xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/RDFLiveness.cpp (revision e64fe029e9d3ce476e77a478318e0c3cd201ff08)
1 //===- RDFLiveness.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Computation of the liveness information from the data-flow graph.
10 //
11 // The main functionality of this code is to compute block live-in
12 // information. With the live-in information in place, the placement
13 // of kill flags can also be recalculated.
14 //
15 // The block live-in calculation is based on the ideas from the following
16 // publication:
17 //
18 // Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin.
19 // "Efficient Liveness Computation Using Merge Sets and DJ-Graphs."
20 // ACM Transactions on Architecture and Code Optimization, Association for
21 // Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance
22 // and Embedded Architectures and Compilers", 8 (4),
23 // <10.1145/2086696.2086706>. <hal-00647369>
24 //
25 #include "llvm/CodeGen/RDFLiveness.h"
26 #include "llvm/ADT/BitVector.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetVector.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineDominanceFrontier.h"
33 #include "llvm/CodeGen/MachineDominators.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/RDFGraph.h"
37 #include "llvm/CodeGen/RDFRegisters.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/MC/LaneBitmask.h"
40 #include "llvm/MC/MCRegisterInfo.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <algorithm>
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <map>
49 #include <unordered_map>
50 #include <utility>
51 #include <vector>
52 
53 using namespace llvm;
54 using namespace rdf;
55 
56 static cl::opt<unsigned> MaxRecNest("rdf-liveness-max-rec", cl::init(25),
57   cl::Hidden, cl::desc("Maximum recursion level"));
58 
59 namespace llvm {
60 namespace rdf {
61 
62   raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) {
63     OS << '{';
64     for (const auto &I : P.Obj) {
65       OS << ' ' << printReg(I.first, &P.G.getTRI()) << '{';
66       for (auto J = I.second.begin(), E = I.second.end(); J != E; ) {
67         OS << Print(J->first, P.G) << PrintLaneMaskOpt(J->second);
68         if (++J != E)
69           OS << ',';
70       }
71       OS << '}';
72     }
73     OS << " }";
74     return OS;
75   }
76 
77 } // end namespace rdf
78 } // end namespace llvm
79 
80 // The order in the returned sequence is the order of reaching defs in the
81 // upward traversal: the first def is the closest to the given reference RefA,
82 // the next one is further up, and so on.
83 // The list ends at a reaching phi def, or when the reference from RefA is
84 // covered by the defs in the list (see FullChain).
85 // This function provides two modes of operation:
86 // (1) Returning the sequence of reaching defs for a particular reference
87 // node. This sequence will terminate at the first phi node [1].
88 // (2) Returning a partial sequence of reaching defs, where the final goal
89 // is to traverse past phi nodes to the actual defs arising from the code
90 // itself.
91 // In mode (2), the register reference for which the search was started
92 // may be different from the reference node RefA, for which this call was
93 // made, hence the argument RefRR, which holds the original register.
94 // Also, some definitions may have already been encountered in a previous
95 // call that will influence register covering. The register references
96 // already defined are passed in through DefRRs.
97 // In mode (1), the "continuation" considerations do not apply, and the
98 // RefRR is the same as the register in RefA, and the set DefRRs is empty.
99 //
100 // [1] It is possible for multiple phi nodes to be included in the returned
101 // sequence:
102 //   SubA = phi ...
103 //   SubB = phi ...
104 //   ...  = SuperAB(rdef:SubA), SuperAB"(rdef:SubB)
105 // However, these phi nodes are independent from one another in terms of
106 // the data-flow.
107 
108 NodeList Liveness::getAllReachingDefs(RegisterRef RefRR,
109       NodeAddr<RefNode*> RefA, bool TopShadows, bool FullChain,
110       const RegisterAggr &DefRRs) {
111   NodeList RDefs; // Return value.
112   SetVector<NodeId> DefQ;
113   DenseMap<MachineInstr*, uint32_t> OrdMap;
114 
115   // Dead defs will be treated as if they were live, since they are actually
116   // on the data-flow path. They cannot be ignored because even though they
117   // do not generate meaningful values, they still modify registers.
118 
119   // If the reference is undefined, there is nothing to do.
120   if (RefA.Addr->getFlags() & NodeAttrs::Undef)
121     return RDefs;
122 
123   // The initial queue should not have reaching defs for shadows. The
124   // whole point of a shadow is that it will have a reaching def that
125   // is not aliased to the reaching defs of the related shadows.
126   NodeId Start = RefA.Id;
127   auto SNA = DFG.addr<RefNode*>(Start);
128   if (NodeId RD = SNA.Addr->getReachingDef())
129     DefQ.insert(RD);
130   if (TopShadows) {
131     for (auto S : DFG.getRelatedRefs(RefA.Addr->getOwner(DFG), RefA))
132       if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
133         DefQ.insert(RD);
134   }
135 
136   // Collect all the reaching defs, going up until a phi node is encountered,
137   // or there are no more reaching defs. From this set, the actual set of
138   // reaching defs will be selected.
139   // The traversal upwards must go on until a covering def is encountered.
140   // It is possible that a collection of non-covering (individually) defs
141   // will be sufficient, but keep going until a covering one is found.
142   for (unsigned i = 0; i < DefQ.size(); ++i) {
143     auto TA = DFG.addr<DefNode*>(DefQ[i]);
144     if (TA.Addr->getFlags() & NodeAttrs::PhiRef)
145       continue;
146     // Stop at the covering/overwriting def of the initial register reference.
147     RegisterRef RR = TA.Addr->getRegRef(DFG);
148     if (!DFG.IsPreservingDef(TA))
149       if (RegisterAggr::isCoverOf(RR, RefRR, PRI))
150         continue;
151     // Get the next level of reaching defs. This will include multiple
152     // reaching defs for shadows.
153     for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA))
154       if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
155         DefQ.insert(RD);
156     // Don't visit sibling defs. They share the same reaching def (which
157     // will be visited anyway), but they define something not aliased to
158     // this ref.
159   }
160 
161   // Return the MachineBasicBlock containing a given instruction.
