xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/RegAllocFast.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This register allocator allocates registers to a basic block at a
10 /// time, attempting to keep values in registers and reusing registers as
11 /// appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/CodeGen/RegAllocFast.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/IndexedMap.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/SparseSet.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineFrameInfo.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/RegAllocCommon.h"
33 #include "llvm/CodeGen/RegAllocRegistry.h"
34 #include "llvm/CodeGen/RegisterClassInfo.h"
35 #include "llvm/CodeGen/TargetInstrInfo.h"
36 #include "llvm/CodeGen/TargetOpcodes.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/MC/MCRegisterInfo.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include <cassert>
46 #include <tuple>
47 #include <vector>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "regalloc"
52 
53 STATISTIC(NumStores, "Number of stores added");
54 STATISTIC(NumLoads, "Number of loads added");
55 STATISTIC(NumCoalesced, "Number of copies coalesced");
56 
57 // FIXME: Remove this switch when all testcases are fixed!
58 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs",
59                                        cl::Hidden);
60 
61 static RegisterRegAlloc fastRegAlloc("fast", "fast register allocator",
62                                      createFastRegisterAllocator);
63 
64 namespace {
65 
66 /// Assign ascending index for instructions in machine basic block. The index
67 /// can be used to determine dominance between instructions in same MBB.
68 class InstrPosIndexes {
69 public:
70   void unsetInitialized() { IsInitialized = false; }
71 
72   void init(const MachineBasicBlock &MBB) {
73     CurMBB = &MBB;
74     Instr2PosIndex.clear();
75     uint64_t LastIndex = 0;
76     for (const MachineInstr &MI : MBB) {
77       LastIndex += InstrDist;
78       Instr2PosIndex[&MI] = LastIndex;
79     }
80   }
81 
82   /// Set \p Index to index of \p MI. If \p MI is new inserted, it try to assign
83   /// index without affecting existing instruction's index. Return true if all
84   /// instructions index has been reassigned.
85   bool getIndex(const MachineInstr &MI, uint64_t &Index) {
86     if (!IsInitialized) {
87       init(*MI.getParent());
88       IsInitialized = true;
89       Index = Instr2PosIndex.at(&MI);
90       return true;
91     }
92 
93     assert(MI.getParent() == CurMBB && "MI is not in CurMBB");
94     auto It = Instr2PosIndex.find(&MI);
95     if (It != Instr2PosIndex.end()) {
96       Index = It->second;
97       return false;
98     }
99 
100     // Distance is the number of consecutive unassigned instructions including
101     // MI. Start is the first instruction of them. End is the next of last
102     // instruction of them.
103     // e.g.
104     // |Instruction|  A   |  B   |  C   |  MI  |  D   |  E   |
105     // |   Index   | 1024 |      |      |      |      | 2048 |
106     //
107     // In this case, B, C, MI, D are unassigned. Distance is 4, Start is B, End
108     // is E.
109     unsigned Distance = 1;
110     MachineBasicBlock::const_iterator Start = MI.getIterator(),
111                                       End = std::next(Start);
112     while (Start != CurMBB->begin() &&
113            !Instr2PosIndex.count(&*std::prev(Start))) {
114       --Start;
115       ++Distance;
116     }
117     while (End != CurMBB->end() && !Instr2PosIndex.count(&*(End))) {
118       ++End;
119       ++Distance;
120     }
121 
122     // LastIndex is initialized to last used index prior to MI or zero.
123     // In previous example, LastIndex is 1024, EndIndex is 2048;
124     uint64_t LastIndex =
125         Start == CurMBB->begin() ? 0 : Instr2PosIndex.at(&*std::prev(Start));
126     uint64_t Step;
127     if (End == CurMBB->end())
128       Step = static_cast<uint64_t>(InstrDist);
129     else {
130       // No instruction uses index zero.
131       uint64_t EndIndex = Instr2PosIndex.at(&*End);
132       assert(EndIndex > LastIndex && "Index must be ascending order");
133       unsigned NumAvailableIndexes = EndIndex - LastIndex - 1;
134       // We want index gap between two adjacent MI is as same as possible. Given
135       // total A available indexes, D is number of consecutive unassigned
136       // instructions, S is the step.
137       // |<- S-1 -> MI <- S-1 -> MI <- A-S*D ->|
138       // There're S-1 available indexes between unassigned instruction and its
139       // predecessor. There're A-S*D available indexes between the last
140       // unassigned instruction and its successor.
141       // Ideally, we want
142       //    S-1 = A-S*D
143       // then
144       //    S = (A+1)/(D+1)
145       // An valid S must be integer greater than zero, so
146       //    S <= (A+1)/(D+1)
147       // =>
148       //    A-S*D >= 0
149       // That means we can safely use (A+1)/(D+1) as step.
150       // In previous example, Step is 204, Index of B, C, MI, D is 1228, 1432,
151       // 1636, 1840.
152       Step = (NumAvailableIndexes + 1) / (Distance + 1);
153     }
154 
155     // Reassign index for all instructions if number of new inserted
156     // instructions exceed slot or all instructions are new.
157     if (LLVM_UNLIKELY(!Step || (!LastIndex && Step == InstrDist))) {
158       init(*CurMBB);
159       Index = Instr2PosIndex.at(&MI);
160       return true;
161     }
162 
163     for (auto I = Start; I != End; ++I) {
164       LastIndex += Step;
165       Instr2PosIndex[&*I] = LastIndex;
166     }
167     Index = Instr2PosIndex.at(&MI);
168     return false;
169   }
170 
171 private:
172   bool IsInitialized = false;
173   enum { InstrDist = 1024 };
174   const MachineBasicBlock *CurMBB = nullptr;
175   DenseMap<const MachineInstr *, uint64_t> Instr2PosIndex;
176 };
177 
178 class RegAllocFastImpl {
179 public:
180   RegAllocFastImpl(const RegAllocFilterFunc F = nullptr,
181                    bool ClearVirtRegs_ = true)
182       : ShouldAllocateRegisterImpl(F), StackSlotForVirtReg(-1),
183         ClearVirtRegs(ClearVirtRegs_) {}
184 
185 private:
186   MachineFrameInfo *MFI = nullptr;
187   MachineRegisterInfo *MRI = nullptr;
188   const TargetRegisterInfo *TRI = nullptr;
189   const TargetInstrInfo *TII = nullptr;
190   RegisterClassInfo RegClassInfo;
191   const RegAllocFilterFunc ShouldAllocateRegisterImpl;
192 
193   /// Basic block currently being allocated.
194   MachineBasicBlock *MBB = nullptr;
195 
196   /// Maps virtual regs to the frame index where these values are spilled.
197   IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
198 
199   /// Everything we know about a live virtual register.
200   struct LiveReg {
201     MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
202     Register VirtReg;                ///< Virtual register number.
203     MCPhysReg PhysReg = 0;           ///< Currently held here.
204     bool LiveOut = false;            ///< Register is possibly live out.
205     bool Reloaded = false;           ///< Register was reloaded.
206     bool Error = false;              ///< Could not allocate.
207 
208     explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {}
209 
210     unsigned getSparseSetIndex() const {
211       return Register::virtReg2Index(VirtReg);
212     }
213   };
214 
215   using LiveRegMap = SparseSet<LiveReg, identity<unsigned>, uint16_t>;
216   /// This map contains entries for each virtual register that is currently
217   /// available in a physical register.
218   LiveRegMap LiveVirtRegs;
219 
220   /// Stores assigned virtual registers present in the bundle MI.
221   DenseMap<Register, MCPhysReg> BundleVirtRegsMap;
222 
223   DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap;
224   /// List of DBG_VALUE that we encountered without the vreg being assigned
225   /// because they were placed after the last use of the vreg.
226   DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues;
227 
228   /// Has a bit set for every virtual register for which it was determined
229   /// that it is alive across blocks.
230   BitVector MayLiveAcrossBlocks;
231 
232   /// State of a register unit.
233   enum RegUnitState {
234     /// A free register is not currently in use and can be allocated
235     /// immediately without checking aliases.
236     regFree,
237 
238     /// A pre-assigned register has been assigned before register allocation
239     /// (e.g., setting up a call parameter).
240     regPreAssigned,
241 
242     /// Used temporarily in reloadAtBegin() to mark register units that are
243     /// live-in to the basic block.
244     regLiveIn,
245 
246     /// A register state may also be a virtual register number, indication
247     /// that the physical register is currently allocated to a virtual
248     /// register. In that case, LiveVirtRegs contains the inverse mapping.
249   };
250 
251   /// Maps each physical register to a RegUnitState enum or virtual register.
