xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/RDFLiveness.cpp (revision 8311bc5f17dec348749f763b82dfe2737bc53cd7)
1 //===- RDFLiveness.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Computation of the liveness information from the data-flow graph.
10 //
11 // The main functionality of this code is to compute block live-in
12 // information. With the live-in information in place, the placement
13 // of kill flags can also be recalculated.
14 //
15 // The block live-in calculation is based on the ideas from the following
16 // publication:
17 //
18 // Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin.
19 // "Efficient Liveness Computation Using Merge Sets and DJ-Graphs."
20 // ACM Transactions on Architecture and Code Optimization, Association for
21 // Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance
22 // and Embedded Architectures and Compilers", 8 (4),
23 // <10.1145/2086696.2086706>. <hal-00647369>
24 //
25 #include "llvm/ADT/BitVector.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineDominanceFrontier.h"
32 #include "llvm/CodeGen/MachineDominators.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/RDFGraph.h"
36 #include "llvm/CodeGen/RDFLiveness.h"
37 #include "llvm/CodeGen/RDFRegisters.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/MC/LaneBitmask.h"
40 #include "llvm/MC/MCRegisterInfo.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <algorithm>
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <map>
49 #include <unordered_map>
50 #include <utility>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 static cl::opt<unsigned> MaxRecNest("rdf-liveness-max-rec", cl::init(25),
56                                     cl::Hidden,
57                                     cl::desc("Maximum recursion level"));
58 
59 namespace llvm::rdf {
60 
61 raw_ostream &operator<<(raw_ostream &OS, const Print<Liveness::RefMap> &P) {
62   OS << '{';
63   for (const auto &I : P.Obj) {
64     OS << ' ' << printReg(I.first, &P.G.getTRI()) << '{';
65     for (auto J = I.second.begin(), E = I.second.end(); J != E;) {
66       OS << Print(J->first, P.G) << PrintLaneMaskShort(J->second);
67       if (++J != E)
68         OS << ',';
69     }
70     OS << '}';
71   }
72   OS << " }";
73   return OS;
74 }
75 
76 // The order in the returned sequence is the order of reaching defs in the
77 // upward traversal: the first def is the closest to the given reference RefA,
78 // the next one is further up, and so on.
79 // The list ends at a reaching phi def, or when the reference from RefA is
80 // covered by the defs in the list (see FullChain).
81 // This function provides two modes of operation:
82 // (1) Returning the sequence of reaching defs for a particular reference
83 // node. This sequence will terminate at the first phi node [1].
84 // (2) Returning a partial sequence of reaching defs, where the final goal
85 // is to traverse past phi nodes to the actual defs arising from the code
86 // itself.
87 // In mode (2), the register reference for which the search was started
88 // may be different from the reference node RefA, for which this call was
89 // made, hence the argument RefRR, which holds the original register.
90 // Also, some definitions may have already been encountered in a previous
91 // call that will influence register covering. The register references
92 // already defined are passed in through DefRRs.
93 // In mode (1), the "continuation" considerations do not apply, and the
94 // RefRR is the same as the register in RefA, and the set DefRRs is empty.
95 //
96 // [1] It is possible for multiple phi nodes to be included in the returned
97 // sequence:
98 //   SubA = phi ...
99 //   SubB = phi ...
100 //   ...  = SuperAB(rdef:SubA), SuperAB"(rdef:SubB)
101 // However, these phi nodes are independent from one another in terms of
102 // the data-flow.
103 
104 NodeList Liveness::getAllReachingDefs(RegisterRef RefRR,
105                                       NodeAddr<RefNode *> RefA, bool TopShadows,
106                                       bool FullChain,
107                                       const RegisterAggr &DefRRs) {
108   NodeList RDefs; // Return value.
109   SetVector<NodeId> DefQ;
110   DenseMap<MachineInstr *, uint32_t> OrdMap;
111 
112   // Dead defs will be treated as if they were live, since they are actually
113   // on the data-flow path. They cannot be ignored because even though they
114   // do not generate meaningful values, they still modify registers.
115 
116   // If the reference is undefined, there is nothing to do.
