xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/RDFLiveness.cpp (revision 8a272653d9fbd9fc37691c9aad6a05089b4ecb4d)
1 //===- RDFLiveness.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Computation of the liveness information from the data-flow graph.
10 //
11 // The main functionality of this code is to compute block live-in
12 // information. With the live-in information in place, the placement
13 // of kill flags can also be recalculated.
14 //
15 // The block live-in calculation is based on the ideas from the following
16 // publication:
17 //
18 // Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin.
19 // "Efficient Liveness Computation Using Merge Sets and DJ-Graphs."
20 // ACM Transactions on Architecture and Code Optimization, Association for
21 // Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance
22 // and Embedded Architectures and Compilers", 8 (4),
23 // <10.1145/2086696.2086706>. <hal-00647369>
24 //
25 #include "llvm/ADT/BitVector.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineDominanceFrontier.h"
30 #include "llvm/CodeGen/MachineDominators.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/RDFLiveness.h"
34 #include "llvm/CodeGen/RDFGraph.h"
35 #include "llvm/CodeGen/RDFRegisters.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/MC/LaneBitmask.h"
38 #include "llvm/MC/MCRegisterInfo.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <cstdint>
46 #include <iterator>
47 #include <map>
48 #include <utility>
49 #include <vector>
50 
51 using namespace llvm;
52 using namespace rdf;
53 
54 static cl::opt<unsigned> MaxRecNest("rdf-liveness-max-rec", cl::init(25),
55   cl::Hidden, cl::desc("Maximum recursion level"));
56 
57 namespace llvm {
58 namespace rdf {
59 
60   raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) {
61     OS << '{';
62     for (auto &I : P.Obj) {
63       OS << ' ' << printReg(I.first, &P.G.getTRI()) << '{';
64       for (auto J = I.second.begin(), E = I.second.end(); J != E; ) {
65         OS << Print<NodeId>(J->first, P.G) << PrintLaneMaskOpt(J->second);
66         if (++J != E)
67           OS << ',';
68       }
69       OS << '}';
70     }
71     OS << " }";
72     return OS;
73   }
74 
75 } // end namespace rdf
76 } // end namespace llvm
77 
78 // The order in the returned sequence is the order of reaching defs in the
79 // upward traversal: the first def is the closest to the given reference RefA,
80 // the next one is further up, and so on.
81 // The list ends at a reaching phi def, or when the reference from RefA is
82 // covered by the defs in the list (see FullChain).
83 // This function provides two modes of operation:
84 // (1) Returning the sequence of reaching defs for a particular reference
85 // node. This sequence will terminate at the first phi node [1].
86 // (2) Returning a partial sequence of reaching defs, where the final goal
87 // is to traverse past phi nodes to the actual defs arising from the code
88 // itself.
89 // In mode (2), the register reference for which the search was started
90 // may be different from the reference node RefA, for which this call was
91 // made, hence the argument RefRR, which holds the original register.
92 // Also, some definitions may have already been encountered in a previous
93 // call that will influence register covering. The register references
94 // already defined are passed in through DefRRs.
95 // In mode (1), the "continuation" considerations do not apply, and the
96 // RefRR is the same as the register in RefA, and the set DefRRs is empty.
97 //
98 // [1] It is possible for multiple phi nodes to be included in the returned
99 // sequence:
100 //   SubA = phi ...
101 //   SubB = phi ...
102 //   ...  = SuperAB(rdef:SubA), SuperAB"(rdef:SubB)
103 // However, these phi nodes are independent from one another in terms of
104 // the data-flow.
105 
106 NodeList Liveness::getAllReachingDefs(RegisterRef RefRR,
107       NodeAddr<RefNode*> RefA, bool TopShadows, bool FullChain,
108       const RegisterAggr &DefRRs) {
109   NodeList RDefs; // Return value.
110   SetVector<NodeId> DefQ;
111   SetVector<NodeId> Owners;
112 
113   // Dead defs will be treated as if they were live, since they are actually
114   // on the data-flow path. They cannot be ignored because even though they
115   // do not generate meaningful values, they still modify registers.
116 
117   // If the reference is undefined, there is nothing to do.
118   if (RefA.Addr->getFlags() & NodeAttrs::Undef)
119     return RDefs;
120 
121   // The initial queue should not have reaching defs for shadows. The
122   // whole point of a shadow is that it will have a reaching def that
123   // is not aliased to the reaching defs of the related shadows.
124   NodeId Start = RefA.Id;
125   auto SNA = DFG.addr<RefNode*>(Start);
126   if (NodeId RD = SNA.Addr->getReachingDef())
127     DefQ.insert(RD);
128   if (TopShadows) {
129     for (auto S : DFG.getRelatedRefs(RefA.Addr->getOwner(DFG), RefA))
130       if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
131         DefQ.insert(RD);
132   }
133 
134   // Collect all the reaching defs, going up until a phi node is encountered,
135   // or there are no more reaching defs. From this set, the actual set of
136   // reaching defs will be selected.
137   // The traversal upwards must go on until a covering def is encountered.
138   // It is possible that a collection of non-covering (individually) defs
139   // will be sufficient, but keep going until a covering one is found.
140   for (unsigned i = 0; i < DefQ.size(); ++i) {
141     auto TA = DFG.addr<DefNode*>(DefQ[i]);
142     if (TA.Addr->getFlags() & NodeAttrs::PhiRef)
143       continue;
144     // Stop at the covering/overwriting def of the initial register reference.
145     RegisterRef RR = TA.Addr->getRegRef(DFG);
146     if (!DFG.IsPreservingDef(TA))
147       if (RegisterAggr::isCoverOf(RR, RefRR, PRI))
148         continue;
149     // Get the next level of reaching defs. This will include multiple
150     // reaching defs for shadows.