252   std::vector<unsigned> RegUnitStates;
253 
254   SmallVector<MachineInstr *, 32> Coalesced;
255 
256   /// Track register units that are used in the current instruction, and so
257   /// cannot be allocated.
258   ///
259   /// In the first phase (tied defs/early clobber), we consider also physical
260   /// uses, afterwards, we don't. If the lowest bit isn't set, it's a solely
261   /// physical use (markPhysRegUsedInInstr), otherwise, it's a normal use. To
262   /// avoid resetting the entire vector after every instruction, we track the
263   /// instruction "generation" in the remaining 31 bits -- this means, that if
264   /// UsedInInstr[Idx] < InstrGen, the register unit is unused. InstrGen is
265   /// never zero and always incremented by two.
266   ///
267   /// Don't allocate inline storage: the number of register units is typically
268   /// quite large (e.g., AArch64 > 100, X86 > 200, AMDGPU > 1000).
269   uint32_t InstrGen;
270   SmallVector<unsigned, 0> UsedInInstr;
271 
272   SmallVector<unsigned, 8> DefOperandIndexes;
273   // Register masks attached to the current instruction.
274   SmallVector<const uint32_t *> RegMasks;
275 
276   // Assign index for each instruction to quickly determine dominance.
277   InstrPosIndexes PosIndexes;
278 
279   void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);
280   bool isPhysRegFree(MCPhysReg PhysReg) const;
281 
282   /// Mark a physreg as used in this instruction.
283   void markRegUsedInInstr(MCPhysReg PhysReg) {
284     for (MCRegUnit Unit : TRI->regunits(PhysReg))
285       UsedInInstr[Unit] = InstrGen | 1;
286   }
287 
288   // Check if physreg is clobbered by instruction's regmask(s).
289   bool isClobberedByRegMasks(MCPhysReg PhysReg) const {
290     return llvm::any_of(RegMasks, [PhysReg](const uint32_t *Mask) {
291       return MachineOperand::clobbersPhysReg(Mask, PhysReg);
292     });
293   }
294 
295   /// Check if a physreg or any of its aliases are used in this instruction.
296   bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const {
297     if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg))
298       return true;
299     for (MCRegUnit Unit : TRI->regunits(PhysReg))
300       if (UsedInInstr[Unit] >= (InstrGen | !LookAtPhysRegUses))
301         return true;
302     return false;
303   }
304 
305   /// Mark physical register as being used in a register use operand.
306   /// This is only used by the special livethrough handling code.
307   void markPhysRegUsedInInstr(MCPhysReg PhysReg) {
308     for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
309       assert(UsedInInstr[Unit] <= InstrGen && "non-phys use before phys use?");
310       UsedInInstr[Unit] = InstrGen;
311     }
312   }
313 
314   /// Remove mark of physical register being used in the instruction.
315   void unmarkRegUsedInInstr(MCPhysReg PhysReg) {
316     for (MCRegUnit Unit : TRI->regunits(PhysReg))
317       UsedInInstr[Unit] = 0;
318   }
319 
320   enum : unsigned {
321     spillClean = 50,
322     spillDirty = 100,
323     spillPrefBonus = 20,
324     spillImpossible = ~0u
325   };
326 
327 public:
328   bool ClearVirtRegs;
329 
330   bool runOnMachineFunction(MachineFunction &MF);
331 
332 private:
333   void allocateBasicBlock(MachineBasicBlock &MBB);
334 
335   void addRegClassDefCounts(MutableArrayRef<unsigned> RegClassDefCounts,
336                             Register Reg) const;
337 
338   void findAndSortDefOperandIndexes(const MachineInstr &MI);
339 
340   void allocateInstruction(MachineInstr &MI);
341   void handleDebugValue(MachineInstr &MI);
342   void handleBundle(MachineInstr &MI);
343 
344   bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
345   bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
346   bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
347   void freePhysReg(MCPhysReg PhysReg);
348 
349   unsigned calcSpillCost(MCPhysReg PhysReg) const;
350 
351   LiveRegMap::iterator findLiveVirtReg(Register VirtReg) {
352     return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
353   }
354 
355   LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const {
356     return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
357   }
358 
359   void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg);
360   void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint,
361                     bool LookAtPhysRegUses = false);
362   void allocVirtRegUndef(MachineOperand &MO);
363   void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg,
364                                  MCPhysReg Reg);
365   bool defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
366                                 Register VirtReg);
367   bool defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg,
368                      bool LookAtPhysRegUses = false);
369   bool useVirtReg(MachineInstr &MI, MachineOperand &MO, Register VirtReg);
370 
371   MachineBasicBlock::iterator
372   getMBBBeginInsertionPoint(MachineBasicBlock &MBB,
373                             SmallSet<Register, 2> &PrologLiveIns) const;
374 
375   void reloadAtBegin(MachineBasicBlock &MBB);
376   bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);
377 
378   Register traceCopies(Register VirtReg) const;
379   Register traceCopyChain(Register Reg) const;
380 
381   bool shouldAllocateRegister(const Register Reg) const;
382   int getStackSpaceFor(Register VirtReg);
383   void spill(MachineBasicBlock::iterator Before, Register VirtReg,
384              MCPhysReg AssignedReg, bool Kill, bool LiveOut);
385   void reload(MachineBasicBlock::iterator Before, Register VirtReg,
386               MCPhysReg PhysReg);
387 
388   bool mayLiveOut(Register VirtReg);
389   bool mayLiveIn(Register VirtReg);
390 
391   void dumpState() const;
392 };
393 
394 class RegAllocFast : public MachineFunctionPass {
395   RegAllocFastImpl Impl;
396 
397 public:
398   static char ID;
399 
400   RegAllocFast(const RegAllocFilterFunc F = nullptr, bool ClearVirtRegs_ = true)
401       : MachineFunctionPass(ID), Impl(F, ClearVirtRegs_) {}
402 
403   bool runOnMachineFunction(MachineFunction &MF) override {
404     return Impl.runOnMachineFunction(MF);
405   }
406 
407   StringRef getPassName() const override { return "Fast Register Allocator"; }
408 
409   void getAnalysisUsage(AnalysisUsage &AU) const override {
410     AU.setPreservesCFG();
411     MachineFunctionPass::getAnalysisUsage(AU);
412   }
413 
414   MachineFunctionProperties getRequiredProperties() const override {
415     return MachineFunctionProperties().set(
416         MachineFunctionProperties::Property::NoPHIs);
417   }
418 
419   MachineFunctionProperties getSetProperties() const override {
420     if (Impl.ClearVirtRegs) {
421       return MachineFunctionProperties().set(
422           MachineFunctionProperties::Property::NoVRegs);
423     }
424 
425     return MachineFunctionProperties();
426   }
427 
428   MachineFunctionProperties getClearedProperties() const override {
429     return MachineFunctionProperties().set(
430         MachineFunctionProperties::Property::IsSSA);
431   }
432 };
433 
434 } // end anonymous namespace
435 
436 char RegAllocFast::ID = 0;
437 
438 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
439                 false)
440 
441 bool RegAllocFastImpl::shouldAllocateRegister(const Register Reg) const {
442   assert(Reg.isVirtual());
443   if (!ShouldAllocateRegisterImpl)
444     return true;
445 
446   return ShouldAllocateRegisterImpl(*TRI, *MRI, Reg);
447 }
448 
449 void RegAllocFastImpl::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
450   for (MCRegUnit Unit : TRI->regunits(PhysReg))
451     RegUnitStates[Unit] = NewState;
452 }
453 
454 bool RegAllocFastImpl::isPhysRegFree(MCPhysReg PhysReg) const {
455   for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
456     if (RegUnitStates[Unit] != regFree)
457       return false;
458   }
459   return true;
460 }
461 
462 /// This allocates space for the specified virtual register to be held on the
463 /// stack.
464 int RegAllocFastImpl::getStackSpaceFor(Register VirtReg) {
465   // Find the location Reg would belong...
466   int SS = StackSlotForVirtReg[VirtReg];
467   // Already has space allocated?
468   if (SS != -1)
469     return SS;
470 
471   // Allocate a new stack object for this spill location...
472   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
473   unsigned Size = TRI->getSpillSize(RC);
474   Align Alignment = TRI->getSpillAlign(RC);
475   int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment);
476 
477   // Assign the slot.
