469 // pointing to this register because they are all pointing to spilled value 470 // now. 471 LRIDbgOperands.clear(); 472 } 473 474 /// Insert reload instruction for \p PhysReg before \p Before. 475 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg, 476 MCPhysReg PhysReg) { 477 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 478 << printReg(PhysReg, TRI) << '\n'); 479 int FI = getStackSpaceFor(VirtReg); 480 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 481 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI); 482 ++NumLoads; 483 } 484 485 /// Get basic block begin insertion point. 486 /// This is not just MBB.begin() because surprisingly we have EH_LABEL 487 /// instructions marking the begin of a basic block. This means we must insert 488 /// new instructions after such labels... 489 MachineBasicBlock::iterator 490 RegAllocFast::getMBBBeginInsertionPoint( 491 MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const { 492 MachineBasicBlock::iterator I = MBB.begin(); 493 while (I != MBB.end()) { 494 if (I->isLabel()) { 495 ++I; 496 continue; 497 } 498 499 // Most reloads should be inserted after prolog instructions. 500 if (!TII->isBasicBlockPrologue(*I)) 501 break; 502 503 // However if a prolog instruction reads a register that needs to be 504 // reloaded, the reload should be inserted before the prolog. 505 for (MachineOperand &MO : I->operands()) { 506 if (MO.isReg()) 507 PrologLiveIns.insert(MO.getReg()); 508 } 509 510 ++I; 511 } 512 513 return I; 514 } 515 516 /// Reload all currently assigned virtual registers. 517 void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) { 518 if (LiveVirtRegs.empty()) 519 return; 520 521 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 522 MCPhysReg Reg = P.PhysReg; 523 // Set state to live-in. This possibly overrides mappings to virtual 524 // registers but we don't care anymore at this point. 525 setPhysRegState(Reg, regLiveIn); 526 } 527 528 529 SmallSet<Register, 2> PrologLiveIns; 530 531 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 532 // of spilling here is deterministic, if arbitrary. 533 MachineBasicBlock::iterator InsertBefore 534 = getMBBBeginInsertionPoint(MBB, PrologLiveIns); 535 for (const LiveReg &LR : LiveVirtRegs) { 536 MCPhysReg PhysReg = LR.PhysReg; 537 if (PhysReg == 0) 538 continue; 539 540 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 541 if (RegUnitStates[FirstUnit] == regLiveIn) 542 continue; 543 544 assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) && 545 "no reload in start block. Missing vreg def?"); 546 547 if (PrologLiveIns.count(PhysReg)) { 548 // FIXME: Theoretically this should use an insert point skipping labels 549 // but I'm not sure how labels should interact with prolog instruction 550 // that need reloads. 551 reload(MBB.begin(), LR.VirtReg, PhysReg); 552 } else 553 reload(InsertBefore, LR.VirtReg, PhysReg); 554 } 555 LiveVirtRegs.clear(); 556 } 557 558 /// Handle the direct use of a physical register. Check that the register is 559 /// not used by a virtreg. Kill the physreg, marking it free. This may add 560 /// implicit kills to MO->getParent() and invalidate MO. 561 bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) { 562 assert(Register::isPhysicalRegister(Reg) && "expected physreg"); 563 bool displacedAny = displacePhysReg(MI, Reg); 564 setPhysRegState(Reg, regPreAssigned); 565 markRegUsedInInstr(Reg); 566 return displacedAny; 567 } 568 569 bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) { 570 bool displacedAny = displacePhysReg(MI, Reg); 571 setPhysRegState(Reg, regPreAssigned); 572 return displacedAny; 573 } 574 575 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 576 /// similar to defineVirtReg except the physreg is reserved instead of 577 /// allocated. 578 bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) { 579 bool displacedAny = false; 580 581 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 582 unsigned Unit = *UI; 583 switch (unsigned VirtReg = RegUnitStates[Unit]) { 584 default: { 585 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 586 assert(LRI != LiveVirtRegs.end() && "datastructures in sync"); 587 MachineBasicBlock::iterator ReloadBefore = 588 std::next((MachineBasicBlock::iterator)MI.getIterator()); 589 reload(ReloadBefore, VirtReg, LRI->PhysReg); 590 591 setPhysRegState(LRI->PhysReg, regFree); 592 LRI->PhysReg = 0; 593 LRI->Reloaded = true; 594 displacedAny = true; 595 break; 596 } 597 case regPreAssigned: 598 RegUnitStates[Unit] = regFree; 599 