162   auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* {
163     if (IA.Addr->getKind() == NodeAttrs::Stmt)
164       return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent();
165     assert(IA.Addr->getKind() == NodeAttrs::Phi);
166     NodeAddr<PhiNode*> PA = IA;
167     NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG);
168     return BA.Addr->getCode();
169   };
170 
171   SmallSet<NodeId,32> Defs;
172 
173   // Remove all non-phi defs that are not aliased to RefRR, and separate
174   // the the remaining defs into buckets for containing blocks.
175   std::map<NodeId, NodeAddr<InstrNode*>> Owners;
176   std::map<MachineBasicBlock*, SmallVector<NodeId,32>> Blocks;
177   for (NodeId N : DefQ) {
178     auto TA = DFG.addr<DefNode*>(N);
179     bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef;
180     if (!IsPhi && !PRI.alias(RefRR, TA.Addr->getRegRef(DFG)))
181       continue;
182     Defs.insert(TA.Id);
183     NodeAddr<InstrNode*> IA = TA.Addr->getOwner(DFG);
184     Owners[TA.Id] = IA;
185     Blocks[Block(IA)].push_back(IA.Id);
186   }
187 
188   auto Precedes = [this,&OrdMap] (NodeId A, NodeId B) {
189     if (A == B)
190       return false;
191     NodeAddr<InstrNode*> OA = DFG.addr<InstrNode*>(A);
192     NodeAddr<InstrNode*> OB = DFG.addr<InstrNode*>(B);
193     bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt;
194     bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt;
195     if (StmtA && StmtB) {
196       const MachineInstr *InA = NodeAddr<StmtNode*>(OA).Addr->getCode();
197       const MachineInstr *InB = NodeAddr<StmtNode*>(OB).Addr->getCode();
198       assert(InA->getParent() == InB->getParent());
199       auto FA = OrdMap.find(InA);
200       if (FA != OrdMap.end())
201         return FA->second < OrdMap.find(InB)->second;
202       const MachineBasicBlock *BB = InA->getParent();
203       for (auto It = BB->begin(), E = BB->end(); It != E; ++It) {
204         if (It == InA->getIterator())
205           return true;
206         if (It == InB->getIterator())
207           return false;
208       }
209       llvm_unreachable("InA and InB should be in the same block");
210     }
211     // One of them is a phi node.
212     if (!StmtA && !StmtB) {
213       // Both are phis, which are unordered. Break the tie by id numbers.
214       return A < B;
215     }
216     // Only one of them is a phi. Phis always precede statements.
217     return !StmtA;
218   };
219 
220   auto GetOrder = [&OrdMap] (MachineBasicBlock &B) {
221     uint32_t Pos = 0;
222     for (MachineInstr &In : B)
223       OrdMap.insert({&In, ++Pos});
224   };
225 
226   // For each block, sort the nodes in it.
227   std::vector<MachineBasicBlock*> TmpBB;
228   for (auto &Bucket : Blocks) {
229     TmpBB.push_back(Bucket.first);
230     if (Bucket.second.size() > 2)
231       GetOrder(*Bucket.first);
232     llvm::sort(Bucket.second, Precedes);
233   }
234 
235   // Sort the blocks with respect to dominance.
236   llvm::sort(TmpBB,
237              [this](auto A, auto B) { return MDT.properlyDominates(A, B); });
238 
239   std::vector<NodeId> TmpInst;
240   for (MachineBasicBlock *MBB : llvm::reverse(TmpBB)) {
241     auto &Bucket = Blocks[MBB];
242     TmpInst.insert(TmpInst.end(), Bucket.rbegin(), Bucket.rend());
243   }
244 
245   // The vector is a list of instructions, so that defs coming from
246   // the same instruction don't need to be artificially ordered.
247   // Then, when computing the initial segment, and iterating over an
248   // instruction, pick the defs that contribute to the covering (i.e. is
249   // not covered by previously added defs). Check the defs individually,
250   // i.e. first check each def if is covered or not (without adding them
251   // to the tracking set), and then add all the selected ones.
252 
253   // The reason for this is this example:
254   // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes).
255   // *d3<C>              If A \incl BuC, and B \incl AuC, then *d2 would be
256   //                     covered if we added A first, and A would be covered
257   //                     if we added B first.
258   // In this example we want both A and B, because we don't want to give
259   // either one priority over the other, since they belong to the same
260   // statement.
261 
262   RegisterAggr RRs(DefRRs);
263 
264   auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool {
265     return TA.Addr->getKind() == NodeAttrs::Def &&
266            Defs.count(TA.Id);
267   };
268 
269   for (NodeId T : TmpInst) {
270     if (!FullChain && RRs.hasCoverOf(RefRR))
271       break;
272     auto TA = DFG.addr<InstrNode*>(T);
273     bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA);
274     NodeList Ds;
275     for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) {
276       RegisterRef QR = DA.Addr->getRegRef(DFG);
277       // Add phi defs even if they are covered by subsequent defs. This is
278       // for cases where the reached use is not covered by any of the defs
279       // encountered so far: the phi def is needed to expose the liveness
280       // of that use to the entry of the block.
281       // Example:
282       //   phi d1<R3>(,d2,), ...  Phi def d1 is covered by d2.
283       //   d2<R3>(d1,,u3), ...
284       //   ..., u3<D1>(d2)        This use needs to be live on entry.
285       if (FullChain || IsPhi || !RRs.hasCoverOf(QR))
286         Ds.push_back(DA);
287     }
288     llvm::append_range(RDefs, Ds);
289     for (NodeAddr<DefNode*> DA : Ds) {
290       // When collecting a full chain of definitions, do not consider phi
291       // defs to actually define a register.
292       uint16_t Flags = DA.Addr->getFlags();
293       if (!FullChain || !(Flags & NodeAttrs::PhiRef))
294         if (!(Flags & NodeAttrs::Preserving)) // Don't care about Undef here.
