1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/SparseSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineOperand.h" 30 #include "llvm/CodeGen/MachineRegisterInfo.h" 31 #include "llvm/CodeGen/RegAllocCommon.h" 32 #include "llvm/CodeGen/RegAllocRegistry.h" 33 #include "llvm/CodeGen/RegisterClassInfo.h" 34 #include "llvm/CodeGen/TargetInstrInfo.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/TargetSubtargetInfo.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <cassert> 45 #include <tuple> 46 #include <vector> 47 48 using namespace llvm; 49 50 #define DEBUG_TYPE "regalloc" 51 52 STATISTIC(NumStores, "Number of stores added"); 53 STATISTIC(NumLoads , "Number of loads added"); 54 STATISTIC(NumCoalesced, "Number of copies coalesced"); 55 56 // FIXME: Remove this switch when all testcases are fixed! 57 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs", 58 cl::Hidden); 59 60 static RegisterRegAlloc 61 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 62 63 namespace { 64 65 class RegAllocFast : public MachineFunctionPass { 66 public: 67 static char ID; 68 69 RegAllocFast(const RegClassFilterFunc F = allocateAllRegClasses, 70 bool ClearVirtRegs_ = true) : 71 MachineFunctionPass(ID), 72 ShouldAllocateClass(F), 73 StackSlotForVirtReg(-1), 74 ClearVirtRegs(ClearVirtRegs_) { 75 } 76 77 private: 78 MachineFrameInfo *MFI = nullptr; 79 MachineRegisterInfo *MRI = nullptr; 80 const TargetRegisterInfo *TRI = nullptr; 81 const TargetInstrInfo *TII = nullptr; 82 RegisterClassInfo RegClassInfo; 83 const RegClassFilterFunc ShouldAllocateClass; 84 85 /// Basic block currently being allocated. 86 MachineBasicBlock *MBB = nullptr; 87 88 /// Maps virtual regs to the frame index where these values are spilled. 89 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 90 91 bool ClearVirtRegs; 92 93 /// Everything we know about a live virtual register. 94 struct LiveReg { 95 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 96 Register VirtReg; ///< Virtual register number. 97 MCPhysReg PhysReg = 0; ///< Currently held here. 98 bool LiveOut = false; ///< Register is possibly live out. 99 bool Reloaded = false; ///< Register was reloaded. 100 bool Error = false; ///< Could not allocate. 101 102 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {} 103 104 unsigned getSparseSetIndex() const { 105 return Register::virtReg2Index(VirtReg); 106 } 107 }; 108 109 using LiveRegMap = SparseSet<LiveReg, identity<unsigned>, uint16_t>; 110 /// This map contains entries for each virtual register that is currently 111 /// available in a physical register. 112 LiveRegMap LiveVirtRegs; 113 114 /// Stores assigned virtual registers present in the bundle MI. 115 DenseMap<Register, MCPhysReg> BundleVirtRegsMap; 116 117 DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap; 118 /// List of DBG_VALUE that we encountered without the vreg being assigned 119 /// because they were placed after the last use of the vreg. 120 DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues; 121 122 /// Has a bit set for every virtual register for which it was determined 123 /// that it is alive across blocks. 124 BitVector MayLiveAcrossBlocks; 125 126 /// State of a register unit. 127 enum RegUnitState { 128 /// A free register is not currently in use and can be allocated 129 /// immediately without checking aliases. 130 regFree, 131 132 /// A pre-assigned register has been assigned before register allocation 133 /// (e.g., setting up a call parameter). 134 regPreAssigned, 135 136 /// Used temporarily in reloadAtBegin() to mark register units that are 137 /// live-in to the basic block. 138 regLiveIn, 139 140 /// A register state may also be a virtual register number, indication 141 /// that the physical register is currently allocated to a virtual 142 /// register. In that case, LiveVirtRegs contains the inverse mapping. 143 }; 144 145 /// Maps each physical register to a RegUnitState enum or virtual register. 146 std::vector<unsigned> RegUnitStates; 147 148 SmallVector<MachineInstr *, 32> Coalesced; 149 150 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 151 /// Set of register units that are used in the current instruction, and so 152 /// cannot be allocated. 153 RegUnitSet UsedInInstr; 154 RegUnitSet PhysRegUses; 155 SmallVector<uint16_t, 8> DefOperandIndexes; 156 // Register masks attached to the current instruction. 157 SmallVector<const uint32_t *> RegMasks; 158 159 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 160 bool isPhysRegFree(MCPhysReg PhysReg) const; 161 162 /// Mark a physreg as used in this instruction. 163 void markRegUsedInInstr(MCPhysReg PhysReg) { 164 for (MCRegUnit Unit : TRI->regunits(PhysReg)) 165 UsedInInstr.insert(Unit); 166 } 167 168 // Check if physreg is clobbered by instruction's regmask(s). 169 bool isClobberedByRegMasks(MCPhysReg PhysReg) const { 170 return llvm::any_of(RegMasks, [PhysReg](const uint32_t *Mask) { 171 return MachineOperand::clobbersPhysReg(Mask, PhysReg); 172 }); 173 } 174 175 /// Check if a physreg or any of its aliases are used in this instruction. 176 bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const { 177 if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg)) 178 return true; 179 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 180 if (UsedInInstr.count(Unit)) 181 return true; 182 if (LookAtPhysRegUses && PhysRegUses.count(Unit)) 183 return true; 184 } 185 return false; 186 } 187 188 /// Mark physical register as being used in a register use operand. 189 /// This is only used by the special livethrough handling code. 190 void markPhysRegUsedInInstr(MCPhysReg PhysReg) { 191 for (MCRegUnit Unit : TRI->regunits(PhysReg)) 192 PhysRegUses.insert(Unit); 193 } 194 195 /// Remove mark of physical register being used in the instruction. 196 void unmarkRegUsedInInstr(MCPhysReg PhysReg) { 197 for (MCRegUnit Unit : TRI->regunits(PhysReg)) 198 UsedInInstr.erase(Unit); 199 } 200 201 enum : unsigned { 202 spillClean = 50, 203 spillDirty = 100, 204 spillPrefBonus = 20, 205 spillImpossible = ~0u 206 }; 207 208 public: 209 StringRef getPassName() const override { return "Fast Register Allocator"; } 210 211 void getAnalysisUsage(AnalysisUsage &AU) const override { 212 AU.setPreservesCFG(); 213 MachineFunctionPass::getAnalysisUsage(AU); 214 } 215 216 MachineFunctionProperties getRequiredProperties() const override { 217 return MachineFunctionProperties().set( 218 MachineFunctionProperties::Property::NoPHIs); 219 } 220 221 MachineFunctionProperties getSetProperties() const override { 222 if (ClearVirtRegs) { 223 return MachineFunctionProperties().set( 224 MachineFunctionProperties::Property::NoVRegs); 225 } 226 227 return MachineFunctionProperties(); 228 } 229 230 MachineFunctionProperties getClearedProperties() const override { 231 return MachineFunctionProperties().set( 232 MachineFunctionProperties::Property::IsSSA); 233 } 234 235 