displacedAny = true; 600 break; 601 case regFree: 602 break; 603 } 604 } 605 return displacedAny; 606 } 607 608 void RegAllocFast::freePhysReg(MCPhysReg PhysReg) { 609 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':'); 610 611 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI); 612 switch (unsigned VirtReg = RegUnitStates[FirstUnit]) { 613 case regFree: 614 LLVM_DEBUG(dbgs() << '\n'); 615 return; 616 case regPreAssigned: 617 LLVM_DEBUG(dbgs() << '\n'); 618 setPhysRegState(PhysReg, regFree); 619 return; 620 default: { 621 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 622 assert(LRI != LiveVirtRegs.end()); 623 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n'); 624 setPhysRegState(LRI->PhysReg, regFree); 625 LRI->PhysReg = 0; 626 } 627 return; 628 } 629 } 630 631 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 632 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 633 /// disabled - it can be allocated directly. 634 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 635 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 636 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 637 switch (unsigned VirtReg = RegUnitStates[*UI]) { 638 case regFree: 639 break; 640 case regPreAssigned: 641 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned " 642 << printReg(PhysReg, TRI) << '\n'); 643 return spillImpossible; 644 default: { 645 bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 || 646 findLiveVirtReg(VirtReg)->LiveOut; 647 return SureSpill ? spillClean : spillDirty; 648 } 649 } 650 } 651 return 0; 652 } 653 654 void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition, 655 Register VirtReg, MCPhysReg Reg) { 656 auto UDBGValIter = DanglingDbgValues.find(VirtReg); 657 if (UDBGValIter == DanglingDbgValues.end()) 658 return; 659 660 SmallVectorImpl<MachineInstr*> &Dangling = UDBGValIter->second; 661 for (MachineInstr *DbgValue : Dangling) { 662 assert(DbgValue->isDebugValue()); 663 if (!DbgValue->hasDebugOperandForReg(VirtReg)) 664 continue; 665 666 // Test whether the physreg survives from the definition to the DBG_VALUE. 667 MCPhysReg SetToReg = Reg; 668 unsigned Limit = 20; 669 for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()), 670 E = DbgValue->getIterator(); I != E; ++I) { 671 if (I->modifiesRegister(Reg, TRI) || --Limit == 0) { 672 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 673 << '\n'); 674 SetToReg = 0; 675 break; 676 } 677 } 678 for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) { 679 MO.setReg(SetToReg); 680 if (SetToReg != 0) 681 MO.setIsRenamable(); 682 } 683 } 684 Dangling.clear(); 685 } 686 687 /// This method updates local state so that we know that PhysReg is the 688 /// proper container for VirtReg now. The physical register must not be used 689 /// for anything else when this is called. 690 void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR, 691 MCPhysReg PhysReg) { 692 Register VirtReg = LR.VirtReg; 693 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 694 << printReg(PhysReg, TRI) << '\n'); 695 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 696 assert(PhysReg != 0 && "Trying to assign no register"); 697 LR.PhysReg = PhysReg; 698 setPhysRegState(PhysReg, VirtReg); 699 700 assignDanglingDebugValues(AtMI, VirtReg, PhysReg); 701 } 702 703 static bool isCoalescable(const MachineInstr &MI) { 704 return MI.isFullCopy(); 705 } 706 707 Register RegAllocFast::traceCopyChain(Register Reg) const { 708 static const unsigned ChainLengthLimit = 3; 709 unsigned C = 0; 710 do { 711 if (Reg.isPhysical()) 712 return Reg; 713 assert(Reg.isVirtual()); 714 715 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); 716 if (!VRegDef || !isCoalescable(*VRegDef)) 717 return 0; 718 Reg = VRegDef->getOperand(1).getReg(); 719 } while (++C <= ChainLengthLimit); 720 return 0; 721 } 722 723 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the 724 /// chain of copies to check whether we reach a physical register we can 725 /// coalesce with. 726 Register RegAllocFast::traceCopies(Register VirtReg) const { 727 static const unsigned DefLimit = 3; 728 unsigned C = 0; 729 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { 730 if (isCoalescable(MI)) { 731 Register Reg = MI.getOperand(1).getReg(); 732 Reg = traceCopyChain(Reg); 733 if (Reg.isValid()) 734 return Reg; 735 } 736 737 if (++C >= DefLimit) 738 break; 739 } 740 return Register(); 741 } 742 743 /// Allocates a physical register for VirtReg. 