295           RRs.insert(DA.Addr->getRegRef(DFG));
296     }
297   }
298 
299   auto DeadP = [](const NodeAddr<DefNode*> DA) -> bool {
300     return DA.Addr->getFlags() & NodeAttrs::Dead;
301   };
302   llvm::erase_if(RDefs, DeadP);
303 
304   return RDefs;
305 }
306 
307 std::pair<NodeSet,bool>
308 Liveness::getAllReachingDefsRec(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
309       NodeSet &Visited, const NodeSet &Defs) {
310   return getAllReachingDefsRecImpl(RefRR, RefA, Visited, Defs, 0, MaxRecNest);
311 }
312 
313 std::pair<NodeSet,bool>
314 Liveness::getAllReachingDefsRecImpl(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
315       NodeSet &Visited, const NodeSet &Defs, unsigned Nest, unsigned MaxNest) {
316   if (Nest > MaxNest)
317     return { NodeSet(), false };
318   // Collect all defined registers. Do not consider phis to be defining
319   // anything, only collect "real" definitions.
320   RegisterAggr DefRRs(PRI);
321   for (NodeId D : Defs) {
322     const auto DA = DFG.addr<const DefNode*>(D);
323     if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
324       DefRRs.insert(DA.Addr->getRegRef(DFG));
325   }
326 
327   NodeList RDs = getAllReachingDefs(RefRR, RefA, false, true, DefRRs);
328   if (RDs.empty())
329     return { Defs, true };
330 
331   // Make a copy of the preexisting definitions and add the newly found ones.
332   NodeSet TmpDefs = Defs;
333   for (NodeAddr<NodeBase*> R : RDs)
334     TmpDefs.insert(R.Id);
335 
336   NodeSet Result = Defs;
337 
338   for (NodeAddr<DefNode*> DA : RDs) {
339     Result.insert(DA.Id);
340     if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
341       continue;
342     NodeAddr<PhiNode*> PA = DA.Addr->getOwner(DFG);
343     if (!Visited.insert(PA.Id).second)
344       continue;
345     // Go over all phi uses and get the reaching defs for each use.
346     for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
347       const auto &T = getAllReachingDefsRecImpl(RefRR, U, Visited, TmpDefs,
348                                                 Nest+1, MaxNest);
349       if (!T.second)
350         return { T.first, false };
351       Result.insert(T.first.begin(), T.first.end());
352     }
353   }
354 
355   return { Result, true };
356 }
357 
358 /// Find the nearest ref node aliased to RefRR, going upwards in the data
359 /// flow, starting from the instruction immediately preceding Inst.
360 NodeAddr<RefNode*> Liveness::getNearestAliasedRef(RegisterRef RefRR,
361       NodeAddr<InstrNode*> IA) {
362   NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
363   NodeList Ins = BA.Addr->members(DFG);
364   NodeId FindId = IA.Id;
365   auto E = Ins.rend();
366   auto B = std::find_if(Ins.rbegin(), E,
367                         [FindId] (const NodeAddr<InstrNode*> T) {
368                           return T.Id == FindId;
369                         });
370   // Do not scan IA (which is what B would point to).
371   if (B != E)
372     ++B;
373 
374   do {
375     // Process the range of instructions from B to E.
376     for (NodeAddr<InstrNode*> I : make_range(B, E)) {
377       NodeList Refs = I.Addr->members(DFG);
378       NodeAddr<RefNode*> Clob, Use;
379       // Scan all the refs in I aliased to RefRR, and return the one that
380       // is the closest to the output of I, i.e. def > clobber > use.
381       for (NodeAddr<RefNode*> R : Refs) {
382         if (!PRI.alias(R.Addr->getRegRef(DFG), RefRR))
383           continue;
384         if (DFG.IsDef(R)) {
385           // If it's a non-clobbering def, just return it.
386           if (!(R.Addr->getFlags() & NodeAttrs::Clobbering))
387             return R;
388           Clob = R;
389         } else {
390           Use = R;
391         }
392       }
393       if (Clob.Id != 0)
394         return Clob;
395       if (Use.Id != 0)
396         return Use;
397     }
398 
399     // Go up to the immediate dominator, if any.
400     MachineBasicBlock *BB = BA.Addr->getCode();
401     BA = NodeAddr<BlockNode*>();
402     if (MachineDomTreeNode *N = MDT.getNode(BB)) {
403       if ((N = N->getIDom()))
404         BA = DFG.findBlock(N->getBlock());
405     }
406     if (!BA.Id)
407       break;
408 
409     Ins = BA.Addr->members(DFG);
410     B = Ins.rbegin();
411     E = Ins.rend();
412   } while (true);
413 
414   return NodeAddr<RefNode*>();
415 }
416 
417 NodeSet Liveness::getAllReachedUses(RegisterRef RefRR,
418       NodeAddr<DefNode*> DefA, const RegisterAggr &DefRRs) {
419   NodeSet Uses;
420 
421   // If the original register is already covered by all the intervening
422   // defs, no more uses can be reached.
423   if (DefRRs.hasCoverOf(RefRR))
424     return Uses;
425 
426   // Add all directly reached uses.
427   // If the def is dead, it does not provide a value for any use.
428   bool IsDead = DefA.Addr->getFlags() & NodeAttrs::Dead;
429   NodeId U = !IsDead ? DefA.Addr->getReachedUse() : 0;
430   while (U != 0) {
431     auto UA = DFG.addr<UseNode*>(U);
432     if (!(UA.Addr->getFlags() & NodeAttrs::Undef)) {
433       RegisterRef UR = UA.Addr->getRegRef(DFG);
434       if (PRI.alias(RefRR, UR) && !DefRRs.hasCoverOf(UR))
435         Uses.insert(U);
436     }
437     U = UA.Addr->getSibling();
438   }
439 
440   // Traverse all reached defs. This time dead defs cannot be ignored.
441   for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) {
442     auto DA = DFG.addr<DefNode*>(D);
443     NextD = DA.Addr->getSibling();
444     RegisterRef DR = DA.Addr->getRegRef(DFG);
445     // If this def is already covered, it cannot reach anything new.
446     // Similarly, skip it if it is not aliased to the interesting register.