117   if (RefA.Addr->getFlags() & NodeAttrs::Undef)
118     return RDefs;
119 
120   // The initial queue should not have reaching defs for shadows. The
121   // whole point of a shadow is that it will have a reaching def that
122   // is not aliased to the reaching defs of the related shadows.
123   NodeId Start = RefA.Id;
124   auto SNA = DFG.addr<RefNode *>(Start);
125   if (NodeId RD = SNA.Addr->getReachingDef())
126     DefQ.insert(RD);
127   if (TopShadows) {
128     for (auto S : DFG.getRelatedRefs(RefA.Addr->getOwner(DFG), RefA))
129       if (NodeId RD = NodeAddr<RefNode *>(S).Addr->getReachingDef())
130         DefQ.insert(RD);
131   }
132 
133   // Collect all the reaching defs, going up until a phi node is encountered,
134   // or there are no more reaching defs. From this set, the actual set of
135   // reaching defs will be selected.
136   // The traversal upwards must go on until a covering def is encountered.
137   // It is possible that a collection of non-covering (individually) defs
138   // will be sufficient, but keep going until a covering one is found.
139   for (unsigned i = 0; i < DefQ.size(); ++i) {
140     auto TA = DFG.addr<DefNode *>(DefQ[i]);
141     if (TA.Addr->getFlags() & NodeAttrs::PhiRef)
142       continue;
143     // Stop at the covering/overwriting def of the initial register reference.
144     RegisterRef RR = TA.Addr->getRegRef(DFG);
145     if (!DFG.IsPreservingDef(TA))
146       if (RegisterAggr::isCoverOf(RR, RefRR, PRI))
147         continue;
148     // Get the next level of reaching defs. This will include multiple
149     // reaching defs for shadows.
150     for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA))
151       if (NodeId RD = NodeAddr<RefNode *>(S).Addr->getReachingDef())
152         DefQ.insert(RD);
153     // Don't visit sibling defs. They share the same reaching def (which
154     // will be visited anyway), but they define something not aliased to
155     // this ref.
156   }
157 
158   // Return the MachineBasicBlock containing a given instruction.
159   auto Block = [this](NodeAddr<InstrNode *> IA) -> MachineBasicBlock * {
160     if (IA.Addr->getKind() == NodeAttrs::Stmt)
161       return NodeAddr<StmtNode *>(IA).Addr->getCode()->getParent();
162     assert(IA.Addr->getKind() == NodeAttrs::Phi);
163     NodeAddr<PhiNode *> PA = IA;
164     NodeAddr<BlockNode *> BA = PA.Addr->getOwner(DFG);
165     return BA.Addr->getCode();
166   };
167 
168   SmallSet<NodeId, 32> Defs;
169 
170   // Remove all non-phi defs that are not aliased to RefRR, and separate
171   // the the remaining defs into buckets for containing blocks.
172   std::map<NodeId, NodeAddr<InstrNode *>> Owners;
173   std::map<MachineBasicBlock *, SmallVector<NodeId, 32>> Blocks;
174   for (NodeId N : DefQ) {
175     auto TA = DFG.addr<DefNode *>(N);
176     bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef;
177     if (!IsPhi && !PRI.alias(RefRR, TA.Addr->getRegRef(DFG)))
178       continue;
179     Defs.insert(TA.Id);
180     NodeAddr<InstrNode *> IA = TA.Addr->getOwner(DFG);
181     Owners[TA.Id] = IA;
182     Blocks[Block(IA)].push_back(IA.Id);
183   }
184 
185   auto Precedes = [this, &OrdMap](NodeId A, NodeId B) {
186     if (A == B)
187       return false;
188     NodeAddr<InstrNode *> OA = DFG.addr<InstrNode *>(A);
189     NodeAddr<InstrNode *> OB = DFG.addr<InstrNode *>(B);
190     bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt;
191     bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt;
192     if (StmtA && StmtB) {
193       const MachineInstr *InA = NodeAddr<StmtNode *>(OA).Addr->getCode();
194       const MachineInstr *InB = NodeAddr<StmtNode *>(OB).Addr->getCode();
195       assert(InA->getParent() == InB->getParent());
196       auto FA = OrdMap.find(InA);
197       if (FA != OrdMap.end())
198         return FA->second < OrdMap.find(InB)->second;
199       const MachineBasicBlock *BB = InA->getParent();
200       for (auto It = BB->begin(), E = BB->end(); It != E; ++It) {
201         if (It == InA->getIterator())
202           return true;
203         if (It == InB->getIterator())
204           return false;
205       }
206       llvm_unreachable("InA and InB should be in the same block");
207     }
208     // One of them is a phi node.