744 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, 745 Register Hint0, bool LookAtPhysRegUses) { 746 const Register VirtReg = LR.VirtReg; 747 assert(LR.PhysReg == 0); 748 749 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 750 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 751 << " in class " << TRI->getRegClassName(&RC) 752 << " with hint " << printReg(Hint0, TRI) << '\n'); 753 754 // Take hint when possible. 755 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) && 756 !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) { 757 // Take hint if the register is currently free. 758 if (isPhysRegFree(Hint0)) { 759 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 760 << '\n'); 761 assignVirtToPhysReg(MI, LR, Hint0); 762 return; 763 } else { 764 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI) 765 << " occupied\n"); 766 } 767 } else { 768 Hint0 = Register(); 769 } 770 771 772 // Try other hint. 773 Register Hint1 = traceCopies(VirtReg); 774 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) && 775 !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) { 776 // Take hint if the register is currently free. 777 if (isPhysRegFree(Hint1)) { 778 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 779 << '\n'); 780 assignVirtToPhysReg(MI, LR, Hint1); 781 return; 782 } else { 783 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI) 784 << " occupied\n"); 785 } 786 } else { 787 Hint1 = Register(); 788 } 789 790 MCPhysReg BestReg = 0; 791 unsigned BestCost = spillImpossible; 792 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 793 for (MCPhysReg PhysReg : AllocationOrder) { 794 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 795 if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) { 796 LLVM_DEBUG(dbgs() << "already used in instr.\n"); 797 continue; 798 } 799 800 unsigned Cost = calcSpillCost(PhysReg); 801 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 802 // Immediate take a register with cost 0. 803 if (Cost == 0) { 804 assignVirtToPhysReg(MI, LR, PhysReg); 805 return; 806 } 807 808 if (PhysReg == Hint0 || PhysReg == Hint1) 809 Cost -= spillPrefBonus; 810 811 if (Cost < BestCost) { 812 BestReg = PhysReg; 813 BestCost = Cost; 814 } 815 } 816 817 if (!BestReg) { 818 // Nothing we can do: Report an error and keep going with an invalid 819 // allocation. 820 if (MI.isInlineAsm()) 821 MI.emitError("inline assembly requires more registers than available"); 822 else 823 MI.emitError("ran out of registers during register allocation"); 824 825 LR.Error = true; 826 LR.PhysReg = 0; 827 return; 828 } 829 830 displacePhysReg(MI, BestReg); 831 assignVirtToPhysReg(MI, LR, BestReg); 832 } 833 834 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) { 835 assert(MO.isUndef() && "expected undef use"); 836 Register VirtReg = MO.getReg(); 837 assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg"); 838 839 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 840 MCPhysReg PhysReg; 841 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 842 PhysReg = LRI->PhysReg; 843 } else { 844 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 845 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 846 assert(!AllocationOrder.empty() && "Allocation order must not be empty"); 847 PhysReg = AllocationOrder[0]; 848 } 849 850 unsigned SubRegIdx = MO.getSubReg(); 851 if (SubRegIdx != 0) { 852 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); 853 MO.setSubReg(0); 854 } 855 MO.setReg(PhysReg); 856 MO.setIsRenamable(true); 857 } 858 859 /// Variation of defineVirtReg() with special handling for livethrough regs 860 /// (tied or earlyclobber) that may interfere with preassigned uses. 861 void RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 862 Register VirtReg) { 863 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 864 if (LRI != LiveVirtRegs.end()) { 865 MCPhysReg PrevReg = LRI->PhysReg; 866 if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) { 867 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI) 868 << " (tied/earlyclobber resolution)\n"); 869 freePhysReg(PrevReg); 870 LRI->PhysReg = 0; 871 allocVirtReg(MI, *LRI, 0, true); 872 MachineBasicBlock::iterator InsertBefore = 873 std::next((MachineBasicBlock::iterator)MI.getIterator()); 874 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to " 875 << printReg(PrevReg, TRI) << '\n'); 876 BuildMI(*MBB, InsertBefore, MI.getDebugLoc(), 877 TII->get(TargetOpcode::COPY), PrevReg) 878 .addReg(LRI->PhysReg, llvm::RegState::Kill); 879 } 880 MachineOperand &MO = MI.getOperand(OpNum); 881 if (MO.getSubReg() && !MO.isUndef()) { 882 LRI->LastUse = &MI; 883 } 884 } 885 return defineVirtReg(MI, OpNum, VirtReg, true); 886 } 887 888 /// Allocates a register for VirtReg definition. Typically the register is 889 /// already assigned from a use of the virtreg, however we still need to 890 /// perform an allocation if: 891 /// - It is a dead definition without any uses. 892 /// - The value is live out and all uses are in different basic blocks. 