478   StackSlotForVirtReg[VirtReg] = FrameIdx;
479   return FrameIdx;
480 }
481 
482 static bool dominates(InstrPosIndexes &PosIndexes, const MachineInstr &A,
483                       const MachineInstr &B) {
484   uint64_t IndexA, IndexB;
485   PosIndexes.getIndex(A, IndexA);
486   if (LLVM_UNLIKELY(PosIndexes.getIndex(B, IndexB)))
487     PosIndexes.getIndex(A, IndexA);
488   return IndexA < IndexB;
489 }
490 
491 /// Returns false if \p VirtReg is known to not live out of the current block.
492 bool RegAllocFastImpl::mayLiveOut(Register VirtReg) {
493   if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) {
494     // Cannot be live-out if there are no successors.
495     return !MBB->succ_empty();
496   }
497 
498   const MachineInstr *SelfLoopDef = nullptr;
499 
500   // If this block loops back to itself, it is necessary to check whether the
501   // use comes after the def.
502   if (MBB->isSuccessor(MBB)) {
503     // Find the first def in the self loop MBB.
504     for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
505       if (DefInst.getParent() != MBB) {
506         MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
507         return true;
508       } else {
509         if (!SelfLoopDef || dominates(PosIndexes, DefInst, *SelfLoopDef))
510           SelfLoopDef = &DefInst;
511       }
512     }
513     if (!SelfLoopDef) {
514       MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
515       return true;
516     }
517   }
518 
519   // See if the first \p Limit uses of the register are all in the current
520   // block.
521   static const unsigned Limit = 8;
522   unsigned C = 0;
523   for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) {
524     if (UseInst.getParent() != MBB || ++C >= Limit) {
525       MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
526       // Cannot be live-out if there are no successors.
527       return !MBB->succ_empty();
528     }
529 
530     if (SelfLoopDef) {
531       // Try to handle some simple cases to avoid spilling and reloading every
532       // value inside a self looping block.
533       if (SelfLoopDef == &UseInst ||
534           !dominates(PosIndexes, *SelfLoopDef, UseInst)) {
535         MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
536         return true;
537       }
538     }
539   }
540 
541   return false;
542 }
543 
544 /// Returns false if \p VirtReg is known to not be live into the current block.
545 bool RegAllocFastImpl::mayLiveIn(Register VirtReg) {
546   if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg)))
547     return !MBB->pred_empty();
548 
549   // See if the first \p Limit def of the register are all in the current block.
550   static const unsigned Limit = 8;
551   unsigned C = 0;
552   for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
553     if (DefInst.getParent() != MBB || ++C >= Limit) {
554       MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
555       return !MBB->pred_empty();
556     }
557   }
558 
559   return false;
560 }
561 
562 /// Insert spill instruction for \p AssignedReg before \p Before. Update
563 /// DBG_VALUEs with \p VirtReg operands with the stack slot.
564 void RegAllocFastImpl::spill(MachineBasicBlock::iterator Before,
565                              Register VirtReg, MCPhysReg AssignedReg, bool Kill,
566                              bool LiveOut) {
567   LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) << " in "
568                     << printReg(AssignedReg, TRI));
569   int FI = getStackSpaceFor(VirtReg);
570   LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');
571 
572   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
573   TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI,
574                            VirtReg);
575   ++NumStores;
576 
577   MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator();
578 
579   // When we spill a virtual register, we will have spill instructions behind
580   // every definition of it, meaning we can switch all the DBG_VALUEs over
581   // to just reference the stack slot.
582   SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg];
583   SmallMapVector<MachineInstr *, SmallVector<const MachineOperand *>, 2>
584       SpilledOperandsMap;
585   for (MachineOperand *MO : LRIDbgOperands)
586     SpilledOperandsMap[MO->getParent()].push_back(MO);
587   for (auto MISpilledOperands : SpilledOperandsMap) {
588     MachineInstr &DBG = *MISpilledOperands.first;
589     // We don't have enough support for tracking operands of DBG_VALUE_LISTs.
590     if (DBG.isDebugValueList())
591       continue;
592     MachineInstr *NewDV = buildDbgValueForSpill(
593         *MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second);
594     assert(NewDV->getParent() == MBB && "dangling parent pointer");
595     (void)NewDV;
596     LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);
597 
598     if (LiveOut) {
599       // We need to insert a DBG_VALUE at the end of the block if the spill slot
600       // is live out, but there is another use of the value after the
601       // spill. This will allow LiveDebugValues to see the correct live out
602       // value to propagate to the successors.
603       MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV);
604       MBB->insert(FirstTerm, ClonedDV);
605       LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n");
606     }
607 
608     // Rewrite unassigned dbg_values to use the stack slot.
609     // TODO We can potentially do this for list debug values as well if we know
610     // how the dbg_values are getting unassigned.
611     if (DBG.isNonListDebugValue()) {
612       MachineOperand &MO = DBG.getDebugOperand(0);
613       if (MO.isReg() && MO.getReg() == 0) {
614         updateDbgValueForSpill(DBG, FI, 0);
615       }
616     }
617   }
618   // Now this register is spilled there is should not be any DBG_VALUE
619   // pointing to this register because they are all pointing to spilled value
620   // now.
621   LRIDbgOperands.clear();
622 }
623 
624 /// Insert reload instruction for \p PhysReg before \p Before.
625 void RegAllocFastImpl::reload(MachineBasicBlock::iterator Before,
626                               Register VirtReg, MCPhysReg PhysReg) {
627   LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
628                     << printReg(PhysReg, TRI) << '\n');
629   int FI = getStackSpaceFor(VirtReg);
630   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
631   TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI, VirtReg);
632   ++NumLoads;
633 }
634 
635 /// Get basic block begin insertion point.
636 /// This is not just MBB.begin() because surprisingly we have EH_LABEL
637 /// instructions marking the begin of a basic block. This means we must insert
638 /// new instructions after such labels...
639 MachineBasicBlock::iterator RegAllocFastImpl::getMBBBeginInsertionPoint(
640     MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const {
641   MachineBasicBlock::iterator I = MBB.begin();
642   while (I != MBB.end()) {
643     if (I->isLabel()) {
644       ++I;
645       continue;
646     }
647 
648     // Most reloads should be inserted after prolog instructions.
649     if (!TII->isBasicBlockPrologue(*I))
650       break;
651 
652     // However if a prolog instruction reads a register that needs to be
653     // reloaded, the reload should be inserted before the prolog.
654     for (MachineOperand &MO : I->operands()) {
655       if (MO.isReg())
656         PrologLiveIns.insert(MO.getReg());
657     }
658 
659     ++I;
660   }
661 
662   return I;
663 }
664 
665 /// Reload all currently assigned virtual registers.
666 void RegAllocFastImpl::reloadAtBegin(MachineBasicBlock &MBB) {
667   if (LiveVirtRegs.empty())
668     return;
669 
670   for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
671     MCPhysReg Reg = P.PhysReg;
672     // Set state to live-in. This possibly overrides mappings to virtual
673     // registers but we don't care anymore at this point.
674     setPhysRegState(Reg, regLiveIn);
675   }
676 
677   SmallSet<Register, 2> PrologLiveIns;
678 
679   // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
680   // of spilling here is deterministic, if arbitrary.
681   MachineBasicBlock::iterator InsertBefore =
682       getMBBBeginInsertionPoint(MBB, PrologLiveIns);
683   for (const LiveReg &LR : LiveVirtRegs) {
684     MCPhysReg PhysReg = LR.PhysReg;
685     if (PhysReg == 0)
686       continue;
687 
688     MCRegister FirstUnit = *TRI->regunits(PhysReg).begin();
689     if (RegUnitStates[FirstUnit] == regLiveIn)
690       continue;
691 
692     assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) &&
693            "no reload in start block. Missing vreg def?");
694 
695     if (PrologLiveIns.count(PhysReg)) {
696       // FIXME: Theoretically this should use an insert point skipping labels
697       // but I'm not sure how labels should interact with prolog instruction
698       // that need reloads.
699       reload(MBB.begin(), LR.VirtReg, PhysReg);
700     } else
701       reload(InsertBefore, LR.VirtReg, PhysReg);
702   }
703   LiveVirtRegs.clear();
704 }
705 
706 /// Handle the direct use of a physical register.  Check that the register is
707 /// not used by a virtreg. Kill the physreg, marking it free. This may add
708 /// implicit kills to MO->getParent() and invalidate MO.
709 bool RegAllocFastImpl::usePhysReg(MachineInstr &MI, MCPhysReg Reg) {
710   assert(Register::isPhysicalRegister(Reg) && "expected physreg");
711   bool displacedAny = displacePhysReg(MI, Reg);
712   setPhysRegState(Reg, regPreAssigned);
713   markRegUsedInInstr(Reg);
714   return displacedAny;
715 }
716 
717 bool RegAllocFastImpl::definePhysReg(MachineInstr &MI, MCPhysReg Reg) {
718   bool displacedAny = displacePhysReg(MI, Reg);
719   setPhysRegState(Reg, regPreAssigned);
720   return displacedAny;
721 }
722 
723 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very
724 /// similar to defineVirtReg except the physreg is reserved instead of
725 /// allocated.
