xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/RDFLiveness.cpp (revision bc5304a006238115291e7568583632889dffbab9)
1 //===- RDFLiveness.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Computation of the liveness information from the data-flow graph.
10 //
11 // The main functionality of this code is to compute block live-in
12 // information. With the live-in information in place, the placement
13 // of kill flags can also be recalculated.
14 //
15 // The block live-in calculation is based on the ideas from the following
16 // publication:
17 //
18 // Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin.
19 // "Efficient Liveness Computation Using Merge Sets and DJ-Graphs."
20 // ACM Transactions on Architecture and Code Optimization, Association for
21 // Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance
22 // and Embedded Architectures and Compilers", 8 (4),
23 // <10.1145/2086696.2086706>. <hal-00647369>
24 //
25 #include "llvm/ADT/BitVector.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineDominanceFrontier.h"
32 #include "llvm/CodeGen/MachineDominators.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/RDFLiveness.h"
36 #include "llvm/CodeGen/RDFGraph.h"
37 #include "llvm/CodeGen/RDFRegisters.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/MC/LaneBitmask.h"
40 #include "llvm/MC/MCRegisterInfo.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include <algorithm>
46 #include <cassert>
47 #include <cstdint>
48 #include <iterator>
49 #include <map>
50 #include <unordered_map>
51 #include <utility>
52 #include <vector>
53 
54 using namespace llvm;
55 using namespace rdf;
56 
57 static cl::opt<unsigned> MaxRecNest("rdf-liveness-max-rec", cl::init(25),
58   cl::Hidden, cl::desc("Maximum recursion level"));
59 
60 namespace llvm {
61 namespace rdf {
62 
63   raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) {
64     OS << '{';
65     for (auto &I : P.Obj) {
66       OS << ' ' << printReg(I.first, &P.G.getTRI()) << '{';
67       for (auto J = I.second.begin(), E = I.second.end(); J != E; ) {
68         OS << Print<NodeId>(J->first, P.G) << PrintLaneMaskOpt(J->second);
69         if (++J != E)
70           OS << ',';
71       }
72       OS << '}';
73     }
74     OS << " }";
75     return OS;
76   }
77 
78 } // end namespace rdf
79 } // end namespace llvm
80 
81 // The order in the returned sequence is the order of reaching defs in the
82 // upward traversal: the first def is the closest to the given reference RefA,
83 // the next one is further up, and so on.
84 // The list ends at a reaching phi def, or when the reference from RefA is
85 // covered by the defs in the list (see FullChain).
86 // This function provides two modes of operation:
87 // (1) Returning the sequence of reaching defs for a particular reference
88 // node. This sequence will terminate at the first phi node [1].
89 // (2) Returning a partial sequence of reaching defs, where the final goal
90 // is to traverse past phi nodes to the actual defs arising from the code
91 // itself.
92 // In mode (2), the register reference for which the search was started
93 // may be different from the reference node RefA, for which this call was
94 // made, hence the argument RefRR, which holds the original register.
95 // Also, some definitions may have already been encountered in a previous
96 // call that will influence register covering. The register references
97 // already defined are passed in through DefRRs.
98 // In mode (1), the "continuation" considerations do not apply, and the
99 // RefRR is the same as the register in RefA, and the set DefRRs is empty.
100 //
101 // [1] It is possible for multiple phi nodes to be included in the returned
102 // sequence:
103 //   SubA = phi ...
104 //   SubB = phi ...
105 //   ...  = SuperAB(rdef:SubA), SuperAB"(rdef:SubB)
106 // However, these phi nodes are independent from one another in terms of
107 // the data-flow.
108 
109 NodeList Liveness::getAllReachingDefs(RegisterRef RefRR,
110       NodeAddr<RefNode*> RefA, bool TopShadows, bool FullChain,
111       const RegisterAggr &DefRRs) {
112   NodeList RDefs; // Return value.
113   SetVector<NodeId> DefQ;
114   DenseMap<MachineInstr*, uint32_t> OrdMap;
115 
116   // Dead defs will be treated as if they were live, since they are actually
117   // on the data-flow path. They cannot be ignored because even though they
118   // do not generate meaningful values, they still modify registers.
119 
120   // If the reference is undefined, there is nothing to do.
121   if (RefA.Addr->getFlags() & NodeAttrs::Undef)
122     return RDefs;
123 
124   // The initial queue should not have reaching defs for shadows. The
125   // whole point of a shadow is that it will have a reaching def that
126   // is not aliased to the reaching defs of the related shadows.
127   NodeId Start = RefA.Id;
128   auto SNA = DFG.addr<RefNode*>(Start);
129   if (NodeId RD = SNA.Addr->getReachingDef())
130     DefQ.insert(RD);
131   if (TopShadows) {
132     for (auto S : DFG.getRelatedRefs(RefA.Addr->getOwner(DFG), RefA))
133       if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
134         DefQ.insert(RD);
135   }
136 
137   // Collect all the reaching defs, going up until a phi node is encountered,
138   // or there are no more reaching defs. From this set, the actual set of
139   // reaching defs will be selected.
140   // The traversal upwards must go on until a covering def is encountered.
141   // It is possible that a collection of non-covering (individually) defs
142   // will be sufficient, but keep going until a covering one is found.
143   for (unsigned i = 0; i < DefQ.size(); ++i) {
144     auto TA = DFG.addr<DefNode*>(DefQ[i]);
145     if (TA.Addr->getFlags() & NodeAttrs::PhiRef)
146       continue;
147     // Stop at the covering/overwriting def of the initial register reference.
148     RegisterRef RR = TA.Addr->getRegRef(DFG);
149     if (!DFG.IsPreservingDef(TA))
150       if (RegisterAggr::isCoverOf(RR, RefRR, PRI))
151         continue;
152     // Get the next level of reaching defs. This will include multiple
153     // reaching defs for shadows.