private: 236 bool runOnMachineFunction(MachineFunction &MF) override; 237 238 void allocateBasicBlock(MachineBasicBlock &MBB); 239 240 void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 241 Register Reg) const; 242 243 void findAndSortDefOperandIndexes(const MachineInstr &MI); 244 245 void allocateInstruction(MachineInstr &MI); 246 void handleDebugValue(MachineInstr &MI); 247 void handleBundle(MachineInstr &MI); 248 249 bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 250 bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 251 bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 252 void freePhysReg(MCPhysReg PhysReg); 253 254 unsigned calcSpillCost(MCPhysReg PhysReg) const; 255 256 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) { 257 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 258 } 259 260 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const { 261 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 262 } 263 264 void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg); 265 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint, 266 bool LookAtPhysRegUses = false); 267 void allocVirtRegUndef(MachineOperand &MO); 268 void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg, 269 MCPhysReg Reg); 270 bool defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 271 Register VirtReg); 272 bool defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 273 bool LookAtPhysRegUses = false); 274 bool useVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg); 275 276 MachineBasicBlock::iterator 277 getMBBBeginInsertionPoint(MachineBasicBlock &MBB, 278 SmallSet<Register, 2> &PrologLiveIns) const; 279 280 void reloadAtBegin(MachineBasicBlock &MBB); 281 bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 282 283 Register traceCopies(Register VirtReg) const; 284 Register traceCopyChain(Register Reg) const; 285 286 bool shouldAllocateRegister(const Register Reg) const; 287 int getStackSpaceFor(Register VirtReg); 288 void spill(MachineBasicBlock::iterator Before, Register VirtReg, 289 MCPhysReg AssignedReg, bool Kill, bool LiveOut); 290 void reload(MachineBasicBlock::iterator Before, Register VirtReg, 291 MCPhysReg PhysReg); 292 293 bool mayLiveOut(Register VirtReg); 294 bool mayLiveIn(Register VirtReg); 295 296 void dumpState() const; 297 }; 298 299 } // end anonymous namespace 300 301 char RegAllocFast::ID = 0; 302 303 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 304 false) 305 306 bool RegAllocFast::shouldAllocateRegister(const Register Reg) const { 307 assert(Reg.isVirtual()); 308 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 309 return ShouldAllocateClass(*TRI, RC); 310 } 311 312 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 313 for (MCRegUnit Unit : TRI->regunits(PhysReg)) 314 RegUnitStates[Unit] = NewState; 315 } 316 317 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const { 318 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 319 if (RegUnitStates[Unit] != regFree) 320 return false; 321 } 322 return true; 323 } 324 325 /// This allocates space for the specified virtual register to be held on the 326 /// stack. 327 int RegAllocFast::getStackSpaceFor(Register VirtReg) { 328 // Find the location Reg would belong... 329 int SS = StackSlotForVirtReg[VirtReg]; 330 // Already has space allocated? 331 if (SS != -1) 332 return SS; 333 334 // Allocate a new stack object for this spill location... 335 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 336 unsigned Size = TRI->getSpillSize(RC); 337 Align Alignment = TRI->getSpillAlign(RC); 338 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment); 339 340 // Assign the slot. 341 StackSlotForVirtReg[VirtReg] = FrameIdx; 342 return FrameIdx; 343 } 344 345 static bool dominates(MachineBasicBlock &MBB, 346 MachineBasicBlock::const_iterator A, 347 MachineBasicBlock::const_iterator B) { 348 auto MBBEnd = MBB.end(); 349 if (B == MBBEnd) 350 return true; 351 352 MachineBasicBlock::const_iterator I = MBB.begin(); 353 for (; &*I != A && &*I != B; ++I) 354 ; 355 356 return &*I == A; 357 } 358 359 /// Returns false if \p VirtReg is known to not live out of the current block. 360 bool RegAllocFast::mayLiveOut(Register VirtReg) { 361 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) { 362 // Cannot be live-out if there are no successors. 363 return !MBB->succ_empty(); 364 } 365 366 const MachineInstr *SelfLoopDef = nullptr; 367 368 // If this block loops back to itself, it is necessary to check whether the 369 // use comes after the def. 370 if (MBB->isSuccessor(MBB)) { 371 // Find the first def in the self loop MBB. 372 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 373 if (DefInst.getParent() != MBB) { 374 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 375 return true; 376 } else { 377 if (!SelfLoopDef || dominates(*MBB, DefInst.getIterator(), SelfLoopDef)) 378 SelfLoopDef = &DefInst; 379 } 380 } 381 if (!SelfLoopDef) { 382 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 383 return true; 384 } 385 } 386 387 // See if the first \p Limit uses of the register are all in the current 388 // block. 389 static const unsigned Limit = 8; 390 unsigned C = 0; 391 for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) { 392 if (UseInst.getParent() != MBB || ++C >= Limit) { 393 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 394 // Cannot be live-out if there are no successors. 395 return !MBB->succ_empty(); 396 } 397 398 if (SelfLoopDef) { 399 // Try to handle some simple cases to avoid spilling and reloading every 400 // value inside a self looping block. 401 if (SelfLoopDef == &UseInst || 402 !dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) { 403 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 404 return true; 405 } 406 } 407 } 408 409 return false; 410 } 411 412 /// Returns false if \p VirtReg is known to not be live into the current block. 413 bool RegAllocFast::mayLiveIn(Register VirtReg) { 414 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) 415 return !MBB->pred_empty(); 416 417 // See if the first \p Limit def of the register are all in the current block. 