447     if (DefRRs.hasCoverOf(DR) || !PRI.alias(RefRR, DR))
448       continue;
449     NodeSet T;
450     if (DFG.IsPreservingDef(DA)) {
451       // If it is a preserving def, do not update the set of intervening defs.
452       T = getAllReachedUses(RefRR, DA, DefRRs);
453     } else {
454       RegisterAggr NewDefRRs = DefRRs;
455       NewDefRRs.insert(DR);
456       T = getAllReachedUses(RefRR, DA, NewDefRRs);
457     }
458     Uses.insert(T.begin(), T.end());
459   }
460   return Uses;
461 }
462 
463 void Liveness::computePhiInfo() {
464   RealUseMap.clear();
465 
466   NodeList Phis;
467   NodeAddr<FuncNode*> FA = DFG.getFunc();
468   NodeList Blocks = FA.Addr->members(DFG);
469   for (NodeAddr<BlockNode*> BA : Blocks) {
470     auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
471     llvm::append_range(Phis, Ps);
472   }
473 
474   // phi use -> (map: reaching phi -> set of registers defined in between)
475   std::map<NodeId,std::map<NodeId,RegisterAggr>> PhiUp;
476   std::vector<NodeId> PhiUQ;  // Work list of phis for upward propagation.
477   std::unordered_map<NodeId,RegisterAggr> PhiDRs;  // Phi -> registers defined by it.
478 
479   // Go over all phis.
480   for (NodeAddr<PhiNode*> PhiA : Phis) {
481     // Go over all defs and collect the reached uses that are non-phi uses
482     // (i.e. the "real uses").
483     RefMap &RealUses = RealUseMap[PhiA.Id];
484     NodeList PhiRefs = PhiA.Addr->members(DFG);
485 
486     // Have a work queue of defs whose reached uses need to be found.
487     // For each def, add to the queue all reached (non-phi) defs.
488     SetVector<NodeId> DefQ;
489     NodeSet PhiDefs;
490     RegisterAggr DRs(PRI);
491     for (NodeAddr<RefNode*> R : PhiRefs) {
492       if (!DFG.IsRef<NodeAttrs::Def>(R))
493         continue;
494       DRs.insert(R.Addr->getRegRef(DFG));
495       DefQ.insert(R.Id);
496       PhiDefs.insert(R.Id);
497     }
498     PhiDRs.insert(std::make_pair(PhiA.Id, DRs));
499 
500     // Collect the super-set of all possible reached uses. This set will
501     // contain all uses reached from this phi, either directly from the
502     // phi defs, or (recursively) via non-phi defs reached by the phi defs.
503     // This set of uses will later be trimmed to only contain these uses that
504     // are actually reached by the phi defs.
505     for (unsigned i = 0; i < DefQ.size(); ++i) {
506       NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]);
507       // Visit all reached uses. Phi defs should not really have the "dead"
508       // flag set, but check it anyway for consistency.
509       bool IsDead = DA.Addr->getFlags() & NodeAttrs::Dead;
510       NodeId UN = !IsDead ? DA.Addr->getReachedUse() : 0;
511       while (UN != 0) {
512         NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN);
513         uint16_t F = A.Addr->getFlags();
514         if ((F & (NodeAttrs::Undef | NodeAttrs::PhiRef)) == 0) {
515           RegisterRef R = A.Addr->getRegRef(DFG);
516           RealUses[R.Reg].insert({A.Id,R.Mask});
517         }
518         UN = A.Addr->getSibling();
519       }
520       // Visit all reached defs, and add them to the queue. These defs may
521       // override some of the uses collected here, but that will be handled
522       // later.
523       NodeId DN = DA.Addr->getReachedDef();
524       while (DN != 0) {
525         NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN);
526         for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) {
527           uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags();
528           // Must traverse the reached-def chain. Consider:
529           //   def(D0) -> def(R0) -> def(R0) -> use(D0)
530           // The reachable use of D0 passes through a def of R0.
531           if (!(Flags & NodeAttrs::PhiRef))
532             DefQ.insert(T.Id);
533         }
534         DN = A.Addr->getSibling();
535       }
536     }
537     // Filter out these uses that appear to be reachable, but really
538     // are not. For example:
539     //
540     // R1:0 =          d1
541     //      = R1:0     u2     Reached by d1.
542     //   R0 =          d3
543     //      = R1:0     u4     Still reached by d1: indirectly through
544     //                        the def d3.
545     //   R1 =          d5
546     //      = R1:0     u6     Not reached by d1 (covered collectively
547     //                        by d3 and d5), but following reached
548     //                        defs and uses from d1 will lead here.
549     for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) {
550       // For each reached register UI->first, there is a set UI->second, of
551       // uses of it. For each such use, check if it is reached by this phi,
552       // i.e. check if the set of its reaching uses intersects the set of
553       // this phi's defs.
554       NodeRefSet Uses = UI->second;
555       UI->second.clear();
556       for (std::pair<NodeId,LaneBitmask> I : Uses) {
557         auto UA = DFG.addr<UseNode*>(I.first);
558         // Undef flag is checked above.
559         assert((UA.Addr->getFlags() & NodeAttrs::Undef) == 0);
560         RegisterRef R(UI->first, I.second);
561         // Calculate the exposed part of the reached use.
562         RegisterAggr Covered(PRI);
563         for (NodeAddr<DefNode*> DA : getAllReachingDefs(R, UA)) {
564           if (PhiDefs.count(DA.Id))
565             break;
566           Covered.insert(DA.Addr->getRegRef(DFG));
567         }
568         if (RegisterRef RC = Covered.clearIn(R)) {
569           // We are updating the map for register UI->first, so we need
570           // to map RC to be expressed in terms of that register.
571           RegisterRef S = PRI.mapTo(RC, UI->first);
572           UI->second.insert({I.first, S.Mask});
573         }
574       }
575       UI = UI->second.empty() ? RealUses.erase(UI) : std::next(UI);
576     }
577 
578     // If this phi reaches some "real" uses, add it to the queue for upward
579     // propagation.