154     for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA))
155       if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
156         DefQ.insert(RD);
157     // Don't visit sibling defs. They share the same reaching def (which
158     // will be visited anyway), but they define something not aliased to
159     // this ref.
160   }
161 
162   // Return the MachineBasicBlock containing a given instruction.
163   auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* {
164     if (IA.Addr->getKind() == NodeAttrs::Stmt)
165       return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent();
166     assert(IA.Addr->getKind() == NodeAttrs::Phi);
167     NodeAddr<PhiNode*> PA = IA;
168     NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG);
169     return BA.Addr->getCode();
170   };
171 
172   SmallSet<NodeId,32> Defs;
173 
174   // Remove all non-phi defs that are not aliased to RefRR, and segregate
175   // the the remaining defs into buckets for containing blocks.
176   std::map<NodeId, NodeAddr<InstrNode*>> Owners;
177   std::map<MachineBasicBlock*, SmallVector<NodeId,32>> Blocks;
178   for (NodeId N : DefQ) {
179     auto TA = DFG.addr<DefNode*>(N);
180     bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef;
181     if (!IsPhi && !PRI.alias(RefRR, TA.Addr->getRegRef(DFG)))
182       continue;
183     Defs.insert(TA.Id);
184     NodeAddr<InstrNode*> IA = TA.Addr->getOwner(DFG);
185     Owners[TA.Id] = IA;
186     Blocks[Block(IA)].push_back(IA.Id);
187   }
188 
189   auto Precedes = [this,&OrdMap] (NodeId A, NodeId B) {
190     if (A == B)
191       return false;
192     NodeAddr<InstrNode*> OA = DFG.addr<InstrNode*>(A);
193     NodeAddr<InstrNode*> OB = DFG.addr<InstrNode*>(B);
194     bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt;
195     bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt;
196     if (StmtA && StmtB) {
197       const MachineInstr *InA = NodeAddr<StmtNode*>(OA).Addr->getCode();
198       const MachineInstr *InB = NodeAddr<StmtNode*>(OB).Addr->getCode();
199       assert(InA->getParent() == InB->getParent());
200       auto FA = OrdMap.find(InA);
201       if (FA != OrdMap.end())
202         return FA->second < OrdMap.find(InB)->second;
203       const MachineBasicBlock *BB = InA->getParent();
204       for (auto It = BB->begin(), E = BB->end(); It != E; ++It) {
205         if (It == InA->getIterator())
206           return true;
207         if (It == InB->getIterator())
208           return false;
209       }
210       llvm_unreachable("InA and InB should be in the same block");
211     }
212     // One of them is a phi node.
213     if (!StmtA && !StmtB) {
214       // Both are phis, which are unordered. Break the tie by id numbers.
215       return A < B;
216     }
217     // Only one of them is a phi. Phis always precede statements.
218     return !StmtA;
219   };
220 
221   auto GetOrder = [&OrdMap] (MachineBasicBlock &B) {
222     uint32_t Pos = 0;
223     for (MachineInstr &In : B)
224       OrdMap.insert({&In, ++Pos});
225   };
226 
227   // For each block, sort the nodes in it.
228   std::vector<MachineBasicBlock*> TmpBB;
229   for (auto &Bucket : Blocks) {
230     TmpBB.push_back(Bucket.first);
231     if (Bucket.second.size() > 2)
232       GetOrder(*Bucket.first);
233     llvm::sort(Bucket.second, Precedes);
234   }
235 
236   // Sort the blocks with respect to dominance.
237   llvm::sort(TmpBB,
238              [this](auto A, auto B) { return MDT.properlyDominates(A, B); });
239 
240   std::vector<NodeId> TmpInst;
241   for (auto I = TmpBB.rbegin(), E = TmpBB.rend(); I != E; ++I) {
242     auto &Bucket = Blocks[*I];
243     TmpInst.insert(TmpInst.end(), Bucket.rbegin(), Bucket.rend());
244   }
245 
246   // The vector is a list of instructions, so that defs coming from
247   // the same instruction don't need to be artificially ordered.
248   // Then, when computing the initial segment, and iterating over an
249   // instruction, pick the defs that contribute to the covering (i.e. is
250   // not covered by previously added defs). Check the defs individually,
251   // i.e. first check each def if is covered or not (without adding them
252   // to the tracking set), and then add all the selected ones.
253 
254   // The reason for this is this example:
255   // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes).
256   // *d3<C>              If A \incl BuC, and B \incl AuC, then *d2 would be
257   //                     covered if we added A first, and A would be covered
258   //                     if we added B first.
259   // In this example we want both A and B, because we don't want to give
260   // either one priority over the other, since they belong to the same
261   // statement.
262 
263   RegisterAggr RRs(DefRRs);
264 
265   auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool {
266     return TA.Addr->getKind() == NodeAttrs::Def &&
267            Defs.count(TA.Id);
268   };
269 
270   for (NodeId T : TmpInst) {
271     if (!FullChain && RRs.hasCoverOf(RefRR))
272       break;
273     auto TA = DFG.addr<InstrNode*>(T);
274     bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA);
275     NodeList Ds;
276     for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) {
277       RegisterRef QR = DA.Addr->getRegRef(DFG);
278       // Add phi defs even if they are covered by subsequent defs. This is
279       // for cases where the reached use is not covered by any of the defs
280       // encountered so far: the phi def is needed to expose the liveness
281       // of that use to the entry of the block.
282       // Example:
283       //   phi d1<R3>(,d2,), ...  Phi def d1 is covered by d2.
284       //   d2<R3>(d1,,u3), ...
285       //   ..., u3<D1>(d2)        This use needs to be live on entry.
286       if (FullChain || IsPhi || !RRs.hasCoverOf(QR))
287         Ds.push_back(DA);
288     }
289     llvm::append_range(RDefs, Ds);
290     for (NodeAddr<DefNode*> DA : Ds) {
291       // When collecting a full chain of definitions, do not consider phi
292       // defs to actually define a register.