209     if (!StmtA && !StmtB) {
210       // Both are phis, which are unordered. Break the tie by id numbers.
211       return A < B;
212     }
213     // Only one of them is a phi. Phis always precede statements.
214     return !StmtA;
215   };
216 
217   auto GetOrder = [&OrdMap](MachineBasicBlock &B) {
218     uint32_t Pos = 0;
219     for (MachineInstr &In : B)
220       OrdMap.insert({&In, ++Pos});
221   };
222 
223   // For each block, sort the nodes in it.
224   std::vector<MachineBasicBlock *> TmpBB;
225   for (auto &Bucket : Blocks) {
226     TmpBB.push_back(Bucket.first);
227     if (Bucket.second.size() > 2)
228       GetOrder(*Bucket.first);
229     llvm::sort(Bucket.second, Precedes);
230   }
231 
232   // Sort the blocks with respect to dominance.
233   llvm::sort(TmpBB,
234              [this](auto A, auto B) { return MDT.properlyDominates(A, B); });
235 
236   std::vector<NodeId> TmpInst;
237   for (MachineBasicBlock *MBB : llvm::reverse(TmpBB)) {
238     auto &Bucket = Blocks[MBB];
239     TmpInst.insert(TmpInst.end(), Bucket.rbegin(), Bucket.rend());
240   }
241 
242   // The vector is a list of instructions, so that defs coming from
243   // the same instruction don't need to be artificially ordered.
244   // Then, when computing the initial segment, and iterating over an
245   // instruction, pick the defs that contribute to the covering (i.e. is
246   // not covered by previously added defs). Check the defs individually,
247   // i.e. first check each def if is covered or not (without adding them
248   // to the tracking set), and then add all the selected ones.
249 
250   // The reason for this is this example:
251   // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes).
252   // *d3<C>              If A \incl BuC, and B \incl AuC, then *d2 would be
253   //                     covered if we added A first, and A would be covered
254   //                     if we added B first.
255   // In this example we want both A and B, because we don't want to give
256   // either one priority over the other, since they belong to the same
257   // statement.
258 
259   RegisterAggr RRs(DefRRs);
260 
261   auto DefInSet = [&Defs](NodeAddr<RefNode *> TA) -> bool {
262     return TA.Addr->getKind() == NodeAttrs::Def && Defs.count(TA.Id);
263   };
264 
265   for (NodeId T : TmpInst) {
266     if (!FullChain && RRs.hasCoverOf(RefRR))
267       break;
268     auto TA = DFG.addr<InstrNode *>(T);
269     bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA);
270     NodeList Ds;
271     for (NodeAddr<DefNode *> DA : TA.Addr->members_if(DefInSet, DFG)) {
272       RegisterRef QR = DA.Addr->getRegRef(DFG);
273       // Add phi defs even if they are covered by subsequent defs. This is
274       // for cases where the reached use is not covered by any of the defs
275       // encountered so far: the phi def is needed to expose the liveness
276       // of that use to the entry of the block.
277       // Example:
278       //   phi d1<R3>(,d2,), ...  Phi def d1 is covered by d2.
279       //   d2<R3>(d1,,u3), ...
280       //   ..., u3<D1>(d2)        This use needs to be live on entry.
281       if (FullChain || IsPhi || !RRs.hasCoverOf(QR))
282         Ds.push_back(DA);
283     }
284     llvm::append_range(RDefs, Ds);
285     for (NodeAddr<DefNode *> DA : Ds) {
286       // When collecting a full chain of definitions, do not consider phi
287       // defs to actually define a register.
