1 //===-- RegAllocBasic.cpp - Basic Register Allocator ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RABasic function pass, which provides a minimal 10 // implementation of the basic register allocator. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AllocationOrder.h" 15 #include "LiveDebugVariables.h" 16 #include "RegAllocBase.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/CodeGen/CalcSpillWeights.h" 19 #include "llvm/CodeGen/LiveIntervals.h" 20 #include "llvm/CodeGen/LiveRangeEdit.h" 21 #include "llvm/CodeGen/LiveRegMatrix.h" 22 #include "llvm/CodeGen/LiveStacks.h" 23 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 24 #include "llvm/CodeGen/MachineFunctionPass.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineLoopInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/RegAllocRegistry.h" 30 #include "llvm/CodeGen/Spiller.h" 31 #include "llvm/CodeGen/TargetRegisterInfo.h" 32 #include "llvm/CodeGen/VirtRegMap.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cstdlib> 37 #include <queue> 38 39 using namespace llvm; 40 41 #define DEBUG_TYPE "regalloc" 42 43 static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator", 44 createBasicRegisterAllocator); 45 46 namespace { 47 struct CompSpillWeight { 48 bool operator()(LiveInterval *A, LiveInterval *B) const { 49 return A->weight() < B->weight(); 50 } 51 }; 52 } 53 54 namespace { 55 /// RABasic provides a minimal implementation of the basic register allocation 56 /// algorithm. It prioritizes live virtual registers by spill weight and spills 57 /// whenever a register is unavailable. This is not practical in production but 58 /// provides a useful baseline both for measuring other allocators and comparing 59 /// the speed of the basic algorithm against other styles of allocators. 60 class RABasic : public MachineFunctionPass, 61 public RegAllocBase, 62 private LiveRangeEdit::Delegate { 63 // context 64 MachineFunction *MF; 65 66 // state 67 std::unique_ptr<Spiller> SpillerInstance; 68 std::priority_queue<LiveInterval*, std::vector<LiveInterval*>, 69 CompSpillWeight> Queue; 70 71 // Scratch space. Allocated here to avoid repeated malloc calls in 72 // selectOrSplit(). 73 BitVector UsableRegs; 74 75 bool LRE_CanEraseVirtReg(Register) override; 76 void LRE_WillShrinkVirtReg(Register) override; 77 78 public: 79 RABasic(const RegClassFilterFunc F = allocateAllRegClasses); 80 81 /// Return the pass name. 82 StringRef getPassName() const override { return "Basic Register Allocator"; } 83 84 /// RABasic analysis usage. 85 void getAnalysisUsage(AnalysisUsage &AU) const override; 86 87 void releaseMemory() override; 88 89 Spiller &spiller() override { return *SpillerInstance; } 90 91 void enqueueImpl(LiveInterval *LI) override { 92 Queue.push(LI); 93 } 94 95 LiveInterval *dequeue() override { 96 if (Queue.empty()) 97 return nullptr; 98 LiveInterval *LI = Queue.top(); 99 Queue.pop(); 100 return LI; 101 } 102 103 MCRegister selectOrSplit(LiveInterval &VirtReg, 104 SmallVectorImpl<Register> &SplitVRegs) override; 105 106 /// Perform register allocation. 107 bool runOnMachineFunction(MachineFunction &mf) override; 108 109 MachineFunctionProperties getRequiredProperties() const override { 110 return MachineFunctionProperties().set( 111 MachineFunctionProperties::Property::NoPHIs); 112 } 113 114 MachineFunctionProperties getClearedProperties() const override { 115 return MachineFunctionProperties().set( 116 MachineFunctionProperties::Property::IsSSA); 117 } 118 119 // Helper for spilling all live virtual registers currently unified under preg 120 // that interfere with the most recently queried lvr. Return true if spilling 121 // was successful, and append any new spilled/split intervals to splitLVRs. 