1 //===-- RegAllocBasic.cpp - Basic Register Allocator ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RABasic function pass, which provides a minimal 10 // implementation of the basic register allocator. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AllocationOrder.h" 15 #include "LiveDebugVariables.h" 16 #include "RegAllocBase.h" 17 #include "Spiller.h" 18 #include "llvm/Analysis/AliasAnalysis.h" 19 #include "llvm/CodeGen/CalcSpillWeights.h" 20 #include "llvm/CodeGen/LiveIntervals.h" 21 #include "llvm/CodeGen/LiveRangeEdit.h" 22 #include "llvm/CodeGen/LiveRegMatrix.h" 23 #include "llvm/CodeGen/LiveStacks.h" 24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineLoopInfo.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/Passes.h" 30 #include "llvm/CodeGen/RegAllocRegistry.h" 31 #include "llvm/CodeGen/TargetRegisterInfo.h" 32 #include "llvm/CodeGen/VirtRegMap.h" 33 #include "llvm/PassAnalysisSupport.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cstdlib> 37 #include <queue> 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "regalloc" 42 43 static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator", 44 createBasicRegisterAllocator); 45 46 namespace { 47 struct CompSpillWeight { 48 bool operator()(LiveInterval *A, LiveInterval *B) const { 49 return A->weight < B->weight; 50 } 51 }; 52 } 53 54 namespace { 55 /// RABasic provides a minimal implementation of the basic register allocation 56 /// algorithm. It prioritizes live virtual registers by spill weight and spills 57 /// whenever a register is unavailable. This is not practical in production but 58 /// provides a useful baseline both for measuring other allocators and comparing 59 /// the speed of the basic algorithm against other styles of allocators. 60 class RABasic : public MachineFunctionPass, 61 public RegAllocBase, 62 private LiveRangeEdit::Delegate { 63 // context 64 MachineFunction *MF; 65 66 // state 67 std::unique_ptr<Spiller> SpillerInstance; 68 std::priority_queue<LiveInterval*, std::vector<LiveInterval*>, 69 CompSpillWeight> Queue; 70 71 // Scratch space. Allocated here to avoid repeated malloc calls in 72 // selectOrSplit(). 73 BitVector UsableRegs; 74 75 bool LRE_CanEraseVirtReg(unsigned) override; 76 void LRE_WillShrinkVirtReg(unsigned) override; 77 78 public: 79 RABasic(); 80 81 /// Return the pass name. 82 StringRef getPassName() const override { return "Basic Register Allocator"; } 83 84 /// RABasic analysis usage. 85 void getAnalysisUsage(AnalysisUsage &AU) const override; 86 87 void releaseMemory() override; 88 89 Spiller &spiller() override { return *SpillerInstance; } 90 91 void enqueue(LiveInterval *LI) override { 92 Queue.push(LI); 93 } 94 95 LiveInterval *dequeue() override { 96 if (Queue.empty()) 97 return nullptr; 98 LiveInterval *LI = Queue.top(); 99 Queue.pop(); 100 return LI; 101 } 102 103 unsigned selectOrSplit(LiveInterval &VirtReg, 104 SmallVectorImpl<unsigned> &SplitVRegs) override; 105 106 /// Perform register allocation. 107 bool runOnMachineFunction(MachineFunction &mf) override; 108 109 MachineFunctionProperties getRequiredProperties() const override { 110 return MachineFunctionProperties().set( 111 MachineFunctionProperties::Property::NoPHIs); 112 } 113 114 // Helper for spilling all live virtual registers currently unified under preg 115 // that interfere with the most recently queried lvr. Return true if spilling 116 // was successful, and append any new spilled/split intervals to splitLVRs. 