288       uint16_t Flags = DA.Addr->getFlags();
289       if (!FullChain || !(Flags & NodeAttrs::PhiRef))
290         if (!(Flags & NodeAttrs::Preserving)) // Don't care about Undef here.
291           RRs.insert(DA.Addr->getRegRef(DFG));
292     }
293   }
294 
295   auto DeadP = [](const NodeAddr<DefNode *> DA) -> bool {
296     return DA.Addr->getFlags() & NodeAttrs::Dead;
297   };
298   llvm::erase_if(RDefs, DeadP);
299 
300   return RDefs;
301 }
302 
303 std::pair<NodeSet, bool>
304 Liveness::getAllReachingDefsRec(RegisterRef RefRR, NodeAddr<RefNode *> RefA,
305                                 NodeSet &Visited, const NodeSet &Defs) {
306   return getAllReachingDefsRecImpl(RefRR, RefA, Visited, Defs, 0, MaxRecNest);
307 }
308 
309 std::pair<NodeSet, bool>
310 Liveness::getAllReachingDefsRecImpl(RegisterRef RefRR, NodeAddr<RefNode *> RefA,
311                                     NodeSet &Visited, const NodeSet &Defs,
312                                     unsigned Nest, unsigned MaxNest) {
313   if (Nest > MaxNest)
314     return {NodeSet(), false};
315   // Collect all defined registers. Do not consider phis to be defining
316   // anything, only collect "real" definitions.
317   RegisterAggr DefRRs(PRI);
318   for (NodeId D : Defs) {
319     const auto DA = DFG.addr<const DefNode *>(D);
320     if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
321       DefRRs.insert(DA.Addr->getRegRef(DFG));
322   }
323 
324   NodeList RDs = getAllReachingDefs(RefRR, RefA, false, true, DefRRs);
325   if (RDs.empty())
326     return {Defs, true};
327 
328   // Make a copy of the preexisting definitions and add the newly found ones.
329   NodeSet TmpDefs = Defs;
330   for (NodeAddr<NodeBase *> R : RDs)
331     TmpDefs.insert(R.Id);
332 
333   NodeSet Result = Defs;
334 
335   for (NodeAddr<DefNode *> DA : RDs) {
336     Result.insert(DA.Id);
337     if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
338       continue;
339     NodeAddr<PhiNode *> PA = DA.Addr->getOwner(DFG);
340     if (!Visited.insert(PA.Id).second)
341       continue;
342     // Go over all phi uses and get the reaching defs for each use.
343     for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
344       const auto &T = getAllReachingDefsRecImpl(RefRR, U, Visited, TmpDefs,
345                                                 Nest + 1, MaxNest);
346       if (!T.second)
347         return {T.first, false};
348       Result.insert(T.first.begin(), T.first.end());
349     }
350   }
351 
352   return {Result, true};
353 }
354 
355 /// Find the nearest ref node aliased to RefRR, going upwards in the data
356 /// flow, starting from the instruction immediately preceding Inst.
357 NodeAddr<RefNode *> Liveness::getNearestAliasedRef(RegisterRef RefRR,
358                                                    NodeAddr<InstrNode *> IA) {
359   NodeAddr<BlockNode *> BA = IA.Addr->getOwner(DFG);
360   NodeList Ins = BA.Addr->members(DFG);
361   NodeId FindId = IA.Id;
362   auto E = Ins.rend();
363   auto B =
364       std::find_if(Ins.rbegin(), E, [FindId](const NodeAddr<InstrNode *> T) {
365         return T.Id == FindId;
366       });
367   // Do not scan IA (which is what B would point to).
368   if (B != E)
369     ++B;
370 
371   do {
372     // Process the range of instructions from B to E.
373     for (NodeAddr<InstrNode *> I : make_range(B, E)) {
374       NodeList Refs = I.Addr->members(DFG);
375       NodeAddr<RefNode *> Clob, Use;
376       // Scan all the refs in I aliased to RefRR, and return the one that
377       // is the closest to the output of I, i.e. def > clobber > use.