122 bool spillInterferences(LiveInterval &VirtReg, MCRegister PhysReg, 123 SmallVectorImpl<Register> &SplitVRegs); 124 125 static char ID; 126 }; 127 128 char RABasic::ID = 0; 129 130 } // end anonymous namespace 131 132 char &llvm::RABasicID = RABasic::ID; 133 134 INITIALIZE_PASS_BEGIN(RABasic, "regallocbasic", "Basic Register Allocator", 135 false, false) 136 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 137 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 138 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 139 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 140 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 141 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 142 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 143 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 144 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 145 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 146 INITIALIZE_PASS_END(RABasic, "regallocbasic", "Basic Register Allocator", false, 147 false) 148 149 bool RABasic::LRE_CanEraseVirtReg(Register VirtReg) { 150 LiveInterval &LI = LIS->getInterval(VirtReg); 151 if (VRM->hasPhys(VirtReg)) { 152 Matrix->unassign(LI); 153 aboutToRemoveInterval(LI); 154 return true; 155 } 156 // Unassigned virtreg is probably in the priority queue. 157 // RegAllocBase will erase it after dequeueing. 158 // Nonetheless, clear the live-range so that the debug 159 // dump will show the right state for that VirtReg. 160 LI.clear(); 161 return false; 162 } 163 164 void RABasic::LRE_WillShrinkVirtReg(Register VirtReg) { 165 if (!VRM->hasPhys(VirtReg)) 166 return; 167 168 // Register is assigned, put it back on the queue for reassignment. 169 LiveInterval &LI = LIS->getInterval(VirtReg); 170 Matrix->unassign(LI); 171 enqueue(&LI); 172 } 173 174 RABasic::RABasic(RegClassFilterFunc F): 175 MachineFunctionPass(ID), 176 RegAllocBase(F) { 177 } 178 179 void RABasic::getAnalysisUsage(AnalysisUsage &AU) const { 180 AU.setPreservesCFG(); 181 AU.addRequired<AAResultsWrapperPass>(); 182 AU.addPreserved<AAResultsWrapperPass>(); 183 AU.addRequired<LiveIntervals>(); 184 AU.addPreserved<LiveIntervals>(); 185 AU.addPreserved<SlotIndexes>(); 186 AU.addRequired<LiveDebugVariables>(); 187 AU.addPreserved<LiveDebugVariables>(); 188 AU.addRequired<LiveStacks>(); 189 AU.addPreserved<LiveStacks>(); 190 AU.addRequired<MachineBlockFrequencyInfo>(); 191 AU.addPreserved<MachineBlockFrequencyInfo>(); 192 AU.addRequiredID(MachineDominatorsID); 193 AU.addPreservedID(MachineDominatorsID); 194 AU.addRequired<MachineLoopInfo>(); 195 AU.addPreserved<MachineLoopInfo>(); 196 AU.addRequired<VirtRegMap>(); 197 AU.addPreserved<VirtRegMap>(); 198 AU.addRequired<LiveRegMatrix>(); 199 AU.addPreserved<LiveRegMatrix>(); 200 MachineFunctionPass::getAnalysisUsage(AU); 201 } 202 203 void RABasic::releaseMemory() { 204 SpillerInstance.reset(); 205 } 206 207 208 // Spill or split all live virtual registers currently unified under PhysReg 209 // that interfere with VirtReg. The newly spilled or split live intervals are 210 // returned by appending them to SplitVRegs. 211 bool RABasic::spillInterferences(LiveInterval &VirtReg, MCRegister PhysReg, 212 SmallVectorImpl<Register> &SplitVRegs) { 213 // Record each interference and determine if all are spillable before mutating 214 // either the union or live intervals. 215 SmallVector<LiveInterval*, 8> Intfs; 216 217 // Collect interferences assigned to any alias of the physical register. 218 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 219 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 220 Q.collectInterferingVRegs(); 221 for (unsigned i = Q.interferingVRegs().size(); i; --i) { 222 LiveInterval *Intf = Q.interferingVRegs()[i - 1]; 223 if (!Intf->isSpillable() || Intf->weight() > VirtReg.weight()) 224 return false; 225 Intfs.push_back(Intf); 226 } 227 } 228 LLVM_DEBUG(dbgs() << "spilling " << printReg(PhysReg, TRI) 229 << " interferences with " << VirtReg << "\n"); 230 assert(!Intfs.empty() && "expected interference"); 231 232 // Spill each interfering vreg allocated to PhysReg or an alias. 