151     for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA))
152       if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
153         DefQ.insert(RD);
154   }
155 
156   // Remove all non-phi defs that are not aliased to RefRR, and collect
157   // the owners of the remaining defs.
158   SetVector<NodeId> Defs;
159   for (NodeId N : DefQ) {
160     auto TA = DFG.addr<DefNode*>(N);
161     bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef;
162     if (!IsPhi && !PRI.alias(RefRR, TA.Addr->getRegRef(DFG)))
163       continue;
164     Defs.insert(TA.Id);
165     Owners.insert(TA.Addr->getOwner(DFG).Id);
166   }
167 
168   // Return the MachineBasicBlock containing a given instruction.
169   auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* {
170     if (IA.Addr->getKind() == NodeAttrs::Stmt)
171       return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent();
172     assert(IA.Addr->getKind() == NodeAttrs::Phi);
173     NodeAddr<PhiNode*> PA = IA;
174     NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG);
175     return BA.Addr->getCode();
176   };
177   // Less(A,B) iff instruction A is further down in the dominator tree than B.
178   auto Less = [&Block,this] (NodeId A, NodeId B) -> bool {
179     if (A == B)
180       return false;
181     auto OA = DFG.addr<InstrNode*>(A), OB = DFG.addr<InstrNode*>(B);
182     MachineBasicBlock *BA = Block(OA), *BB = Block(OB);
183     if (BA != BB)
184       return MDT.dominates(BB, BA);
185     // They are in the same block.
186     bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt;
187     bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt;
188     if (StmtA) {
189       if (!StmtB)   // OB is a phi and phis dominate statements.
190         return true;
191       MachineInstr *CA = NodeAddr<StmtNode*>(OA).Addr->getCode();
192       MachineInstr *CB = NodeAddr<StmtNode*>(OB).Addr->getCode();
193       // The order must be linear, so tie-break such equalities.
194       if (CA == CB)
195         return A < B;
196       return MDT.dominates(CB, CA);
197     } else {
198       // OA is a phi.
199       if (StmtB)
200         return false;
201       // Both are phis. There is no ordering between phis (in terms of
202       // the data-flow), so tie-break this via node id comparison.
203       return A < B;
204     }
205   };
206 
207   std::vector<NodeId> Tmp(Owners.begin(), Owners.end());
208   llvm::sort(Tmp, Less);
209 
210   // The vector is a list of instructions, so that defs coming from
211   // the same instruction don't need to be artificially ordered.
212   // Then, when computing the initial segment, and iterating over an
213   // instruction, pick the defs that contribute to the covering (i.e. is
214   // not covered by previously added defs). Check the defs individually,
215   // i.e. first check each def if is covered or not (without adding them
216   // to the tracking set), and then add all the selected ones.
217 
218   // The reason for this is this example:
219   // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes).
220   // *d3<C>              If A \incl BuC, and B \incl AuC, then *d2 would be
221   //                     covered if we added A first, and A would be covered
222   //                     if we added B first.
223 
224   RegisterAggr RRs(DefRRs);
225 
226   auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool {
227     return TA.Addr->getKind() == NodeAttrs::Def &&
228            Defs.count(TA.Id);
229   };
230   for (NodeId T : Tmp) {
231     if (!FullChain && RRs.hasCoverOf(RefRR))
232       break;
233     auto TA = DFG.addr<InstrNode*>(T);
234     bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA);
235     NodeList Ds;
236     for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) {
237       RegisterRef QR = DA.Addr->getRegRef(DFG);
238       // Add phi defs even if they are covered by subsequent defs. This is
239       // for cases where the reached use is not covered by any of the defs
240       // encountered so far: the phi def is needed to expose the liveness
241       // of that use to the entry of the block.
242       // Example:
243       //   phi d1<R3>(,d2,), ...  Phi def d1 is covered by d2.
244       //   d2<R3>(d1,,u3), ...
245       //   ..., u3<D1>(d2)        This use needs to be live on entry.
246       if (FullChain || IsPhi || !RRs.hasCoverOf(QR))
247         Ds.push_back(DA);
248     }
249     RDefs.insert(RDefs.end(), Ds.begin(), Ds.end());
250     for (NodeAddr<DefNode*> DA : Ds) {
251       // When collecting a full chain of definitions, do not consider phi
252       // defs to actually define a register.
253       uint16_t Flags = DA.Addr->getFlags();
254       if (!FullChain || !(Flags & NodeAttrs::PhiRef))
255         if (!(Flags & NodeAttrs::Preserving)) // Don't care about Undef here.
256           RRs.insert(DA.Addr->getRegRef(DFG));
257     }
258   }
259 
260   auto DeadP = [](const NodeAddr<DefNode*> DA) -> bool {
261     return DA.Addr->getFlags() & NodeAttrs::Dead;
262   };
263   RDefs.resize(std::distance(RDefs.begin(), llvm::remove_if(RDefs, DeadP)));
264 
265   return RDefs;
266 }
267 
268 std::pair<NodeSet,bool>
269 Liveness::getAllReachingDefsRec(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
270       NodeSet &Visited, const NodeSet &Defs) {
271   return getAllReachingDefsRecImpl(RefRR, RefA, Visited, Defs, 0, MaxRecNest);
272 }
273 
274 std::pair<NodeSet,bool>
275 Liveness::getAllReachingDefsRecImpl(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
276       NodeSet &Visited, const NodeSet &Defs, unsigned Nest, unsigned MaxNest) {
277   if (Nest > MaxNest)
278     return { NodeSet(), false };
279   // Collect all defined registers. Do not consider phis to be defining
280   // anything, only collect "real" definitions.
