1 //===- RDFLiveness.cpp ----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Computation of the liveness information from the data-flow graph. 10 // 11 // The main functionality of this code is to compute block live-in 12 // information. With the live-in information in place, the placement 13 // of kill flags can also be recalculated. 14 // 15 // The block live-in calculation is based on the ideas from the following 16 // publication: 17 // 18 // Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin. 19 // "Efficient Liveness Computation Using Merge Sets and DJ-Graphs." 20 // ACM Transactions on Architecture and Code Optimization, Association for 21 // Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance 22 // and Embedded Architectures and Compilers", 8 (4), 23 // <10.1145/2086696.2086706>. <hal-00647369> 24 // 25 #include "llvm/ADT/BitVector.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineDominanceFrontier.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/RDFLiveness.h" 36 #include "llvm/CodeGen/RDFGraph.h" 37 #include "llvm/CodeGen/RDFRegisters.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/MC/LaneBitmask.h" 40 #include "llvm/MC/MCRegisterInfo.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include <algorithm> 46 #include <cassert> 47 #include <cstdint> 48 #include <iterator> 49 #include <map> 50 #include <unordered_map> 51 #include <utility> 52 #include <vector> 53 54 using namespace llvm; 55 using namespace rdf; 56 57 static cl::opt<unsigned> MaxRecNest("rdf-liveness-max-rec", cl::init(25), 58 cl::Hidden, cl::desc("Maximum recursion level")); 59 60 namespace llvm { 61 namespace rdf { 62 63 raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) { 64 OS << '{'; 65 for (auto &I : P.Obj) { 66 OS << ' ' << printReg(I.first, &P.G.getTRI()) << '{'; 67 for (auto J = I.second.begin(), E = I.second.end(); J != E; ) { 68 OS << Print<NodeId>(J->first, P.G) << PrintLaneMaskOpt(J->second); 69 if (++J != E) 70 OS << ','; 71 } 72 OS << '}'; 73 } 74 OS << " }"; 75 return OS; 76 } 77 78 } // end namespace rdf 79 } // end namespace llvm 80 81 // The order in the returned sequence is the order of reaching defs in the 82 // upward traversal: the first def is the closest to the given reference RefA, 83 // the next one is further up, and so on. 84 // The list ends at a reaching phi def, or when the reference from RefA is 85 // covered by the defs in the list (see FullChain). 86 // This function provides two modes of operation: 87 // (1) Returning the sequence of reaching defs for a particular reference 88 // node. This sequence will terminate at the first phi node [1]. 89 // (2) Returning a partial sequence of reaching defs, where the final goal 90 // is to traverse past phi nodes to the actual defs arising from the code 91 // itself. 92 // In mode (2), the register reference for which the search was started 93 // may be different from the reference node RefA, for which this call was 94 // made, hence the argument RefRR, which holds the original register. 95 // Also, some definitions may have already been encountered in a previous 96 // call that will influence register covering. The register references 97 // already defined are passed in through DefRRs. 98 // In mode (1), the "continuation" considerations do not apply, and the 99 // RefRR is the same as the register in RefA, and the set DefRRs is empty. 100 // 101 // [1] It is possible for multiple phi nodes to be included in the returned 102 // sequence: 103 // SubA = phi ... 104 // SubB = phi ... 105 // ... = SuperAB(rdef:SubA), SuperAB"(rdef:SubB) 106 // However, these phi nodes are independent from one another in terms of 107 // the data-flow. 108 109 NodeList Liveness::getAllReachingDefs(RegisterRef RefRR, 110 NodeAddr<RefNode*> RefA, bool TopShadows, bool FullChain, 111 const RegisterAggr &DefRRs) { 112 NodeList RDefs; // Return value. 113 SetVector<NodeId> DefQ; 114 DenseMap<MachineInstr*, uint32_t> OrdMap; 115 116 // Dead defs will be treated as if they were live, since they are actually 117 // on the data-flow path. They cannot be ignored because even though they 118 // do not generate meaningful values, they still modify registers. 119 120 // If the reference is undefined, there is nothing to do. 121 if (RefA.Addr->getFlags() & NodeAttrs::Undef) 122 return RDefs; 123 124 // The initial queue should not have reaching defs for shadows. The 125 // whole point of a shadow is that it will have a reaching def that 126 // is not aliased to the reaching defs of the related shadows. 127 NodeId Start = RefA.Id; 128 auto SNA = DFG.addr<RefNode*>(Start); 129 if (NodeId RD = SNA.Addr->getReachingDef()) 130 DefQ.insert(RD); 131 if (TopShadows) { 132 for (auto S : DFG.getRelatedRefs(RefA.Addr->getOwner(DFG), RefA)) 133 if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef()) 134 DefQ.insert(RD); 135 } 136 137 // Collect all the reaching defs, going up until a phi node is encountered, 138 // or there are no more reaching defs. From this set, the actual set of 139 // reaching defs will be selected. 140 // The traversal upwards must go on until a covering def is encountered. 141 // It is possible that a collection of non-covering (individually) defs 142 // will be sufficient, but keep going until a covering one is found. 