418 static const unsigned Limit = 8; 419 unsigned C = 0; 420 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 421 if (DefInst.getParent() != MBB || ++C >= Limit) { 422 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 423 return !MBB->pred_empty(); 424 } 425 } 426 427 return false; 428 } 429 430 /// Insert spill instruction for \p AssignedReg before \p Before. Update 431 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 432 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg, 433 MCPhysReg AssignedReg, bool Kill, bool LiveOut) { 434 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) 435 << " in " << printReg(AssignedReg, TRI)); 436 int FI = getStackSpaceFor(VirtReg); 437 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 438 439 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 440 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI, 441 VirtReg); 442 ++NumStores; 443 444 MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator(); 445 446 // When we spill a virtual register, we will have spill instructions behind 447 // every definition of it, meaning we can switch all the DBG_VALUEs over 448 // to just reference the stack slot. 449 SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg]; 450 SmallMapVector<MachineInstr *, SmallVector<const MachineOperand *>, 2> 451 SpilledOperandsMap; 452 for (MachineOperand *MO : LRIDbgOperands) 453 SpilledOperandsMap[MO->getParent()].push_back(MO); 454 for (auto MISpilledOperands : SpilledOperandsMap) { 455 MachineInstr &DBG = *MISpilledOperands.first; 456 // We don't have enough support for tracking operands of DBG_VALUE_LISTs. 457 if (DBG.isDebugValueList()) 458 continue; 459 MachineInstr *NewDV = buildDbgValueForSpill( 460 *MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second); 461 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 462 (void)NewDV; 463 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 464 465 if (LiveOut) { 466 // We need to insert a DBG_VALUE at the end of the block if the spill slot 467 // is live out, but there is another use of the value after the 468 // spill. This will allow LiveDebugValues to see the correct live out 469 // value to propagate to the successors. 470 MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV); 471 MBB->insert(FirstTerm, ClonedDV); 472 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n"); 473 } 474 475 // Rewrite unassigned dbg_values to use the stack slot. 476 // TODO We can potentially do this for list debug values as well if we know 477 // how the dbg_values are getting unassigned. 478 if (DBG.isNonListDebugValue()) { 479 MachineOperand &MO = DBG.getDebugOperand(0); 480 if (MO.isReg() && MO.getReg() == 0) { 481 updateDbgValueForSpill(DBG, FI, 0); 482 } 483 } 484 } 485 // Now this register is spilled there is should not be any DBG_VALUE 486 // pointing to this register because they are all pointing to spilled value 487 // now. 488 LRIDbgOperands.clear(); 489 } 490 491 /// Insert reload instruction for \p PhysReg before \p Before. 492 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg, 493 MCPhysReg PhysReg) { 494 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 495 << printReg(PhysReg, TRI) << '\n'); 496 int FI = getStackSpaceFor(VirtReg); 497 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 498 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI, VirtReg); 499 ++NumLoads; 500 } 501 502 /// Get basic block begin insertion point. 503 /// This is not just MBB.begin() because surprisingly we have EH_LABEL 504 /// instructions marking the begin of a basic block. This means we must insert 505 /// new instructions after such labels... 506 MachineBasicBlock::iterator 507 RegAllocFast::getMBBBeginInsertionPoint( 508 MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const { 509 MachineBasicBlock::iterator I = MBB.begin(); 510 while (I != MBB.end()) { 511 if (I->isLabel()) { 512 ++I; 513 continue; 514 } 515 516 // Most reloads should be inserted after prolog instructions. 517 if (!TII->isBasicBlockPrologue(*I)) 518 break; 519 520 // However if a prolog instruction reads a register that needs to be 521 // reloaded, the reload should be inserted before the prolog. 522 for (MachineOperand &MO : I->operands()) { 523 if (MO.isReg()) 524 PrologLiveIns.insert(MO.getReg()); 525 } 526 527 ++I; 528 } 529 530 return I; 531 } 532 533 /// Reload all currently assigned virtual registers. 534 void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) { 535 if (LiveVirtRegs.empty()) 536 return; 537 538 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 539 MCPhysReg Reg = P.PhysReg; 540 // Set state to live-in. This possibly overrides mappings to virtual 541 // registers but we don't care anymore at this point. 542 setPhysRegState(Reg, regLiveIn); 543 } 544 545 546 SmallSet<Register, 2> PrologLiveIns; 547 548 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 549 // of spilling here is deterministic, if arbitrary. 550 MachineBasicBlock::iterator InsertBefore 551 = getMBBBeginInsertionPoint(MBB, PrologLiveIns); 552 for (const LiveReg &LR : LiveVirtRegs) { 553 MCPhysReg PhysReg = LR.PhysReg; 554 if (PhysReg == 0) 555 continue; 556 557 MCRegister FirstUnit = *TRI->regunits(PhysReg).begin(); 558 if (RegUnitStates[FirstUnit] == regLiveIn) 559 continue; 560 561 assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) && 562 "no reload in start block. Missing vreg def?"); 563 564 if (PrologLiveIns.count(PhysReg)) { 565 // FIXME: Theoretically this should use an insert point skipping labels 566 // but I'm not sure how labels should interact with prolog instruction 567 // that need reloads. 568 reload(MBB.begin(), LR.VirtReg, PhysReg); 569 } else 570 reload(InsertBefore, LR.VirtReg, PhysReg); 571 } 572 LiveVirtRegs.clear(); 573 } 574 575 /// Handle the direct use of a physical register. Check that the register is 576 /// not used by a virtreg. Kill the physreg, marking it free. This may add 577 /// implicit kills to MO->getParent() and invalidate MO. 578 bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) { 579 assert(Register::isPhysicalRegister(Reg) && "expected physreg"); 580 bool displacedAny = displacePhysReg(MI, Reg); 581 setPhysRegState(Reg, regPreAssigned); 582 markRegUsedInInstr(Reg); 583 return displacedAny; 584 } 585 586 bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) { 587 bool displacedAny = displacePhysReg(MI, Reg); 588 setPhysRegState(Reg, regPreAssigned); 589 return displacedAny; 590 } 591 592 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 593 /// similar to defineVirtReg except the physreg is reserved instead of 594 /// allocated. 595 bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) { 596 bool displacedAny = false; 597 598 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 599 switch (unsigned VirtReg = RegUnitStates[Unit]) { 600 default: { 601 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 602 assert(LRI != LiveVirtRegs.end() && "datastructures in sync"); 603 MachineBasicBlock::iterator ReloadBefore = 604 std::next((MachineBasicBlock::iterator)MI.getIterator()); 605 reload(ReloadBefore, VirtReg, LRI->PhysReg); 606 607 setPhysRegState(LRI->PhysReg, regFree); 608 LRI->PhysReg = 0; 609 LRI->Reloaded = true; 610 displacedAny = true; 611 break; 612 } 613 case regPreAssigned: 614 RegUnitStates[Unit] = regFree; 615 displacedAny = true; 616 break; 617 case regFree: 618 break; 619 } 620 } 621 return displacedAny; 622 } 623 624 void RegAllocFast::freePhysReg(MCPhysReg PhysReg) { 625 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':'); 626 627 MCRegister FirstUnit = *TRI->regunits(PhysReg).begin(); 628 switch (unsigned VirtReg = RegUnitStates[FirstUnit]) { 629 case regFree: 630 LLVM_DEBUG(dbgs() << '\n'); 631 return; 632 case regPreAssigned: 633 LLVM_DEBUG(dbgs() << '\n'); 634 setPhysRegState(PhysReg, regFree); 635 return; 636 default: { 637 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 638 assert(LRI != LiveVirtRegs.end()); 639 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n'); 640 setPhysRegState(LRI->PhysReg, regFree); 641 LRI->PhysReg = 0; 642 } 643 return; 644 } 645 } 646 647 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 648 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 649 /// disabled - it can be allocated directly. 