281   RegisterAggr DefRRs(PRI);
282   for (NodeId D : Defs) {
283     const auto DA = DFG.addr<const DefNode*>(D);
284     if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
285       DefRRs.insert(DA.Addr->getRegRef(DFG));
286   }
287 
288   NodeList RDs = getAllReachingDefs(RefRR, RefA, false, true, DefRRs);
289   if (RDs.empty())
290     return { Defs, true };
291 
292   // Make a copy of the preexisting definitions and add the newly found ones.
293   NodeSet TmpDefs = Defs;
294   for (NodeAddr<NodeBase*> R : RDs)
295     TmpDefs.insert(R.Id);
296 
297   NodeSet Result = Defs;
298 
299   for (NodeAddr<DefNode*> DA : RDs) {
300     Result.insert(DA.Id);
301     if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
302       continue;
303     NodeAddr<PhiNode*> PA = DA.Addr->getOwner(DFG);
304     if (Visited.count(PA.Id))
305       continue;
306     Visited.insert(PA.Id);
307     // Go over all phi uses and get the reaching defs for each use.
308     for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
309       const auto &T = getAllReachingDefsRecImpl(RefRR, U, Visited, TmpDefs,
310                                                 Nest+1, MaxNest);
311       if (!T.second)
312         return { T.first, false };
313       Result.insert(T.first.begin(), T.first.end());
314     }
315   }
316 
317   return { Result, true };
318 }
319 
320 /// Find the nearest ref node aliased to RefRR, going upwards in the data
321 /// flow, starting from the instruction immediately preceding Inst.
322 NodeAddr<RefNode*> Liveness::getNearestAliasedRef(RegisterRef RefRR,
323       NodeAddr<InstrNode*> IA) {
324   NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
325   NodeList Ins = BA.Addr->members(DFG);
326   NodeId FindId = IA.Id;
327   auto E = Ins.rend();
328   auto B = std::find_if(Ins.rbegin(), E,
329                         [FindId] (const NodeAddr<InstrNode*> T) {
330                           return T.Id == FindId;
331                         });
332   // Do not scan IA (which is what B would point to).
333   if (B != E)
334     ++B;
335 
336   do {
337     // Process the range of instructions from B to E.
338     for (NodeAddr<InstrNode*> I : make_range(B, E)) {
339       NodeList Refs = I.Addr->members(DFG);
340       NodeAddr<RefNode*> Clob, Use;
341       // Scan all the refs in I aliased to RefRR, and return the one that
342       // is the closest to the output of I, i.e. def > clobber > use.
343       for (NodeAddr<RefNode*> R : Refs) {
344         if (!PRI.alias(R.Addr->getRegRef(DFG), RefRR))
345           continue;
346         if (DFG.IsDef(R)) {
347           // If it's a non-clobbering def, just return it.
348           if (!(R.Addr->getFlags() & NodeAttrs::Clobbering))
349             return R;
350           Clob = R;
351         } else {
352           Use = R;
353         }
354       }
355       if (Clob.Id != 0)
356         return Clob;
357       if (Use.Id != 0)
358         return Use;
359     }
360 
361     // Go up to the immediate dominator, if any.
362     MachineBasicBlock *BB = BA.Addr->getCode();
363     BA = NodeAddr<BlockNode*>();
364     if (MachineDomTreeNode *N = MDT.getNode(BB)) {
365       if ((N = N->getIDom()))
366         BA = DFG.findBlock(N->getBlock());
367     }
368     if (!BA.Id)
369       break;
370 
371     Ins = BA.Addr->members(DFG);
372     B = Ins.rbegin();
373     E = Ins.rend();
374   } while (true);
375 
376   return NodeAddr<RefNode*>();
377 }
378 
379 NodeSet Liveness::getAllReachedUses(RegisterRef RefRR,
380       NodeAddr<DefNode*> DefA, const RegisterAggr &DefRRs) {
381   NodeSet Uses;
382 
383   // If the original register is already covered by all the intervening
384   // defs, no more uses can be reached.
385   if (DefRRs.hasCoverOf(RefRR))
386     return Uses;
387 
388   // Add all directly reached uses.
389   // If the def is dead, it does not provide a value for any use.
390   bool IsDead = DefA.Addr->getFlags() & NodeAttrs::Dead;
391   NodeId U = !IsDead ? DefA.Addr->getReachedUse() : 0;
392   while (U != 0) {
393     auto UA = DFG.addr<UseNode*>(U);
394     if (!(UA.Addr->getFlags() & NodeAttrs::Undef)) {
395       RegisterRef UR = UA.Addr->getRegRef(DFG);
396       if (PRI.alias(RefRR, UR) && !DefRRs.hasCoverOf(UR))
397         Uses.insert(U);
398     }
399     U = UA.Addr->getSibling();
400   }
401 
402   // Traverse all reached defs. This time dead defs cannot be ignored.
403   for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) {
404     auto DA = DFG.addr<DefNode*>(D);
405     NextD = DA.Addr->getSibling();
406     RegisterRef DR = DA.Addr->getRegRef(DFG);
407     // If this def is already covered, it cannot reach anything new.
408     // Similarly, skip it if it is not aliased to the interesting register.
409     if (DefRRs.hasCoverOf(DR) || !PRI.alias(RefRR, DR))
410       continue;
411     NodeSet T;
412     if (DFG.IsPreservingDef(DA)) {
413       // If it is a preserving def, do not update the set of intervening defs.