143 for (unsigned i = 0; i < DefQ.size(); ++i) { 144 auto TA = DFG.addr<DefNode*>(DefQ[i]); 145 if (TA.Addr->getFlags() & NodeAttrs::PhiRef) 146 continue; 147 // Stop at the covering/overwriting def of the initial register reference. 148 RegisterRef RR = TA.Addr->getRegRef(DFG); 149 if (!DFG.IsPreservingDef(TA)) 150 if (RegisterAggr::isCoverOf(RR, RefRR, PRI)) 151 continue; 152 // Get the next level of reaching defs. This will include multiple 153 // reaching defs for shadows. 154 for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA)) 155 if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef()) 156 DefQ.insert(RD); 157 // Don't visit sibling defs. They share the same reaching def (which 158 // will be visited anyway), but they define something not aliased to 159 // this ref. 160 } 161 162 // Return the MachineBasicBlock containing a given instruction. 163 auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* { 164 if (IA.Addr->getKind() == NodeAttrs::Stmt) 165 return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent(); 166 assert(IA.Addr->getKind() == NodeAttrs::Phi); 167 NodeAddr<PhiNode*> PA = IA; 168 NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG); 169 return BA.Addr->getCode(); 170 }; 171 172 SmallSet<NodeId,32> Defs; 173 174 // Remove all non-phi defs that are not aliased to RefRR, and segregate 175 // the the remaining defs into buckets for containing blocks. 176 std::map<NodeId, NodeAddr<InstrNode*>> Owners; 177 std::map<MachineBasicBlock*, SmallVector<NodeId,32>> Blocks; 178 for (NodeId N : DefQ) { 179 auto TA = DFG.addr<DefNode*>(N); 180 bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef; 181 if (!IsPhi && !PRI.alias(RefRR, TA.Addr->getRegRef(DFG))) 182 continue; 183 Defs.insert(TA.Id); 184 NodeAddr<InstrNode*> IA = TA.Addr->getOwner(DFG); 185 Owners[TA.Id] = IA; 186 Blocks[Block(IA)].push_back(IA.Id); 187 } 188 189 auto Precedes = [this,&OrdMap] (NodeId A, NodeId B) { 190 if (A == B) 191 return false; 192 NodeAddr<InstrNode*> OA = DFG.addr<InstrNode*>(A); 193 NodeAddr<InstrNode*> OB = DFG.addr<InstrNode*>(B); 194 bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt; 195 bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt; 196 if (StmtA && StmtB) { 197 const MachineInstr *InA = NodeAddr<StmtNode*>(OA).Addr->getCode(); 198 const MachineInstr *InB = NodeAddr<StmtNode*>(OB).Addr->getCode(); 199 assert(InA->getParent() == InB->getParent()); 200 auto FA = OrdMap.find(InA); 201 if (FA != OrdMap.end()) 202 return FA->second < OrdMap.find(InB)->second; 203 const MachineBasicBlock *BB = InA->getParent(); 204 for (auto It = BB->begin(), E = BB->end(); It != E; ++It) { 205 if (It == InA->getIterator()) 206 return true; 207 if (It == InB->getIterator()) 208 return false; 209 } 210 llvm_unreachable("InA and InB should be in the same block"); 211 } 212 // One of them is a phi node. 213 if (!StmtA && !StmtB) { 214 // Both are phis, which are unordered. Break the tie by id numbers. 215 return A < B; 216 } 217 // Only one of them is a phi. Phis always precede statements. 218 return !StmtA; 219 }; 220 221 auto GetOrder = [&OrdMap] (MachineBasicBlock &B) { 222 uint32_t Pos = 0; 223 for (MachineInstr &In : B) 224 OrdMap.insert({&In, ++Pos}); 225 }; 226 227 // For each block, sort the nodes in it. 228 std::vector<MachineBasicBlock*> TmpBB; 229 for (auto &Bucket : Blocks) { 230 TmpBB.push_back(Bucket.first); 231 if (Bucket.second.size() > 2) 232 GetOrder(*Bucket.first); 233 llvm::sort(Bucket.second, Precedes); 234 } 235 236 // Sort the blocks with respect to dominance. 237 llvm::sort(TmpBB, 238 [this](auto A, auto B) { return MDT.properlyDominates(A, B); }); 239 240 std::vector<NodeId> TmpInst; 241 for (MachineBasicBlock *MBB : llvm::reverse(TmpBB)) { 242 auto &Bucket = Blocks[MBB]; 243 TmpInst.insert(TmpInst.end(), Bucket.rbegin(), Bucket.rend()); 244 } 245 246 // The vector is a list of instructions, so that defs coming from 247 // the same instruction don't need to be artificially ordered. 248 // Then, when computing the initial segment, and iterating over an 249 // instruction, pick the defs that contribute to the covering (i.e. is 250 // not covered by previously added defs). Check the defs individually, 251 // i.e. first check each def if is covered or not (without adding them 252 // to the tracking set), and then add all the selected ones. 253 254 // The reason for this is this example: 255 // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes). 256 // *d3<C> If A \incl BuC, and B \incl AuC, then *d2 would be 257 // covered if we added A first, and A would be covered 258 // if we added B first. 259 // In this example we want both A and B, because we don't want to give 260 // either one priority over the other, since they belong to the same 261 // statement. 262 263 RegisterAggr RRs(DefRRs); 264 265 auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool { 266 return TA.Addr->getKind() == NodeAttrs::Def && 267 Defs.count(TA.Id); 268 }; 269 270 for (NodeId T : TmpInst) { 271 if (!FullChain && RRs.hasCoverOf(RefRR)) 272 break; 273 auto TA = DFG.addr<InstrNode*>(T); 274 bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA); 275 NodeList Ds; 276 for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) { 277 RegisterRef QR = DA.Addr->getRegRef(DFG); 278 // Add phi defs even if they are covered by subsequent defs. This is 279 // for cases where the reached use is not covered by any of the defs 280 // encountered so far: the phi def is needed to expose the liveness 281 // of that use to the entry of the block. 