378       for (NodeAddr<RefNode *> R : Refs) {
379         if (!PRI.alias(R.Addr->getRegRef(DFG), RefRR))
380           continue;
381         if (DFG.IsDef(R)) {
382           // If it's a non-clobbering def, just return it.
383           if (!(R.Addr->getFlags() & NodeAttrs::Clobbering))
384             return R;
385           Clob = R;
386         } else {
387           Use = R;
388         }
389       }
390       if (Clob.Id != 0)
391         return Clob;
392       if (Use.Id != 0)
393         return Use;
394     }
395 
396     // Go up to the immediate dominator, if any.
397     MachineBasicBlock *BB = BA.Addr->getCode();
398     BA = NodeAddr<BlockNode *>();
399     if (MachineDomTreeNode *N = MDT.getNode(BB)) {
400       if ((N = N->getIDom()))
401         BA = DFG.findBlock(N->getBlock());
402     }
403     if (!BA.Id)
404       break;
405 
406     Ins = BA.Addr->members(DFG);
407     B = Ins.rbegin();
408     E = Ins.rend();
409   } while (true);
410 
411   return NodeAddr<RefNode *>();
412 }
413 
414 NodeSet Liveness::getAllReachedUses(RegisterRef RefRR, NodeAddr<DefNode *> DefA,
415                                     const RegisterAggr &DefRRs) {
416   NodeSet Uses;
417 
418   // If the original register is already covered by all the intervening
419   // defs, no more uses can be reached.
420   if (DefRRs.hasCoverOf(RefRR))
421     return Uses;
422 
423   // Add all directly reached uses.
424   // If the def is dead, it does not provide a value for any use.
425   bool IsDead = DefA.Addr->getFlags() & NodeAttrs::Dead;
426   NodeId U = !IsDead ? DefA.Addr->getReachedUse() : 0;
427   while (U != 0) {
428     auto UA = DFG.addr<UseNode *>(U);
429     if (!(UA.Addr->getFlags() & NodeAttrs::Undef)) {
430       RegisterRef UR = UA.Addr->getRegRef(DFG);
431       if (PRI.alias(RefRR, UR) && !DefRRs.hasCoverOf(UR))
432         Uses.insert(U);
433     }
434     U = UA.Addr->getSibling();
435   }
436 
437   // Traverse all reached defs. This time dead defs cannot be ignored.
438   for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) {
439     auto DA = DFG.addr<DefNode *>(D);
440     NextD = DA.Addr->getSibling();
441     RegisterRef DR = DA.Addr->getRegRef(DFG);
442     // If this def is already covered, it cannot reach anything new.
443     // Similarly, skip it if it is not aliased to the interesting register.
444     if (DefRRs.hasCoverOf(DR) || !PRI.alias(RefRR, DR))
445       continue;
446     NodeSet T;
447     if (DFG.IsPreservingDef(DA)) {
448       // If it is a preserving def, do not update the set of intervening defs.
449       T = getAllReachedUses(RefRR, DA, DefRRs);
450     } else {
451       RegisterAggr NewDefRRs = DefRRs;
452       NewDefRRs.insert(DR);
453       T = getAllReachedUses(RefRR, DA, NewDefRRs);
454     }
455     Uses.insert(T.begin(), T.end());
456   }
457   return Uses;
458 }
459 
460 void Liveness::computePhiInfo() {
461   RealUseMap.clear();
462 
463   NodeList Phis;
464   NodeAddr<FuncNode *> FA = DFG.getFunc();
465   NodeList Blocks = FA.Addr->members(DFG);
466   for (NodeAddr<BlockNode *> BA : Blocks) {
467     auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
468     llvm::append_range(Phis, Ps);
469   }
470 
471   // phi use -> (map: reaching phi -> set of registers defined in between)
472   std::map<NodeId, std::map<NodeId, RegisterAggr>> PhiUp;
473   std::vector<NodeId> PhiUQ; // Work list of phis for upward propagation.