414       T = getAllReachedUses(RefRR, DA, DefRRs);
415     } else {
416       RegisterAggr NewDefRRs = DefRRs;
417       NewDefRRs.insert(DR);
418       T = getAllReachedUses(RefRR, DA, NewDefRRs);
419     }
420     Uses.insert(T.begin(), T.end());
421   }
422   return Uses;
423 }
424 
425 void Liveness::computePhiInfo() {
426   RealUseMap.clear();
427 
428   NodeList Phis;
429   NodeAddr<FuncNode*> FA = DFG.getFunc();
430   NodeList Blocks = FA.Addr->members(DFG);
431   for (NodeAddr<BlockNode*> BA : Blocks) {
432     auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
433     Phis.insert(Phis.end(), Ps.begin(), Ps.end());
434   }
435 
436   // phi use -> (map: reaching phi -> set of registers defined in between)
437   std::map<NodeId,std::map<NodeId,RegisterAggr>> PhiUp;
438   std::vector<NodeId> PhiUQ;  // Work list of phis for upward propagation.
439   std::map<NodeId,RegisterAggr> PhiDRs;  // Phi -> registers defined by it.
440 
441   // Go over all phis.
442   for (NodeAddr<PhiNode*> PhiA : Phis) {
443     // Go over all defs and collect the reached uses that are non-phi uses
444     // (i.e. the "real uses").
445     RefMap &RealUses = RealUseMap[PhiA.Id];
446     NodeList PhiRefs = PhiA.Addr->members(DFG);
447 
448     // Have a work queue of defs whose reached uses need to be found.
449     // For each def, add to the queue all reached (non-phi) defs.
450     SetVector<NodeId> DefQ;
451     NodeSet PhiDefs;
452     RegisterAggr DRs(PRI);
453     for (NodeAddr<RefNode*> R : PhiRefs) {
454       if (!DFG.IsRef<NodeAttrs::Def>(R))
455         continue;
456       DRs.insert(R.Addr->getRegRef(DFG));
457       DefQ.insert(R.Id);
458       PhiDefs.insert(R.Id);
459     }
460     PhiDRs.insert(std::make_pair(PhiA.Id, DRs));
461 
462     // Collect the super-set of all possible reached uses. This set will
463     // contain all uses reached from this phi, either directly from the
464     // phi defs, or (recursively) via non-phi defs reached by the phi defs.
465     // This set of uses will later be trimmed to only contain these uses that
466     // are actually reached by the phi defs.
467     for (unsigned i = 0; i < DefQ.size(); ++i) {
468       NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]);
469       // Visit all reached uses. Phi defs should not really have the "dead"
470       // flag set, but check it anyway for consistency.
471       bool IsDead = DA.Addr->getFlags() & NodeAttrs::Dead;
472       NodeId UN = !IsDead ? DA.Addr->getReachedUse() : 0;
473       while (UN != 0) {
474         NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN);
475         uint16_t F = A.Addr->getFlags();
476         if ((F & (NodeAttrs::Undef | NodeAttrs::PhiRef)) == 0) {
477           RegisterRef R = PRI.normalize(A.Addr->getRegRef(DFG));
478           RealUses[R.Reg].insert({A.Id,R.Mask});
479         }
480         UN = A.Addr->getSibling();
481       }
482       // Visit all reached defs, and add them to the queue. These defs may
483       // override some of the uses collected here, but that will be handled
484       // later.
485       NodeId DN = DA.Addr->getReachedDef();
486       while (DN != 0) {
487         NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN);
488         for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) {
489           uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags();
490           // Must traverse the reached-def chain. Consider:
491           //   def(D0) -> def(R0) -> def(R0) -> use(D0)
492           // The reachable use of D0 passes through a def of R0.
493           if (!(Flags & NodeAttrs::PhiRef))
494             DefQ.insert(T.Id);
495         }
496         DN = A.Addr->getSibling();
497       }
498     }
499     // Filter out these uses that appear to be reachable, but really
500     // are not. For example:
501     //
502     // R1:0 =          d1
503     //      = R1:0     u2     Reached by d1.
504     //   R0 =          d3
505     //      = R1:0     u4     Still reached by d1: indirectly through
506     //                        the def d3.
507     //   R1 =          d5
508     //      = R1:0     u6     Not reached by d1 (covered collectively
509     //                        by d3 and d5), but following reached
510     //                        defs and uses from d1 will lead here.
511     for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) {
512       // For each reached register UI->first, there is a set UI->second, of
513       // uses of it. For each such use, check if it is reached by this phi,
514       // i.e. check if the set of its reaching uses intersects the set of
515       // this phi's defs.
516       NodeRefSet Uses = UI->second;
517       UI->second.clear();
518       for (std::pair<NodeId,LaneBitmask> I : Uses) {
519         auto UA = DFG.addr<UseNode*>(I.first);
520         // Undef flag is checked above.
521         assert((UA.Addr->getFlags() & NodeAttrs::Undef) == 0);
522         RegisterRef R(UI->first, I.second);
523         // Calculate the exposed part of the reached use.
524         RegisterAggr Covered(PRI);
525         for (NodeAddr<DefNode*> DA : getAllReachingDefs(R, UA)) {
526           if (PhiDefs.count(DA.Id))
527             break;
528           Covered.insert(DA.Addr->getRegRef(DFG));
529         }
530         if (RegisterRef RC = Covered.clearIn(R)) {
531           // We are updating the map for register UI->first, so we need
532           // to map RC to be expressed in terms of that register.
533           RegisterRef S = PRI.mapTo(RC, UI->first);
534           UI->second.insert({I.first, S.Mask});
535         }
536       }
537       UI = UI->second.empty() ? RealUses.erase(UI) : std::next(UI);
538     }
539 
540     // If this phi reaches some "real" uses, add it to the queue for upward
541     // propagation.