650 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 651 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 652 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 653 switch (unsigned VirtReg = RegUnitStates[Unit]) { 654 case regFree: 655 break; 656 case regPreAssigned: 657 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned " 658 << printReg(PhysReg, TRI) << '\n'); 659 return spillImpossible; 660 default: { 661 bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 || 662 findLiveVirtReg(VirtReg)->LiveOut; 663 return SureSpill ? spillClean : spillDirty; 664 } 665 } 666 } 667 return 0; 668 } 669 670 void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition, 671 Register VirtReg, MCPhysReg Reg) { 672 auto UDBGValIter = DanglingDbgValues.find(VirtReg); 673 if (UDBGValIter == DanglingDbgValues.end()) 674 return; 675 676 SmallVectorImpl<MachineInstr*> &Dangling = UDBGValIter->second; 677 for (MachineInstr *DbgValue : Dangling) { 678 assert(DbgValue->isDebugValue()); 679 if (!DbgValue->hasDebugOperandForReg(VirtReg)) 680 continue; 681 682 // Test whether the physreg survives from the definition to the DBG_VALUE. 683 MCPhysReg SetToReg = Reg; 684 unsigned Limit = 20; 685 for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()), 686 E = DbgValue->getIterator(); I != E; ++I) { 687 if (I->modifiesRegister(Reg, TRI) || --Limit == 0) { 688 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 689 << '\n'); 690 SetToReg = 0; 691 break; 692 } 693 } 694 for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) { 695 MO.setReg(SetToReg); 696 if (SetToReg != 0) 697 MO.setIsRenamable(); 698 } 699 } 700 Dangling.clear(); 701 } 702 703 /// This method updates local state so that we know that PhysReg is the 704 /// proper container for VirtReg now. The physical register must not be used 705 /// for anything else when this is called. 706 void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR, 707 MCPhysReg PhysReg) { 708 Register VirtReg = LR.VirtReg; 709 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 710 << printReg(PhysReg, TRI) << '\n'); 711 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 712 assert(PhysReg != 0 && "Trying to assign no register"); 713 LR.PhysReg = PhysReg; 714 setPhysRegState(PhysReg, VirtReg); 715 716 assignDanglingDebugValues(AtMI, VirtReg, PhysReg); 717 } 718 719 static bool isCoalescable(const MachineInstr &MI) { 720 return MI.isFullCopy(); 721 } 722 723 Register RegAllocFast::traceCopyChain(Register Reg) const { 724 static const unsigned ChainLengthLimit = 3; 725 unsigned C = 0; 726 do { 727 if (Reg.isPhysical()) 728 return Reg; 729 assert(Reg.isVirtual()); 730 731 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); 732 if (!VRegDef || !isCoalescable(*VRegDef)) 733 return 0; 734 Reg = VRegDef->getOperand(1).getReg(); 735 } while (++C <= ChainLengthLimit); 736 return 0; 737 } 738 739 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the 740 /// chain of copies to check whether we reach a physical register we can 741 /// coalesce with. 742 Register RegAllocFast::traceCopies(Register VirtReg) const { 743 static const unsigned DefLimit = 3; 744 unsigned C = 0; 745 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { 746 if (isCoalescable(MI)) { 747 Register Reg = MI.getOperand(1).getReg(); 748 Reg = traceCopyChain(Reg); 749 if (Reg.isValid()) 750 return Reg; 751 } 752 753 if (++C >= DefLimit) 754 break; 755 } 756 return Register(); 757 } 758 759 /// Allocates a physical register for VirtReg. 760 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, 761 Register Hint0, bool LookAtPhysRegUses) { 762 const Register VirtReg = LR.VirtReg; 763 assert(LR.PhysReg == 0); 764 765 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 766 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 767 << " in class " << TRI->getRegClassName(&RC) 768 << " with hint " << printReg(Hint0, TRI) << '\n'); 769 770 // Take hint when possible. 771 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) && 772 !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) { 773 // Take hint if the register is currently free. 774 if (isPhysRegFree(Hint0)) { 775 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 776 << '\n'); 777 assignVirtToPhysReg(MI, LR, Hint0); 778 return; 779 } else { 780 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI) 781 << " occupied\n"); 782 } 783 } else { 784 Hint0 = Register(); 785 } 786 787 788 // Try other hint. 789 Register Hint1 = traceCopies(VirtReg); 790 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) && 791 !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) { 792 // Take hint if the register is currently free. 793 if (isPhysRegFree(Hint1)) { 794 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 795 << '\n'); 796 assignVirtToPhysReg(MI, LR, Hint1); 797 return; 798 } else { 799 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI) 800 << " occupied\n"); 801 } 802 } else { 803 Hint1 = Register(); 804 } 805 806 MCPhysReg BestReg = 0; 807 unsigned BestCost = spillImpossible; 808 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 809 for (MCPhysReg PhysReg : AllocationOrder) { 810 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 811 if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) { 812 LLVM_DEBUG(dbgs() << "already used in instr.\n"); 813 continue; 814 } 815 816 unsigned Cost = calcSpillCost(PhysReg); 817 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 818 // Immediate take a register with cost 0. 819 if (Cost == 0) { 820 assignVirtToPhysReg(MI, LR, PhysReg); 821 return; 822 } 823 824 if (PhysReg == Hint0 || PhysReg == Hint1) 825 Cost -= spillPrefBonus; 826 827 if (Cost < BestCost) { 828 BestReg = PhysReg; 829 BestCost = Cost; 830 } 831 } 832 833 if (!BestReg) { 834 // Nothing we can do: Report an error and keep going with an invalid 835 // allocation. 