893 void RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, 894 Register VirtReg, bool LookAtPhysRegUses) { 895 assert(VirtReg.isVirtual() && "Not a virtual register"); 896 MachineOperand &MO = MI.getOperand(OpNum); 897 LiveRegMap::iterator LRI; 898 bool New; 899 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 900 if (New) { 901 if (!MO.isDead()) { 902 if (mayLiveOut(VirtReg)) { 903 LRI->LiveOut = true; 904 } else { 905 // It is a dead def without the dead flag; add the flag now. 906 MO.setIsDead(true); 907 } 908 } 909 } 910 if (LRI->PhysReg == 0) 911 allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses); 912 else { 913 assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) && 914 "TODO: preassign mismatch"); 915 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI) 916 << " use existing assignment to " 917 << printReg(LRI->PhysReg, TRI) << '\n'); 918 } 919 920 MCPhysReg PhysReg = LRI->PhysReg; 921 assert(PhysReg != 0 && "Register not assigned"); 922 if (LRI->Reloaded || LRI->LiveOut) { 923 if (!MI.isImplicitDef()) { 924 MachineBasicBlock::iterator SpillBefore = 925 std::next((MachineBasicBlock::iterator)MI.getIterator()); 926 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut << " RL: " 927 << LRI->Reloaded << '\n'); 928 bool Kill = LRI->LastUse == nullptr; 929 spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut); 930 LRI->LastUse = nullptr; 931 } 932 LRI->LiveOut = false; 933 LRI->Reloaded = false; 934 } 935 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 936 BundleVirtRegsMap[VirtReg] = PhysReg; 937 } 938 markRegUsedInInstr(PhysReg); 939 setPhysReg(MI, MO, PhysReg); 940 } 941 942 /// Allocates a register for a VirtReg use. 943 void RegAllocFast::useVirtReg(MachineInstr &MI, unsigned OpNum, 944 Register VirtReg) { 945 assert(VirtReg.isVirtual() && "Not a virtual register"); 946 MachineOperand &MO = MI.getOperand(OpNum); 947 LiveRegMap::iterator LRI; 948 bool New; 949 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 950 if (New) { 951 MachineOperand &MO = MI.getOperand(OpNum); 952 if (!MO.isKill()) { 953 if (mayLiveOut(VirtReg)) { 954 LRI->LiveOut = true; 955 } else { 956 // It is a last (killing) use without the kill flag; add the flag now. 957 MO.setIsKill(true); 958 } 959 } 960 } else { 961 assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag"); 962 } 963 964 // If necessary allocate a register. 965 if (LRI->PhysReg == 0) { 966 assert(!MO.isTied() && "tied op should be allocated"); 967 Register Hint; 968 if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) { 969 Hint = MI.getOperand(0).getReg(); 970 assert(Hint.isPhysical() && 971 "Copy destination should already be assigned"); 972 } 973 allocVirtReg(MI, *LRI, Hint, false); 974 if (LRI->Error) { 975 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 976 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 977 setPhysReg(MI, MO, *AllocationOrder.begin()); 978 return; 979 } 980 } 981 982 LRI->LastUse = &MI; 983 984 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 985 BundleVirtRegsMap[VirtReg] = LRI->PhysReg; 986 } 987 markRegUsedInInstr(LRI->PhysReg); 988 setPhysReg(MI, MO, LRI->PhysReg); 989 } 990 991 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 992 /// may invalidate any operand pointers. Return true if the operand kills its 993 /// register. 994 void RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, 995 MCPhysReg PhysReg) { 996 if (!MO.getSubReg()) { 997 MO.setReg(PhysReg); 998 MO.setIsRenamable(true); 999 return; 1000 } 1001 1002 // Handle subregister index. 1003 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister()); 1004 MO.setIsRenamable(true); 1005 // Note: We leave the subreg number around a little longer in case of defs. 1006 // This is so that the register freeing logic in allocateInstruction can still 1007 // recognize this as subregister defs. The code there will clear the number. 1008 if (!MO.isDef()) 1009 MO.setSubReg(0); 1010 1011 // A kill flag implies killing the full register. Add corresponding super 1012 // register kill. 1013 if (MO.isKill()) { 1014 MI.addRegisterKilled(PhysReg, TRI, true); 1015 return; 1016 } 1017 1018 // A <def,read-undef> of a sub-register requires an implicit def of the full 1019 // register. 