726 bool RegAllocFastImpl::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) {
727   bool displacedAny = false;
728 
729   for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
730     switch (unsigned VirtReg = RegUnitStates[Unit]) {
731     default: {
732       LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
733       assert(LRI != LiveVirtRegs.end() && "datastructures in sync");
734       MachineBasicBlock::iterator ReloadBefore =
735           std::next((MachineBasicBlock::iterator)MI.getIterator());
736       reload(ReloadBefore, VirtReg, LRI->PhysReg);
737 
738       setPhysRegState(LRI->PhysReg, regFree);
739       LRI->PhysReg = 0;
740       LRI->Reloaded = true;
741       displacedAny = true;
742       break;
743     }
744     case regPreAssigned:
745       RegUnitStates[Unit] = regFree;
746       displacedAny = true;
747       break;
748     case regFree:
749       break;
750     }
751   }
752   return displacedAny;
753 }
754 
755 void RegAllocFastImpl::freePhysReg(MCPhysReg PhysReg) {
756   LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':');
757 
758   MCRegister FirstUnit = *TRI->regunits(PhysReg).begin();
759   switch (unsigned VirtReg = RegUnitStates[FirstUnit]) {
760   case regFree:
761     LLVM_DEBUG(dbgs() << '\n');
762     return;
763   case regPreAssigned:
764     LLVM_DEBUG(dbgs() << '\n');
765     setPhysRegState(PhysReg, regFree);
766     return;
767   default: {
768     LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
769     assert(LRI != LiveVirtRegs.end());
770     LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n');
771     setPhysRegState(LRI->PhysReg, regFree);
772     LRI->PhysReg = 0;
773   }
774     return;
775   }
776 }
777 
778 /// Return the cost of spilling clearing out PhysReg and aliases so it is free
779 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
780 /// disabled - it can be allocated directly.
781 /// \returns spillImpossible when PhysReg or an alias can't be spilled.
782 unsigned RegAllocFastImpl::calcSpillCost(MCPhysReg PhysReg) const {
783   for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
784     switch (unsigned VirtReg = RegUnitStates[Unit]) {
785     case regFree:
786       break;
787     case regPreAssigned:
788       LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned "
789                         << printReg(PhysReg, TRI) << '\n');
790       return spillImpossible;
791     default: {
792       bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 ||
793                        findLiveVirtReg(VirtReg)->LiveOut;
794       return SureSpill ? spillClean : spillDirty;
795     }
796     }
797   }
798   return 0;
799 }
800 
801 void RegAllocFastImpl::assignDanglingDebugValues(MachineInstr &Definition,
802                                                  Register VirtReg,
803                                                  MCPhysReg Reg) {
804   auto UDBGValIter = DanglingDbgValues.find(VirtReg);
805   if (UDBGValIter == DanglingDbgValues.end())
806     return;
807 
808   SmallVectorImpl<MachineInstr *> &Dangling = UDBGValIter->second;
809   for (MachineInstr *DbgValue : Dangling) {
810     assert(DbgValue->isDebugValue());
811     if (!DbgValue->hasDebugOperandForReg(VirtReg))
812       continue;
813 
814     // Test whether the physreg survives from the definition to the DBG_VALUE.
815     MCPhysReg SetToReg = Reg;
816     unsigned Limit = 20;
817     for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()),
818                                      E = DbgValue->getIterator();
819          I != E; ++I) {
820       if (I->modifiesRegister(Reg, TRI) || --Limit == 0) {
821         LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
822                           << '\n');
823         SetToReg = 0;
824         break;
825       }
826     }
827     for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) {
828       MO.setReg(SetToReg);
829       if (SetToReg != 0)
830         MO.setIsRenamable();
831     }
832   }
833   Dangling.clear();
834 }
835 
836 /// This method updates local state so that we know that PhysReg is the
837 /// proper container for VirtReg now.  The physical register must not be used
838 /// for anything else when this is called.
839 void RegAllocFastImpl::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR,
840                                            MCPhysReg PhysReg) {
841   Register VirtReg = LR.VirtReg;
842   LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
843                     << printReg(PhysReg, TRI) << '\n');
844   assert(LR.PhysReg == 0 && "Already assigned a physreg");
845   assert(PhysReg != 0 && "Trying to assign no register");
846   LR.PhysReg = PhysReg;
847   setPhysRegState(PhysReg, VirtReg);
848 
849   assignDanglingDebugValues(AtMI, VirtReg, PhysReg);
850 }
851 
852 static bool isCoalescable(const MachineInstr &MI) { return MI.isFullCopy(); }
853 
854 Register RegAllocFastImpl::traceCopyChain(Register Reg) const {
855   static const unsigned ChainLengthLimit = 3;
856   unsigned C = 0;
857   do {
858     if (Reg.isPhysical())
859       return Reg;
860     assert(Reg.isVirtual());
861 
862     MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg);
863     if (!VRegDef || !isCoalescable(*VRegDef))
864       return 0;
865     Reg = VRegDef->getOperand(1).getReg();
866   } while (++C <= ChainLengthLimit);
867   return 0;
868 }
869 
870 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the
871 /// chain of copies to check whether we reach a physical register we can
872 /// coalesce with.
873 Register RegAllocFastImpl::traceCopies(Register VirtReg) const {
874   static const unsigned DefLimit = 3;
875   unsigned C = 0;
876   for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) {
877     if (isCoalescable(MI)) {
878       Register Reg = MI.getOperand(1).getReg();
879       Reg = traceCopyChain(Reg);
880       if (Reg.isValid())
881         return Reg;
882     }
883 
884     if (++C >= DefLimit)
885       break;
886   }
887   return Register();
888 }
889 
890 /// Allocates a physical register for VirtReg.
891 void RegAllocFastImpl::allocVirtReg(MachineInstr &MI, LiveReg &LR,
892                                     Register Hint0, bool LookAtPhysRegUses) {
893   const Register VirtReg = LR.VirtReg;
894   assert(LR.PhysReg == 0);
895 
896   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
897   LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
898                     << " in class " << TRI->getRegClassName(&RC)
899                     << " with hint " << printReg(Hint0, TRI) << '\n');
900 
901   // Take hint when possible.
902   if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) &&
903       !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) {
904     // Take hint if the register is currently free.
905     if (isPhysRegFree(Hint0)) {
906       LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
907                         << '\n');
908       assignVirtToPhysReg(MI, LR, Hint0);
909       return;
910     } else {
911       LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI)
912                         << " occupied\n");
913     }
914   } else {
915     Hint0 = Register();
916   }
917 
918   // Try other hint.
919   Register Hint1 = traceCopies(VirtReg);
920   if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) &&
921       !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) {
922     // Take hint if the register is currently free.
923     if (isPhysRegFree(Hint1)) {
924       LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
925                         << '\n');
926       assignVirtToPhysReg(MI, LR, Hint1);
927       return;
928     } else {
929       LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI)
930                         << " occupied\n");
931     }
932   } else {
933     Hint1 = Register();
934   }
935 
936   MCPhysReg BestReg = 0;
937   unsigned BestCost = spillImpossible;
938   ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
939   for (MCPhysReg PhysReg : AllocationOrder) {
940     LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
941     if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) {
942       LLVM_DEBUG(dbgs() << "already used in instr.\n");
943       continue;
944     }
945 
946     unsigned Cost = calcSpillCost(PhysReg);
947     LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
948     // Immediate take a register with cost 0.
949     if (Cost == 0) {
950       assignVirtToPhysReg(MI, LR, PhysReg);
951       return;
952     }
953 
954     if (PhysReg == Hint0 || PhysReg == Hint1)
955       Cost -= spillPrefBonus;
956 
957     if (Cost < BestCost) {
958       BestReg = PhysReg;
959       BestCost = Cost;
960     }
961   }
962 
963   if (!BestReg) {
964     // Nothing we can do: Report an error and keep going with an invalid
965     // allocation.