836 if (MI.isInlineAsm()) 837 MI.emitError("inline assembly requires more registers than available"); 838 else 839 MI.emitError("ran out of registers during register allocation"); 840 841 LR.Error = true; 842 LR.PhysReg = 0; 843 return; 844 } 845 846 displacePhysReg(MI, BestReg); 847 assignVirtToPhysReg(MI, LR, BestReg); 848 } 849 850 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) { 851 assert(MO.isUndef() && "expected undef use"); 852 Register VirtReg = MO.getReg(); 853 assert(VirtReg.isVirtual() && "Expected virtreg"); 854 if (!shouldAllocateRegister(VirtReg)) 855 return; 856 857 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 858 MCPhysReg PhysReg; 859 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 860 PhysReg = LRI->PhysReg; 861 } else { 862 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 863 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 864 assert(!AllocationOrder.empty() && "Allocation order must not be empty"); 865 PhysReg = AllocationOrder[0]; 866 } 867 868 unsigned SubRegIdx = MO.getSubReg(); 869 if (SubRegIdx != 0) { 870 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); 871 MO.setSubReg(0); 872 } 873 MO.setReg(PhysReg); 874 MO.setIsRenamable(true); 875 } 876 877 /// Variation of defineVirtReg() with special handling for livethrough regs 878 /// (tied or earlyclobber) that may interfere with preassigned uses. 879 /// \return true if MI's MachineOperands were re-arranged/invalidated. 880 bool RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 881 Register VirtReg) { 882 if (!shouldAllocateRegister(VirtReg)) 883 return false; 884 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 885 if (LRI != LiveVirtRegs.end()) { 886 MCPhysReg PrevReg = LRI->PhysReg; 887 if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) { 888 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI) 889 << " (tied/earlyclobber resolution)\n"); 890 freePhysReg(PrevReg); 891 LRI->PhysReg = 0; 892 allocVirtReg(MI, *LRI, 0, true); 893 MachineBasicBlock::iterator InsertBefore = 894 std::next((MachineBasicBlock::iterator)MI.getIterator()); 895 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to " 896 << printReg(PrevReg, TRI) << '\n'); 897 BuildMI(*MBB, InsertBefore, MI.getDebugLoc(), 898 TII->get(TargetOpcode::COPY), PrevReg) 899 .addReg(LRI->PhysReg, llvm::RegState::Kill); 900 } 901 MachineOperand &MO = MI.getOperand(OpNum); 902 if (MO.getSubReg() && !MO.isUndef()) { 903 LRI->LastUse = &MI; 904 } 905 } 906 return defineVirtReg(MI, OpNum, VirtReg, true); 907 } 908 909 /// Allocates a register for VirtReg definition. Typically the register is 910 /// already assigned from a use of the virtreg, however we still need to 911 /// perform an allocation if: 912 /// - It is a dead definition without any uses. 913 /// - The value is live out and all uses are in different basic blocks. 914 /// 915 /// \return true if MI's MachineOperands were re-arranged/invalidated. 916 bool RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, 917 Register VirtReg, bool LookAtPhysRegUses) { 918 assert(VirtReg.isVirtual() && "Not a virtual register"); 919 if (!shouldAllocateRegister(VirtReg)) 920 return false; 921 MachineOperand &MO = MI.getOperand(OpNum); 922 LiveRegMap::iterator LRI; 923 bool New; 924 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 925 if (New) { 926 if (!MO.isDead()) { 927 if (mayLiveOut(VirtReg)) { 928 LRI->LiveOut = true; 929 } else { 930 // It is a dead def without the dead flag; add the flag now. 931 MO.setIsDead(true); 932 } 933 } 934 } 935 if (LRI->PhysReg == 0) 936 allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses); 937 else { 938 assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) && 939 "TODO: preassign mismatch"); 940 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI) 941 << " use existing assignment to " 942 << printReg(LRI->PhysReg, TRI) << '\n'); 943 } 944 945 MCPhysReg PhysReg = LRI->PhysReg; 946 assert(PhysReg != 0 && "Register not assigned"); 947 if (LRI->Reloaded || LRI->LiveOut) { 948 if (!MI.isImplicitDef()) { 949 MachineBasicBlock::iterator SpillBefore = 950 std::next((MachineBasicBlock::iterator)MI.getIterator()); 951 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut << " RL: " 952 << LRI->Reloaded << '\n'); 953 bool Kill = LRI->LastUse == nullptr; 954 spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut); 955 956 // We need to place additional spills for each indirect destination of an 957 // INLINEASM_BR. 958 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) { 959 int FI = StackSlotForVirtReg[VirtReg]; 960 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 961 for (MachineOperand &MO : MI.operands()) { 962 if (MO.isMBB()) { 963 MachineBasicBlock *Succ = MO.getMBB(); 964 TII->storeRegToStackSlot(*Succ, Succ->begin(), PhysReg, Kill, 965 FI, &RC, TRI, VirtReg); 966 ++NumStores; 967 Succ->addLiveIn(PhysReg); 968 } 969 } 970 } 971 972 LRI->LastUse = nullptr; 973 } 974 LRI->LiveOut = false; 975 LRI->Reloaded = false; 976 } 977 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 978 BundleVirtRegsMap[VirtReg] = PhysReg; 979 } 980 markRegUsedInInstr(PhysReg); 981 return setPhysReg(MI, MO, PhysReg); 982 } 983 984 /// Allocates a register for a VirtReg use. 985 /// \return true if MI's MachineOperands were re-arranged/invalidated. 986 bool RegAllocFast::useVirtReg(MachineInstr &MI, unsigned OpNum, 987 Register VirtReg) { 988 assert(VirtReg.isVirtual() && "Not a virtual register"); 989 if (!shouldAllocateRegister(VirtReg)) 990 return false; 991 MachineOperand &MO = MI.getOperand(OpNum); 992 LiveRegMap::iterator LRI; 993 bool New; 994 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 995 if (New) { 996 MachineOperand &MO = MI.getOperand(OpNum); 997 if (!MO.isKill()) { 998 if (mayLiveOut(VirtReg)) { 999 LRI->LiveOut = true; 1000 } else { 1001 // It is a last (killing) use without the kill flag; add the flag now. 1002 MO.setIsKill(true); 1003 } 1004 } 1005 } else { 1006 assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag"); 1007 } 1008 1009 // If necessary allocate a register. 1010 if (LRI->PhysReg == 0) { 1011 assert(!MO.isTied() && "tied op should be allocated"); 1012 Register Hint; 1013 if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) { 1014 Hint = MI.getOperand(0).getReg(); 1015 if (Hint.isVirtual()) { 1016 assert(!shouldAllocateRegister(Hint)); 1017 Hint = Register(); 1018 } else { 1019 assert(Hint.isPhysical() && 1020 "Copy destination should already be assigned"); 1021 } 1022 } 1023 allocVirtReg(MI, *LRI, Hint, false); 1024 if (LRI->Error) { 1025 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 1026 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 1027 return setPhysReg(MI, MO, *AllocationOrder.begin()); 1028 } 1029 } 1030 1031 LRI->LastUse = &MI; 1032 1033 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1034 BundleVirtRegsMap[VirtReg] = LRI->PhysReg; 1035 } 1036 markRegUsedInInstr(LRI->PhysReg); 1037 return setPhysReg(MI, MO, LRI->PhysReg); 1038 } 1039 1040 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. 1041 /// \return true if MI's MachineOperands were re-arranged/invalidated. 1042 bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, 1043 MCPhysReg PhysReg) { 1044 if (!MO.getSubReg()) { 1045 MO.setReg(PhysReg); 1046 MO.setIsRenamable(true); 1047 return false; 1048 } 1049 1050 // Handle subregister index. 