282 // Example: 283 // phi d1<R3>(,d2,), ... Phi def d1 is covered by d2. 284 // d2<R3>(d1,,u3), ... 285 // ..., u3<D1>(d2) This use needs to be live on entry. 286 if (FullChain || IsPhi || !RRs.hasCoverOf(QR)) 287 Ds.push_back(DA); 288 } 289 llvm::append_range(RDefs, Ds); 290 for (NodeAddr<DefNode*> DA : Ds) { 291 // When collecting a full chain of definitions, do not consider phi 292 // defs to actually define a register. 293 uint16_t Flags = DA.Addr->getFlags(); 294 if (!FullChain || !(Flags & NodeAttrs::PhiRef)) 295 if (!(Flags & NodeAttrs::Preserving)) // Don't care about Undef here. 296 RRs.insert(DA.Addr->getRegRef(DFG)); 297 } 298 } 299 300 auto DeadP = [](const NodeAddr<DefNode*> DA) -> bool { 301 return DA.Addr->getFlags() & NodeAttrs::Dead; 302 }; 303 llvm::erase_if(RDefs, DeadP); 304 305 return RDefs; 306 } 307 308 std::pair<NodeSet,bool> 309 Liveness::getAllReachingDefsRec(RegisterRef RefRR, NodeAddr<RefNode*> RefA, 310 NodeSet &Visited, const NodeSet &Defs) { 311 return getAllReachingDefsRecImpl(RefRR, RefA, Visited, Defs, 0, MaxRecNest); 312 } 313 314 std::pair<NodeSet,bool> 315 Liveness::getAllReachingDefsRecImpl(RegisterRef RefRR, NodeAddr<RefNode*> RefA, 316 NodeSet &Visited, const NodeSet &Defs, unsigned Nest, unsigned MaxNest) { 317 if (Nest > MaxNest) 318 return { NodeSet(), false }; 319 // Collect all defined registers. Do not consider phis to be defining 320 // anything, only collect "real" definitions. 321 RegisterAggr DefRRs(PRI); 322 for (NodeId D : Defs) { 323 const auto DA = DFG.addr<const DefNode*>(D); 324 if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef)) 325 DefRRs.insert(DA.Addr->getRegRef(DFG)); 326 } 327 328 NodeList RDs = getAllReachingDefs(RefRR, RefA, false, true, DefRRs); 329 if (RDs.empty()) 330 return { Defs, true }; 331 332 // Make a copy of the preexisting definitions and add the newly found ones. 333 NodeSet TmpDefs = Defs; 334 for (NodeAddr<NodeBase*> R : RDs) 335 TmpDefs.insert(R.Id); 336 337 NodeSet Result = Defs; 338 339 for (NodeAddr<DefNode*> DA : RDs) { 340 Result.insert(DA.Id); 341 if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef)) 342 continue; 343 NodeAddr<PhiNode*> PA = DA.Addr->getOwner(DFG); 344 if (Visited.count(PA.Id)) 345 continue; 346 Visited.insert(PA.Id); 347 // Go over all phi uses and get the reaching defs for each use. 348 for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) { 349 const auto &T = getAllReachingDefsRecImpl(RefRR, U, Visited, TmpDefs, 350 Nest+1, MaxNest); 351 if (!T.second) 352 return { T.first, false }; 353 Result.insert(T.first.begin(), T.first.end()); 354 } 355 } 356 357 return { Result, true }; 358 } 359 360 /// Find the nearest ref node aliased to RefRR, going upwards in the data 361 /// flow, starting from the instruction immediately preceding Inst. 362 NodeAddr<RefNode*> Liveness::getNearestAliasedRef(RegisterRef RefRR, 363 NodeAddr<InstrNode*> IA) { 364 NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG); 365 NodeList Ins = BA.Addr->members(DFG); 366 NodeId FindId = IA.Id; 367 auto E = Ins.rend(); 368 auto B = std::find_if(Ins.rbegin(), E, 369 [FindId] (const NodeAddr<InstrNode*> T) { 370 return T.Id == FindId; 371 }); 372 // Do not scan IA (which is what B would point to). 373 if (B != E) 374 ++B; 375 376 do { 377 // Process the range of instructions from B to E. 378 for (NodeAddr<InstrNode*> I : make_range(B, E)) { 379 NodeList Refs = I.Addr->members(DFG); 380 NodeAddr<RefNode*> Clob, Use; 381 // Scan all the refs in I aliased to RefRR, and return the one that 382 // is the closest to the output of I, i.e. def > clobber > use. 383 for (NodeAddr<RefNode*> R : Refs) { 384 if (!PRI.alias(R.Addr->getRegRef(DFG), RefRR)) 385 continue; 386 if (DFG.IsDef(R)) { 387 // If it's a non-clobbering def, just return it. 388 if (!(R.Addr->getFlags() & NodeAttrs::Clobbering)) 389 return R; 390 Clob = R; 391 } else { 392 Use = R; 393 } 394 } 395 if (Clob.Id != 0) 396 return Clob; 397 if (Use.Id != 0) 398 return Use; 399 } 400 401 // Go up to the immediate dominator, if any. 402 MachineBasicBlock *BB = BA.Addr->getCode(); 403 BA = NodeAddr<BlockNode*>(); 404 if (MachineDomTreeNode *N = MDT.getNode(BB)) { 405 if ((N = N->getIDom())) 406 BA = DFG.findBlock(N->getBlock()); 407 } 408 if (!BA.Id) 409 break; 410 411 Ins = BA.Addr->members(DFG); 412 B = Ins.rbegin(); 413 E = Ins.rend(); 414 } while (true); 415 416 return NodeAddr<RefNode*>(); 417 } 418 419 NodeSet Liveness::getAllReachedUses(RegisterRef RefRR, 420 NodeAddr<DefNode*> DefA, const RegisterAggr &DefRRs) { 421 NodeSet Uses; 422 423 // If the original register is already covered by all the intervening 424 // defs, no more uses can be reached. 425 if (DefRRs.hasCoverOf(RefRR)) 426 return Uses; 427 428 // Add all directly reached uses. 429 // If the def is dead, it does not provide a value for any use. 430 bool IsDead = DefA.Addr->getFlags() & NodeAttrs::Dead; 431 NodeId U = !IsDead ? DefA.Addr->getReachedUse() : 0; 432 while (U != 0) { 433 auto UA = DFG.addr<UseNode*>(U); 434 if (!