966     if (MI.isInlineAsm())
967       MI.emitError("inline assembly requires more registers than available");
968     else
969       MI.emitError("ran out of registers during register allocation");
970 
971     LR.Error = true;
972     LR.PhysReg = 0;
973     return;
974   }
975 
976   displacePhysReg(MI, BestReg);
977   assignVirtToPhysReg(MI, LR, BestReg);
978 }
979 
980 void RegAllocFastImpl::allocVirtRegUndef(MachineOperand &MO) {
981   assert(MO.isUndef() && "expected undef use");
982   Register VirtReg = MO.getReg();
983   assert(VirtReg.isVirtual() && "Expected virtreg");
984   if (!shouldAllocateRegister(VirtReg))
985     return;
986 
987   LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
988   MCPhysReg PhysReg;
989   if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
990     PhysReg = LRI->PhysReg;
991   } else {
992     const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
993     ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
994     assert(!AllocationOrder.empty() && "Allocation order must not be empty");
995     PhysReg = AllocationOrder[0];
996   }
997 
998   unsigned SubRegIdx = MO.getSubReg();
999   if (SubRegIdx != 0) {
1000     PhysReg = TRI->getSubReg(PhysReg, SubRegIdx);
1001     MO.setSubReg(0);
1002   }
1003   MO.setReg(PhysReg);
1004   MO.setIsRenamable(true);
1005 }
1006 
1007 /// Variation of defineVirtReg() with special handling for livethrough regs
1008 /// (tied or earlyclobber) that may interfere with preassigned uses.
1009 /// \return true if MI's MachineOperands were re-arranged/invalidated.
1010 bool RegAllocFastImpl::defineLiveThroughVirtReg(MachineInstr &MI,
1011                                                 unsigned OpNum,
1012                                                 Register VirtReg) {
1013   if (!shouldAllocateRegister(VirtReg))
1014     return false;
1015   LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
1016   if (LRI != LiveVirtRegs.end()) {
1017     MCPhysReg PrevReg = LRI->PhysReg;
1018     if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) {
1019       LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI)
1020                         << " (tied/earlyclobber resolution)\n");
1021       freePhysReg(PrevReg);
1022       LRI->PhysReg = 0;
1023       allocVirtReg(MI, *LRI, 0, true);
1024       MachineBasicBlock::iterator InsertBefore =
1025           std::next((MachineBasicBlock::iterator)MI.getIterator());
1026       LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to "
1027                         << printReg(PrevReg, TRI) << '\n');
1028       BuildMI(*MBB, InsertBefore, MI.getDebugLoc(),
1029               TII->get(TargetOpcode::COPY), PrevReg)
1030           .addReg(LRI->PhysReg, llvm::RegState::Kill);
1031     }
1032     MachineOperand &MO = MI.getOperand(OpNum);
1033     if (MO.getSubReg() && !MO.isUndef()) {
1034       LRI->LastUse = &MI;
1035     }
1036   }
1037   return defineVirtReg(MI, OpNum, VirtReg, true);
1038 }
1039 
1040 /// Allocates a register for VirtReg definition. Typically the register is
1041 /// already assigned from a use of the virtreg, however we still need to
1042 /// perform an allocation if:
1043 /// - It is a dead definition without any uses.
1044 /// - The value is live out and all uses are in different basic blocks.
1045 ///
1046 /// \return true if MI's MachineOperands were re-arranged/invalidated.
1047 bool RegAllocFastImpl::defineVirtReg(MachineInstr &MI, unsigned OpNum,
1048                                      Register VirtReg, bool LookAtPhysRegUses) {
1049   assert(VirtReg.isVirtual() && "Not a virtual register");
1050   if (!shouldAllocateRegister(VirtReg))
1051     return false;
1052   MachineOperand &MO = MI.getOperand(OpNum);
1053   LiveRegMap::iterator LRI;
1054   bool New;
1055   std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
1056   if (New) {
1057     if (!MO.isDead()) {
1058       if (mayLiveOut(VirtReg)) {
1059         LRI->LiveOut = true;
1060       } else {
1061         // It is a dead def without the dead flag; add the flag now.
1062         MO.setIsDead(true);
1063       }
1064     }
1065   }
1066   if (LRI->PhysReg == 0) {
1067     allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses);
1068     // If no physical register is available for LRI, we assign one at random
1069     // and bail out of this function immediately.
1070     if (LRI->Error) {
1071       const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
1072       ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
1073       if (AllocationOrder.empty())
1074         return setPhysReg(MI, MO, MCRegister::NoRegister);
1075       return setPhysReg(MI, MO, *AllocationOrder.begin());
1076     }
1077   } else {
1078     assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) &&
1079            "TODO: preassign mismatch");
1080     LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI)
1081                       << " use existing assignment to "
1082                       << printReg(LRI->PhysReg, TRI) << '\n');
1083   }
1084 
1085   MCPhysReg PhysReg = LRI->PhysReg;
1086   if (LRI->Reloaded || LRI->LiveOut) {
1087     if (!MI.isImplicitDef()) {
1088       MachineBasicBlock::iterator SpillBefore =
1089           std::next((MachineBasicBlock::iterator)MI.getIterator());
1090       LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut
1091                         << " RL: " << LRI->Reloaded << '\n');
1092       bool Kill = LRI->LastUse == nullptr;
1093       spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut);
1094 
1095       // We need to place additional spills for each indirect destination of an
1096       // INLINEASM_BR.
1097       if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) {
1098         int FI = StackSlotForVirtReg[VirtReg];
1099         const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
1100         for (MachineOperand &MO : MI.operands()) {
1101           if (MO.isMBB()) {
1102             MachineBasicBlock *Succ = MO.getMBB();
1103             TII->storeRegToStackSlot(*Succ, Succ->begin(), PhysReg, Kill, FI,
1104                                      &RC, TRI, VirtReg);
1105             ++NumStores;
1106             Succ->addLiveIn(PhysReg);
1107           }
1108         }
1109       }
1110 
1111       LRI->LastUse = nullptr;
1112     }
1113     LRI->LiveOut = false;
1114     LRI->Reloaded = false;
1115   }
1116   if (MI.getOpcode() == TargetOpcode::BUNDLE) {
1117     BundleVirtRegsMap[VirtReg] = PhysReg;
1118   }
1119   markRegUsedInInstr(PhysReg);
1120   return setPhysReg(MI, MO, PhysReg);
1121 }
1122 
1123 /// Allocates a register for a VirtReg use.
1124 /// \return true if MI's MachineOperands were re-arranged/invalidated.
1125 bool RegAllocFastImpl::useVirtReg(MachineInstr &MI, MachineOperand &MO,
1126                                   Register VirtReg) {
1127   assert(VirtReg.isVirtual() && "Not a virtual register");
1128   if (!shouldAllocateRegister(VirtReg))
1129     return false;
1130   LiveRegMap::iterator LRI;
1131   bool New;
1132   std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
1133   if (New) {
1134     if (!MO.isKill()) {
1135       if (mayLiveOut(VirtReg)) {
1136         LRI->LiveOut = true;
1137       } else {
1138         // It is a last (killing) use without the kill flag; add the flag now.
1139         MO.setIsKill(true);
1140       }
1141     }
1142   } else {
1143     assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag");
1144   }
1145 
1146   // If necessary allocate a register.
1147   if (LRI->PhysReg == 0) {
1148     assert(!MO.isTied() && "tied op should be allocated");
1149     Register Hint;
1150     if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) {
1151       Hint = MI.getOperand(0).getReg();
1152       if (Hint.isVirtual()) {
1153         assert(!shouldAllocateRegister(Hint));
1154         Hint = Register();
1155       } else {
1156         assert(Hint.isPhysical() &&
1157                "Copy destination should already be assigned");
1158       }
1159     }
1160     allocVirtReg(MI, *LRI, Hint, false);
1161     if (LRI->Error) {
1162       const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
1163       ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
1164       if (AllocationOrder.empty())
1165         return setPhysReg(MI, MO, MCRegister::NoRegister);
1166       return setPhysReg(MI, MO, *AllocationOrder.begin());
1167     }
1168   }
1169 
1170   LRI->LastUse = &MI;
1171 
1172   if (MI.getOpcode() == TargetOpcode::BUNDLE) {
1173     BundleVirtRegsMap[VirtReg] = LRI->PhysReg;
1174   }
1175   markRegUsedInInstr(LRI->PhysReg);
1176   return setPhysReg(MI, MO, LRI->PhysReg);
1177 }
1178 
1179 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs.
1180 /// \return true if MI's MachineOperands were re-arranged/invalidated.
1181 bool RegAllocFastImpl::setPhysReg(MachineInstr &MI, MachineOperand &MO,
1182                                   MCPhysReg PhysReg) {
1183   if (!MO.getSubReg()) {
1184     MO.setReg(PhysReg);
1185     MO.setIsRenamable(true);
1186     return false;
1187   }
1188 
1189   // Handle subregister index.