1051 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister()); 1052 MO.setIsRenamable(true); 1053 // Note: We leave the subreg number around a little longer in case of defs. 1054 // This is so that the register freeing logic in allocateInstruction can still 1055 // recognize this as subregister defs. The code there will clear the number. 1056 if (!MO.isDef()) 1057 MO.setSubReg(0); 1058 1059 // A kill flag implies killing the full register. Add corresponding super 1060 // register kill. 1061 if (MO.isKill()) { 1062 MI.addRegisterKilled(PhysReg, TRI, true); 1063 // Conservatively assume implicit MOs were re-arranged 1064 return true; 1065 } 1066 1067 // A <def,read-undef> of a sub-register requires an implicit def of the full 1068 // register. 1069 if (MO.isDef() && MO.isUndef()) { 1070 if (MO.isDead()) 1071 MI.addRegisterDead(PhysReg, TRI, true); 1072 else 1073 MI.addRegisterDefined(PhysReg, TRI); 1074 // Conservatively assume implicit MOs were re-arranged 1075 return true; 1076 } 1077 return false; 1078 } 1079 1080 #ifndef NDEBUG 1081 1082 void RegAllocFast::dumpState() const { 1083 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE; 1084 ++Unit) { 1085 switch (unsigned VirtReg = RegUnitStates[Unit]) { 1086 case regFree: 1087 break; 1088 case regPreAssigned: 1089 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]"; 1090 break; 1091 case regLiveIn: 1092 llvm_unreachable("Should not have regLiveIn in map"); 1093 default: { 1094 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg); 1095 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 1096 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry"); 1097 if (I->LiveOut || I->Reloaded) { 1098 dbgs() << '['; 1099 if (I->LiveOut) dbgs() << 'O'; 1100 if (I->Reloaded) dbgs() << 'R'; 1101 dbgs() << ']'; 1102 } 1103 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present"); 1104 break; 1105 } 1106 } 1107 } 1108 dbgs() << '\n'; 1109 // Check that LiveVirtRegs is the inverse. 1110 for (const LiveReg &LR : LiveVirtRegs) { 1111 Register VirtReg = LR.VirtReg; 1112 assert(VirtReg.isVirtual() && "Bad map key"); 1113 MCPhysReg PhysReg = LR.PhysReg; 1114 if (PhysReg != 0) { 1115 assert(Register::isPhysicalRegister(PhysReg) && 1116 "mapped to physreg"); 1117 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 1118 assert(RegUnitStates[Unit] == VirtReg && "inverse map valid"); 1119 } 1120 } 1121 } 1122 } 1123 #endif 1124 1125 /// Count number of defs consumed from each register class by \p Reg 1126 void RegAllocFast::addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 1127 Register Reg) const { 1128 assert(RegClassDefCounts.size() == TRI->getNumRegClasses()); 1129 1130 if (Reg.isVirtual()) { 1131 if (!shouldAllocateRegister(Reg)) 1132 return; 1133 const TargetRegisterClass *OpRC = MRI->getRegClass(Reg); 1134 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1135 RCIdx != RCIdxEnd; ++RCIdx) { 1136 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1137 // FIXME: Consider aliasing sub/super registers. 1138 if (OpRC->hasSubClassEq(IdxRC)) 1139 ++RegClassDefCounts[RCIdx]; 1140 } 1141 1142 return; 1143 } 1144 1145 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1146 RCIdx != RCIdxEnd; ++RCIdx) { 1147 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1148 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 1149 if (IdxRC->contains(*Alias)) { 1150 ++RegClassDefCounts[RCIdx]; 1151 break; 1152 } 1153 } 1154 } 1155 } 1156 1157 /// Compute \ref DefOperandIndexes so it contains the indices of "def" operands 1158 /// that are to be allocated. Those are ordered in a way that small classes, 1159 /// early clobbers and livethroughs are allocated first. 1160 void RegAllocFast::findAndSortDefOperandIndexes(const MachineInstr &MI) { 1161 DefOperandIndexes.clear(); 1162 1163 // Track number of defs which may consume a register from the class. 1164 std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0); 1165 assert(RegClassDefCounts[0] == 0); 1166 1167 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n"); 1168 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1169 const MachineOperand &MO = MI.getOperand(I); 1170 if (!MO.isReg()) 1171 continue; 1172 Register Reg = MO.getReg(); 1173 if (MO.readsReg()) { 1174 if (Reg.isPhysical()) { 1175 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) << '\n'); 1176 markPhysRegUsedInInstr(Reg); 1177 } 1178 } 1179 1180 if (MO.isDef()) { 1181 if (Reg.isVirtual() && shouldAllocateRegister(Reg)) 1182 DefOperandIndexes.push_back(I); 1183 1184 addRegClassDefCounts(RegClassDefCounts, Reg); 1185 } 1186 } 1187 1188 llvm::sort(DefOperandIndexes, [&](uint16_t I0, uint16_t I1) { 1189 const MachineOperand &MO0 = MI.getOperand(I0); 1190 const MachineOperand &MO1 = MI.getOperand(I1); 1191 Register Reg0 = MO0.getReg(); 1192 Register Reg1 = MO1.getReg(); 1193 const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0); 1194 const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1); 1195 1196 // Identify regclass that are easy to use up completely just in this 1197 // instruction. 1198 unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size(); 1199 unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size(); 1200 1201 bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()]; 1202 bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()]; 1203 if (SmallClass0 > SmallClass1) 1204 return true; 1205 if (SmallClass0 < SmallClass1) 1206 return false; 1207 1208 // Allocate early clobbers and livethrough operands first. 1209 bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() || 1210 (MO0.getSubReg() == 0 && !MO0.isUndef()); 1211 bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() || 1212 (MO1.getSubReg() == 0 && !MO1.isUndef()); 1213 if (Livethrough0 > Livethrough1) 1214 return true; 1215 if (Livethrough0 < Livethrough1) 1216 return false; 1217 1218 // Tie-break rule: operand index. 1219 return I0 < I1; 1220 }); 1221 } 1222 1223 void RegAllocFast::allocateInstruction(MachineInstr &MI) { 1224 // The basic algorithm here is: 1225 // 1. Mark registers of def operands as free 1226 // 2. Allocate registers to use operands and place reload instructions for 1227 // registers displaced by the allocation. 1228 // 1229 // However we need to handle some corner cases: 1230 // - pre-assigned defs and uses need to be handled before the other def/use 1231 // operands are processed to avoid the allocation heuristics clashing with 1232 // the pre-assignment. 1233 // - The "free def operands" step has to come last instead of first for tied 1234 // operands and early-clobbers. 1235 1236 UsedInInstr.clear(); 1237 RegMasks.clear(); 1238 BundleVirtRegsMap.clear(); 1239 1240 auto TiedOpIsUndef = [&](const MachineOperand &MO, unsigned Idx) { 1241 assert(MO.isTied()); 1242 unsigned TiedIdx = MI.findTiedOperandIdx(Idx); 1243 const MachineOperand &TiedMO = MI.getOperand(TiedIdx); 1244 return TiedMO.isUndef(); 1245 }; 1246 // Scan for special cases; Apply pre-assigned register defs to state. 