542     if (!RealUses.empty())
543       PhiUQ.push_back(PhiA.Id);
544 
545     // Go over all phi uses and check if the reaching def is another phi.
546     // Collect the phis that are among the reaching defs of these uses.
547     // While traversing the list of reaching defs for each phi use, accumulate
548     // the set of registers defined between this phi (PhiA) and the owner phi
549     // of the reaching def.
550     NodeSet SeenUses;
551 
552     for (auto I : PhiRefs) {
553       if (!DFG.IsRef<NodeAttrs::Use>(I) || SeenUses.count(I.Id))
554         continue;
555       NodeAddr<PhiUseNode*> PUA = I;
556       if (PUA.Addr->getReachingDef() == 0)
557         continue;
558 
559       RegisterRef UR = PUA.Addr->getRegRef(DFG);
560       NodeList Ds = getAllReachingDefs(UR, PUA, true, false, NoRegs);
561       RegisterAggr DefRRs(PRI);
562 
563       for (NodeAddr<DefNode*> D : Ds) {
564         if (D.Addr->getFlags() & NodeAttrs::PhiRef) {
565           NodeId RP = D.Addr->getOwner(DFG).Id;
566           std::map<NodeId,RegisterAggr> &M = PhiUp[PUA.Id];
567           auto F = M.find(RP);
568           if (F == M.end())
569             M.insert(std::make_pair(RP, DefRRs));
570           else
571             F->second.insert(DefRRs);
572         }
573         DefRRs.insert(D.Addr->getRegRef(DFG));
574       }
575 
576       for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PhiA, PUA))
577         SeenUses.insert(T.Id);
578     }
579   }
580 
581   if (Trace) {
582     dbgs() << "Phi-up-to-phi map with intervening defs:\n";
583     for (auto I : PhiUp) {
584       dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {";
585       for (auto R : I.second)
586         dbgs() << ' ' << Print<NodeId>(R.first, DFG)
587                << Print<RegisterAggr>(R.second, DFG);
588       dbgs() << " }\n";
589     }
590   }
591 
592   // Propagate the reached registers up in the phi chain.
593   //
594   // The following type of situation needs careful handling:
595   //
596   //   phi d1<R1:0>  (1)
597   //        |
598   //   ... d2<R1>
599   //        |
600   //   phi u3<R1:0>  (2)
601   //        |
602   //   ... u4<R1>
603   //
604   // The phi node (2) defines a register pair R1:0, and reaches a "real"
605   // use u4 of just R1. The same phi node is also known to reach (upwards)
606   // the phi node (1). However, the use u4 is not reached by phi (1),
607   // because of the intervening definition d2 of R1. The data flow between
608   // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0.
609   //
610   // When propagating uses up the phi chains, get the all reaching defs
611   // for a given phi use, and traverse the list until the propagated ref
612   // is covered, or until reaching the final phi. Only assume that the
613   // reference reaches the phi in the latter case.
614 
615   for (unsigned i = 0; i < PhiUQ.size(); ++i) {
616     auto PA = DFG.addr<PhiNode*>(PhiUQ[i]);
617     NodeList PUs = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG);
618     RefMap &RUM = RealUseMap[PA.Id];
619 
620     for (NodeAddr<UseNode*> UA : PUs) {
621       std::map<NodeId,RegisterAggr> &PUM = PhiUp[UA.Id];
622       RegisterRef UR = PRI.normalize(UA.Addr->getRegRef(DFG));
623       for (const std::pair<const NodeId, RegisterAggr> &P : PUM) {
624         bool Changed = false;
625         const RegisterAggr &MidDefs = P.second;
626 
627         // Collect the set PropUp of uses that are reached by the current
628         // phi PA, and are not covered by any intervening def between the
629         // currently visited use UA and the upward phi P.
630 
631         if (MidDefs.hasCoverOf(UR))
632           continue;
633 
634         // General algorithm:
635         //   for each (R,U) : U is use node of R, U is reached by PA
636         //     if MidDefs does not cover (R,U)
637         //       then add (R-MidDefs,U) to RealUseMap[P]
638         //
639         for (const std::pair<const RegisterId, NodeRefSet> &T : RUM) {
640           RegisterRef R(T.first);
641           // The current phi (PA) could be a phi for a regmask. It could
642           // reach a whole variety of uses that are not related to the
643           // specific upward phi (P.first).
644           const RegisterAggr &DRs = PhiDRs.at(P.first);
645           if (!DRs.hasAliasOf(R))
646             continue;
647           R = PRI.mapTo(DRs.intersectWith(R), T.first);
648           for (std::pair<NodeId,LaneBitmask> V : T.second) {
649             LaneBitmask M = R.Mask & V.second;
650             if (M.none())
651               continue;
652             if (RegisterRef SS = MidDefs.clearIn(RegisterRef(R.Reg, M))) {
653               NodeRefSet &RS = RealUseMap[P.first][SS.Reg];
654               Changed |= RS.insert({V.first,SS.Mask}).second;
655             }
656           }
657         }
658 
659         if (Changed)
660           PhiUQ.push_back(P.first);
661       }
662     }
663   }
664 
665   if (Trace) {
666     dbgs() << "Real use map:\n";
667     for (auto I : RealUseMap) {
668       dbgs() << "phi " << Print<NodeId>(I.first, DFG);
669       NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first);
670       NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG);
671       if (!Ds.empty()) {
672         RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef(DFG);
673         dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>';
674       } else {
675         dbgs() << "<noreg>";
676       }
677       dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n';
678     }
679   }
680 }
681 
682 void Liveness::computeLiveIns() {
683   // Populate the node-to-block map. This speeds up the calculations
684   // significantly.