(UA.Addr->getFlags() & NodeAttrs::Undef)) { 435 RegisterRef UR = UA.Addr->getRegRef(DFG); 436 if (PRI.alias(RefRR, UR) && !DefRRs.hasCoverOf(UR)) 437 Uses.insert(U); 438 } 439 U = UA.Addr->getSibling(); 440 } 441 442 // Traverse all reached defs. This time dead defs cannot be ignored. 443 for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) { 444 auto DA = DFG.addr<DefNode*>(D); 445 NextD = DA.Addr->getSibling(); 446 RegisterRef DR = DA.Addr->getRegRef(DFG); 447 // If this def is already covered, it cannot reach anything new. 448 // Similarly, skip it if it is not aliased to the interesting register. 449 if (DefRRs.hasCoverOf(DR) || !PRI.alias(RefRR, DR)) 450 continue; 451 NodeSet T; 452 if (DFG.IsPreservingDef(DA)) { 453 // If it is a preserving def, do not update the set of intervening defs. 454 T = getAllReachedUses(RefRR, DA, DefRRs); 455 } else { 456 RegisterAggr NewDefRRs = DefRRs; 457 NewDefRRs.insert(DR); 458 T = getAllReachedUses(RefRR, DA, NewDefRRs); 459 } 460 Uses.insert(T.begin(), T.end()); 461 } 462 return Uses; 463 } 464 465 void Liveness::computePhiInfo() { 466 RealUseMap.clear(); 467 468 NodeList Phis; 469 NodeAddr<FuncNode*> FA = DFG.getFunc(); 470 NodeList Blocks = FA.Addr->members(DFG); 471 for (NodeAddr<BlockNode*> BA : Blocks) { 472 auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG); 473 llvm::append_range(Phis, Ps); 474 } 475 476 // phi use -> (map: reaching phi -> set of registers defined in between) 477 std::map<NodeId,std::map<NodeId,RegisterAggr>> PhiUp; 478 std::vector<NodeId> PhiUQ; // Work list of phis for upward propagation. 479 std::unordered_map<NodeId,RegisterAggr> PhiDRs; // Phi -> registers defined by it. 480 481 // Go over all phis. 482 for (NodeAddr<PhiNode*> PhiA : Phis) { 483 // Go over all defs and collect the reached uses that are non-phi uses 484 // (i.e. the "real uses"). 485 RefMap &RealUses = RealUseMap[PhiA.Id]; 486 NodeList PhiRefs = PhiA.Addr->members(DFG); 487 488 // Have a work queue of defs whose reached uses need to be found. 489 // For each def, add to the queue all reached (non-phi) defs. 490 SetVector<NodeId> DefQ; 491 NodeSet PhiDefs; 492 RegisterAggr DRs(PRI); 493 for (NodeAddr<RefNode*> R : PhiRefs) { 494 if (!DFG.IsRef<NodeAttrs::Def>(R)) 495 continue; 496 DRs.insert(R.Addr->getRegRef(DFG)); 497 DefQ.insert(R.Id); 498 PhiDefs.insert(R.Id); 499 } 500 PhiDRs.insert(std::make_pair(PhiA.Id, DRs)); 501 502 // Collect the super-set of all possible reached uses. This set will 503 // contain all uses reached from this phi, either directly from the 504 // phi defs, or (recursively) via non-phi defs reached by the phi defs. 505 // This set of uses will later be trimmed to only contain these uses that 506 // are actually reached by the phi defs. 507 for (unsigned i = 0; i < DefQ.size(); ++i) { 508 NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]); 509 // Visit all reached uses. Phi defs should not really have the "dead" 510 // flag set, but check it anyway for consistency. 511 bool IsDead = DA.Addr->getFlags() & NodeAttrs::Dead; 512 NodeId UN = !IsDead ? DA.Addr->getReachedUse() : 0; 513 while (UN != 0) { 514 NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN); 515 uint16_t F = A.Addr->getFlags(); 516 if ((F & (NodeAttrs::Undef | NodeAttrs::PhiRef)) == 0) { 517 RegisterRef R = A.Addr->getRegRef(DFG); 518 RealUses[R.Reg].insert({A.Id,R.Mask}); 519 } 520 UN = A.Addr->getSibling(); 521 } 522 // Visit all reached defs, and add them to the queue. These defs may 523 // override some of the uses collected here, but that will be handled 524 // later. 525 NodeId DN = DA.Addr->getReachedDef(); 526 while (DN != 0) { 527 NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN); 528 for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) { 529 uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags(); 530 // Must traverse the reached-def chain. Consider: 531 // def(D0) -> def(R0) -> def(R0) -> use(D0) 532 // The reachable use of D0 passes through a def of R0. 533 if (!(Flags & NodeAttrs::PhiRef)) 534 DefQ.insert(T.Id); 535 } 536 DN = A.Addr->getSibling(); 537 } 538 } 539 // Filter out these uses that appear to be reachable, but really 540 // are not. For example: 541 // 542 // R1:0 = d1 543 // = R1:0 u2 Reached by d1. 544 // R0 = d3 545 // = R1:0 u4 Still reached by d1: indirectly through 546 // the def d3. 547 // R1 = d5 548 // = R1:0 u6 Not reached by d1 (covered collectively 549 // by d3 and d5), but following reached 550 // defs and uses from d1 will lead here. 551 for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) { 552 // For each reached register UI->first, there is a set UI->second, of 553 // uses of it. For each such use, check if it is reached by this phi, 554 // i.e. check if the set of its reaching uses intersects the set of 555 // this phi's defs. 556 NodeRefSet Uses = UI->second; 557 UI->second.clear(); 558 for (std::pair<NodeId,LaneBitmask> I : Uses) { 559 auto UA = DFG.addr<UseNode*>(I.first); 560 // Undef flag is checked above. 