1247 bool HasPhysRegUse = false; 1248 bool HasRegMask = false; 1249 bool HasVRegDef = false; 1250 bool HasDef = false; 1251 bool HasEarlyClobber = false; 1252 bool NeedToAssignLiveThroughs = false; 1253 for (unsigned I = 0; I < MI.getNumOperands(); ++I) { 1254 MachineOperand &MO = MI.getOperand(I); 1255 if (MO.isReg()) { 1256 Register Reg = MO.getReg(); 1257 if (Reg.isVirtual()) { 1258 if (!shouldAllocateRegister(Reg)) 1259 continue; 1260 if (MO.isDef()) { 1261 HasDef = true; 1262 HasVRegDef = true; 1263 if (MO.isEarlyClobber()) { 1264 HasEarlyClobber = true; 1265 NeedToAssignLiveThroughs = true; 1266 } 1267 if ((MO.isTied() && !TiedOpIsUndef(MO, I)) || 1268 (MO.getSubReg() != 0 && !MO.isUndef())) 1269 NeedToAssignLiveThroughs = true; 1270 } 1271 } else if (Reg.isPhysical()) { 1272 if (!MRI->isReserved(Reg)) { 1273 if (MO.isDef()) { 1274 HasDef = true; 1275 bool displacedAny = definePhysReg(MI, Reg); 1276 if (MO.isEarlyClobber()) 1277 HasEarlyClobber = true; 1278 if (!displacedAny) 1279 MO.setIsDead(true); 1280 } 1281 if (MO.readsReg()) 1282 HasPhysRegUse = true; 1283 } 1284 } 1285 } else if (MO.isRegMask()) { 1286 HasRegMask = true; 1287 RegMasks.push_back(MO.getRegMask()); 1288 } 1289 } 1290 1291 // Allocate virtreg defs. 1292 if (HasDef) { 1293 if (HasVRegDef) { 1294 // Note that Implicit MOs can get re-arranged by defineVirtReg(), so loop 1295 // multiple times to ensure no operand is missed. 1296 bool ReArrangedImplicitOps = true; 1297 1298 // Special handling for early clobbers, tied operands or subregister defs: 1299 // Compared to "normal" defs these: 1300 // - Must not use a register that is pre-assigned for a use operand. 1301 // - In order to solve tricky inline assembly constraints we change the 1302 // heuristic to figure out a good operand order before doing 1303 // assignments. 1304 if (NeedToAssignLiveThroughs) { 1305 PhysRegUses.clear(); 1306 1307 while (ReArrangedImplicitOps) { 1308 ReArrangedImplicitOps = false; 1309 findAndSortDefOperandIndexes(MI); 1310 for (uint16_t OpIdx : DefOperandIndexes) { 1311 MachineOperand &MO = MI.getOperand(OpIdx); 1312 LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n'); 1313 unsigned Reg = MO.getReg(); 1314 if (MO.isEarlyClobber() || 1315 (MO.isTied() && !TiedOpIsUndef(MO, OpIdx)) || 1316 (MO.getSubReg() && !MO.isUndef())) { 1317 ReArrangedImplicitOps = defineLiveThroughVirtReg(MI, OpIdx, Reg); 1318 } else { 1319 ReArrangedImplicitOps = defineVirtReg(MI, OpIdx, Reg); 1320 } 1321 if (ReArrangedImplicitOps) { 1322 // Implicit operands of MI were re-arranged, 1323 // re-compute DefOperandIndexes. 1324 break; 1325 } 1326 } 1327 } 1328 } else { 1329 // Assign virtual register defs. 1330 while (ReArrangedImplicitOps) { 1331 ReArrangedImplicitOps = false; 1332 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1333 MachineOperand &MO = MI.getOperand(I); 1334 if (!MO.isReg() || !MO.isDef()) 1335 continue; 1336 Register Reg = MO.getReg(); 1337 if (Reg.isVirtual()) { 1338 ReArrangedImplicitOps = defineVirtReg(MI, I, Reg); 1339 if (ReArrangedImplicitOps) { 1340 break; 1341 } 1342 } 1343 } 1344 } 1345 } 1346 } 1347 1348 // Free registers occupied by defs. 1349 // Iterate operands in reverse order, so we see the implicit super register 1350 // defs first (we added them earlier in case of <def,read-undef>). 1351 for (signed I = MI.getNumOperands() - 1; I >= 0; --I) { 1352 MachineOperand &MO = MI.getOperand(I); 1353 if (!MO.isReg() || !MO.isDef()) 1354 continue; 1355 1356 Register Reg = MO.getReg(); 1357 1358 // subreg defs don't free the full register. We left the subreg number 1359 // around as a marker in setPhysReg() to recognize this case here. 1360 if (Reg.isPhysical() && MO.getSubReg() != 0) { 1361 MO.setSubReg(0); 1362 continue; 1363 } 1364 1365 assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) && 1366 "tied def assigned to clobbered register"); 1367 1368 // Do not free tied operands and early clobbers. 1369 if ((MO.isTied() && !TiedOpIsUndef(MO, I)) || MO.isEarlyClobber()) 1370 continue; 1371 if (!Reg) 1372 continue; 1373 if (Reg.isVirtual()) { 1374 assert(!shouldAllocateRegister(Reg)); 1375 continue; 1376 } 1377 assert(Reg.isPhysical()); 1378 if (MRI->isReserved(Reg)) 1379 continue; 1380 freePhysReg(Reg); 1381 unmarkRegUsedInInstr(Reg); 1382 } 1383 } 1384 1385 // Displace clobbered registers. 1386 if (HasRegMask) { 1387 assert(!RegMasks.empty() && "expected RegMask"); 1388 // MRI bookkeeping. 1389 for (const auto *RM : RegMasks) 1390 MRI->addPhysRegsUsedFromRegMask(RM); 1391 1392 // Displace clobbered registers. 1393 for (const LiveReg &LR : LiveVirtRegs) { 1394 MCPhysReg PhysReg = LR.PhysReg; 1395 if (PhysReg != 0 && isClobberedByRegMasks(PhysReg)) 1396 displacePhysReg(MI, PhysReg); 1397 } 1398 } 1399 1400 // Apply pre-assigned register uses to state. 1401 if (HasPhysRegUse) { 1402 for (MachineOperand &MO : MI.operands()) { 1403 if (!MO.isReg() || !MO.readsReg()) 1404 continue; 1405 Register Reg = MO.getReg(); 1406 if (!Reg.isPhysical()) 1407 continue; 1408 if (MRI->isReserved(Reg)) 1409 continue; 1410 bool displacedAny = usePhysReg(MI, Reg); 1411 if (!displacedAny) 1412 MO.setIsKill(true); 1413 } 1414 } 1415 1416 // Allocate virtreg uses and insert reloads as necessary. 1417 // Implicit MOs can get moved/removed by useVirtReg(), so loop multiple 1418 // times to ensure no operand is missed. 1419 bool HasUndefUse = false; 1420 bool ReArrangedImplicitMOs = true; 1421 while (ReArrangedImplicitMOs) { 1422 ReArrangedImplicitMOs = false; 1423 for (unsigned I = 0; I < MI.getNumOperands(); ++I) { 1424 MachineOperand &MO = MI.getOperand(I); 1425 if (!MO.isReg() || !MO.isUse()) 1426 continue; 1427 Register Reg = MO.getReg(); 1428 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) 1429 continue; 1430 1431 if (MO.isUndef()) { 1432 HasUndefUse = true; 1433 continue; 1434 } 1435 1436 // Populate MayLiveAcrossBlocks in case the use block is allocated before 1437 // the def block (removing the vreg uses). 1438 mayLiveIn(Reg); 1439 1440 assert(!MO.isInternalRead() && "Bundles not supported"); 1441 assert(MO.readsReg() && "reading use"); 1442 ReArrangedImplicitMOs = useVirtReg(MI, I, Reg); 1443 if (ReArrangedImplicitMOs) 1444 break; 1445 } 1446 } 1447 1448 // Allocate undef operands. This is a separate step because in a situation 1449 // like ` = OP undef %X, %X` both operands need the same register assign 1450 // so we should perform the normal assignment first. 1451 if (HasUndefUse) { 1452 for (MachineOperand &MO : MI.all_uses()) { 1453 Register Reg = MO.getReg(); 1454 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) 1455 continue; 1456 1457 assert(MO.isUndef() && "Should only have undef virtreg uses left"); 1458 allocVirtRegUndef(MO); 1459 } 1460 } 1461 1462 // Free early clobbers. 