293       uint16_t Flags = DA.Addr->getFlags();
294       if (!FullChain || !(Flags & NodeAttrs::PhiRef))
295         if (!(Flags & NodeAttrs::Preserving)) // Don't care about Undef here.
296           RRs.insert(DA.Addr->getRegRef(DFG));
297     }
298   }
299 
300   auto DeadP = [](const NodeAddr<DefNode*> DA) -> bool {
301     return DA.Addr->getFlags() & NodeAttrs::Dead;
302   };
303   llvm::erase_if(RDefs, DeadP);
304 
305   return RDefs;
306 }
307 
308 std::pair<NodeSet,bool>
309 Liveness::getAllReachingDefsRec(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
310       NodeSet &Visited, const NodeSet &Defs) {
311   return getAllReachingDefsRecImpl(RefRR, RefA, Visited, Defs, 0, MaxRecNest);
312 }
313 
314 std::pair<NodeSet,bool>
315 Liveness::getAllReachingDefsRecImpl(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
316       NodeSet &Visited, const NodeSet &Defs, unsigned Nest, unsigned MaxNest) {
317   if (Nest > MaxNest)
318     return { NodeSet(), false };
319   // Collect all defined registers. Do not consider phis to be defining
320   // anything, only collect "real" definitions.
321   RegisterAggr DefRRs(PRI);
322   for (NodeId D : Defs) {
323     const auto DA = DFG.addr<const DefNode*>(D);
324     if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
325       DefRRs.insert(DA.Addr->getRegRef(DFG));
326   }
327 
328   NodeList RDs = getAllReachingDefs(RefRR, RefA, false, true, DefRRs);
329   if (RDs.empty())
330     return { Defs, true };
331 
332   // Make a copy of the preexisting definitions and add the newly found ones.
333   NodeSet TmpDefs = Defs;
334   for (NodeAddr<NodeBase*> R : RDs)
335     TmpDefs.insert(R.Id);
336 
337   NodeSet Result = Defs;
338 
339   for (NodeAddr<DefNode*> DA : RDs) {
340     Result.insert(DA.Id);
341     if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
342       continue;
343     NodeAddr<PhiNode*> PA = DA.Addr->getOwner(DFG);
344     if (Visited.count(PA.Id))
345       continue;
346     Visited.insert(PA.Id);
347     // Go over all phi uses and get the reaching defs for each use.
348     for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
349       const auto &T = getAllReachingDefsRecImpl(RefRR, U, Visited, TmpDefs,
350                                                 Nest+1, MaxNest);
351       if (!T.second)
352         return { T.first, false };
353       Result.insert(T.first.begin(), T.first.end());
354     }
355   }
356 
357   return { Result, true };
358 }
359 
360 /// Find the nearest ref node aliased to RefRR, going upwards in the data
361 /// flow, starting from the instruction immediately preceding Inst.
362 NodeAddr<RefNode*> Liveness::getNearestAliasedRef(RegisterRef RefRR,
363       NodeAddr<InstrNode*> IA) {
364   NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
365   NodeList Ins = BA.Addr->members(DFG);
366   NodeId FindId = IA.Id;
367   auto E = Ins.rend();
368   auto B = std::find_if(Ins.rbegin(), E,
369                         [FindId] (const NodeAddr<InstrNode*> T) {
370                           return T.Id == FindId;
371                         });
372   // Do not scan IA (which is what B would point to).
373   if (B != E)
374     ++B;
375 
376   do {
377     // Process the range of instructions from B to E.
378     for (NodeAddr<InstrNode*> I : make_range(B, E)) {
379       NodeList Refs = I.Addr->members(DFG);
380       NodeAddr<RefNode*> Clob, Use;
381       // Scan all the refs in I aliased to RefRR, and return the one that
382       // is the closest to the output of I, i.e. def > clobber > use.
383       for (NodeAddr<RefNode*> R : Refs) {
384         if (!PRI.alias(R.Addr->getRegRef(DFG), RefRR))
385           continue;
386         if (DFG.IsDef(R)) {
387           // If it's a non-clobbering def, just return it.
388           if (!(R.Addr->getFlags() & NodeAttrs::Clobbering))
389             return R;
390           Clob = R;
391         } else {
392           Use = R;
393         }
394       }
395       if (Clob.Id != 0)
396         return Clob;
397       if (Use.Id != 0)
398         return Use;
399     }
400 
401     // Go up to the immediate dominator, if any.
402     MachineBasicBlock *BB = BA.Addr->getCode();
403     BA = NodeAddr<BlockNode*>();
404     if (MachineDomTreeNode *N = MDT.getNode(BB)) {
405       if ((N = N->getIDom()))
406         BA = DFG.findBlock(N->getBlock());
407     }
408     if (!BA.Id)
409       break;
410 
411     Ins = BA.Addr->members(DFG);
412     B = Ins.rbegin();
413     E = Ins.rend();
414   } while (true);
415 
416   return NodeAddr<RefNode*>();
417 }
418 
419 NodeSet Liveness::getAllReachedUses(RegisterRef RefRR,
420       NodeAddr<DefNode*> DefA, const RegisterAggr &DefRRs) {
421   NodeSet Uses;
422 
423   // If the original register is already covered by all the intervening
424   // defs, no more uses can be reached.
425   if (DefRRs.hasCoverOf(RefRR))
426     return Uses;
427 
428   // Add all directly reached uses.
429   // If the def is dead, it does not provide a value for any use.
430   bool IsDead = DefA.Addr->getFlags() & NodeAttrs::Dead;
431   NodeId U = !IsDead ? DefA.Addr->getReachedUse() : 0;
432   while (U != 0) {
433     auto UA = DFG.addr<UseNode*>(U);
434     if (!(UA.Addr->getFlags() & NodeAttrs::Undef)) {
435       RegisterRef UR = UA.Addr->getRegRef(DFG);
436       if (PRI.alias(RefRR, UR) && !DefRRs.hasCoverOf(UR))
437         Uses.insert(U);
438     }
439     U = UA.Addr->getSibling();
440   }
441 
442   // Traverse all reached defs. This time dead defs cannot be ignored.