561 assert((UA.Addr->getFlags() & NodeAttrs::Undef) == 0); 562 RegisterRef R(UI->first, I.second); 563 // Calculate the exposed part of the reached use. 564 RegisterAggr Covered(PRI); 565 for (NodeAddr<DefNode*> DA : getAllReachingDefs(R, UA)) { 566 if (PhiDefs.count(DA.Id)) 567 break; 568 Covered.insert(DA.Addr->getRegRef(DFG)); 569 } 570 if (RegisterRef RC = Covered.clearIn(R)) { 571 // We are updating the map for register UI->first, so we need 572 // to map RC to be expressed in terms of that register. 573 RegisterRef S = PRI.mapTo(RC, UI->first); 574 UI->second.insert({I.first, S.Mask}); 575 } 576 } 577 UI = UI->second.empty() ? RealUses.erase(UI) : std::next(UI); 578 } 579 580 // If this phi reaches some "real" uses, add it to the queue for upward 581 // propagation. 582 if (!RealUses.empty()) 583 PhiUQ.push_back(PhiA.Id); 584 585 // Go over all phi uses and check if the reaching def is another phi. 586 // Collect the phis that are among the reaching defs of these uses. 587 // While traversing the list of reaching defs for each phi use, accumulate 588 // the set of registers defined between this phi (PhiA) and the owner phi 589 // of the reaching def. 590 NodeSet SeenUses; 591 592 for (auto I : PhiRefs) { 593 if (!DFG.IsRef<NodeAttrs::Use>(I) || SeenUses.count(I.Id)) 594 continue; 595 NodeAddr<PhiUseNode*> PUA = I; 596 if (PUA.Addr->getReachingDef() == 0) 597 continue; 598 599 RegisterRef UR = PUA.Addr->getRegRef(DFG); 600 NodeList Ds = getAllReachingDefs(UR, PUA, true, false, NoRegs); 601 RegisterAggr DefRRs(PRI); 602 603 for (NodeAddr<DefNode*> D : Ds) { 604 if (D.Addr->getFlags() & NodeAttrs::PhiRef) { 605 NodeId RP = D.Addr->getOwner(DFG).Id; 606 std::map<NodeId,RegisterAggr> &M = PhiUp[PUA.Id]; 607 auto F = M.find(RP); 608 if (F == M.end()) 609 M.insert(std::make_pair(RP, DefRRs)); 610 else 611 F->second.insert(DefRRs); 612 } 613 DefRRs.insert(D.Addr->getRegRef(DFG)); 614 } 615 616 for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PhiA, PUA)) 617 SeenUses.insert(T.Id); 618 } 619 } 620 621 if (Trace) { 622 dbgs() << "Phi-up-to-phi map with intervening defs:\n"; 623 for (auto I : PhiUp) { 624 dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {"; 625 for (auto R : I.second) 626 dbgs() << ' ' << Print<NodeId>(R.first, DFG) 627 << Print<RegisterAggr>(R.second, DFG); 628 dbgs() << " }\n"; 629 } 630 } 631 632 // Propagate the reached registers up in the phi chain. 633 // 634 // The following type of situation needs careful handling: 635 // 636 // phi d1<R1:0> (1) 637 // | 638 // ... d2<R1> 639 // | 640 // phi u3<R1:0> (2) 641 // | 642 // ... u4<R1> 643 // 644 // The phi node (2) defines a register pair R1:0, and reaches a "real" 645 // use u4 of just R1. The same phi node is also known to reach (upwards) 646 // the phi node (1). However, the use u4 is not reached by phi (1), 647 // because of the intervening definition d2 of R1. The data flow between 648 // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0. 649 // 650 // When propagating uses up the phi chains, get the all reaching defs 651 // for a given phi use, and traverse the list until the propagated ref 652 // is covered, or until reaching the final phi. Only assume that the 653 // reference reaches the phi in the latter case. 654 655 // The operation "clearIn" can be expensive. For a given set of intervening 656 // defs, cache the result of subtracting these defs from a given register 657 // ref. 658 using SubMap = std::unordered_map<RegisterRef, RegisterRef>; 659 std::unordered_map<RegisterAggr, SubMap> Subs; 660 auto ClearIn = [] (RegisterRef RR, const RegisterAggr &Mid, SubMap &SM) { 661 if (Mid.empty()) 662 return RR; 663 auto F = SM.find(RR); 664 if (F != SM.end()) 665 return F->second; 666 RegisterRef S = Mid.clearIn(RR); 667 SM.insert({RR, S}); 668 return S; 669 }; 670 671 // Go over all phis. 672 for (unsigned i = 0; i < PhiUQ.size(); ++i) { 673 auto PA = DFG.addr<PhiNode*>(PhiUQ[i]); 674 NodeList PUs = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG); 675 RefMap &RUM = RealUseMap[PA.Id]; 676 677 for (NodeAddr<UseNode*> UA : PUs) { 678 std::map<NodeId,RegisterAggr> &PUM = PhiUp[UA.Id]; 679 RegisterRef UR = UA.Addr->getRegRef(DFG); 680 for (const std::pair<const NodeId, RegisterAggr> &P : PUM) { 681 bool Changed = false; 682 const RegisterAggr &MidDefs = P.second; 683 // Collect the set PropUp of uses that are reached by the current 684 // phi PA, and are not covered by any intervening def between the 685 // currently visited use UA and the upward phi P. 686 687 if (MidDefs.hasCoverOf(UR)) 688 continue; 689 SubMap &SM = Subs[MidDefs]; 690 691 // General algorithm: 692 // for each (R,U) : U is use node of R, U is reached by PA 693 // if MidDefs does not cover (R,U) 694 // then add (R-MidDefs,U) to RealUseMap[P] 695 // 696 for (const std::pair<const RegisterId, NodeRefSet> &T : RUM) { 697 RegisterRef R(T.first); 698 // The current phi (PA) could be a phi for a regmask. It could 699 // reach a whole variety of uses that are not related to the 700 // specific upward phi (P.first). 