580     if (!RealUses.empty())
581       PhiUQ.push_back(PhiA.Id);
582 
583     // Go over all phi uses and check if the reaching def is another phi.
584     // Collect the phis that are among the reaching defs of these uses.
585     // While traversing the list of reaching defs for each phi use, accumulate
586     // the set of registers defined between this phi (PhiA) and the owner phi
587     // of the reaching def.
588     NodeSet SeenUses;
589 
590     for (auto I : PhiRefs) {
591       if (!DFG.IsRef<NodeAttrs::Use>(I) || SeenUses.count(I.Id))
592         continue;
593       NodeAddr<PhiUseNode*> PUA = I;
594       if (PUA.Addr->getReachingDef() == 0)
595         continue;
596 
597       RegisterRef UR = PUA.Addr->getRegRef(DFG);
598       NodeList Ds = getAllReachingDefs(UR, PUA, true, false, NoRegs);
599       RegisterAggr DefRRs(PRI);
600 
601       for (NodeAddr<DefNode*> D : Ds) {
602         if (D.Addr->getFlags() & NodeAttrs::PhiRef) {
603           NodeId RP = D.Addr->getOwner(DFG).Id;
604           std::map<NodeId,RegisterAggr> &M = PhiUp[PUA.Id];
605           auto F = M.find(RP);
606           if (F == M.end())
607             M.insert(std::make_pair(RP, DefRRs));
608           else
609             F->second.insert(DefRRs);
610         }
611         DefRRs.insert(D.Addr->getRegRef(DFG));
612       }
613 
614       for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PhiA, PUA))
615         SeenUses.insert(T.Id);
616     }
617   }
618 
619   if (Trace) {
620     dbgs() << "Phi-up-to-phi map with intervening defs:\n";
621     for (auto I : PhiUp) {
622       dbgs() << "phi " << Print(I.first, DFG) << " -> {";
623       for (auto R : I.second)
624         dbgs() << ' ' << Print(R.first, DFG) << Print(R.second, DFG);
625       dbgs() << " }\n";
626     }
627   }
628 
629   // Propagate the reached registers up in the phi chain.
630   //
631   // The following type of situation needs careful handling:
632   //
633   //   phi d1<R1:0>  (1)
634   //        |
635   //   ... d2<R1>
636   //        |
637   //   phi u3<R1:0>  (2)
638   //        |
639   //   ... u4<R1>
640   //
641   // The phi node (2) defines a register pair R1:0, and reaches a "real"
642   // use u4 of just R1. The same phi node is also known to reach (upwards)
643   // the phi node (1). However, the use u4 is not reached by phi (1),
644   // because of the intervening definition d2 of R1. The data flow between
645   // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0.
646   //
647   // When propagating uses up the phi chains, get the all reaching defs
648   // for a given phi use, and traverse the list until the propagated ref
649   // is covered, or until reaching the final phi. Only assume that the
650   // reference reaches the phi in the latter case.
651 
652   // The operation "clearIn" can be expensive. For a given set of intervening
653   // defs, cache the result of subtracting these defs from a given register
654   // ref.
655   using SubMap = std::unordered_map<RegisterRef, RegisterRef>;
656   std::unordered_map<RegisterAggr, SubMap> Subs;
657   auto ClearIn = [] (RegisterRef RR, const RegisterAggr &Mid, SubMap &SM) {
658     if (Mid.empty())
659       return RR;
660     auto F = SM.find(RR);
661     if (F != SM.end())
662       return F->second;
663     RegisterRef S = Mid.clearIn(RR);
664     SM.insert({RR, S});
665     return S;
666   };
667 
668   // Go over all phis.
669   for (unsigned i = 0; i < PhiUQ.size(); ++i) {
670     auto PA = DFG.addr<PhiNode*>(PhiUQ[i]);
671     NodeList PUs = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG);
672     RefMap &RUM = RealUseMap[PA.Id];
673 
674     for (NodeAddr<UseNode*> UA : PUs) {
675       std::map<NodeId,RegisterAggr> &PUM = PhiUp[UA.Id];
676       RegisterRef UR = UA.Addr->getRegRef(DFG);
677       for (const std::pair<const NodeId, RegisterAggr> &P : PUM) {
678         bool Changed = false;
679         const RegisterAggr &MidDefs = P.second;
680         // Collect the set PropUp of uses that are reached by the current
681         // phi PA, and are not covered by any intervening def between the
682         // currently visited use UA and the upward phi P.
683 
684         if (MidDefs.hasCoverOf(UR))
685           continue;
686         SubMap &SM = Subs[MidDefs];
687 
688         // General algorithm:
689         //   for each (R,U) : U is use node of R, U is reached by PA
690         //     if MidDefs does not cover (R,U)
691         //       then add (R-MidDefs,U) to RealUseMap[P]
692         //
693         for (const std::pair<const RegisterId, NodeRefSet> &T : RUM) {
694           RegisterRef R(T.first);
695           // The current phi (PA) could be a phi for a regmask. It could
696           // reach a whole variety of uses that are not related to the
697           // specific upward phi (P.first).
698           const RegisterAggr &DRs = PhiDRs.at(P.first);
699           if (!DRs.hasAliasOf(R))
700             continue;
701           R = PRI.mapTo(DRs.intersectWith(R), T.first);
702           for (std::pair<NodeId,LaneBitmask> V : T.second) {
703             LaneBitmask M = R.Mask & V.second;
704             if (M.none())
705               continue;
706             if (RegisterRef SS = ClearIn(RegisterRef(R.Reg, M), MidDefs, SM)) {
707               NodeRefSet &RS = RealUseMap[P.first][SS.Reg];
708               Changed |= RS.insert({V.first,SS.Mask}).second;
709             }
710           }
711         }
712 
713         if (Changed)
714           PhiUQ.push_back(P.first);
715       }
716     }
717   }
718 
719   if (Trace) {
720     dbgs() << "Real use map:\n";
721     for (auto I : RealUseMap) {
722       dbgs() << "phi " << Print(I.first, DFG);
723       NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first);
724       NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG);
725       if (!Ds.empty()) {
726         RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef(DFG);
727         dbgs() << '<' << Print(RR, DFG) << '>';
728       } else {
729         dbgs() << "<noreg>";
730       }
731       dbgs() << " -> " << Print(I.second, DFG) << '\n';
732     }
733   }
734 }
735 
736 void Liveness::computeLiveIns() {
737   // Populate the node-to-block map. This speeds up the calculations
738   // significantly.