443   for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) {
444     auto DA = DFG.addr<DefNode*>(D);
445     NextD = DA.Addr->getSibling();
446     RegisterRef DR = DA.Addr->getRegRef(DFG);
447     // If this def is already covered, it cannot reach anything new.
448     // Similarly, skip it if it is not aliased to the interesting register.
449     if (DefRRs.hasCoverOf(DR) || !PRI.alias(RefRR, DR))
450       continue;
451     NodeSet T;
452     if (DFG.IsPreservingDef(DA)) {
453       // If it is a preserving def, do not update the set of intervening defs.
454       T = getAllReachedUses(RefRR, DA, DefRRs);
455     } else {
456       RegisterAggr NewDefRRs = DefRRs;
457       NewDefRRs.insert(DR);
458       T = getAllReachedUses(RefRR, DA, NewDefRRs);
459     }
460     Uses.insert(T.begin(), T.end());
461   }
462   return Uses;
463 }
464 
465 void Liveness::computePhiInfo() {
466   RealUseMap.clear();
467 
468   NodeList Phis;
469   NodeAddr<FuncNode*> FA = DFG.getFunc();
470   NodeList Blocks = FA.Addr->members(DFG);
471   for (NodeAddr<BlockNode*> BA : Blocks) {
472     auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
473     llvm::append_range(Phis, Ps);
474   }
475 
476   // phi use -> (map: reaching phi -> set of registers defined in between)
477   std::map<NodeId,std::map<NodeId,RegisterAggr>> PhiUp;
478   std::vector<NodeId> PhiUQ;  // Work list of phis for upward propagation.
479   std::unordered_map<NodeId,RegisterAggr> PhiDRs;  // Phi -> registers defined by it.
480 
481   // Go over all phis.
482   for (NodeAddr<PhiNode*> PhiA : Phis) {
483     // Go over all defs and collect the reached uses that are non-phi uses
484     // (i.e. the "real uses").
485     RefMap &RealUses = RealUseMap[PhiA.Id];
486     NodeList PhiRefs = PhiA.Addr->members(DFG);
487 
488     // Have a work queue of defs whose reached uses need to be found.
489     // For each def, add to the queue all reached (non-phi) defs.
490     SetVector<NodeId> DefQ;
491     NodeSet PhiDefs;
492     RegisterAggr DRs(PRI);
493     for (NodeAddr<RefNode*> R : PhiRefs) {
494       if (!DFG.IsRef<NodeAttrs::Def>(R))
495         continue;
496       DRs.insert(R.Addr->getRegRef(DFG));
497       DefQ.insert(R.Id);
498       PhiDefs.insert(R.Id);
499     }
500     PhiDRs.insert(std::make_pair(PhiA.Id, DRs));
501 
502     // Collect the super-set of all possible reached uses. This set will
503     // contain all uses reached from this phi, either directly from the
504     // phi defs, or (recursively) via non-phi defs reached by the phi defs.
505     // This set of uses will later be trimmed to only contain these uses that
506     // are actually reached by the phi defs.
507     for (unsigned i = 0; i < DefQ.size(); ++i) {
508       NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]);
509       // Visit all reached uses. Phi defs should not really have the "dead"
510       // flag set, but check it anyway for consistency.
511       bool IsDead = DA.Addr->getFlags() & NodeAttrs::Dead;
512       NodeId UN = !IsDead ? DA.Addr->getReachedUse() : 0;
513       while (UN != 0) {
514         NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN);
515         uint16_t F = A.Addr->getFlags();
516         if ((F & (NodeAttrs::Undef | NodeAttrs::PhiRef)) == 0) {
517           RegisterRef R = A.Addr->getRegRef(DFG);
518           RealUses[R.Reg].insert({A.Id,R.Mask});
519         }
520         UN = A.Addr->getSibling();
521       }
522       // Visit all reached defs, and add them to the queue. These defs may
523       // override some of the uses collected here, but that will be handled
524       // later.
525       NodeId DN = DA.Addr->getReachedDef();
526       while (DN != 0) {
527         NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN);
528         for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) {
529           uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags();
530           // Must traverse the reached-def chain. Consider:
531           //   def(D0) -> def(R0) -> def(R0) -> use(D0)
532           // The reachable use of D0 passes through a def of R0.
533           if (!(Flags & NodeAttrs::PhiRef))
534             DefQ.insert(T.Id);
535         }
536         DN = A.Addr->getSibling();
537       }
538     }
539     // Filter out these uses that appear to be reachable, but really
540     // are not. For example:
541     //
542     // R1:0 =          d1
543     //      = R1:0     u2     Reached by d1.
544     //   R0 =          d3
545     //      = R1:0     u4     Still reached by d1: indirectly through
546     //                        the def d3.
547     //   R1 =          d5
548     //      = R1:0     u6     Not reached by d1 (covered collectively
549     //                        by d3 and d5), but following reached
550     //                        defs and uses from d1 will lead here.
551     for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) {
552       // For each reached register UI->first, there is a set UI->second, of
553       // uses of it. For each such use, check if it is reached by this phi,
554       // i.e. check if the set of its reaching uses intersects the set of
555       // this phi's defs.
556       NodeRefSet Uses = UI->second;
557       UI->second.clear();
558       for (std::pair<NodeId,LaneBitmask> I : Uses) {
559         auto UA = DFG.addr<UseNode*>(I.first);
560         // Undef flag is checked above.
561         assert((UA.Addr->getFlags() & NodeAttrs::Undef) == 0);
562         RegisterRef R(UI->first, I.second);
563         // Calculate the exposed part of the reached use.
564         RegisterAggr Covered(PRI);
565         for (NodeAddr<DefNode*> DA : getAllReachingDefs(R, UA)) {
566           if (PhiDefs.count(DA.Id))
567             break;
568           Covered.insert(DA.Addr->getRegRef(DFG));
569         }
570         if (RegisterRef RC = Covered.clearIn(R)) {
571           // We are updating the map for register UI->first, so we need
572           // to map RC to be expressed in terms of that register.