1190   MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister());
1191   MO.setIsRenamable(true);
1192   // Note: We leave the subreg number around a little longer in case of defs.
1193   // This is so that the register freeing logic in allocateInstruction can still
1194   // recognize this as subregister defs. The code there will clear the number.
1195   if (!MO.isDef())
1196     MO.setSubReg(0);
1197 
1198   // A kill flag implies killing the full register. Add corresponding super
1199   // register kill.
1200   if (MO.isKill()) {
1201     MI.addRegisterKilled(PhysReg, TRI, true);
1202     // Conservatively assume implicit MOs were re-arranged
1203     return true;
1204   }
1205 
1206   // A <def,read-undef> of a sub-register requires an implicit def of the full
1207   // register.
1208   if (MO.isDef() && MO.isUndef()) {
1209     if (MO.isDead())
1210       MI.addRegisterDead(PhysReg, TRI, true);
1211     else
1212       MI.addRegisterDefined(PhysReg, TRI);
1213     // Conservatively assume implicit MOs were re-arranged
1214     return true;
1215   }
1216   return false;
1217 }
1218 
1219 #ifndef NDEBUG
1220 
1221 void RegAllocFastImpl::dumpState() const {
1222   for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE;
1223        ++Unit) {
1224     switch (unsigned VirtReg = RegUnitStates[Unit]) {
1225     case regFree:
1226       break;
1227     case regPreAssigned:
1228       dbgs() << " " << printRegUnit(Unit, TRI) << "[P]";
1229       break;
1230     case regLiveIn:
1231       llvm_unreachable("Should not have regLiveIn in map");
1232     default: {
1233       dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg);
1234       LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
1235       assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry");
1236       if (I->LiveOut || I->Reloaded) {
1237         dbgs() << '[';
1238         if (I->LiveOut)
1239           dbgs() << 'O';
1240         if (I->Reloaded)
1241           dbgs() << 'R';
1242         dbgs() << ']';
1243       }
1244       assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present");
1245       break;
1246     }
1247     }
1248   }
1249   dbgs() << '\n';
1250   // Check that LiveVirtRegs is the inverse.
1251   for (const LiveReg &LR : LiveVirtRegs) {
1252     Register VirtReg = LR.VirtReg;
1253     assert(VirtReg.isVirtual() && "Bad map key");
1254     MCPhysReg PhysReg = LR.PhysReg;
1255     if (PhysReg != 0) {
1256       assert(Register::isPhysicalRegister(PhysReg) && "mapped to physreg");
1257       for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
1258         assert(RegUnitStates[Unit] == VirtReg && "inverse map valid");
1259       }
1260     }
1261   }
1262 }
1263 #endif
1264 
1265 /// Count number of defs consumed from each register class by \p Reg
1266 void RegAllocFastImpl::addRegClassDefCounts(
1267     MutableArrayRef<unsigned> RegClassDefCounts, Register Reg) const {
1268   assert(RegClassDefCounts.size() == TRI->getNumRegClasses());
1269 
1270   if (Reg.isVirtual()) {
1271     if (!shouldAllocateRegister(Reg))
1272       return;
1273     const TargetRegisterClass *OpRC = MRI->getRegClass(Reg);
1274     for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
1275          RCIdx != RCIdxEnd; ++RCIdx) {
1276       const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
1277       // FIXME: Consider aliasing sub/super registers.
1278       if (OpRC->hasSubClassEq(IdxRC))
1279         ++RegClassDefCounts[RCIdx];
1280     }
1281 
1282     return;
1283   }
1284 
1285   for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
1286        RCIdx != RCIdxEnd; ++RCIdx) {
1287     const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
1288     for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
1289       if (IdxRC->contains(*Alias)) {
1290         ++RegClassDefCounts[RCIdx];
1291         break;
1292       }
1293     }
1294   }
1295 }
1296 
1297 /// Compute \ref DefOperandIndexes so it contains the indices of "def" operands
1298 /// that are to be allocated. Those are ordered in a way that small classes,
1299 /// early clobbers and livethroughs are allocated first.
1300 void RegAllocFastImpl::findAndSortDefOperandIndexes(const MachineInstr &MI) {
1301   DefOperandIndexes.clear();
1302 
1303   LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n");
1304   for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
1305     const MachineOperand &MO = MI.getOperand(I);
1306     if (!MO.isReg())
1307       continue;
1308     Register Reg = MO.getReg();
1309     if (MO.readsReg()) {
1310       if (Reg.isPhysical()) {
1311         LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) << '\n');
1312         markPhysRegUsedInInstr(Reg);
1313       }
1314     }
1315 
1316     if (MO.isDef() && Reg.isVirtual() && shouldAllocateRegister(Reg))
1317       DefOperandIndexes.push_back(I);
1318   }
1319 
1320   // Most instructions only have one virtual def, so there's no point in
1321   // computing the possible number of defs for every register class.
1322   if (DefOperandIndexes.size() <= 1)
1323     return;
1324 
1325   // Track number of defs which may consume a register from the class. This is
1326   // used to assign registers for possibly-too-small classes first. Example:
1327   // defs are eax, 3 * gr32_abcd, 2 * gr32 => we want to assign the gr32_abcd
1328   // registers first so that the gr32 don't use the gr32_abcd registers before
1329   // we assign these.
1330   SmallVector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0);
1331 
1332   for (const MachineOperand &MO : MI.operands())
1333     if (MO.isReg() && MO.isDef())
1334       addRegClassDefCounts(RegClassDefCounts, MO.getReg());
1335 
1336   llvm::sort(DefOperandIndexes, [&](unsigned I0, unsigned I1) {
1337     const MachineOperand &MO0 = MI.getOperand(I0);
1338     const MachineOperand &MO1 = MI.getOperand(I1);
1339     Register Reg0 = MO0.getReg();
1340     Register Reg1 = MO1.getReg();
1341     const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0);
1342     const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1);
1343 
1344     // Identify regclass that are easy to use up completely just in this
1345     // instruction.
1346     unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size();
1347     unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size();
1348 
1349     bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()];
1350     bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()];
1351     if (SmallClass0 > SmallClass1)
1352       return true;
1353     if (SmallClass0 < SmallClass1)
1354       return false;
1355 
1356     // Allocate early clobbers and livethrough operands first.
1357     bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() ||
1358                         (MO0.getSubReg() == 0 && !MO0.isUndef());
1359     bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() ||
1360                         (MO1.getSubReg() == 0 && !MO1.isUndef());
1361     if (Livethrough0 > Livethrough1)
1362       return true;
1363     if (Livethrough0 < Livethrough1)
1364       return false;
1365 
1366     // Tie-break rule: operand index.
1367     return I0 < I1;
1368   });
1369 }
1370 
1371 // Returns true if MO is tied and the operand it's tied to is not Undef (not
1372 // Undef is not the same thing as Def).
1373 static bool isTiedToNotUndef(const MachineOperand &MO) {
1374   if (!MO.isTied())
1375     return false;
1376   const MachineInstr &MI = *MO.getParent();
1377   unsigned TiedIdx = MI.findTiedOperandIdx(MI.getOperandNo(&MO));
1378   const MachineOperand &TiedMO = MI.getOperand(TiedIdx);
1379   return !TiedMO.isUndef();
1380 }
1381 
1382 void RegAllocFastImpl::allocateInstruction(MachineInstr &MI) {
1383   // The basic algorithm here is:
1384   // 1. Mark registers of def operands as free
1385   // 2. Allocate registers to use operands and place reload instructions for
1386   //    registers displaced by the allocation.
1387   //
1388   // However we need to handle some corner cases:
1389   // - pre-assigned defs and uses need to be handled before the other def/use
1390   //   operands are processed to avoid the allocation heuristics clashing with
1391   //   the pre-assignment.
1392   // - The "free def operands" step has to come last instead of first for tied
1393   //   operands and early-clobbers.
1394 
1395   InstrGen += 2;
1396   // In the event we ever get more than 2**31 instructions...
1397   if (LLVM_UNLIKELY(InstrGen == 0)) {
1398     UsedInInstr.assign(UsedInInstr.size(), 0);
1399     InstrGen = 2;
1400   }
1401   RegMasks.clear();
1402   BundleVirtRegsMap.clear();
1403 
1404   // Scan for special cases; Apply pre-assigned register defs to state.