1020 if (MO.isDef() && MO.isUndef()) { 1021 if (MO.isDead()) 1022 MI.addRegisterDead(PhysReg, TRI, true); 1023 else 1024 MI.addRegisterDefined(PhysReg, TRI); 1025 } 1026 } 1027 1028 #ifndef NDEBUG 1029 1030 void RegAllocFast::dumpState() const { 1031 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE; 1032 ++Unit) { 1033 switch (unsigned VirtReg = RegUnitStates[Unit]) { 1034 case regFree: 1035 break; 1036 case regPreAssigned: 1037 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]"; 1038 break; 1039 case regLiveIn: 1040 llvm_unreachable("Should not have regLiveIn in map"); 1041 default: { 1042 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg); 1043 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 1044 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry"); 1045 if (I->LiveOut || I->Reloaded) { 1046 dbgs() << '['; 1047 if (I->LiveOut) dbgs() << 'O'; 1048 if (I->Reloaded) dbgs() << 'R'; 1049 dbgs() << ']'; 1050 } 1051 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present"); 1052 break; 1053 } 1054 } 1055 } 1056 dbgs() << '\n'; 1057 // Check that LiveVirtRegs is the inverse. 1058 for (const LiveReg &LR : LiveVirtRegs) { 1059 Register VirtReg = LR.VirtReg; 1060 assert(VirtReg.isVirtual() && "Bad map key"); 1061 MCPhysReg PhysReg = LR.PhysReg; 1062 if (PhysReg != 0) { 1063 assert(Register::isPhysicalRegister(PhysReg) && 1064 "mapped to physreg"); 1065 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) { 1066 assert(RegUnitStates[*UI] == VirtReg && "inverse map valid"); 1067 } 1068 } 1069 } 1070 } 1071 #endif 1072 1073 /// Count number of defs consumed from each register class by \p Reg 1074 void RegAllocFast::addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 1075 Register Reg) const { 1076 assert(RegClassDefCounts.size() == TRI->getNumRegClasses()); 1077 1078 if (Reg.isVirtual()) { 1079 const TargetRegisterClass *OpRC = MRI->getRegClass(Reg); 1080 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1081 RCIdx != RCIdxEnd; ++RCIdx) { 1082 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1083 // FIXME: Consider aliasing sub/super registers. 1084 if (OpRC->hasSubClassEq(IdxRC)) 1085 ++RegClassDefCounts[RCIdx]; 1086 } 1087 1088 return; 1089 } 1090 1091 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1092 RCIdx != RCIdxEnd; ++RCIdx) { 1093 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1094 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 1095 if (IdxRC->contains(*Alias)) { 1096 ++RegClassDefCounts[RCIdx]; 1097 break; 1098 } 1099 } 1100 } 1101 } 1102 1103 void RegAllocFast::allocateInstruction(MachineInstr &MI) { 1104 // The basic algorithm here is: 1105 // 1. Mark registers of def operands as free 1106 // 2. Allocate registers to use operands and place reload instructions for 1107 // registers displaced by the allocation. 1108 // 1109 // However we need to handle some corner cases: 1110 // - pre-assigned defs and uses need to be handled before the other def/use 1111 // operands are processed to avoid the allocation heuristics clashing with 1112 // the pre-assignment. 1113 // - The "free def operands" step has to come last instead of first for tied 1114 // operands and early-clobbers. 1115 1116 UsedInInstr.clear(); 1117 RegMasks.clear(); 1118 BundleVirtRegsMap.clear(); 1119 1120 // Scan for special cases; Apply pre-assigned register defs to state. 1121 bool HasPhysRegUse = false; 1122 bool HasRegMask = false; 1123 bool HasVRegDef = false; 1124 bool HasDef = false; 1125 bool HasEarlyClobber = false; 1126 bool NeedToAssignLiveThroughs = false; 1127 for (MachineOperand &MO : MI.operands()) { 1128 if (MO.isReg()) { 1129 Register Reg = MO.getReg(); 1130 if (Reg.isVirtual()) { 1131 if (MO.isDef()) { 1132 HasDef = true; 1133 HasVRegDef = true; 1134 if (MO.isEarlyClobber()) { 1135 HasEarlyClobber = true; 1136 NeedToAssignLiveThroughs = true; 1137 } 1138 if (MO.isTied() || (MO.getSubReg() != 0 && !MO.isUndef())) 1139 NeedToAssignLiveThroughs = true; 1140 } 1141 } else if (Reg.isPhysical()) { 1142 if (!MRI->isReserved(Reg)) { 1143 if (MO.isDef()) { 1144 HasDef = true; 1145 bool displacedAny = definePhysReg(MI, Reg); 1146 if (MO.isEarlyClobber()) 1147 HasEarlyClobber = true; 1148 if (!displacedAny) 1149 MO.setIsDead(true); 1150 } 1151 if (MO.readsReg()) 1152 HasPhysRegUse = true; 1153 } 1154 } 1155 } else if (MO.isRegMask()) { 1156 HasRegMask = true; 1157 RegMasks.push_back(MO.getRegMask()); 1158 } 1159 } 1160 1161 // Allocate virtreg defs. 1162 if (HasDef) { 1163 if (HasVRegDef) { 1164 // Special handling for early clobbers, tied operands or subregister defs: 1165 // Compared to "normal" defs these: 1166 // - Must not use a register that is pre-assigned for a use operand. 