573           RegisterRef S = PRI.mapTo(RC, UI->first);
574           UI->second.insert({I.first, S.Mask});
575         }
576       }
577       UI = UI->second.empty() ? RealUses.erase(UI) : std::next(UI);
578     }
579 
580     // If this phi reaches some "real" uses, add it to the queue for upward
581     // propagation.
582     if (!RealUses.empty())
583       PhiUQ.push_back(PhiA.Id);
584 
585     // Go over all phi uses and check if the reaching def is another phi.
586     // Collect the phis that are among the reaching defs of these uses.
587     // While traversing the list of reaching defs for each phi use, accumulate
588     // the set of registers defined between this phi (PhiA) and the owner phi
589     // of the reaching def.
590     NodeSet SeenUses;
591 
592     for (auto I : PhiRefs) {
593       if (!DFG.IsRef<NodeAttrs::Use>(I) || SeenUses.count(I.Id))
594         continue;
595       NodeAddr<PhiUseNode*> PUA = I;
596       if (PUA.Addr->getReachingDef() == 0)
597         continue;
598 
599       RegisterRef UR = PUA.Addr->getRegRef(DFG);
600       NodeList Ds = getAllReachingDefs(UR, PUA, true, false, NoRegs);
601       RegisterAggr DefRRs(PRI);
602 
603       for (NodeAddr<DefNode*> D : Ds) {
604         if (D.Addr->getFlags() & NodeAttrs::PhiRef) {
605           NodeId RP = D.Addr->getOwner(DFG).Id;
606           std::map<NodeId,RegisterAggr> &M = PhiUp[PUA.Id];
607           auto F = M.find(RP);
608           if (F == M.end())
609             M.insert(std::make_pair(RP, DefRRs));
610           else
611             F->second.insert(DefRRs);
612         }
613         DefRRs.insert(D.Addr->getRegRef(DFG));
614       }
615 
616       for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PhiA, PUA))
617         SeenUses.insert(T.Id);
618     }
619   }
620 
621   if (Trace) {
622     dbgs() << "Phi-up-to-phi map with intervening defs:\n";
623     for (auto I : PhiUp) {
624       dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {";
625       for (auto R : I.second)
626         dbgs() << ' ' << Print<NodeId>(R.first, DFG)
627                << Print<RegisterAggr>(R.second, DFG);
628       dbgs() << " }\n";
629     }
630   }
631 
632   // Propagate the reached registers up in the phi chain.
633   //
634   // The following type of situation needs careful handling:
635   //
636   //   phi d1<R1:0>  (1)
637   //        |
638   //   ... d2<R1>
639   //        |
640   //   phi u3<R1:0>  (2)
641   //        |
642   //   ... u4<R1>
643   //
644   // The phi node (2) defines a register pair R1:0, and reaches a "real"
645   // use u4 of just R1. The same phi node is also known to reach (upwards)
646   // the phi node (1). However, the use u4 is not reached by phi (1),
647   // because of the intervening definition d2 of R1. The data flow between
648   // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0.
649   //
650   // When propagating uses up the phi chains, get the all reaching defs
651   // for a given phi use, and traverse the list until the propagated ref
652   // is covered, or until reaching the final phi. Only assume that the
653   // reference reaches the phi in the latter case.
654 
655   // The operation "clearIn" can be expensive. For a given set of intervening
656   // defs, cache the result of subtracting these defs from a given register
657   // ref.
658   using SubMap = std::unordered_map<RegisterRef, RegisterRef>;
659   std::unordered_map<RegisterAggr, SubMap> Subs;
660   auto ClearIn = [] (RegisterRef RR, const RegisterAggr &Mid, SubMap &SM) {
661     if (Mid.empty())
662       return RR;
663     auto F = SM.find(RR);
664     if (F != SM.end())
665       return F->second;
666     RegisterRef S = Mid.clearIn(RR);
667     SM.insert({RR, S});
668     return S;
669   };
670 
671   // Go over all phis.
672   for (unsigned i = 0; i < PhiUQ.size(); ++i) {
673     auto PA = DFG.addr<PhiNode*>(PhiUQ[i]);
674     NodeList PUs = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG);
675     RefMap &RUM = RealUseMap[PA.Id];
676 
677     for (NodeAddr<UseNode*> UA : PUs) {
678       std::map<NodeId,RegisterAggr> &PUM = PhiUp[UA.Id];
679       RegisterRef UR = UA.Addr->getRegRef(DFG);
680       for (const std::pair<const NodeId, RegisterAggr> &P : PUM) {
681         bool Changed = false;
682         const RegisterAggr &MidDefs = P.second;
683         // Collect the set PropUp of uses that are reached by the current
684         // phi PA, and are not covered by any intervening def between the
685         // currently visited use UA and the upward phi P.
686 
687         if (MidDefs.hasCoverOf(UR))
688           continue;
689         SubMap &SM = Subs[MidDefs];
690 
691         // General algorithm:
692         //   for each (R,U) : U is use node of R, U is reached by PA
693         //     if MidDefs does not cover (R,U)
694         //       then add (R-MidDefs,U) to RealUseMap[P]
695         //
696         for (const std::pair<const RegisterId, NodeRefSet> &T : RUM) {
697           RegisterRef R(T.first);
698           // The current phi (PA) could be a phi for a regmask. It could
699           // reach a whole variety of uses that are not related to the
700           // specific upward phi (P.first).