685   NBMap.clear();
686   for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
687     MachineBasicBlock *BB = BA.Addr->getCode();
688     for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
689       for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
690         NBMap.insert(std::make_pair(RA.Id, BB));
691       NBMap.insert(std::make_pair(IA.Id, BB));
692     }
693   }
694 
695   MachineFunction &MF = DFG.getMF();
696 
697   // Compute IDF first, then the inverse.
698   decltype(IIDF) IDF;
699   for (MachineBasicBlock &B : MF) {
700     auto F1 = MDF.find(&B);
701     if (F1 == MDF.end())
702       continue;
703     SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end());
704     for (unsigned i = 0; i < IDFB.size(); ++i) {
705       auto F2 = MDF.find(IDFB[i]);
706       if (F2 != MDF.end())
707         IDFB.insert(F2->second.begin(), F2->second.end());
708     }
709     // Add B to the IDF(B). This will put B in the IIDF(B).
710     IDFB.insert(&B);
711     IDF[&B].insert(IDFB.begin(), IDFB.end());
712   }
713 
714   for (auto I : IDF)
715     for (auto S : I.second)
716       IIDF[S].insert(I.first);
717 
718   computePhiInfo();
719 
720   NodeAddr<FuncNode*> FA = DFG.getFunc();
721   NodeList Blocks = FA.Addr->members(DFG);
722 
723   // Build the phi live-on-entry map.
724   for (NodeAddr<BlockNode*> BA : Blocks) {
725     MachineBasicBlock *MB = BA.Addr->getCode();
726     RefMap &LON = PhiLON[MB];
727     for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG))
728       for (const RefMap::value_type &S : RealUseMap[P.Id])
729         LON[S.first].insert(S.second.begin(), S.second.end());
730   }
731 
732   if (Trace) {
733     dbgs() << "Phi live-on-entry map:\n";
734     for (auto &I : PhiLON)
735       dbgs() << "block #" << I.first->getNumber() << " -> "
736              << Print<RefMap>(I.second, DFG) << '\n';
737   }
738 
739   // Build the phi live-on-exit map. Each phi node has some set of reached
740   // "real" uses. Propagate this set backwards into the block predecessors
741   // through the reaching defs of the corresponding phi uses.
742   for (NodeAddr<BlockNode*> BA : Blocks) {
743     NodeList Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
744     for (NodeAddr<PhiNode*> PA : Phis) {
745       RefMap &RUs = RealUseMap[PA.Id];
746       if (RUs.empty())
747         continue;
748 
749       NodeSet SeenUses;
750       for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
751         if (!SeenUses.insert(U.Id).second)
752           continue;
753         NodeAddr<PhiUseNode*> PUA = U;
754         if (PUA.Addr->getReachingDef() == 0)
755           continue;
756 
757         // Each phi has some set (possibly empty) of reached "real" uses,
758         // that is, uses that are part of the compiled program. Such a use
759         // may be located in some farther block, but following a chain of
760         // reaching defs will eventually lead to this phi.
761         // Any chain of reaching defs may fork at a phi node, but there
762         // will be a path upwards that will lead to this phi. Now, this
763         // chain will need to fork at this phi, since some of the reached
764         // uses may have definitions joining in from multiple predecessors.
765         // For each reached "real" use, identify the set of reaching defs
766         // coming from each predecessor P, and add them to PhiLOX[P].
767         //
768         auto PrA = DFG.addr<BlockNode*>(PUA.Addr->getPredecessor());
769         RefMap &LOX = PhiLOX[PrA.Addr->getCode()];
770 
771         for (const std::pair<const RegisterId, NodeRefSet> &RS : RUs) {
772           // We need to visit each individual use.
773           for (std::pair<NodeId,LaneBitmask> P : RS.second) {
774             // Create a register ref corresponding to the use, and find
775             // all reaching defs starting from the phi use, and treating
776             // all related shadows as a single use cluster.
777             RegisterRef S(RS.first, P.second);
778             NodeList Ds = getAllReachingDefs(S, PUA, true, false, NoRegs);
779             for (NodeAddr<DefNode*> D : Ds) {
780               // Calculate the mask corresponding to the visited def.
781               RegisterAggr TA(PRI);
782               TA.insert(D.Addr->getRegRef(DFG)).intersect(S);
783               LaneBitmask TM = TA.makeRegRef().Mask;
784               LOX[S.Reg].insert({D.Id, TM});
785             }
786           }
787         }
788 
789         for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PA, PUA))
790           SeenUses.insert(T.Id);
791       }  // for U : phi uses
792     }  // for P : Phis
793   }  // for B : Blocks
794 
795   if (Trace) {
796     dbgs() << "Phi live-on-exit map:\n";
797     for (auto &I : PhiLOX)
798       dbgs() << "block #" << I.first->getNumber() << " -> "
799              << Print<RefMap>(I.second, DFG) << '\n';
800   }
801 
802   RefMap LiveIn;
803   traverse(&MF.front(), LiveIn);
804 
805   // Add function live-ins to the live-in set of the function entry block.