739   NBMap.clear();
740   for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
741     MachineBasicBlock *BB = BA.Addr->getCode();
742     for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
743       for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
744         NBMap.insert(std::make_pair(RA.Id, BB));
745       NBMap.insert(std::make_pair(IA.Id, BB));
746     }
747   }
748 
749   MachineFunction &MF = DFG.getMF();
750 
751   // Compute IDF first, then the inverse.
752   decltype(IIDF) IDF;
753   for (MachineBasicBlock &B : MF) {
754     auto F1 = MDF.find(&B);
755     if (F1 == MDF.end())
756       continue;
757     SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end());
758     for (unsigned i = 0; i < IDFB.size(); ++i) {
759       auto F2 = MDF.find(IDFB[i]);
760       if (F2 != MDF.end())
761         IDFB.insert(F2->second.begin(), F2->second.end());
762     }
763     // Add B to the IDF(B). This will put B in the IIDF(B).
764     IDFB.insert(&B);
765     IDF[&B].insert(IDFB.begin(), IDFB.end());
766   }
767 
768   for (auto I : IDF)
769     for (auto *S : I.second)
770       IIDF[S].insert(I.first);
771 
772   computePhiInfo();
773 
774   NodeAddr<FuncNode*> FA = DFG.getFunc();
775   NodeList Blocks = FA.Addr->members(DFG);
776 
777   // Build the phi live-on-entry map.
778   for (NodeAddr<BlockNode*> BA : Blocks) {
779     MachineBasicBlock *MB = BA.Addr->getCode();
780     RefMap &LON = PhiLON[MB];
781     for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG))
782       for (const RefMap::value_type &S : RealUseMap[P.Id])
783         LON[S.first].insert(S.second.begin(), S.second.end());
784   }
785 
786   if (Trace) {
787     dbgs() << "Phi live-on-entry map:\n";
788     for (auto &I : PhiLON)
789       dbgs() << "block #" << I.first->getNumber() << " -> "
790              << Print(I.second, DFG) << '\n';
791   }
792 
793   // Build the phi live-on-exit map. Each phi node has some set of reached
794   // "real" uses. Propagate this set backwards into the block predecessors
795   // through the reaching defs of the corresponding phi uses.
796   for (NodeAddr<BlockNode*> BA : Blocks) {
797     NodeList Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
798     for (NodeAddr<PhiNode*> PA : Phis) {
799       RefMap &RUs = RealUseMap[PA.Id];
800       if (RUs.empty())
801         continue;
802 
803       NodeSet SeenUses;
804       for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
805         if (!SeenUses.insert(U.Id).second)
806           continue;
807         NodeAddr<PhiUseNode*> PUA = U;
808         if (PUA.Addr->getReachingDef() == 0)
809           continue;
810 
811         // Each phi has some set (possibly empty) of reached "real" uses,
812         // that is, uses that are part of the compiled program. Such a use
813         // may be located in some farther block, but following a chain of
814         // reaching defs will eventually lead to this phi.
815         // Any chain of reaching defs may fork at a phi node, but there
816         // will be a path upwards that will lead to this phi. Now, this
817         // chain will need to fork at this phi, since some of the reached
818         // uses may have definitions joining in from multiple predecessors.
819         // For each reached "real" use, identify the set of reaching defs
820         // coming from each predecessor P, and add them to PhiLOX[P].
821         //
822         auto PrA = DFG.addr<BlockNode*>(PUA.Addr->getPredecessor());
823         RefMap &LOX = PhiLOX[PrA.Addr->getCode()];
824 
825         for (const std::pair<const RegisterId, NodeRefSet> &RS : RUs) {
826           // We need to visit each individual use.
827           for (std::pair<NodeId,LaneBitmask> P : RS.second) {
828             // Create a register ref corresponding to the use, and find
829             // all reaching defs starting from the phi use, and treating
830             // all related shadows as a single use cluster.
831             RegisterRef S(RS.first, P.second);
832             NodeList Ds = getAllReachingDefs(S, PUA, true, false, NoRegs);
833             for (NodeAddr<DefNode*> D : Ds) {
834               // Calculate the mask corresponding to the visited def.
835               RegisterAggr TA(PRI);
836               TA.insert(D.Addr->getRegRef(DFG)).intersect(S);
837               LaneBitmask TM = TA.makeRegRef().Mask;
838               LOX[S.Reg].insert({D.Id, TM});
839             }
840           }
841         }
842 
843         for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PA, PUA))
844           SeenUses.insert(T.Id);
845       }  // for U : phi uses
846     }  // for P : Phis
847   }  // for B : Blocks
848 
849   if (Trace) {
850     dbgs() << "Phi live-on-exit map:\n";
851     for (auto &I : PhiLOX)
852       dbgs() << "block #" << I.first->getNumber() << " -> "
853              << Print(I.second, DFG) << '\n';
854   }
855 
856   RefMap LiveIn;
857   traverse(&MF.front(), LiveIn);
858 
859   // Add function live-ins to the live-in set of the function entry block.