701           const RegisterAggr &DRs = PhiDRs.at(P.first);
702           if (!DRs.hasAliasOf(R))
703             continue;
704           R = PRI.mapTo(DRs.intersectWith(R), T.first);
705           for (std::pair<NodeId,LaneBitmask> V : T.second) {
706             LaneBitmask M = R.Mask & V.second;
707             if (M.none())
708               continue;
709             if (RegisterRef SS = ClearIn(RegisterRef(R.Reg, M), MidDefs, SM)) {
710               NodeRefSet &RS = RealUseMap[P.first][SS.Reg];
711               Changed |= RS.insert({V.first,SS.Mask}).second;
712             }
713           }
714         }
715 
716         if (Changed)
717           PhiUQ.push_back(P.first);
718       }
719     }
720   }
721 
722   if (Trace) {
723     dbgs() << "Real use map:\n";
724     for (auto I : RealUseMap) {
725       dbgs() << "phi " << Print<NodeId>(I.first, DFG);
726       NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first);
727       NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG);
728       if (!Ds.empty()) {
729         RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef(DFG);
730         dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>';
731       } else {
732         dbgs() << "<noreg>";
733       }
734       dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n';
735     }
736   }
737 }
738 
739 void Liveness::computeLiveIns() {
740   // Populate the node-to-block map. This speeds up the calculations
741   // significantly.
742   NBMap.clear();
743   for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
744     MachineBasicBlock *BB = BA.Addr->getCode();
745     for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
746       for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
747         NBMap.insert(std::make_pair(RA.Id, BB));
748       NBMap.insert(std::make_pair(IA.Id, BB));
749     }
750   }
751 
752   MachineFunction &MF = DFG.getMF();
753 
754   // Compute IDF first, then the inverse.
755   decltype(IIDF) IDF;
756   for (MachineBasicBlock &B : MF) {
757     auto F1 = MDF.find(&B);
758     if (F1 == MDF.end())
759       continue;
760     SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end());
761     for (unsigned i = 0; i < IDFB.size(); ++i) {
762       auto F2 = MDF.find(IDFB[i]);
763       if (F2 != MDF.end())
764         IDFB.insert(F2->second.begin(), F2->second.end());
765     }
766     // Add B to the IDF(B). This will put B in the IIDF(B).
767     IDFB.insert(&B);
768     IDF[&B].insert(IDFB.begin(), IDFB.end());
769   }
770 
771   for (auto I : IDF)
772     for (auto S : I.second)
773       IIDF[S].insert(I.first);
774 
775   computePhiInfo();
776 
777   NodeAddr<FuncNode*> FA = DFG.getFunc();
778   NodeList Blocks = FA.Addr->members(DFG);
779 
780   // Build the phi live-on-entry map.
781   for (NodeAddr<BlockNode*> BA : Blocks) {
782     MachineBasicBlock *MB = BA.Addr->getCode();
783     RefMap &LON = PhiLON[MB];
784     for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG))
785       for (const RefMap::value_type &S : RealUseMap[P.Id])
786         LON[S.first].insert(S.second.begin(), S.second.end());
787   }
788 
789   if (Trace) {
790     dbgs() << "Phi live-on-entry map:\n";
791     for (auto &I : PhiLON)
792       dbgs() << "block #" << I.first->getNumber() << " -> "
793              << Print<RefMap>(I.second, DFG) << '\n';
794   }
795 
796   // Build the phi live-on-exit map. Each phi node has some set of reached
797   // "real" uses. Propagate this set backwards into the block predecessors
798   // through the reaching defs of the corresponding phi uses.
799   for (NodeAddr<BlockNode*> BA : Blocks) {
800     NodeList Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
801     for (NodeAddr<PhiNode*> PA : Phis) {
802       RefMap &RUs = RealUseMap[PA.Id];
803       if (RUs.empty())
804         continue;
805 
806       NodeSet SeenUses;
807       for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
808         if (!SeenUses.insert(U.Id).second)
809           continue;
810         NodeAddr<PhiUseNode*> PUA = U;
811         if (PUA.Addr->getReachingDef() == 0)
812           continue;
813 
814         // Each phi has some set (possibly empty) of reached "real" uses,
815         // that is, uses that are part of the compiled program. Such a use
816         // may be located in some farther block, but following a chain of
817         // reaching defs will eventually lead to this phi.
818         // Any chain of reaching defs may fork at a phi node, but there
819         // will be a path upwards that will lead to this phi. Now, this
820         // chain will need to fork at this phi, since some of the reached
821         // uses may have definitions joining in from multiple predecessors.
822         // For each reached "real" use, identify the set of reaching defs
823         // coming from each predecessor P, and add them to PhiLOX[P].
824         //
825         auto PrA = DFG.addr<BlockNode*>(PUA.Addr->getPredecessor());
826         RefMap &LOX = PhiLOX[PrA.Addr->getCode()];
827 
828         for (const std::pair<const RegisterId, NodeRefSet> &RS : RUs) {
829           // We need to visit each individual use.
830           for (std::pair<NodeId,LaneBitmask> P : RS.second) {
831             // Create a register ref corresponding to the use, and find
832             // all reaching defs starting from the phi use, and treating
833             // all related shadows as a single use cluster.
834             RegisterRef S(RS.first, P.second);
835             NodeList Ds = getAllReachingDefs(S, PUA, true, false, NoRegs);
836             for (NodeAddr<DefNode*> D : Ds) {
837               // Calculate the mask corresponding to the visited def.
838               RegisterAggr TA(PRI);
839               TA.insert(D.Addr->getRegRef(DFG)).intersect(S);
840               LaneBitmask TM = TA.makeRegRef().Mask;
841               LOX[S.Reg].insert({D.Id, TM});
842             }
843           }
844         }
845 
846         for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PA, PUA))
847           SeenUses.insert(T.Id);
848       }  // for U : phi uses
849     }  // for P : Phis
850   }  // for B : Blocks
851 
852   if (Trace) {
853     dbgs() << "Phi live-on-exit map:\n";
854     for (auto &I : PhiLOX)
855       dbgs() << "block #" << I.first->getNumber() << " -> "
856              << Print<RefMap>(I.second, DFG) << '\n';
857   }
858 
859   RefMap LiveIn;
860   traverse(&MF.front(), LiveIn);
861 
862   // Add function live-ins to the live-in set of the function entry block.