117 bool spillInterferences(LiveInterval &VirtReg, unsigned PhysReg, 118 SmallVectorImpl<unsigned> &SplitVRegs); 119 120 static char ID; 121 }; 122 123 char RABasic::ID = 0; 124 125 } // end anonymous namespace 126 127 char &llvm::RABasicID = RABasic::ID; 128 129 INITIALIZE_PASS_BEGIN(RABasic, "regallocbasic", "Basic Register Allocator", 130 false, false) 131 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 132 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 133 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 134 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 135 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 136 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 137 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 138 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 139 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 140 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 141 INITIALIZE_PASS_END(RABasic, "regallocbasic", "Basic Register Allocator", false, 142 false) 143 144 bool RABasic::LRE_CanEraseVirtReg(unsigned VirtReg) { 145 LiveInterval &LI = LIS->getInterval(VirtReg); 146 if (VRM->hasPhys(VirtReg)) { 147 Matrix->unassign(LI); 148 aboutToRemoveInterval(LI); 149 return true; 150 } 151 // Unassigned virtreg is probably in the priority queue. 152 // RegAllocBase will erase it after dequeueing. 153 // Nonetheless, clear the live-range so that the debug 154 // dump will show the right state for that VirtReg. 155 LI.clear(); 156 return false; 157 } 158 159 void RABasic::LRE_WillShrinkVirtReg(unsigned VirtReg) { 160 if (!VRM->hasPhys(VirtReg)) 161 return; 162 163 // Register is assigned, put it back on the queue for reassignment. 164 LiveInterval &LI = LIS->getInterval(VirtReg); 165 Matrix->unassign(LI); 166 enqueue(&LI); 167 } 168 169 RABasic::RABasic(): MachineFunctionPass(ID) { 170 } 171 172 void RABasic::getAnalysisUsage(AnalysisUsage &AU) const { 173 AU.setPreservesCFG(); 174 AU.addRequired<AAResultsWrapperPass>(); 175 AU.addPreserved<AAResultsWrapperPass>(); 176 AU.addRequired<LiveIntervals>(); 177 AU.addPreserved<LiveIntervals>(); 178 AU.addPreserved<SlotIndexes>(); 179 AU.addRequired<LiveDebugVariables>(); 180 AU.addPreserved<LiveDebugVariables>(); 181 AU.addRequired<LiveStacks>(); 182 AU.addPreserved<LiveStacks>(); 183 AU.addRequired<MachineBlockFrequencyInfo>(); 184 AU.addPreserved<MachineBlockFrequencyInfo>(); 185 AU.addRequiredID(MachineDominatorsID); 186 AU.addPreservedID(MachineDominatorsID); 187 AU.addRequired<MachineLoopInfo>(); 188 AU.addPreserved<MachineLoopInfo>(); 189 AU.addRequired<VirtRegMap>(); 190 AU.addPreserved<VirtRegMap>(); 191 AU.addRequired<LiveRegMatrix>(); 192 AU.addPreserved<LiveRegMatrix>(); 193 MachineFunctionPass::getAnalysisUsage(AU); 194 } 195 196 void RABasic::releaseMemory() { 197 SpillerInstance.reset(); 198 } 199 200 201 // Spill or split all live virtual registers currently unified under PhysReg 202 // that interfere with VirtReg. The newly spilled or split live intervals are 203 // returned by appending them to SplitVRegs. 204 bool RABasic::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg, 205 SmallVectorImpl<unsigned> &SplitVRegs) { 206 // Record each interference and determine if all are spillable before mutating 207 // either the union or live intervals. 208 SmallVector<LiveInterval*, 8> Intfs; 209 210 // Collect interferences assigned to any alias of the physical register. 211 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 212 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 213 Q.collectInterferingVRegs(); 214 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 215 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 216 if (!Intf->isSpillable() || Intf->weight > VirtReg.weight) 217 return false; 218 Intfs.push_back(Intf); 219 } 220 } 221 LLVM_DEBUG(dbgs() << "spilling " << printReg(PhysReg, TRI) 222 << " interferences with " << VirtReg << "\n"); 223 assert(!Intfs.empty() && "expected interference"); 224 225 // Spill each interfering vreg allocated to PhysReg or an alias. 