806   LiveMap[&MF.front()].insert(DFG.getLiveIns());
807 
808   if (Trace) {
809     // Dump the liveness map
810     for (MachineBasicBlock &B : MF) {
811       std::vector<RegisterRef> LV;
812       for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
813         LV.push_back(RegisterRef(I->PhysReg, I->LaneMask));
814       llvm::sort(LV);
815       dbgs() << printMBBReference(B) << "\t rec = {";
816       for (auto I : LV)
817         dbgs() << ' ' << Print<RegisterRef>(I, DFG);
818       dbgs() << " }\n";
819       //dbgs() << "\tcomp = " << Print<RegisterAggr>(LiveMap[&B], DFG) << '\n';
820 
821       LV.clear();
822       const RegisterAggr &LG = LiveMap[&B];
823       for (auto I = LG.rr_begin(), E = LG.rr_end(); I != E; ++I)
824         LV.push_back(*I);
825       llvm::sort(LV);
826       dbgs() << "\tcomp = {";
827       for (auto I : LV)
828         dbgs() << ' ' << Print<RegisterRef>(I, DFG);
829       dbgs() << " }\n";
830 
831     }
832   }
833 }
834 
835 void Liveness::resetLiveIns() {
836   for (auto &B : DFG.getMF()) {
837     // Remove all live-ins.
838     std::vector<unsigned> T;
839     for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
840       T.push_back(I->PhysReg);
841     for (auto I : T)
842       B.removeLiveIn(I);
843     // Add the newly computed live-ins.
844     const RegisterAggr &LiveIns = LiveMap[&B];
845     for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
846       RegisterRef R = *I;
847       B.addLiveIn({MCPhysReg(R.Reg), R.Mask});
848     }
849   }
850 }
851 
852 void Liveness::resetKills() {
853   for (auto &B : DFG.getMF())
854     resetKills(&B);
855 }
856 
857 void Liveness::resetKills(MachineBasicBlock *B) {
858   auto CopyLiveIns = [this] (MachineBasicBlock *B, BitVector &LV) -> void {
859     for (auto I : B->liveins()) {
860       MCSubRegIndexIterator S(I.PhysReg, &TRI);
861       if (!S.isValid()) {
862         LV.set(I.PhysReg);
863         continue;
864       }
865       do {
866         LaneBitmask M = TRI.getSubRegIndexLaneMask(S.getSubRegIndex());
867         if ((M & I.LaneMask).any())
868           LV.set(S.getSubReg());
869         ++S;
870       } while (S.isValid());
871     }
872   };
873 
874   BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs());
875   CopyLiveIns(B, LiveIn);
876   for (auto SI : B->successors())
877     CopyLiveIns(SI, Live);
878 
879   for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
880     MachineInstr *MI = &*I;
881     if (MI->isDebugInstr())
882       continue;
883 
884     MI->clearKillInfo();
885     for (auto &Op : MI->operands()) {
886       // An implicit def of a super-register may not necessarily start a
887       // live range of it, since an implicit use could be used to keep parts
888       // of it live. Instead of analyzing the implicit operands, ignore
889       // implicit defs.
890       if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
891         continue;
892       Register R = Op.getReg();
893       if (!Register::isPhysicalRegister(R))
894         continue;
895       for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
896         Live.reset(*SR);
897     }
898     for (auto &Op : MI->operands()) {
899       if (!Op.isReg() || !Op.isUse() || Op.isUndef())
900         continue;
901       Register R = Op.getReg();
902       if (!Register::isPhysicalRegister(R))
903         continue;
904       bool IsLive = false;
905       for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) {
906         if (!Live[*AR])
907           continue;
908         IsLive = true;
909         break;
910       }
911       if (!IsLive)
912         Op.setIsKill(true);
913       for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
914         Live.set(*SR);
915     }
916   }
917 }
918 
919 // Helper function to obtain the basic block containing the reaching def
920 // of the given use.
921 MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const {
922   auto F = NBMap.find(RN);
923   if (F != NBMap.end())
924     return F->second;
925   llvm_unreachable("Node id not in map");
926 }
927 
928 void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) {
929   // The LiveIn map, for each (physical) register, contains the set of live
930   // reaching defs of that register that are live on entry to the associated
931   // block.
932 
933   // The summary of the traversal algorithm:
934   //
935   // R is live-in in B, if there exists a U(R), such that rdef(R) dom B
936   // and (U \in IDF(B) or B dom U).
937   //
938   // for (C : children) {
939   //   LU = {}
940   //   traverse(C, LU)
941   //   LiveUses += LU
942   // }
943   //
944   // LiveUses -= Defs(B);
945   // LiveUses += UpwardExposedUses(B);
946   // for (C : IIDF[B])
947   //   for (U : LiveUses)
948   //     if (Rdef(U) dom C)
949   //       C.addLiveIn(U)
950   //
951 
952   // Go up the dominator tree (depth-first).
953   MachineDomTreeNode *N = MDT.getNode(B);
954   for (auto I : *N) {
955     RefMap L;
956     MachineBasicBlock *SB = I->getBlock();
957     traverse(SB, L);
958 
959     for (auto S : L)
960       LiveIn[S.first].insert(S.second.begin(), S.second.end());
961   }
962 
963   if (Trace) {
964     dbgs() << "\n-- " << printMBBReference(*B) << ": " << __func__
965            << " after recursion into: {";
966     for (auto I : *N)
967       dbgs() << ' ' << I->getBlock()->getNumber();
968     dbgs() << " }\n";
969     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
970     dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
971   }
972 
973   // Add reaching defs of phi uses that are live on exit from this block.
974   RefMap &PUs = PhiLOX[B];
975   for (auto &S : PUs)
976     LiveIn[S.first].insert(S.second.begin(), S.second.end());
977 
978   if (Trace) {
979     dbgs() << "after LOX\n";
980     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
981     dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
982   }
983 
984   // The LiveIn map at this point has all defs that are live-on-exit from B,
985   // as if they were live-on-entry to B. First, we need to filter out all
986   // defs that are present in this block. Then we will add reaching defs of
987   // all upward-exposed uses.