701 const RegisterAggr &DRs = PhiDRs.at(P.first); 702 if (!DRs.hasAliasOf(R)) 703 continue; 704 R = PRI.mapTo(DRs.intersectWith(R), T.first); 705 for (std::pair<NodeId,LaneBitmask> V : T.second) { 706 LaneBitmask M = R.Mask & V.second; 707 if (M.none()) 708 continue; 709 if (RegisterRef SS = ClearIn(RegisterRef(R.Reg, M), MidDefs, SM)) { 710 NodeRefSet &RS = RealUseMap[P.first][SS.Reg]; 711 Changed |= RS.insert({V.first,SS.Mask}).second; 712 } 713 } 714 } 715 716 if (Changed) 717 PhiUQ.push_back(P.first); 718 } 719 } 720 } 721 722 if (Trace) { 723 dbgs() << "Real use map:\n"; 724 for (auto I : RealUseMap) { 725 dbgs() << "phi " << Print<NodeId>(I.first, DFG); 726 NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first); 727 NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG); 728 if (!Ds.empty()) { 729 RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef(DFG); 730 dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>'; 731 } else { 732 dbgs() << "<noreg>"; 733 } 734 dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n'; 735 } 736 } 737 } 738 739 void Liveness::computeLiveIns() { 740 // Populate the node-to-block map. This speeds up the calculations 741 // significantly. 742 NBMap.clear(); 743 for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) { 744 MachineBasicBlock *BB = BA.Addr->getCode(); 745 for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) { 746 for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG)) 747 NBMap.insert(std::make_pair(RA.Id, BB)); 748 NBMap.insert(std::make_pair(IA.Id, BB)); 749 } 750 } 751 752 MachineFunction &MF = DFG.getMF(); 753 754 // Compute IDF first, then the inverse. 755 decltype(IIDF) IDF; 756 for (MachineBasicBlock &B : MF) { 757 auto F1 = MDF.find(&B); 758 if (F1 == MDF.end()) 759 continue; 760 SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end()); 761 for (unsigned i = 0; i < IDFB.size(); ++i) { 762 auto F2 = MDF.find(IDFB[i]); 763 if (F2 != MDF.end()) 764 IDFB.insert(F2->second.begin(), F2->second.end()); 765 } 766 // Add B to the IDF(B). This will put B in the IIDF(B). 767 IDFB.insert(&B); 768 IDF[&B].insert(IDFB.begin(), IDFB.end()); 769 } 770 771 for (auto I : IDF) 772 for (auto S : I.second) 773 IIDF[S].insert(I.first); 774 775 computePhiInfo(); 776 777 NodeAddr<FuncNode*> FA = DFG.getFunc(); 778 NodeList Blocks = FA.Addr->members(DFG); 779 780 // Build the phi live-on-entry map. 781 for (NodeAddr<BlockNode*> BA : Blocks) { 782 MachineBasicBlock *MB = BA.Addr->getCode(); 783 RefMap &LON = PhiLON[MB]; 784 for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG)) 785 for (const RefMap::value_type &S : RealUseMap[P.Id]) 786 LON[S.first].insert(S.second.begin(), S.second.end()); 787 } 788 789 if (Trace) { 790 dbgs() << "Phi live-on-entry map:\n"; 791 for (auto &I : PhiLON) 792 dbgs() << "block #" << I.first->getNumber() << " -> " 793 << Print<RefMap>(I.second, DFG) << '\n'; 794 } 795 796 // Build the phi live-on-exit map. Each phi node has some set of reached 797 // "real" uses. Propagate this set backwards into the block predecessors 798 // through the reaching defs of the corresponding phi uses. 799 for (NodeAddr<BlockNode*> BA : Blocks) { 800 NodeList Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG); 801 for (NodeAddr<PhiNode*> PA : Phis) { 802 RefMap &RUs = RealUseMap[PA.Id]; 803 if (RUs.empty()) 804 continue; 805 806 NodeSet SeenUses; 807 for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) { 808 if (!SeenUses.insert(U.Id).second) 809 continue; 810 NodeAddr<PhiUseNode*> PUA = U; 811 if (PUA.Addr->getReachingDef() == 0) 812 continue; 813 814 // Each phi has some set (possibly empty) of reached "real" uses, 815 // that is, uses that are part of the compiled program. Such a use 816 // may be located in some farther block, but following a chain of 817 // reaching defs will eventually lead to this phi. 818 // Any chain of reaching defs may fork at a phi node, but there 819 // will be a path upwards that will lead to this phi. Now, this 820 // chain will need to fork at this phi, since some of the reached 821 // uses may have definitions joining in from multiple predecessors. 822 // For each reached "real" use, identify the set of reaching defs 823 // coming from each predecessor P, and add them to PhiLOX[P]. 824 // 825 auto PrA = DFG.addr<BlockNode*>(PUA.Addr->getPredecessor()); 826 RefMap &LOX = PhiLOX[PrA.Addr->getCode()]; 827 828 for (const std::pair<const RegisterId, NodeRefSet> &RS : RUs) { 829 // We need to visit each individual use. 830 for (std::pair<NodeId,LaneBitmask> P : RS.second) { 831 // Create a register ref corresponding to the use, and find 832 // all reaching defs starting from the phi use, and treating 833 // all related shadows as a single use cluster. 834 RegisterRef S(RS.first, P.second); 835 NodeList Ds = getAllReachingDefs(S, PUA, true, false, NoRegs); 836 for (NodeAddr<DefNode*> D : Ds) { 837 // Calculate the mask corresponding to the visited def. 838 RegisterAggr TA(PRI); 839 TA.insert(D.Addr->getRegRef(DFG)).intersect(S); 840 LaneBitmask TM = TA.makeRegRef().Mask; 841 LOX[S.Reg].insert({D.Id, TM}); 842 } 843 } 844 } 845 846 for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PA, PUA)) 847 SeenUses.insert(T.Id); 848 } // for U : phi uses 849 } // for P : Phis 850 } // for B : Blocks 851 852 if (Trace) { 853 dbgs() << "Phi live-on-exit map:\n"; 854 for (auto &I : PhiLOX) 855 dbgs() << "block #" << I.first->getNumber() << " -> " 856 << Print<RefMap>(I.second, DFG) << '\n'; 857 } 858 859 RefMap LiveIn; 860 traverse(&MF.front(), LiveIn); 861 862 // Add function live-ins to the live-in set of the function entry block. 