474   std::unordered_map<NodeId, RegisterAggr>
475       PhiDRs; // Phi -> registers defined by it.
476 
477   // Go over all phis.
478   for (NodeAddr<PhiNode *> PhiA : Phis) {
479     // Go over all defs and collect the reached uses that are non-phi uses
480     // (i.e. the "real uses").
481     RefMap &RealUses = RealUseMap[PhiA.Id];
482     NodeList PhiRefs = PhiA.Addr->members(DFG);
483 
484     // Have a work queue of defs whose reached uses need to be found.
485     // For each def, add to the queue all reached (non-phi) defs.
486     SetVector<NodeId> DefQ;
487     NodeSet PhiDefs;
488     RegisterAggr DRs(PRI);
489     for (NodeAddr<RefNode *> R : PhiRefs) {
490       if (!DFG.IsRef<NodeAttrs::Def>(R))
491         continue;
492       DRs.insert(R.Addr->getRegRef(DFG));
493       DefQ.insert(R.Id);
494       PhiDefs.insert(R.Id);
495     }
496     PhiDRs.insert(std::make_pair(PhiA.Id, DRs));
497 
498     // Collect the super-set of all possible reached uses. This set will
499     // contain all uses reached from this phi, either directly from the
500     // phi defs, or (recursively) via non-phi defs reached by the phi defs.
501     // This set of uses will later be trimmed to only contain these uses that
502     // are actually reached by the phi defs.
503     for (unsigned i = 0; i < DefQ.size(); ++i) {
504       NodeAddr<DefNode *> DA = DFG.addr<DefNode *>(DefQ[i]);
505       // Visit all reached uses. Phi defs should not really have the "dead"
506       // flag set, but check it anyway for consistency.
507       bool IsDead = DA.Addr->getFlags() & NodeAttrs::Dead;
508       NodeId UN = !IsDead ? DA.Addr->getReachedUse() : 0;
509       while (UN != 0) {
510         NodeAddr<UseNode *> A = DFG.addr<UseNode *>(UN);
511         uint16_t F = A.Addr->getFlags();
512         if ((F & (NodeAttrs::Undef | NodeAttrs::PhiRef)) == 0) {
513           RegisterRef R = A.Addr->getRegRef(DFG);
514           RealUses[R.Reg].insert({A.Id, R.Mask});
515         }
516         UN = A.Addr->getSibling();
517       }
518       // Visit all reached defs, and add them to the queue. These defs may
519       // override some of the uses collected here, but that will be handled
520       // later.
521       NodeId DN = DA.Addr->getReachedDef();
522       while (DN != 0) {
523         NodeAddr<DefNode *> A = DFG.addr<DefNode *>(DN);
524         for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) {
525           uint16_t Flags = NodeAddr<DefNode *>(T).Addr->getFlags();
526           // Must traverse the reached-def chain. Consider:
527           //   def(D0) -> def(R0) -> def(R0) -> use(D0)
528           // The reachable use of D0 passes through a def of R0.
529           if (!(Flags & NodeAttrs::PhiRef))
530             DefQ.insert(T.Id);
531         }
532         DN = A.Addr->getSibling();
533       }
534     }
535     // Filter out these uses that appear to be reachable, but really
536     // are not. For example:
537     //
538     // R1:0 =          d1
539     //      = R1:0     u2     Reached by d1.
540     //   R0 =          d3
541     //      = R1:0     u4     Still reached by d1: indirectly through
542     //                        the def d3.
543     //   R1 =          d5
544     //      = R1:0     u6     Not reached by d1 (covered collectively
545     //                        by d3 and d5), but following reached
546     //                        defs and uses from d1 will lead here.
547     for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE;) {
548       // For each reached register UI->first, there is a set UI->second, of
549       // uses of it. For each such use, check if it is reached by this phi,
550       // i.e. check if the set of its reaching uses intersects the set of
551       // this phi's defs.
552       NodeRefSet Uses = UI->second;
553       UI->second.clear();
554       for (std::pair<NodeId, LaneBitmask> I : Uses) {
555         auto UA = DFG.addr<UseNode *>(I.first);
556         // Undef flag is checked above.