863   LiveMap[&MF.front()].insert(DFG.getLiveIns());
864 
865   if (Trace) {
866     // Dump the liveness map
867     for (MachineBasicBlock &B : MF) {
868       std::vector<RegisterRef> LV;
869       for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
870         LV.push_back(RegisterRef(I->PhysReg, I->LaneMask));
871       llvm::sort(LV);
872       dbgs() << printMBBReference(B) << "\t rec = {";
873       for (auto I : LV)
874         dbgs() << ' ' << Print<RegisterRef>(I, DFG);
875       dbgs() << " }\n";
876       //dbgs() << "\tcomp = " << Print<RegisterAggr>(LiveMap[&B], DFG) << '\n';
877 
878       LV.clear();
879       const RegisterAggr &LG = LiveMap[&B];
880       for (auto I = LG.rr_begin(), E = LG.rr_end(); I != E; ++I)
881         LV.push_back(*I);
882       llvm::sort(LV);
883       dbgs() << "\tcomp = {";
884       for (auto I : LV)
885         dbgs() << ' ' << Print<RegisterRef>(I, DFG);
886       dbgs() << " }\n";
887 
888     }
889   }
890 }
891 
892 void Liveness::resetLiveIns() {
893   for (auto &B : DFG.getMF()) {
894     // Remove all live-ins.
895     std::vector<unsigned> T;
896     for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
897       T.push_back(I->PhysReg);
898     for (auto I : T)
899       B.removeLiveIn(I);
900     // Add the newly computed live-ins.
901     const RegisterAggr &LiveIns = LiveMap[&B];
902     for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
903       RegisterRef R = *I;
904       B.addLiveIn({MCPhysReg(R.Reg), R.Mask});
905     }
906   }
907 }
908 
909 void Liveness::resetKills() {
910   for (auto &B : DFG.getMF())
911     resetKills(&B);
912 }
913 
914 void Liveness::resetKills(MachineBasicBlock *B) {
915   auto CopyLiveIns = [this] (MachineBasicBlock *B, BitVector &LV) -> void {
916     for (auto I : B->liveins()) {
917       MCSubRegIndexIterator S(I.PhysReg, &TRI);
918       if (!S.isValid()) {
919         LV.set(I.PhysReg);
920         continue;
921       }
922       do {
923         LaneBitmask M = TRI.getSubRegIndexLaneMask(S.getSubRegIndex());
924         if ((M & I.LaneMask).any())
925           LV.set(S.getSubReg());
926         ++S;
927       } while (S.isValid());
928     }
929   };
930 
931   BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs());
932   CopyLiveIns(B, LiveIn);
933   for (auto SI : B->successors())
934     CopyLiveIns(SI, Live);
935 
936   for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
937     MachineInstr *MI = &*I;
938     if (MI->isDebugInstr())
939       continue;
940 
941     MI->clearKillInfo();
942     for (auto &Op : MI->operands()) {
943       // An implicit def of a super-register may not necessarily start a
944       // live range of it, since an implicit use could be used to keep parts
945       // of it live. Instead of analyzing the implicit operands, ignore
946       // implicit defs.
947       if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
948         continue;
949       Register R = Op.getReg();
950       if (!Register::isPhysicalRegister(R))
951         continue;
952       for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
953         Live.reset(*SR);
954     }
955     for (auto &Op : MI->operands()) {
956       if (!Op.isReg() || !Op.isUse() || Op.isUndef())
957         continue;
958       Register R = Op.getReg();
959       if (!Register::isPhysicalRegister(R))
960         continue;
961       bool IsLive = false;
962       for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) {
963         if (!Live[*AR])
964           continue;
965         IsLive = true;
966         break;
967       }
968       if (!IsLive)
969         Op.setIsKill(true);
970       for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
971         Live.set(*SR);
972     }
973   }
974 }
975 
976 // Helper function to obtain the basic block containing the reaching def
977 // of the given use.
978 MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const {
979   auto F = NBMap.find(RN);
980   if (F != NBMap.end())
981     return F->second;
982   llvm_unreachable("Node id not in map");
983 }
984 
985 void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) {
986   // The LiveIn map, for each (physical) register, contains the set of live
987   // reaching defs of that register that are live on entry to the associated
988   // block.
989 
990   // The summary of the traversal algorithm:
991   //
992   // R is live-in in B, if there exists a U(R), such that rdef(R) dom B
993   // and (U \in IDF(B) or B dom U).
994   //
995   // for (C : children) {
996   //   LU = {}
997   //   traverse(C, LU)
998   //   LiveUses += LU
999   // }
1000   //
1001   // LiveUses -= Defs(B);
1002   // LiveUses += UpwardExposedUses(B);
1003   // for (C : IIDF[B])
1004   //   for (U : LiveUses)
1005   //     if (Rdef(U) dom C)
1006   //       C.addLiveIn(U)
1007   //
1008 
1009   // Go up the dominator tree (depth-first).
1010   MachineDomTreeNode *N = MDT.getNode(B);
1011   for (auto I : *N) {
1012     RefMap L;
1013     MachineBasicBlock *SB = I->getBlock();
1014     traverse(SB, L);
1015 
1016     for (auto S : L)
1017       LiveIn[S.first].insert(S.second.begin(), S.second.end());
1018   }
1019 
1020   if (Trace) {
1021     dbgs() << "\n-- " << printMBBReference(*B) << ": " << __func__
1022            << " after recursion into: {";
1023     for (auto I : *N)
1024       dbgs() << ' ' << I->getBlock()->getNumber();
1025     dbgs() << " }\n";
1026     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1027     dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
1028   }
1029 
1030   // Add reaching defs of phi uses that are live on exit from this block.