863 LiveMap[&MF.front()].insert(DFG.getLiveIns()); 864 865 if (Trace) { 866 // Dump the liveness map 867 for (MachineBasicBlock &B : MF) { 868 std::vector<RegisterRef> LV; 869 for (const MachineBasicBlock::RegisterMaskPair &LI : B.liveins()) 870 LV.push_back(RegisterRef(LI.PhysReg, LI.LaneMask)); 871 llvm::sort(LV); 872 dbgs() << printMBBReference(B) << "\t rec = {"; 873 for (auto I : LV) 874 dbgs() << ' ' << Print<RegisterRef>(I, DFG); 875 dbgs() << " }\n"; 876 //dbgs() << "\tcomp = " << Print<RegisterAggr>(LiveMap[&B], DFG) << '\n'; 877 878 LV.clear(); 879 const RegisterAggr &LG = LiveMap[&B]; 880 for (auto I = LG.rr_begin(), E = LG.rr_end(); I != E; ++I) 881 LV.push_back(*I); 882 llvm::sort(LV); 883 dbgs() << "\tcomp = {"; 884 for (auto I : LV) 885 dbgs() << ' ' << Print<RegisterRef>(I, DFG); 886 dbgs() << " }\n"; 887 888 } 889 } 890 } 891 892 void Liveness::resetLiveIns() { 893 for (auto &B : DFG.getMF()) { 894 // Remove all live-ins. 895 std::vector<unsigned> T; 896 for (const MachineBasicBlock::RegisterMaskPair &LI : B.liveins()) 897 T.push_back(LI.PhysReg); 898 for (auto I : T) 899 B.removeLiveIn(I); 900 // Add the newly computed live-ins. 901 const RegisterAggr &LiveIns = LiveMap[&B]; 902 for (const RegisterRef R : make_range(LiveIns.rr_begin(), LiveIns.rr_end())) 903 B.addLiveIn({MCPhysReg(R.Reg), R.Mask}); 904 } 905 } 906 907 void Liveness::resetKills() { 908 for (auto &B : DFG.getMF()) 909 resetKills(&B); 910 } 911 912 void Liveness::resetKills(MachineBasicBlock *B) { 913 auto CopyLiveIns = [this] (MachineBasicBlock *B, BitVector &LV) -> void { 914 for (auto I : B->liveins()) { 915 MCSubRegIndexIterator S(I.PhysReg, &TRI); 916 if (!S.isValid()) { 917 LV.set(I.PhysReg); 918 continue; 919 } 920 do { 921 LaneBitmask M = TRI.getSubRegIndexLaneMask(S.getSubRegIndex()); 922 if ((M & I.LaneMask).any()) 923 LV.set(S.getSubReg()); 924 ++S; 925 } while (S.isValid()); 926 } 927 }; 928 929 BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs()); 930 CopyLiveIns(B, LiveIn); 931 for (auto SI : B->successors()) 932 CopyLiveIns(SI, Live); 933 934 for (MachineInstr &MI : llvm::reverse(*B)) { 935 if (MI.isDebugInstr()) 936 continue; 937 938 MI.clearKillInfo(); 939 for (auto &Op : MI.operands()) { 940 // An implicit def of a super-register may not necessarily start a 941 // live range of it, since an implicit use could be used to keep parts 942 // of it live. Instead of analyzing the implicit operands, ignore 943 // implicit defs. 944 if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) 945 continue; 946 Register R = Op.getReg(); 947 if (!Register::isPhysicalRegister(R)) 948 continue; 949 for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR) 950 Live.reset(*SR); 951 } 952 for (auto &Op : MI.operands()) { 953 if (!Op.isReg() || !Op.isUse() || Op.isUndef()) 954 continue; 955 Register R = Op.getReg(); 956 if (!Register::isPhysicalRegister(R)) 957 continue; 958 bool IsLive = false; 959 for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) { 960 if (!Live[*AR]) 961 continue; 962 IsLive = true; 963 break; 964 } 965 if (!IsLive) 966 Op.setIsKill(true); 967 for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR) 968 Live.set(*SR); 969 } 970 } 971 } 972 973 // Helper function to obtain the basic block containing the reaching def 974 // of the given use. 975 MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const { 976 auto F = NBMap.find(RN); 977 if (F != NBMap.end()) 978 return F->second; 979 llvm_unreachable("Node id not in map"); 980 } 981 982 void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) { 983 // The LiveIn map, for each (physical) register, contains the set of live 984 // reaching defs of that register that are live on entry to the associated 985 // block. 986 987 // The summary of the traversal algorithm: 988 // 989 // R is live-in in B, if there exists a U(R), such that rdef(R) dom B 990 // and (U \in IDF(B) or B dom U). 991 // 992 // for (C : children) { 993 // LU = {} 994 // traverse(C, LU) 995 // LiveUses += LU 996 // } 997 // 998 // LiveUses -= Defs(B); 999 // LiveUses += UpwardExposedUses(B); 1000 // for (C : IIDF[B]) 1001 // for (U : LiveUses) 1002 // if (Rdef(U) dom C) 1003 // C.addLiveIn(U) 1004 // 1005 1006 // Go up the dominator tree (depth-first). 1007 MachineDomTreeNode *N = MDT.getNode(B); 1008 for (auto I : *N) { 1009 RefMap L; 1010 MachineBasicBlock *SB = I->getBlock(); 1011 traverse(SB, L); 1012 1013 for (auto S : L) 1014 LiveIn[S.first].insert(S.second.begin(), S.second.end()); 1015 } 1016 1017 if (Trace) { 1018 dbgs() << "\n-- " << printMBBReference(*B) << ": " << __func__ 1019 << " after recursion into: {"; 1020 for (auto I : *N) 1021 dbgs() << ' ' << I->getBlock()->getNumber(); 1022 dbgs() << " }\n"; 1023 dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; 1024 dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n'; 1025 } 1026 1027 // Add reaching defs of phi uses that are live on exit from this block. 1028 RefMap &PUs = PhiLOX[B]; 1029 for (auto &S : PUs) 1030 LiveIn[S.first].insert(S.second.begin(), S.second.end()); 1031 1032 if (Trace) { 1033 dbgs() << "after LOX\n"; 1034 dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; 1035 dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n'; 1036 } 1037 1038 // The LiveIn map at this point has all defs that are live-on-exit from B, 1039 // as if they were live-on-entry to B. First, we need to filter out all 1040 // defs that are present in this block. Then we will add reaching defs of 1041 // all upward-exposed uses. 1042 1043 // To filter out the defs, first make a copy of LiveIn, and then re-populate 1044 // LiveIn with the defs that should remain. 