557         assert((UA.Addr->getFlags() & NodeAttrs::Undef) == 0);
558         RegisterRef UseR(UI->first, I.second); // Ref from Uses
559         // R = intersection of the ref from the phi and the ref from Uses
560         RegisterRef R = PhiDRs.at(PhiA.Id).intersectWith(UseR);
561         if (!R)
562           continue;
563         // Calculate the exposed part of the reached use.
564         RegisterAggr Covered(PRI);
565         for (NodeAddr<DefNode *> DA : getAllReachingDefs(R, UA)) {
566           if (PhiDefs.count(DA.Id))
567             break;
568           Covered.insert(DA.Addr->getRegRef(DFG));
569         }
570         if (RegisterRef RC = Covered.clearIn(R)) {
571           // We are updating the map for register UI->first, so we need
572           // to map RC to be expressed in terms of that register.
573           RegisterRef S = PRI.mapTo(RC, UI->first);
574           UI->second.insert({I.first, S.Mask});
575         }
576       }
577       UI = UI->second.empty() ? RealUses.erase(UI) : std::next(UI);
578     }
579 
580     // If this phi reaches some "real" uses, add it to the queue for upward
581     // propagation.
582     if (!RealUses.empty())
583       PhiUQ.push_back(PhiA.Id);
584 
585     // Go over all phi uses and check if the reaching def is another phi.
586     // Collect the phis that are among the reaching defs of these uses.
587     // While traversing the list of reaching defs for each phi use, accumulate
588     // the set of registers defined between this phi (PhiA) and the owner phi
589     // of the reaching def.
590     NodeSet SeenUses;
591 
592     for (auto I : PhiRefs) {
593       if (!DFG.IsRef<NodeAttrs::Use>(I) || SeenUses.count(I.Id))
594         continue;
595       NodeAddr<PhiUseNode *> PUA = I;
596       if (PUA.Addr->getReachingDef() == 0)
597         continue;
598 
599       RegisterRef UR = PUA.Addr->getRegRef(DFG);
600       NodeList Ds = getAllReachingDefs(UR, PUA, true, false, NoRegs);
601       RegisterAggr DefRRs(PRI);
602 
603       for (NodeAddr<DefNode *> D : Ds) {
604         if (D.Addr->getFlags() & NodeAttrs::PhiRef) {
605           NodeId RP = D.Addr->getOwner(DFG).Id;
606           std::map<NodeId, RegisterAggr> &M = PhiUp[PUA.Id];
607           auto F = M.find(RP);
608           if (F == M.end())
609             M.insert(std::make_pair(RP, DefRRs));
610           else
611             F->second.insert(DefRRs);
612         }
613         DefRRs.insert(D.Addr->getRegRef(DFG));
614       }
615 
616       for (NodeAddr<PhiUseNode *> T : DFG.getRelatedRefs(PhiA, PUA))
617         SeenUses.insert(T.Id);
618     }
619   }
620 
621   if (Trace) {
622     dbgs() << "Phi-up-to-phi map with intervening defs:\n";
623     for (auto I : PhiUp) {
624       dbgs() << "phi " << Print(I.first, DFG) << " -> {";
625       for (auto R : I.second)
626         dbgs() << ' ' << Print(R.first, DFG) << Print(R.second, DFG);
627       dbgs() << " }\n";
628     }
629   }
630 
631   // Propagate the reached registers up in the phi chain.
632   //
633   // The following type of situation needs careful handling:
634   //
635   //   phi d1<R1:0>  (1)
636   //        |
637   //   ... d2<R1>
638   //        |
639   //   phi u3<R1:0>  (2)
640   //        |
641   //   ... u4<R1>
642   //
643   // The phi node (2) defines a register pair R1:0, and reaches a "real"
644   // use u4 of just R1. The same phi node is also known to reach (upwards)
645   // the phi node (1). However, the use u4 is not reached by phi (1),
646   // because of the intervening definition d2 of R1. The data flow between
647   // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0.