1463 if (HasEarlyClobber) { 1464 for (MachineOperand &MO : llvm::reverse(MI.all_defs())) { 1465 if (!MO.isEarlyClobber()) 1466 continue; 1467 assert(!MO.getSubReg() && "should be already handled in def processing"); 1468 1469 Register Reg = MO.getReg(); 1470 if (!Reg) 1471 continue; 1472 if (Reg.isVirtual()) { 1473 assert(!shouldAllocateRegister(Reg)); 1474 continue; 1475 } 1476 assert(Reg.isPhysical() && "should have register assigned"); 1477 1478 // We sometimes get odd situations like: 1479 // early-clobber %x0 = INSTRUCTION %x0 1480 // which is semantically questionable as the early-clobber should 1481 // apply before the use. But in practice we consider the use to 1482 // happen before the early clobber now. Don't free the early clobber 1483 // register in this case. 1484 if (MI.readsRegister(Reg, TRI)) 1485 continue; 1486 1487 freePhysReg(Reg); 1488 } 1489 } 1490 1491 LLVM_DEBUG(dbgs() << "<< " << MI); 1492 if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() && 1493 MI.getNumOperands() == 2) { 1494 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1495 Coalesced.push_back(&MI); 1496 } 1497 } 1498 1499 void RegAllocFast::handleDebugValue(MachineInstr &MI) { 1500 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1501 // mostly constants and frame indices. 1502 for (Register Reg : MI.getUsedDebugRegs()) { 1503 if (!Reg.isVirtual()) 1504 continue; 1505 if (!shouldAllocateRegister(Reg)) 1506 continue; 1507 1508 // Already spilled to a stackslot? 1509 int SS = StackSlotForVirtReg[Reg]; 1510 if (SS != -1) { 1511 // Modify DBG_VALUE now that the value is in a spill slot. 1512 updateDbgValueForSpill(MI, SS, Reg); 1513 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI); 1514 continue; 1515 } 1516 1517 // See if this virtual register has already been allocated to a physical 1518 // register or spilled to a stack slot. 1519 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1520 SmallVector<MachineOperand *> DbgOps; 1521 for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg)) 1522 DbgOps.push_back(&Op); 1523 1524 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1525 // Update every use of Reg within MI. 1526 for (auto &RegMO : DbgOps) 1527 setPhysReg(MI, *RegMO, LRI->PhysReg); 1528 } else { 1529 DanglingDbgValues[Reg].push_back(&MI); 1530 } 1531 1532 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1533 // that future spills of Reg will have DBG_VALUEs. 1534 LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end()); 1535 } 1536 } 1537 1538 void RegAllocFast::handleBundle(MachineInstr &MI) { 1539 MachineBasicBlock::instr_iterator BundledMI = MI.getIterator(); 1540 ++BundledMI; 1541 while (BundledMI->isBundledWithPred()) { 1542 for (MachineOperand &MO : BundledMI->operands()) { 1543 if (!MO.isReg()) 1544 continue; 1545 1546 Register Reg = MO.getReg(); 1547 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) 1548 continue; 1549 1550 DenseMap<Register, MCPhysReg>::iterator DI; 1551 DI = BundleVirtRegsMap.find(Reg); 1552 assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register"); 1553 1554 setPhysReg(MI, MO, DI->second); 1555 } 1556 1557 ++BundledMI; 1558 } 1559 } 1560 1561 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 1562 this->MBB = &MBB; 1563 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1564 1565 RegUnitStates.assign(TRI->getNumRegUnits(), regFree); 1566 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1567 1568 for (const auto &LiveReg : MBB.liveouts()) 1569 setPhysRegState(LiveReg.PhysReg, regPreAssigned); 1570 1571 Coalesced.clear(); 1572 1573 // Traverse block in reverse order allocating instructions one by one. 1574 for (MachineInstr &MI : reverse(MBB)) { 1575 LLVM_DEBUG( 1576 dbgs() << "\n>> " << MI << "Regs:"; 1577 dumpState() 1578 ); 1579 1580 // Special handling for debug values. Note that they are not allowed to 1581 // affect codegen of the other instructions in any way. 1582 if (MI.isDebugValue()) { 1583 handleDebugValue(MI); 1584 continue; 1585 } 1586 1587 allocateInstruction(MI); 1588 1589 // Once BUNDLE header is assigned registers, same assignments need to be 1590 // done for bundled MIs. 1591 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1592 handleBundle(MI); 1593 } 1594 } 1595 1596 LLVM_DEBUG( 1597 dbgs() << "Begin Regs:"; 1598 dumpState() 1599 ); 1600 1601 // Spill all physical registers holding virtual registers now. 1602 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n"); 1603 reloadAtBegin(MBB); 1604 1605 // Erase all the coalesced copies. We are delaying it until now because 1606 // LiveVirtRegs might refer to the instrs. 1607 for (MachineInstr *MI : Coalesced) 1608 MBB.erase(MI); 1609 NumCoalesced += Coalesced.size(); 1610 1611 for (auto &UDBGPair : DanglingDbgValues) { 1612 for (MachineInstr *DbgValue : UDBGPair.second) { 1613 assert(DbgValue->isDebugValue() && "expected DBG_VALUE"); 1614 // Nothing to do if the vreg was spilled in the meantime. 1615 if (!DbgValue->hasDebugOperandForReg(UDBGPair.first)) 1616 continue; 1617 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 1618 << '\n'); 1619 DbgValue->setDebugValueUndef(); 1620 } 1621 } 1622 DanglingDbgValues.clear(); 1623 1624 LLVM_DEBUG(MBB.dump()); 1625 } 1626 1627 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1628 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1629 << "********** Function: " << MF.getName() << '\n'); 1630 MRI = &MF.getRegInfo(); 1631 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1632 TRI = STI.getRegisterInfo(); 1633 TII = STI.getInstrInfo(); 1634 MFI = &MF.getFrameInfo(); 1635 MRI->freezeReservedRegs(MF); 1636 RegClassInfo.runOnMachineFunction(MF); 1637 unsigned NumRegUnits = TRI->getNumRegUnits(); 1638 UsedInInstr.clear(); 1639 UsedInInstr.setUniverse(NumRegUnits); 1640 PhysRegUses.clear(); 1641 PhysRegUses.setUniverse(NumRegUnits); 1642 1643 // initialize the virtual->physical register map to have a 'null' 1644 // mapping for all virtual registers 1645 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1646 StackSlotForVirtReg.resize(NumVirtRegs); 1647 LiveVirtRegs.setUniverse(NumVirtRegs); 1648 MayLiveAcrossBlocks.clear(); 1649 MayLiveAcrossBlocks.resize(NumVirtRegs); 1650 1651 // Loop over all of the basic blocks, eliminating virtual register references 1652 for (MachineBasicBlock &MBB : MF) 1653 allocateBasicBlock(MBB); 1654 1655 if (ClearVirtRegs) { 1656 // All machine operands and other references to virtual registers have been 1657 // replaced. Remove the virtual registers. 1658 MRI->clearVirtRegs(); 1659 } 1660 1661 StackSlotForVirtReg.clear(); 1662 LiveDbgValueMap.clear(); 1663 return true; 1664 } 1665 1666 FunctionPass *llvm::createFastRegisterAllocator() { 1667 return new RegAllocFast(); 1668 } 1669 1670 FunctionPass *llvm::createFastRegisterAllocator(RegClassFilterFunc Ftor, 1671 bool ClearVirtRegs) { 1672 return new RegAllocFast(Ftor, ClearVirtRegs); 1673 } 1674