860   LiveMap[&MF.front()].insert(DFG.getLiveIns());
861 
862   if (Trace) {
863     // Dump the liveness map
864     for (MachineBasicBlock &B : MF) {
865       std::vector<RegisterRef> LV;
866       for (const MachineBasicBlock::RegisterMaskPair &LI : B.liveins())
867         LV.push_back(RegisterRef(LI.PhysReg, LI.LaneMask));
868       llvm::sort(LV);
869       dbgs() << printMBBReference(B) << "\t rec = {";
870       for (auto I : LV)
871         dbgs() << ' ' << Print(I, DFG);
872       dbgs() << " }\n";
873       //dbgs() << "\tcomp = " << Print(LiveMap[&B], DFG) << '\n';
874 
875       LV.clear();
876       const RegisterAggr &LG = LiveMap[&B];
877       for (auto I = LG.rr_begin(), E = LG.rr_end(); I != E; ++I)
878         LV.push_back(*I);
879       llvm::sort(LV);
880       dbgs() << "\tcomp = {";
881       for (auto I : LV)
882         dbgs() << ' ' << Print(I, DFG);
883       dbgs() << " }\n";
884 
885     }
886   }
887 }
888 
889 void Liveness::resetLiveIns() {
890   for (auto &B : DFG.getMF()) {
891     // Remove all live-ins.
892     std::vector<unsigned> T;
893     for (const MachineBasicBlock::RegisterMaskPair &LI : B.liveins())
894       T.push_back(LI.PhysReg);
895     for (auto I : T)
896       B.removeLiveIn(I);
897     // Add the newly computed live-ins.
898     const RegisterAggr &LiveIns = LiveMap[&B];
899     for (const RegisterRef R : make_range(LiveIns.rr_begin(), LiveIns.rr_end()))
900       B.addLiveIn({MCPhysReg(R.Reg), R.Mask});
901   }
902 }
903 
904 void Liveness::resetKills() {
905   for (auto &B : DFG.getMF())
906     resetKills(&B);
907 }
908 
909 void Liveness::resetKills(MachineBasicBlock *B) {
910   auto CopyLiveIns = [this] (MachineBasicBlock *B, BitVector &LV) -> void {
911     for (auto I : B->liveins()) {
912       MCSubRegIndexIterator S(I.PhysReg, &TRI);
913       if (!S.isValid()) {
914         LV.set(I.PhysReg);
915         continue;
916       }
917       do {
918         LaneBitmask M = TRI.getSubRegIndexLaneMask(S.getSubRegIndex());
919         if ((M & I.LaneMask).any())
920           LV.set(S.getSubReg());
921         ++S;
922       } while (S.isValid());
923     }
924   };
925 
926   BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs());
927   CopyLiveIns(B, LiveIn);
928   for (auto *SI : B->successors())
929     CopyLiveIns(SI, Live);
930 
931   for (MachineInstr &MI : llvm::reverse(*B)) {
932     if (MI.isDebugInstr())
933       continue;
934 
935     MI.clearKillInfo();
936     for (auto &Op : MI.operands()) {
937       // An implicit def of a super-register may not necessarily start a
938       // live range of it, since an implicit use could be used to keep parts
939       // of it live. Instead of analyzing the implicit operands, ignore
940       // implicit defs.
941       if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
942         continue;
943       Register R = Op.getReg();
944       if (!R.isPhysical())
945         continue;
946       for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
947         Live.reset(*SR);
948     }
949     for (auto &Op : MI.operands()) {
950       if (!Op.isReg() || !Op.isUse() || Op.isUndef())
951         continue;
952       Register R = Op.getReg();
953       if (!R.isPhysical())
954         continue;
955       bool IsLive = false;
956       for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) {
957         if (!Live[*AR])
958           continue;
959         IsLive = true;
960         break;
961       }
962       if (!IsLive)
963         Op.setIsKill(true);
964       for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
965         Live.set(*SR);
966     }
967   }
968 }
969 
970 // Helper function to obtain the basic block containing the reaching def
971 // of the given use.
972 MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const {
973   auto F = NBMap.find(RN);
974   if (F != NBMap.end())
975     return F->second;
976   llvm_unreachable("Node id not in map");
977 }
978 
979 void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) {
980   // The LiveIn map, for each (physical) register, contains the set of live
981   // reaching defs of that register that are live on entry to the associated
982   // block.
983 
984   // The summary of the traversal algorithm:
985   //
986   // R is live-in in B, if there exists a U(R), such that rdef(R) dom B
987   // and (U \in IDF(B) or B dom U).
988   //
989   // for (C : children) {
990   //   LU = {}
991   //   traverse(C, LU)
992   //   LiveUses += LU
993   // }
994   //
995   // LiveUses -= Defs(B);
996   // LiveUses += UpwardExposedUses(B);
997   // for (C : IIDF[B])
998   //   for (U : LiveUses)
999   //     if (Rdef(U) dom C)
1000   //       C.addLiveIn(U)
1001   //
1002 
1003   // Go up the dominator tree (depth-first).
1004   MachineDomTreeNode *N = MDT.getNode(B);
1005   for (auto *I : *N) {
1006     RefMap L;
1007     MachineBasicBlock *SB = I->getBlock();
1008     traverse(SB, L);
1009 
1010     for (auto S : L)
1011       LiveIn[S.first].insert(S.second.begin(), S.second.end());
1012   }
1013 
1014   if (Trace) {
1015     dbgs() << "\n-- " << printMBBReference(*B) << ": " << __func__
1016            << " after recursion into: {";
1017     for (auto *I : *N)
1018       dbgs() << ' ' << I->getBlock()->getNumber();
1019     dbgs() << " }\n";
1020     dbgs() << "  LiveIn: " << Print(LiveIn, DFG) << '\n';
1021     dbgs() << "  Local:  " << Print(LiveMap[B], DFG) << '\n';
1022   }
1023 
1024   // Add reaching defs of phi uses that are live on exit from this block.
1025   RefMap &PUs = PhiLOX[B];
1026   for (auto &S : PUs)
1027     LiveIn[S.first].insert(S.second.begin(), S.second.end());
1028 
1029   if (Trace) {
1030     dbgs() << "after LOX\n";
1031     dbgs() << "  LiveIn: " << Print(LiveIn, DFG) << '\n';
1032     dbgs() << "  Local:  " << Print(LiveMap[B], DFG) << '\n';
1033   }
1034 
1035   // The LiveIn map at this point has all defs that are live-on-exit from B,
1036   // as if they were live-on-entry to B. First, we need to filter out all
1037   // defs that are present in this block. Then we will add reaching defs of
1038   // all upward-exposed uses.