1031   RefMap &PUs = PhiLOX[B];
1032   for (auto &S : PUs)
1033     LiveIn[S.first].insert(S.second.begin(), S.second.end());
1034 
1035   if (Trace) {
1036     dbgs() << "after LOX\n";
1037     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1038     dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
1039   }
1040 
1041   // The LiveIn map at this point has all defs that are live-on-exit from B,
1042   // as if they were live-on-entry to B. First, we need to filter out all
1043   // defs that are present in this block. Then we will add reaching defs of
1044   // all upward-exposed uses.
1045 
1046   // To filter out the defs, first make a copy of LiveIn, and then re-populate
1047   // LiveIn with the defs that should remain.
1048   RefMap LiveInCopy = LiveIn;
1049   LiveIn.clear();
1050 
1051   for (const std::pair<const RegisterId, NodeRefSet> &LE : LiveInCopy) {
1052     RegisterRef LRef(LE.first);
1053     NodeRefSet &NewDefs = LiveIn[LRef.Reg]; // To be filled.
1054     const NodeRefSet &OldDefs = LE.second;
1055     for (NodeRef OR : OldDefs) {
1056       // R is a def node that was live-on-exit
1057       auto DA = DFG.addr<DefNode*>(OR.first);
1058       NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
1059       NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
1060       if (B != BA.Addr->getCode()) {
1061         // Defs from a different block need to be preserved. Defs from this
1062         // block will need to be processed further, except for phi defs, the
1063         // liveness of which is handled through the PhiLON/PhiLOX maps.
1064         NewDefs.insert(OR);
1065         continue;
1066       }
1067 
1068       // Defs from this block need to stop the liveness from being
1069       // propagated upwards. This only applies to non-preserving defs,
1070       // and to the parts of the register actually covered by those defs.
1071       // (Note that phi defs should always be preserving.)
1072       RegisterAggr RRs(PRI);
1073       LRef.Mask = OR.second;
1074 
1075       if (!DFG.IsPreservingDef(DA)) {
1076         assert(!(IA.Addr->getFlags() & NodeAttrs::Phi));
1077         // DA is a non-phi def that is live-on-exit from this block, and
1078         // that is also located in this block. LRef is a register ref
1079         // whose use this def reaches. If DA covers LRef, then no part
1080         // of LRef is exposed upwards.A
1081         if (RRs.insert(DA.Addr->getRegRef(DFG)).hasCoverOf(LRef))
1082           continue;
1083       }
1084 
1085       // DA itself was not sufficient to cover LRef. In general, it is
1086       // the last in a chain of aliased defs before the exit from this block.
1087       // There could be other defs in this block that are a part of that
1088       // chain. Check that now: accumulate the registers from these defs,
1089       // and if they all together cover LRef, it is not live-on-entry.
1090       for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) {
1091         // DefNode -> InstrNode -> BlockNode.
1092         NodeAddr<InstrNode*> ITA = TA.Addr->getOwner(DFG);
1093         NodeAddr<BlockNode*> BTA = ITA.Addr->getOwner(DFG);
1094         // Reaching defs are ordered in the upward direction.
1095         if (BTA.Addr->getCode() != B) {
1096           // We have reached past the beginning of B, and the accumulated
1097           // registers are not covering LRef. The first def from the
1098           // upward chain will be live.
1099           // Subtract all accumulated defs (RRs) from LRef.
1100           RegisterRef T = RRs.clearIn(LRef);
1101           assert(T);
1102           NewDefs.insert({TA.Id,T.Mask});
1103           break;
1104         }
1105 
1106         // TA is in B. Only add this def to the accumulated cover if it is
1107         // not preserving.
1108         if (!(TA.Addr->getFlags() & NodeAttrs::Preserving))
1109           RRs.insert(TA.Addr->getRegRef(DFG));
1110         // If this is enough to cover LRef, then stop.
1111         if (RRs.hasCoverOf(LRef))
1112           break;
1113       }
1114     }
1115   }
1116 
1117   emptify(LiveIn);
1118 
1119   if (Trace) {
1120     dbgs() << "after defs in block\n";
1121     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1122     dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
1123   }
1124 
1125   // Scan the block for upward-exposed uses and add them to the tracking set.
1126   for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) {
1127     NodeAddr<InstrNode*> IA = I;
1128     if (IA.Addr->getKind() != NodeAttrs::Stmt)
1129       continue;
1130     for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
1131       if (UA.Addr->getFlags() & NodeAttrs::Undef)
1132         continue;
1133       RegisterRef RR = UA.Addr->getRegRef(DFG);
1134       for (NodeAddr<DefNode*> D : getAllReachingDefs(UA))
1135         if (getBlockWithRef(D.Id) != B)
1136           LiveIn[RR.Reg].insert({D.Id,RR.Mask});
1137     }
1138   }
1139 
1140   if (Trace) {
1141     dbgs() << "after uses in block\n";
1142     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1143     dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
1144   }
1145 
1146   // Phi uses should not be propagated up the dominator tree, since they
1147   // are not dominated by their corresponding reaching defs.
1148   RegisterAggr &Local = LiveMap[B];
1149   RefMap &LON = PhiLON[B];
1150   for (auto &R : LON) {
1151     LaneBitmask M;
1152     for (auto P : R.second)
1153       M |= P.second;
1154     Local.insert(RegisterRef(R.first,M));
1155   }
1156 
1157   if (Trace) {
1158     dbgs() << "after phi uses in block\n";
1159     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1160     dbgs() << "  Local:  " << Print<RegisterAggr>(Local, DFG) << '\n';
1161   }
1162 
1163   for (auto C : IIDF[B]) {
1164     RegisterAggr &LiveC = LiveMap[C];
1165     for (const std::pair<const RegisterId, NodeRefSet> &S : LiveIn)
1166       for (auto R : S.second)
1167         if (MDT.properlyDominates(getBlockWithRef(R.first), C))
1168           LiveC.insert(RegisterRef(S.first, R.second));
1169   }
1170 }
1171 
1172 void Liveness::emptify(RefMap &M) {
1173   for (auto I = M.begin(), E = M.end(); I != E; )
1174     I = I->second.empty() ? M.erase(I) : std::next(I);
1175 }
1176