233 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) { 234 LiveInterval &Spill = *Intfs[i]; 235 236 // Skip duplicates. 237 if (!VRM->hasPhys(Spill.reg())) 238 continue; 239 240 // Deallocate the interfering vreg by removing it from the union. 241 // A LiveInterval instance may not be in a union during modification! 242 Matrix->unassign(Spill); 243 244 // Spill the extracted interval. 245 LiveRangeEdit LRE(&Spill, SplitVRegs, *MF, *LIS, VRM, this, &DeadRemats); 246 spiller().spill(LRE); 247 } 248 return true; 249 } 250 251 // Driver for the register assignment and splitting heuristics. 252 // Manages iteration over the LiveIntervalUnions. 253 // 254 // This is a minimal implementation of register assignment and splitting that 255 // spills whenever we run out of registers. 256 // 257 // selectOrSplit can only be called once per live virtual register. We then do a 258 // single interference test for each register the correct class until we find an 259 // available register. So, the number of interference tests in the worst case is 260 // |vregs| * |machineregs|. And since the number of interference tests is 261 // minimal, there is no value in caching them outside the scope of 262 // selectOrSplit(). 263 MCRegister RABasic::selectOrSplit(LiveInterval &VirtReg, 264 SmallVectorImpl<Register> &SplitVRegs) { 265 // Populate a list of physical register spill candidates. 266 SmallVector<MCRegister, 8> PhysRegSpillCands; 267 268 // Check for an available register in this class. 269 auto Order = 270 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 271 for (MCRegister PhysReg : Order) { 272 assert(PhysReg.isValid()); 273 // Check for interference in PhysReg 274 switch (Matrix->checkInterference(VirtReg, PhysReg)) { 275 case LiveRegMatrix::IK_Free: 276 // PhysReg is available, allocate it. 277 return PhysReg; 278 279 case LiveRegMatrix::IK_VirtReg: 280 // Only virtual registers in the way, we may be able to spill them. 281 PhysRegSpillCands.push_back(PhysReg); 282 continue; 283 284 default: 285 // RegMask or RegUnit interference. 286 continue; 287 } 288 } 289 290 // Try to spill another interfering reg with less spill weight. 291 for (MCRegister &PhysReg : PhysRegSpillCands) { 292 if (!spillInterferences(VirtReg, PhysReg, SplitVRegs)) 293 continue; 294 295 assert(!Matrix->checkInterference(VirtReg, PhysReg) && 296 "Interference after spill."); 297 // Tell the caller to allocate to this newly freed physical register. 298 return PhysReg; 299 } 300 301 // No other spill candidates were found, so spill the current VirtReg. 302 LLVM_DEBUG(dbgs() << "spilling: " << VirtReg << '\n'); 303 if (!VirtReg.isSpillable()) 304 return ~0u; 305 LiveRangeEdit LRE(&VirtReg, SplitVRegs, *MF, *LIS, VRM, this, &DeadRemats); 306 spiller().spill(LRE); 307 308 // The live virtual register requesting allocation was spilled, so tell 309 // the caller not to allocate anything during this round. 310 return 0; 311 } 312 313 bool RABasic::runOnMachineFunction(MachineFunction &mf) { 314 LLVM_DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n" 315 << "********** Function: " << mf.getName() << '\n'); 316 317 MF = &mf; 318 RegAllocBase::init(getAnalysis<VirtRegMap>(), 319 getAnalysis<LiveIntervals>(), 320 getAnalysis<LiveRegMatrix>()); 321 VirtRegAuxInfo VRAI(*MF, *LIS, *VRM, getAnalysis<MachineLoopInfo>(), 322 getAnalysis<MachineBlockFrequencyInfo>()); 323 VRAI.calculateSpillWeightsAndHints(); 324 325 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, VRAI)); 326 327 allocatePhysRegs(); 328 postOptimization(); 329 330 // Diagnostic output before rewriting 331 LLVM_DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n"); 332 333 releaseMemory(); 334 return true; 335 } 336 337 FunctionPass* llvm::createBasicRegisterAllocator() { 338 return new RABasic(); 339 } 340 341 FunctionPass* llvm::createBasicRegisterAllocator(RegClassFilterFunc F) { 342 return new RABasic(F); 343 } 344