1405   bool HasPhysRegUse = false;
1406   bool HasRegMask = false;
1407   bool HasVRegDef = false;
1408   bool HasDef = false;
1409   bool HasEarlyClobber = false;
1410   bool NeedToAssignLiveThroughs = false;
1411   for (MachineOperand &MO : MI.operands()) {
1412     if (MO.isReg()) {
1413       Register Reg = MO.getReg();
1414       if (Reg.isVirtual()) {
1415         if (!shouldAllocateRegister(Reg))
1416           continue;
1417         if (MO.isDef()) {
1418           HasDef = true;
1419           HasVRegDef = true;
1420           if (MO.isEarlyClobber()) {
1421             HasEarlyClobber = true;
1422             NeedToAssignLiveThroughs = true;
1423           }
1424           if (isTiedToNotUndef(MO) || (MO.getSubReg() != 0 && !MO.isUndef()))
1425             NeedToAssignLiveThroughs = true;
1426         }
1427       } else if (Reg.isPhysical()) {
1428         if (!MRI->isReserved(Reg)) {
1429           if (MO.isDef()) {
1430             HasDef = true;
1431             bool displacedAny = definePhysReg(MI, Reg);
1432             if (MO.isEarlyClobber())
1433               HasEarlyClobber = true;
1434             if (!displacedAny)
1435               MO.setIsDead(true);
1436           }
1437           if (MO.readsReg())
1438             HasPhysRegUse = true;
1439         }
1440       }
1441     } else if (MO.isRegMask()) {
1442       HasRegMask = true;
1443       RegMasks.push_back(MO.getRegMask());
1444     }
1445   }
1446 
1447   // Allocate virtreg defs.
1448   if (HasDef) {
1449     if (HasVRegDef) {
1450       // Note that Implicit MOs can get re-arranged by defineVirtReg(), so loop
1451       // multiple times to ensure no operand is missed.
1452       bool ReArrangedImplicitOps = true;
1453 
1454       // Special handling for early clobbers, tied operands or subregister defs:
1455       // Compared to "normal" defs these:
1456       // - Must not use a register that is pre-assigned for a use operand.
1457       // - In order to solve tricky inline assembly constraints we change the
1458       //   heuristic to figure out a good operand order before doing
1459       //   assignments.
1460       if (NeedToAssignLiveThroughs) {
1461         while (ReArrangedImplicitOps) {
1462           ReArrangedImplicitOps = false;
1463           findAndSortDefOperandIndexes(MI);
1464           for (unsigned OpIdx : DefOperandIndexes) {
1465             MachineOperand &MO = MI.getOperand(OpIdx);
1466             LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n');
1467             Register Reg = MO.getReg();
1468             if (MO.isEarlyClobber() || isTiedToNotUndef(MO) ||
1469                 (MO.getSubReg() && !MO.isUndef())) {
1470               ReArrangedImplicitOps = defineLiveThroughVirtReg(MI, OpIdx, Reg);
1471             } else {
1472               ReArrangedImplicitOps = defineVirtReg(MI, OpIdx, Reg);
1473             }
1474             // Implicit operands of MI were re-arranged,
1475             // re-compute DefOperandIndexes.
1476             if (ReArrangedImplicitOps)
1477               break;
1478           }
1479         }
1480       } else {
1481         // Assign virtual register defs.
1482         while (ReArrangedImplicitOps) {
1483           ReArrangedImplicitOps = false;
1484           for (MachineOperand &MO : MI.operands()) {
1485             if (!MO.isReg() || !MO.isDef())
1486               continue;
1487             Register Reg = MO.getReg();
1488             if (Reg.isVirtual()) {
1489               ReArrangedImplicitOps =
1490                   defineVirtReg(MI, MI.getOperandNo(&MO), Reg);
1491               if (ReArrangedImplicitOps)
1492                 break;
1493             }
1494           }
1495         }
1496       }
1497     }
1498 
1499     // Free registers occupied by defs.
1500     // Iterate operands in reverse order, so we see the implicit super register
1501     // defs first (we added them earlier in case of <def,read-undef>).
1502     for (MachineOperand &MO : reverse(MI.operands())) {
1503       if (!MO.isReg() || !MO.isDef())
1504         continue;
1505 
1506       Register Reg = MO.getReg();
1507 
1508       // subreg defs don't free the full register. We left the subreg number
1509       // around as a marker in setPhysReg() to recognize this case here.
1510       if (Reg.isPhysical() && MO.getSubReg() != 0) {
1511         MO.setSubReg(0);
1512         continue;
1513       }
1514 
1515       assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) &&
1516              "tied def assigned to clobbered register");
1517 
1518       // Do not free tied operands and early clobbers.
1519       if (isTiedToNotUndef(MO) || MO.isEarlyClobber())
1520         continue;
1521       if (!Reg)
1522         continue;
1523       if (Reg.isVirtual()) {
1524         assert(!shouldAllocateRegister(Reg));
1525         continue;
1526       }
1527       assert(Reg.isPhysical());
1528       if (MRI->isReserved(Reg))
1529         continue;
1530       freePhysReg(Reg);
1531       unmarkRegUsedInInstr(Reg);
1532     }
1533   }
1534 
1535   // Displace clobbered registers.
1536   if (HasRegMask) {
1537     assert(!RegMasks.empty() && "expected RegMask");
1538     // MRI bookkeeping.
1539     for (const auto *RM : RegMasks)
1540       MRI->addPhysRegsUsedFromRegMask(RM);
1541 
1542     // Displace clobbered registers.
1543     for (const LiveReg &LR : LiveVirtRegs) {
1544       MCPhysReg PhysReg = LR.PhysReg;
1545       if (PhysReg != 0 && isClobberedByRegMasks(PhysReg))
1546         displacePhysReg(MI, PhysReg);
1547     }
1548   }
1549 
1550   // Apply pre-assigned register uses to state.
1551   if (HasPhysRegUse) {
1552     for (MachineOperand &MO : MI.operands()) {
1553       if (!MO.isReg() || !MO.readsReg())
1554         continue;
1555       Register Reg = MO.getReg();
1556       if (!Reg.isPhysical())
1557         continue;
1558       if (MRI->isReserved(Reg))
1559         continue;
1560       if (!usePhysReg(MI, Reg))
1561         MO.setIsKill(true);
1562     }
1563   }
1564 
1565   // Allocate virtreg uses and insert reloads as necessary.
1566   // Implicit MOs can get moved/removed by useVirtReg(), so loop multiple
1567   // times to ensure no operand is missed.
1568   bool HasUndefUse = false;
1569   bool ReArrangedImplicitMOs = true;
1570   while (ReArrangedImplicitMOs) {
1571     ReArrangedImplicitMOs = false;
1572     for (MachineOperand &MO : MI.operands()) {
1573       if (!MO.isReg() || !MO.isUse())
1574         continue;
1575       Register Reg = MO.getReg();
1576       if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
1577         continue;
1578 
1579       if (MO.isUndef()) {
1580         HasUndefUse = true;
1581         continue;
1582       }
1583 
1584       // Populate MayLiveAcrossBlocks in case the use block is allocated before
1585       // the def block (removing the vreg uses).
1586       mayLiveIn(Reg);
1587 
1588       assert(!MO.isInternalRead() && "Bundles not supported");
1589       assert(MO.readsReg() && "reading use");
1590       ReArrangedImplicitMOs = useVirtReg(MI, MO, Reg);
1591       if (ReArrangedImplicitMOs)
1592         break;
1593     }
1594   }
1595 
1596   // Allocate undef operands. This is a separate step because in a situation
1597   // like  ` = OP undef %X, %X`    both operands need the same register assign
1598   // so we should perform the normal assignment first.
1599   if (HasUndefUse) {
1600     for (MachineOperand &MO : MI.all_uses()) {
1601       Register Reg = MO.getReg();
1602       if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
1603         continue;
1604 
1605       assert(MO.isUndef() && "Should only have undef virtreg uses left");
1606       allocVirtRegUndef(MO);
1607     }
1608   }
1609 
1610   // Free early clobbers.
1611   if (HasEarlyClobber) {
1612     for (MachineOperand &MO : reverse(MI.all_defs())) {
1613       if (!MO.isEarlyClobber())
1614         continue;
1615       assert(!MO.getSubReg() && "should be already handled in def processing");
1616 
1617       Register Reg = MO.getReg();
1618       if (!Reg)
1619         continue;
1620       if (Reg.isVirtual()) {
1621         assert(!shouldAllocateRegister(Reg));
1622         continue;
1623       }
1624       assert(Reg.isPhysical() && "should have register assigned");
1625 
1626       // We sometimes get odd situations like:
1627       //    early-clobber %x0 = INSTRUCTION %x0
1628       // which is semantically questionable as the early-clobber should
1629       // apply before the use. But in practice we consider the use to
1630       // happen before the early clobber now. Don't free the early clobber
1631       // register in this case.