1045 RefMap LiveInCopy = LiveIn; 1046 LiveIn.clear(); 1047 1048 for (const std::pair<const RegisterId, NodeRefSet> &LE : LiveInCopy) { 1049 RegisterRef LRef(LE.first); 1050 NodeRefSet &NewDefs = LiveIn[LRef.Reg]; // To be filled. 1051 const NodeRefSet &OldDefs = LE.second; 1052 for (NodeRef OR : OldDefs) { 1053 // R is a def node that was live-on-exit 1054 auto DA = DFG.addr<DefNode*>(OR.first); 1055 NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG); 1056 NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG); 1057 if (B != BA.Addr->getCode()) { 1058 // Defs from a different block need to be preserved. Defs from this 1059 // block will need to be processed further, except for phi defs, the 1060 // liveness of which is handled through the PhiLON/PhiLOX maps. 1061 NewDefs.insert(OR); 1062 continue; 1063 } 1064 1065 // Defs from this block need to stop the liveness from being 1066 // propagated upwards. This only applies to non-preserving defs, 1067 // and to the parts of the register actually covered by those defs. 1068 // (Note that phi defs should always be preserving.) 1069 RegisterAggr RRs(PRI); 1070 LRef.Mask = OR.second; 1071 1072 if (!DFG.IsPreservingDef(DA)) { 1073 assert(!(IA.Addr->getFlags() & NodeAttrs::Phi)); 1074 // DA is a non-phi def that is live-on-exit from this block, and 1075 // that is also located in this block. LRef is a register ref 1076 // whose use this def reaches. If DA covers LRef, then no part 1077 // of LRef is exposed upwards.A 1078 if (RRs.insert(DA.Addr->getRegRef(DFG)).hasCoverOf(LRef)) 1079 continue; 1080 } 1081 1082 // DA itself was not sufficient to cover LRef. In general, it is 1083 // the last in a chain of aliased defs before the exit from this block. 1084 // There could be other defs in this block that are a part of that 1085 // chain. Check that now: accumulate the registers from these defs, 1086 // and if they all together cover LRef, it is not live-on-entry. 1087 for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) { 1088 // DefNode -> InstrNode -> BlockNode. 1089 NodeAddr<InstrNode*> ITA = TA.Addr->getOwner(DFG); 1090 NodeAddr<BlockNode*> BTA = ITA.Addr->getOwner(DFG); 1091 // Reaching defs are ordered in the upward direction. 1092 if (BTA.Addr->getCode() != B) { 1093 // We have reached past the beginning of B, and the accumulated 1094 // registers are not covering LRef. The first def from the 1095 // upward chain will be live. 1096 // Subtract all accumulated defs (RRs) from LRef. 1097 RegisterRef T = RRs.clearIn(LRef); 1098 assert(T); 1099 NewDefs.insert({TA.Id,T.Mask}); 1100 break; 1101 } 1102 1103 // TA is in B. Only add this def to the accumulated cover if it is 1104 // not preserving. 1105 if (!(TA.Addr->getFlags() & NodeAttrs::Preserving)) 1106 RRs.insert(TA.Addr->getRegRef(DFG)); 1107 // If this is enough to cover LRef, then stop. 1108 if (RRs.hasCoverOf(LRef)) 1109 break; 1110 } 1111 } 1112 } 1113 1114 emptify(LiveIn); 1115 1116 if (Trace) { 1117 dbgs() << "after defs in block\n"; 1118 dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; 1119 dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n'; 1120 } 1121 1122 // Scan the block for upward-exposed uses and add them to the tracking set. 1123 for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) { 1124 NodeAddr<InstrNode*> IA = I; 1125 if (IA.Addr->getKind() != NodeAttrs::Stmt) 1126 continue; 1127 for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) { 1128 if (UA.Addr->getFlags() & NodeAttrs::Undef) 1129 continue; 1130 RegisterRef RR = UA.Addr->getRegRef(DFG); 1131 for (NodeAddr<DefNode*> D : getAllReachingDefs(UA)) 1132 if (getBlockWithRef(D.Id) != B) 1133 LiveIn[RR.Reg].insert({D.Id,RR.Mask}); 1134 } 1135 } 1136 1137 if (Trace) { 1138 dbgs() << "after uses in block\n"; 1139 dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; 1140 dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n'; 1141 } 1142 1143 // Phi uses should not be propagated up the dominator tree, since they 1144 // are not dominated by their corresponding reaching defs. 1145 RegisterAggr &Local = LiveMap[B]; 1146 RefMap &LON = PhiLON[B]; 1147 for (auto &R : LON) { 1148 LaneBitmask M; 1149 for (auto P : R.second) 1150 M |= P.second; 1151 Local.insert(RegisterRef(R.first,M)); 1152 } 1153 1154 if (Trace) { 1155 dbgs() << "after phi uses in block\n"; 1156 dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; 1157 dbgs() << " Local: " << Print<RegisterAggr>(Local, DFG) << '\n'; 1158 } 1159 1160 for (auto C : IIDF[B]) { 1161 RegisterAggr &LiveC = LiveMap[C]; 1162 for (const std::pair<const RegisterId, NodeRefSet> &S : LiveIn) 1163 for (auto R : S.second) 1164 if (MDT.properlyDominates(getBlockWithRef(R.first), C)) 1165 LiveC.insert(RegisterRef(S.first, R.second)); 1166 } 1167 } 1168 1169 void Liveness::emptify(RefMap &M) { 1170 for (auto I = M.begin(), E = M.end(); I != E; ) 1171 I = I->second.empty() ? M.erase(I) : std::next(I); 1172 } 1173