1167 // - In order to solve tricky inline assembly constraints we change the 1168 // heuristic to figure out a good operand order before doing 1169 // assignments. 1170 if (NeedToAssignLiveThroughs) { 1171 DefOperandIndexes.clear(); 1172 PhysRegUses.clear(); 1173 1174 // Track number of defs which may consume a register from the class. 1175 std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0); 1176 assert(RegClassDefCounts[0] == 0); 1177 1178 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n"); 1179 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1180 const MachineOperand &MO = MI.getOperand(I); 1181 if (!MO.isReg()) 1182 continue; 1183 Register Reg = MO.getReg(); 1184 if (MO.readsReg()) { 1185 if (Reg.isPhysical()) { 1186 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) 1187 << '\n'); 1188 markPhysRegUsedInInstr(Reg); 1189 } 1190 } 1191 1192 if (MO.isDef()) { 1193 if (Reg.isVirtual()) 1194 DefOperandIndexes.push_back(I); 1195 1196 addRegClassDefCounts(RegClassDefCounts, Reg); 1197 } 1198 } 1199 1200 llvm::sort(DefOperandIndexes, [&](uint16_t I0, uint16_t I1) { 1201 const MachineOperand &MO0 = MI.getOperand(I0); 1202 const MachineOperand &MO1 = MI.getOperand(I1); 1203 Register Reg0 = MO0.getReg(); 1204 Register Reg1 = MO1.getReg(); 1205 const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0); 1206 const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1); 1207 1208 // Identify regclass that are easy to use up completely just in this 1209 // instruction. 1210 unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size(); 1211 unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size(); 1212 1213 bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()]; 1214 bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()]; 1215 if (SmallClass0 > SmallClass1) 1216 return true; 1217 if (SmallClass0 < SmallClass1) 1218 return false; 1219 1220 // Allocate early clobbers and livethrough operands first. 1221 bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() || 1222 (MO0.getSubReg() == 0 && !MO0.isUndef()); 1223 bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() || 1224 (MO1.getSubReg() == 0 && !MO1.isUndef()); 1225 if (Livethrough0 > Livethrough1) 1226 return true; 1227 if (Livethrough0 < Livethrough1) 1228 return false; 1229 1230 // Tie-break rule: operand index. 1231 return I0 < I1; 1232 }); 1233 1234 for (uint16_t OpIdx : DefOperandIndexes) { 1235 MachineOperand &MO = MI.getOperand(OpIdx); 1236 LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n'); 1237 unsigned Reg = MO.getReg(); 1238 if (MO.isEarlyClobber() || MO.isTied() || 1239 (MO.getSubReg() && !MO.isUndef())) { 1240 defineLiveThroughVirtReg(MI, OpIdx, Reg); 1241 } else { 1242 defineVirtReg(MI, OpIdx, Reg); 1243 } 1244 } 1245 } else { 1246 // Assign virtual register defs. 1247 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1248 MachineOperand &MO = MI.getOperand(I); 1249 if (!MO.isReg() || !MO.isDef()) 1250 continue; 1251 Register Reg = MO.getReg(); 1252 if (Reg.isVirtual()) 1253 defineVirtReg(MI, I, Reg); 1254 } 1255 } 1256 } 1257 1258 // Free registers occupied by defs. 1259 // Iterate operands in reverse order, so we see the implicit super register 1260 // defs first (we added them earlier in case of <def,read-undef>). 1261 for (MachineOperand &MO : llvm::reverse(MI.operands())) { 1262 if (!MO.isReg() || !MO.isDef()) 1263 continue; 1264 1265 // subreg defs don't free the full register. We left the subreg number 1266 // around as a marker in setPhysReg() to recognize this case here. 1267 if (MO.getSubReg() != 0) { 1268 MO.setSubReg(0); 1269 continue; 1270 } 1271 1272 assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) && 1273 "tied def assigned to clobbered register"); 1274 1275 // Do not free tied operands and early clobbers. 1276 if (MO.isTied() || MO.isEarlyClobber()) 1277 continue; 1278 Register Reg = MO.getReg(); 1279 if (!Reg) 1280 continue; 1281 assert(Reg.isPhysical()); 1282 if (MRI->isReserved(Reg)) 1283 continue; 1284 freePhysReg(Reg); 1285 unmarkRegUsedInInstr(Reg); 1286 } 1287 } 1288 1289 // Displace clobbered registers. 1290 if (HasRegMask) { 1291 assert(!RegMasks.empty() && "expected RegMask"); 1292 // MRI bookkeeping. 