1039 
1040   // To filter out the defs, first make a copy of LiveIn, and then re-populate
1041   // LiveIn with the defs that should remain.
1042   RefMap LiveInCopy = LiveIn;
1043   LiveIn.clear();
1044 
1045   for (const std::pair<const RegisterId, NodeRefSet> &LE : LiveInCopy) {
1046     RegisterRef LRef(LE.first);
1047     NodeRefSet &NewDefs = LiveIn[LRef.Reg]; // To be filled.
1048     const NodeRefSet &OldDefs = LE.second;
1049     for (NodeRef OR : OldDefs) {
1050       // R is a def node that was live-on-exit
1051       auto DA = DFG.addr<DefNode*>(OR.first);
1052       NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
1053       NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
1054       if (B != BA.Addr->getCode()) {
1055         // Defs from a different block need to be preserved. Defs from this
1056         // block will need to be processed further, except for phi defs, the
1057         // liveness of which is handled through the PhiLON/PhiLOX maps.
1058         NewDefs.insert(OR);
1059         continue;
1060       }
1061 
1062       // Defs from this block need to stop the liveness from being
1063       // propagated upwards. This only applies to non-preserving defs,
1064       // and to the parts of the register actually covered by those defs.
1065       // (Note that phi defs should always be preserving.)
1066       RegisterAggr RRs(PRI);
1067       LRef.Mask = OR.second;
1068 
1069       if (!DFG.IsPreservingDef(DA)) {
1070         assert(!(IA.Addr->getFlags() & NodeAttrs::Phi));
1071         // DA is a non-phi def that is live-on-exit from this block, and
1072         // that is also located in this block. LRef is a register ref
1073         // whose use this def reaches. If DA covers LRef, then no part
1074         // of LRef is exposed upwards.A
1075         if (RRs.insert(DA.Addr->getRegRef(DFG)).hasCoverOf(LRef))
1076           continue;
1077       }
1078 
1079       // DA itself was not sufficient to cover LRef. In general, it is
1080       // the last in a chain of aliased defs before the exit from this block.
1081       // There could be other defs in this block that are a part of that
1082       // chain. Check that now: accumulate the registers from these defs,
1083       // and if they all together cover LRef, it is not live-on-entry.
1084       for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) {
1085         // DefNode -> InstrNode -> BlockNode.
1086         NodeAddr<InstrNode*> ITA = TA.Addr->getOwner(DFG);
1087         NodeAddr<BlockNode*> BTA = ITA.Addr->getOwner(DFG);
1088         // Reaching defs are ordered in the upward direction.
1089         if (BTA.Addr->getCode() != B) {
1090           // We have reached past the beginning of B, and the accumulated
1091           // registers are not covering LRef. The first def from the
1092           // upward chain will be live.
1093           // Subtract all accumulated defs (RRs) from LRef.
1094           RegisterRef T = RRs.clearIn(LRef);
1095           assert(T);
1096           NewDefs.insert({TA.Id,T.Mask});
1097           break;
1098         }
1099 
1100         // TA is in B. Only add this def to the accumulated cover if it is
1101         // not preserving.
1102         if (!(TA.Addr->getFlags() & NodeAttrs::Preserving))
1103           RRs.insert(TA.Addr->getRegRef(DFG));
1104         // If this is enough to cover LRef, then stop.
1105         if (RRs.hasCoverOf(LRef))
1106           break;
1107       }
1108     }
1109   }
1110 
1111   emptify(LiveIn);
1112 
1113   if (Trace) {
1114     dbgs() << "after defs in block\n";
1115     dbgs() << "  LiveIn: " << Print(LiveIn, DFG) << '\n';
1116     dbgs() << "  Local:  " << Print(LiveMap[B], DFG) << '\n';
1117   }
1118 
1119   // Scan the block for upward-exposed uses and add them to the tracking set.
1120   for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) {
1121     NodeAddr<InstrNode*> IA = I;
1122     if (IA.Addr->getKind() != NodeAttrs::Stmt)
1123       continue;
1124     for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
1125       if (UA.Addr->getFlags() & NodeAttrs::Undef)
1126         continue;
1127       RegisterRef RR = UA.Addr->getRegRef(DFG);
1128       for (NodeAddr<DefNode*> D : getAllReachingDefs(UA))
1129         if (getBlockWithRef(D.Id) != B)
1130           LiveIn[RR.Reg].insert({D.Id,RR.Mask});
1131     }
1132   }
1133 
1134   if (Trace) {
1135     dbgs() << "after uses in block\n";
1136     dbgs() << "  LiveIn: " << Print(LiveIn, DFG) << '\n';
1137     dbgs() << "  Local:  " << Print(LiveMap[B], DFG) << '\n';
1138   }
1139 
1140   // Phi uses should not be propagated up the dominator tree, since they
1141   // are not dominated by their corresponding reaching defs.
1142   RegisterAggr &Local = LiveMap[B];
1143   RefMap &LON = PhiLON[B];
1144   for (auto &R : LON) {
1145     LaneBitmask M;
1146     for (auto P : R.second)
1147       M |= P.second;
1148     Local.insert(RegisterRef(R.first,M));
1149   }
1150 
1151   if (Trace) {
1152     dbgs() << "after phi uses in block\n";
1153     dbgs() << "  LiveIn: " << Print(LiveIn, DFG) << '\n';
1154     dbgs() << "  Local:  " << Print(Local, DFG) << '\n';
1155   }
1156 
1157   for (auto *C : IIDF[B]) {
1158     RegisterAggr &LiveC = LiveMap[C];
1159     for (const std::pair<const RegisterId, NodeRefSet> &S : LiveIn)
1160       for (auto R : S.second)
1161         if (MDT.properlyDominates(getBlockWithRef(R.first), C))
1162           LiveC.insert(RegisterRef(S.first, R.second));
1163   }
1164 }
1165 
1166 void Liveness::emptify(RefMap &M) {
1167   for (auto I = M.begin(), E = M.end(); I != E; )
1168     I = I->second.empty() ? M.erase(I) : std::next(I);
1169 }
1170