226 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) { 227 LiveInterval &Spill = *Intfs[i]; 228 229 // Skip duplicates. 230 if (!VRM->hasPhys(Spill.reg)) 231 continue; 232 233 // Deallocate the interfering vreg by removing it from the union. 234 // A LiveInterval instance may not be in a union during modification! 235 Matrix->unassign(Spill); 236 237 // Spill the extracted interval. 238 LiveRangeEdit LRE(&Spill, SplitVRegs, *MF, *LIS, VRM, this, &DeadRemats); 239 spiller().spill(LRE); 240 } 241 return true; 242 } 243 244 // Driver for the register assignment and splitting heuristics. 245 // Manages iteration over the LiveIntervalUnions. 246 // 247 // This is a minimal implementation of register assignment and splitting that 248 // spills whenever we run out of registers. 249 // 250 // selectOrSplit can only be called once per live virtual register. We then do a 251 // single interference test for each register the correct class until we find an 252 // available register. So, the number of interference tests in the worst case is 253 // |vregs| * |machineregs|. And since the number of interference tests is 254 // minimal, there is no value in caching them outside the scope of 255 // selectOrSplit(). 256 unsigned RABasic::selectOrSplit(LiveInterval &VirtReg, 257 SmallVectorImpl<unsigned> &SplitVRegs) { 258 // Populate a list of physical register spill candidates. 259 SmallVector<unsigned, 8> PhysRegSpillCands; 260 261 // Check for an available register in this class. 262 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix); 263 while (unsigned PhysReg = Order.next()) { 264 // Check for interference in PhysReg 265 switch (Matrix->checkInterference(VirtReg, PhysReg)) { 266 case LiveRegMatrix::IK_Free: 267 // PhysReg is available, allocate it. 268 return PhysReg; 269 270 case LiveRegMatrix::IK_VirtReg: 271 // Only virtual registers in the way, we may be able to spill them. 272 PhysRegSpillCands.push_back(PhysReg); 273 continue; 274 275 default: 276 // RegMask or RegUnit interference. 277 continue; 278 } 279 } 280 281 // Try to spill another interfering reg with less spill weight. 282 for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(), 283 PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) { 284 if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) 285 continue; 286 287 assert(!Matrix->checkInterference(VirtReg, *PhysRegI) && 288 "Interference after spill."); 289 // Tell the caller to allocate to this newly freed physical register. 290 return *PhysRegI; 291 } 292 293 // No other spill candidates were found, so spill the current VirtReg. 294 LLVM_DEBUG(dbgs() << "spilling: " << VirtReg << '\n'); 295 if (!VirtReg.isSpillable()) 296 return ~0u; 297 LiveRangeEdit LRE(&VirtReg, SplitVRegs, *MF, *LIS, VRM, this, &DeadRemats); 298 spiller().spill(LRE); 299 300 // The live virtual register requesting allocation was spilled, so tell 301 // the caller not to allocate anything during this round. 302 return 0; 303 } 304 305 bool RABasic::runOnMachineFunction(MachineFunction &mf) { 306 LLVM_DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n" 307 << "********** Function: " << mf.getName() << '\n'); 308 309 MF = &mf; 310 RegAllocBase::init(getAnalysis<VirtRegMap>(), 311 getAnalysis<LiveIntervals>(), 312 getAnalysis<LiveRegMatrix>()); 313 314 calculateSpillWeightsAndHints(*LIS, *MF, VRM, 315 getAnalysis<MachineLoopInfo>(), 316 getAnalysis<MachineBlockFrequencyInfo>()); 317 318 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM)); 319 320 allocatePhysRegs(); 321 postOptimization(); 322 323 // Diagnostic output before rewriting 324 LLVM_DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n"); 325 326 releaseMemory(); 327 return true; 328 } 329 330 FunctionPass* llvm::createBasicRegisterAllocator() 331 { 332 return new RABasic(); 333 } 334