1293 for (const auto *RM : RegMasks) 1294 MRI->addPhysRegsUsedFromRegMask(RM); 1295 1296 // Displace clobbered registers. 1297 for (const LiveReg &LR : LiveVirtRegs) { 1298 MCPhysReg PhysReg = LR.PhysReg; 1299 if (PhysReg != 0 && isClobberedByRegMasks(PhysReg)) 1300 displacePhysReg(MI, PhysReg); 1301 } 1302 } 1303 1304 // Apply pre-assigned register uses to state. 1305 if (HasPhysRegUse) { 1306 for (MachineOperand &MO : MI.operands()) { 1307 if (!MO.isReg() || !MO.readsReg()) 1308 continue; 1309 Register Reg = MO.getReg(); 1310 if (!Reg.isPhysical()) 1311 continue; 1312 if (MRI->isReserved(Reg)) 1313 continue; 1314 bool displacedAny = usePhysReg(MI, Reg); 1315 if (!displacedAny && !MRI->isReserved(Reg)) 1316 MO.setIsKill(true); 1317 } 1318 } 1319 1320 // Allocate virtreg uses and insert reloads as necessary. 1321 bool HasUndefUse = false; 1322 for (unsigned I = 0; I < MI.getNumOperands(); ++I) { 1323 MachineOperand &MO = MI.getOperand(I); 1324 if (!MO.isReg() || !MO.isUse()) 1325 continue; 1326 Register Reg = MO.getReg(); 1327 if (!Reg.isVirtual()) 1328 continue; 1329 1330 if (MO.isUndef()) { 1331 HasUndefUse = true; 1332 continue; 1333 } 1334 1335 1336 // Populate MayLiveAcrossBlocks in case the use block is allocated before 1337 // the def block (removing the vreg uses). 1338 mayLiveIn(Reg); 1339 1340 1341 assert(!MO.isInternalRead() && "Bundles not supported"); 1342 assert(MO.readsReg() && "reading use"); 1343 useVirtReg(MI, I, Reg); 1344 } 1345 1346 // Allocate undef operands. This is a separate step because in a situation 1347 // like ` = OP undef %X, %X` both operands need the same register assign 1348 // so we should perform the normal assignment first. 1349 if (HasUndefUse) { 1350 for (MachineOperand &MO : MI.uses()) { 1351 if (!MO.isReg() || !MO.isUse()) 1352 continue; 1353 Register Reg = MO.getReg(); 1354 if (!Reg.isVirtual()) 1355 continue; 1356 1357 assert(MO.isUndef() && "Should only have undef virtreg uses left"); 1358 allocVirtRegUndef(MO); 1359 } 1360 } 1361 1362 // Free early clobbers. 1363 if (HasEarlyClobber) { 1364 for (MachineOperand &MO : llvm::reverse(MI.operands())) { 1365 if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber()) 1366 continue; 1367 // subreg defs don't free the full register. We left the subreg number 1368 // around as a marker in setPhysReg() to recognize this case here. 1369 if (MO.getSubReg() != 0) { 1370 MO.setSubReg(0); 1371 continue; 1372 } 1373 1374 Register Reg = MO.getReg(); 1375 if (!Reg) 1376 continue; 1377 assert(Reg.isPhysical() && "should have register assigned"); 1378 1379 // We sometimes get odd situations like: 1380 // early-clobber %x0 = INSTRUCTION %x0 1381 // which is semantically questionable as the early-clobber should 1382 // apply before the use. But in practice we consider the use to 1383 // happen before the early clobber now. Don't free the early clobber 1384 // register in this case. 1385 if (MI.readsRegister(Reg, TRI)) 1386 continue; 1387 1388 freePhysReg(Reg); 1389 } 1390 } 1391 1392 LLVM_DEBUG(dbgs() << "<< " << MI); 1393 if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() && 1394 MI.getNumOperands() == 2) { 1395 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1396 Coalesced.push_back(&MI); 1397 } 1398 } 1399 1400 void RegAllocFast::handleDebugValue(MachineInstr &MI) { 1401 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1402 // mostly constants and frame indices. 1403 for (Register Reg : MI.getUsedDebugRegs()) { 1404 if (!Register::isVirtualRegister(Reg)) 1405 continue; 1406 1407 // Already spilled to a stackslot? 1408 int SS = StackSlotForVirtReg[Reg]; 1409 if (SS != -1) { 1410 // Modify DBG_VALUE now that the value is in a spill slot. 1411 updateDbgValueForSpill(MI, SS, Reg); 1412 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI); 1413 continue; 1414 } 1415 1416 // See if this virtual register has already been allocated to a physical 1417 // register or spilled to a stack slot. 1418 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1419 SmallVector<MachineOperand *> DbgOps; 1420 for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg)) 1421 DbgOps.push_back(&Op); 1422 1423 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1424 // Update every use of Reg within MI. 1425 for (auto &RegMO : DbgOps) 1426 setPhysReg(MI, *RegMO, LRI->PhysReg); 1427 } else { 1428 DanglingDbgValues[Reg].push_back(&MI); 1429 } 1430 1431 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1432 // that future spills of Reg will have DBG_VALUEs. 