1632       if (MI.readsRegister(Reg, TRI))
1633         continue;
1634 
1635       freePhysReg(Reg);
1636     }
1637   }
1638 
1639   LLVM_DEBUG(dbgs() << "<< " << MI);
1640   if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
1641       MI.getNumOperands() == 2) {
1642     LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
1643     Coalesced.push_back(&MI);
1644   }
1645 }
1646 
1647 void RegAllocFastImpl::handleDebugValue(MachineInstr &MI) {
1648   // Ignore DBG_VALUEs that aren't based on virtual registers. These are
1649   // mostly constants and frame indices.
1650   assert(MI.isDebugValue() && "not a DBG_VALUE*");
1651   for (const auto &MO : MI.debug_operands()) {
1652     if (!MO.isReg())
1653       continue;
1654     Register Reg = MO.getReg();
1655     if (!Reg.isVirtual())
1656       continue;
1657     if (!shouldAllocateRegister(Reg))
1658       continue;
1659 
1660     // Already spilled to a stackslot?
1661     int SS = StackSlotForVirtReg[Reg];
1662     if (SS != -1) {
1663       // Modify DBG_VALUE now that the value is in a spill slot.
1664       updateDbgValueForSpill(MI, SS, Reg);
1665       LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI);
1666       continue;
1667     }
1668 
1669     // See if this virtual register has already been allocated to a physical
1670     // register or spilled to a stack slot.
1671     LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
1672     SmallVector<MachineOperand *> DbgOps;
1673     for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg))
1674       DbgOps.push_back(&Op);
1675 
1676     if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
1677       // Update every use of Reg within MI.
1678       for (auto &RegMO : DbgOps)
1679         setPhysReg(MI, *RegMO, LRI->PhysReg);
1680     } else {
1681       DanglingDbgValues[Reg].push_back(&MI);
1682     }
1683 
1684     // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
1685     // that future spills of Reg will have DBG_VALUEs.
1686     LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end());
1687   }
1688 }
1689 
1690 void RegAllocFastImpl::handleBundle(MachineInstr &MI) {
1691   MachineBasicBlock::instr_iterator BundledMI = MI.getIterator();
1692   ++BundledMI;
1693   while (BundledMI->isBundledWithPred()) {
1694     for (MachineOperand &MO : BundledMI->operands()) {
1695       if (!MO.isReg())
1696         continue;
1697 
1698       Register Reg = MO.getReg();
1699       if (!Reg.isVirtual() || !shouldAllocateRegister(Reg))
1700         continue;
1701 
1702       DenseMap<Register, MCPhysReg>::iterator DI;
1703       DI = BundleVirtRegsMap.find(Reg);
1704       assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register");
1705 
1706       setPhysReg(MI, MO, DI->second);
1707     }
1708 
1709     ++BundledMI;
1710   }
1711 }
1712 
1713 void RegAllocFastImpl::allocateBasicBlock(MachineBasicBlock &MBB) {
1714   this->MBB = &MBB;
1715   LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);
1716 
1717   PosIndexes.unsetInitialized();
1718   RegUnitStates.assign(TRI->getNumRegUnits(), regFree);
1719   assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
1720 
1721   for (const auto &LiveReg : MBB.liveouts())
1722     setPhysRegState(LiveReg.PhysReg, regPreAssigned);
1723 
1724   Coalesced.clear();
1725 
1726   // Traverse block in reverse order allocating instructions one by one.
1727   for (MachineInstr &MI : reverse(MBB)) {
1728     LLVM_DEBUG(dbgs() << "\n>> " << MI << "Regs:"; dumpState());
1729 
1730     // Special handling for debug values. Note that they are not allowed to
1731     // affect codegen of the other instructions in any way.
1732     if (MI.isDebugValue()) {
1733       handleDebugValue(MI);
1734       continue;
1735     }
1736 
1737     allocateInstruction(MI);
1738 
1739     // Once BUNDLE header is assigned registers, same assignments need to be
1740     // done for bundled MIs.
1741     if (MI.getOpcode() == TargetOpcode::BUNDLE) {
1742       handleBundle(MI);
1743     }
1744   }
1745 
1746   LLVM_DEBUG(dbgs() << "Begin Regs:"; dumpState());
1747 
1748   // Spill all physical registers holding virtual registers now.
1749   LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n");
1750   reloadAtBegin(MBB);
1751 
1752   // Erase all the coalesced copies. We are delaying it until now because
1753   // LiveVirtRegs might refer to the instrs.
1754   for (MachineInstr *MI : Coalesced)
1755     MBB.erase(MI);
1756   NumCoalesced += Coalesced.size();
1757 
1758   for (auto &UDBGPair : DanglingDbgValues) {
1759     for (MachineInstr *DbgValue : UDBGPair.second) {
1760       assert(DbgValue->isDebugValue() && "expected DBG_VALUE");
1761       // Nothing to do if the vreg was spilled in the meantime.
1762       if (!DbgValue->hasDebugOperandForReg(UDBGPair.first))
1763         continue;
1764       LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
1765                         << '\n');
1766       DbgValue->setDebugValueUndef();
1767     }
1768   }
1769   DanglingDbgValues.clear();
1770 
1771   LLVM_DEBUG(MBB.dump());
1772 }
1773 
1774 bool RegAllocFastImpl::runOnMachineFunction(MachineFunction &MF) {
1775   LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1776                     << "********** Function: " << MF.getName() << '\n');
1777   MRI = &MF.getRegInfo();
1778   const TargetSubtargetInfo &STI = MF.getSubtarget();
1779   TRI = STI.getRegisterInfo();
1780   TII = STI.getInstrInfo();
1781   MFI = &MF.getFrameInfo();
1782   MRI->freezeReservedRegs();
1783   RegClassInfo.runOnMachineFunction(MF);
1784   unsigned NumRegUnits = TRI->getNumRegUnits();
1785   InstrGen = 0;
1786   UsedInInstr.assign(NumRegUnits, 0);
1787 
1788   // initialize the virtual->physical register map to have a 'null'
1789   // mapping for all virtual registers
1790   unsigned NumVirtRegs = MRI->getNumVirtRegs();
1791   StackSlotForVirtReg.resize(NumVirtRegs);
1792   LiveVirtRegs.setUniverse(NumVirtRegs);
1793   MayLiveAcrossBlocks.clear();
1794   MayLiveAcrossBlocks.resize(NumVirtRegs);
1795 
1796   // Loop over all of the basic blocks, eliminating virtual register references
1797   for (MachineBasicBlock &MBB : MF)
1798     allocateBasicBlock(MBB);
1799 
1800   if (ClearVirtRegs) {
1801     // All machine operands and other references to virtual registers have been
1802     // replaced. Remove the virtual registers.
1803     MRI->clearVirtRegs();
1804   }
1805 
1806   StackSlotForVirtReg.clear();
1807   LiveDbgValueMap.clear();
1808   return true;
1809 }
1810 
1811 PreservedAnalyses RegAllocFastPass::run(MachineFunction &MF,
1812                                         MachineFunctionAnalysisManager &) {
1813   MFPropsModifier _(*this, MF);
1814   RegAllocFastImpl Impl(Opts.Filter, Opts.ClearVRegs);
1815   bool Changed = Impl.runOnMachineFunction(MF);
1816   if (!Changed)
1817     return PreservedAnalyses::all();
1818   auto PA = getMachineFunctionPassPreservedAnalyses();
1819   PA.preserveSet<CFGAnalyses>();
1820   return PA;
1821 }
1822 
1823 void RegAllocFastPass::printPipeline(
1824     raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
1825   bool PrintFilterName = Opts.FilterName != "all";
1826   bool PrintNoClearVRegs = !Opts.ClearVRegs;
1827   bool PrintSemicolon = PrintFilterName && PrintNoClearVRegs;
1828 
1829   OS << "regallocfast";
1830   if (PrintFilterName || PrintNoClearVRegs) {
1831     OS << '<';
1832     if (PrintFilterName)
1833       OS << "filter=" << Opts.FilterName;
1834     if (PrintSemicolon)
1835       OS << ';';
1836     if (PrintNoClearVRegs)
1837       OS << "no-clear-vregs";
1838     OS << '>';
1839   }
1840 }
1841 
1842 FunctionPass *llvm::createFastRegisterAllocator() { return new RegAllocFast(); }
1843 
1844 FunctionPass *llvm::createFastRegisterAllocator(RegAllocFilterFunc Ftor,
1845                                                 bool ClearVirtRegs) {
1846   return new RegAllocFast(Ftor, ClearVirtRegs);
1847 }
1848