988 
989   // To filter out the defs, first make a copy of LiveIn, and then re-populate
990   // LiveIn with the defs that should remain.
991   RefMap LiveInCopy = LiveIn;
992   LiveIn.clear();
993 
994   for (const std::pair<const RegisterId, NodeRefSet> &LE : LiveInCopy) {
995     RegisterRef LRef(LE.first);
996     NodeRefSet &NewDefs = LiveIn[LRef.Reg]; // To be filled.
997     const NodeRefSet &OldDefs = LE.second;
998     for (NodeRef OR : OldDefs) {
999       // R is a def node that was live-on-exit
1000       auto DA = DFG.addr<DefNode*>(OR.first);
1001       NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
1002       NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
1003       if (B != BA.Addr->getCode()) {
1004         // Defs from a different block need to be preserved. Defs from this
1005         // block will need to be processed further, except for phi defs, the
1006         // liveness of which is handled through the PhiLON/PhiLOX maps.
1007         NewDefs.insert(OR);
1008         continue;
1009       }
1010 
1011       // Defs from this block need to stop the liveness from being
1012       // propagated upwards. This only applies to non-preserving defs,
1013       // and to the parts of the register actually covered by those defs.
1014       // (Note that phi defs should always be preserving.)
1015       RegisterAggr RRs(PRI);
1016       LRef.Mask = OR.second;
1017 
1018       if (!DFG.IsPreservingDef(DA)) {
1019         assert(!(IA.Addr->getFlags() & NodeAttrs::Phi));
1020         // DA is a non-phi def that is live-on-exit from this block, and
1021         // that is also located in this block. LRef is a register ref
1022         // whose use this def reaches. If DA covers LRef, then no part
1023         // of LRef is exposed upwards.A
1024         if (RRs.insert(DA.Addr->getRegRef(DFG)).hasCoverOf(LRef))
1025           continue;
1026       }
1027 
1028       // DA itself was not sufficient to cover LRef. In general, it is
1029       // the last in a chain of aliased defs before the exit from this block.
1030       // There could be other defs in this block that are a part of that
1031       // chain. Check that now: accumulate the registers from these defs,
1032       // and if they all together cover LRef, it is not live-on-entry.
1033       for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) {
1034         // DefNode -> InstrNode -> BlockNode.
1035         NodeAddr<InstrNode*> ITA = TA.Addr->getOwner(DFG);
1036         NodeAddr<BlockNode*> BTA = ITA.Addr->getOwner(DFG);
1037         // Reaching defs are ordered in the upward direction.
1038         if (BTA.Addr->getCode() != B) {
1039           // We have reached past the beginning of B, and the accumulated
1040           // registers are not covering LRef. The first def from the
1041           // upward chain will be live.
1042           // Subtract all accumulated defs (RRs) from LRef.
1043           RegisterRef T = RRs.clearIn(LRef);
1044           assert(T);
1045           NewDefs.insert({TA.Id,T.Mask});
1046           break;
1047         }
1048 
1049         // TA is in B. Only add this def to the accumulated cover if it is
1050         // not preserving.
1051         if (!(TA.Addr->getFlags() & NodeAttrs::Preserving))
1052           RRs.insert(TA.Addr->getRegRef(DFG));
1053         // If this is enough to cover LRef, then stop.
1054         if (RRs.hasCoverOf(LRef))
1055           break;
1056       }
1057     }
1058   }
1059 
1060   emptify(LiveIn);
1061 
1062   if (Trace) {
1063     dbgs() << "after defs in block\n";
1064     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1065     dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
1066   }
1067 
1068   // Scan the block for upward-exposed uses and add them to the tracking set.
1069   for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) {
1070     NodeAddr<InstrNode*> IA = I;
1071     if (IA.Addr->getKind() != NodeAttrs::Stmt)
1072       continue;
1073     for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
1074       if (UA.Addr->getFlags() & NodeAttrs::Undef)
1075         continue;
1076       RegisterRef RR = PRI.normalize(UA.Addr->getRegRef(DFG));
1077       for (NodeAddr<DefNode*> D : getAllReachingDefs(UA))
1078         if (getBlockWithRef(D.Id) != B)
1079           LiveIn[RR.Reg].insert({D.Id,RR.Mask});
1080     }
1081   }
1082 
1083   if (Trace) {
1084     dbgs() << "after uses in block\n";
1085     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1086     dbgs() << "  Local:  " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
1087   }
1088 
1089   // Phi uses should not be propagated up the dominator tree, since they
1090   // are not dominated by their corresponding reaching defs.
1091   RegisterAggr &Local = LiveMap[B];
1092   RefMap &LON = PhiLON[B];
1093   for (auto &R : LON) {
1094     LaneBitmask M;
1095     for (auto P : R.second)
1096       M |= P.second;
1097     Local.insert(RegisterRef(R.first,M));
1098   }
1099 
1100   if (Trace) {
1101     dbgs() << "after phi uses in block\n";
1102     dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
1103     dbgs() << "  Local:  " << Print<RegisterAggr>(Local, DFG) << '\n';
1104   }
1105 
1106   for (auto C : IIDF[B]) {
1107     RegisterAggr &LiveC = LiveMap[C];
1108     for (const std::pair<const RegisterId, NodeRefSet> &S : LiveIn)
1109       for (auto R : S.second)
1110         if (MDT.properlyDominates(getBlockWithRef(R.first), C))
1111           LiveC.insert(RegisterRef(S.first, R.second));
1112   }
1113 }
1114 
1115 void Liveness::emptify(RefMap &M) {
1116   for (auto I = M.begin(), E = M.end(); I != E; )
1117     I = I->second.empty() ? M.erase(I) : std::next(I);
1118 }
1119