1433 LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end()); 1434 } 1435 } 1436 1437 void RegAllocFast::handleBundle(MachineInstr &MI) { 1438 MachineBasicBlock::instr_iterator BundledMI = MI.getIterator(); 1439 ++BundledMI; 1440 while (BundledMI->isBundledWithPred()) { 1441 for (MachineOperand &MO : BundledMI->operands()) { 1442 if (!MO.isReg()) 1443 continue; 1444 1445 Register Reg = MO.getReg(); 1446 if (!Reg.isVirtual()) 1447 continue; 1448 1449 DenseMap<Register, MCPhysReg>::iterator DI; 1450 DI = BundleVirtRegsMap.find(Reg); 1451 assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register"); 1452 1453 setPhysReg(MI, MO, DI->second); 1454 } 1455 1456 ++BundledMI; 1457 } 1458 } 1459 1460 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 1461 this->MBB = &MBB; 1462 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1463 1464 RegUnitStates.assign(TRI->getNumRegUnits(), regFree); 1465 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1466 1467 for (auto &LiveReg : MBB.liveouts()) 1468 setPhysRegState(LiveReg.PhysReg, regPreAssigned); 1469 1470 Coalesced.clear(); 1471 1472 // Traverse block in reverse order allocating instructions one by one. 1473 for (MachineInstr &MI : reverse(MBB)) { 1474 LLVM_DEBUG( 1475 dbgs() << "\n>> " << MI << "Regs:"; 1476 dumpState() 1477 ); 1478 1479 // Special handling for debug values. Note that they are not allowed to 1480 // affect codegen of the other instructions in any way. 1481 if (MI.isDebugValue()) { 1482 handleDebugValue(MI); 1483 continue; 1484 } 1485 1486 allocateInstruction(MI); 1487 1488 // Once BUNDLE header is assigned registers, same assignments need to be 1489 // done for bundled MIs. 1490 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1491 handleBundle(MI); 1492 } 1493 } 1494 1495 LLVM_DEBUG( 1496 dbgs() << "Begin Regs:"; 1497 dumpState() 1498 ); 1499 1500 // Spill all physical registers holding virtual registers now. 1501 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n"); 1502 reloadAtBegin(MBB); 1503 1504 // Erase all the coalesced copies. We are delaying it until now because 1505 // LiveVirtRegs might refer to the instrs. 1506 for (MachineInstr *MI : Coalesced) 1507 MBB.erase(MI); 1508 NumCoalesced += Coalesced.size(); 1509 1510 for (auto &UDBGPair : DanglingDbgValues) { 1511 for (MachineInstr *DbgValue : UDBGPair.second) { 1512 assert(DbgValue->isDebugValue() && "expected DBG_VALUE"); 1513 // Nothing to do if the vreg was spilled in the meantime. 1514 if (!DbgValue->hasDebugOperandForReg(UDBGPair.first)) 1515 continue; 1516 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 1517 << '\n'); 1518 DbgValue->setDebugValueUndef(); 1519 } 1520 } 1521 DanglingDbgValues.clear(); 1522 1523 LLVM_DEBUG(MBB.dump()); 1524 } 1525 1526 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1527 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1528 << "********** Function: " << MF.getName() << '\n'); 1529 MRI = &MF.getRegInfo(); 1530 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1531 TRI = STI.getRegisterInfo(); 1532 TII = STI.getInstrInfo(); 1533 MFI = &MF.getFrameInfo(); 1534 MRI->freezeReservedRegs(MF); 1535 RegClassInfo.runOnMachineFunction(MF); 1536 unsigned NumRegUnits = TRI->getNumRegUnits(); 1537 UsedInInstr.clear(); 1538 UsedInInstr.setUniverse(NumRegUnits); 1539 PhysRegUses.clear(); 1540 PhysRegUses.setUniverse(NumRegUnits); 1541 1542 // initialize the virtual->physical register map to have a 'null' 1543 // mapping for all virtual registers 1544 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1545 StackSlotForVirtReg.resize(NumVirtRegs); 1546 LiveVirtRegs.setUniverse(NumVirtRegs); 1547 MayLiveAcrossBlocks.clear(); 1548 MayLiveAcrossBlocks.resize(NumVirtRegs); 1549 1550 // Loop over all of the basic blocks, eliminating virtual register references 1551 for (MachineBasicBlock &MBB : MF) 1552 allocateBasicBlock(MBB); 1553 1554 if (ClearVirtRegs) { 1555 // All machine operands and other references to virtual registers have been 1556 // replaced. Remove the virtual registers. 1557 MRI->clearVirtRegs(); 1558 } 1559 1560 StackSlotForVirtReg.clear(); 1561 LiveDbgValueMap.clear(); 1562 return true; 1563 } 1564 1565 FunctionPass *llvm::createFastRegisterAllocator() { 1566 return new RegAllocFast(); 1567 } 1568 1569 FunctionPass *llvm::createFastRegisterAllocator( 1570 std::function<bool(const TargetRegisterInfo &TRI, 1571 const TargetRegisterClass &RC)> Ftor, bool ClearVirtRegs) { 1572 return new RegAllocFast(Ftor, ClearVirtRegs); 1573 } 1574