648   //
649   // When propagating uses up the phi chains, get the all reaching defs
650   // for a given phi use, and traverse the list until the propagated ref
651   // is covered, or until reaching the final phi. Only assume that the
652   // reference reaches the phi in the latter case.
653 
654   // The operation "clearIn" can be expensive. For a given set of intervening
655   // defs, cache the result of subtracting these defs from a given register
656   // ref.
657   using RefHash = std::hash<RegisterRef>;
658   using RefEqual = std::equal_to<RegisterRef>;
659   using SubMap = std::unordered_map<RegisterRef, RegisterRef>;
660   std::unordered_map<RegisterAggr, SubMap> Subs;
661   auto ClearIn = [](RegisterRef RR, const RegisterAggr &Mid, SubMap &SM) {
662     if (Mid.empty())
663       return RR;
664     auto F = SM.find(RR);
665     if (F != SM.end())
666       return F->second;
667     RegisterRef S = Mid.clearIn(RR);
668     SM.insert({RR, S});
669     return S;
670   };
671 
672   // Go over all phis.
673   for (unsigned i = 0; i < PhiUQ.size(); ++i) {
674     auto PA = DFG.addr<PhiNode *>(PhiUQ[i]);
675     NodeList PUs = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG);
676     RefMap &RUM = RealUseMap[PA.Id];
677 
678     for (NodeAddr<UseNode *> UA : PUs) {
679       std::map<NodeId, RegisterAggr> &PUM = PhiUp[UA.Id];
680       RegisterRef UR = UA.Addr->getRegRef(DFG);
681       for (const std::pair<const NodeId, RegisterAggr> &P : PUM) {
682         bool Changed = false;
683         const RegisterAggr &MidDefs = P.second;
684         // Collect the set PropUp of uses that are reached by the current
685         // phi PA, and are not covered by any intervening def between the
686         // currently visited use UA and the upward phi P.
687 
688         if (MidDefs.hasCoverOf(UR))
689           continue;
690         if (Subs.find(MidDefs) == Subs.end()) {
691           Subs.insert({MidDefs, SubMap(1, RefHash(), RefEqual(PRI))});
692         }
693         SubMap &SM = Subs.at(MidDefs);
694 
695         // General algorithm:
696         //   for each (R,U) : U is use node of R, U is reached by PA
697         //     if MidDefs does not cover (R,U)
698         //       then add (R-MidDefs,U) to RealUseMap[P]
699         //
700         for (const std::pair<const RegisterId, NodeRefSet> &T : RUM) {
701           RegisterRef R(T.first);
702           // The current phi (PA) could be a phi for a regmask. It could
703           // reach a whole variety of uses that are not related to the
704           // specific upward phi (P.first).
705           const RegisterAggr &DRs = PhiDRs.at(P.first);
706           if (!DRs.hasAliasOf(R))
707             continue;
708           R = PRI.mapTo(DRs.intersectWith(R), T.first);
709           for (std::pair<NodeId, LaneBitmask> V : T.second) {
710             LaneBitmask M = R.Mask & V.second;
711             if (M.none())
712               continue;
713             if (RegisterRef SS = ClearIn(RegisterRef(R.Reg, M), MidDefs, SM)) {
714               NodeRefSet &RS = RealUseMap[P.first][SS.Reg];
715               Changed |= RS.insert({V.first, SS.Mask}).second;
716             }
717           }
718         }
719 
720         if (Changed)
721           PhiUQ.push_back(P.first);
722       }
723     }
724   }
725 
726   if (Trace) {
727     dbgs() << "Real use map:\n";
728     for (auto I : RealUseMap) {
729       dbgs() << "phi " << Print(I.first, DFG);
730       NodeAddr<PhiNode *> PA = DFG.addr<PhiNode *>(I.first);
731       NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG);
732       if (!Ds.empty()) {
733         RegisterRef RR = NodeAddr<DefNode *>(Ds[0]).Addr->getRegRef(DFG);
734         dbgs() << '<' << Print(RR, DFG) << '>';
735       } else {
736         dbgs() << "<noreg>";
737       }
738       dbgs() << " -> " << Print(I.second, DFG) << '\n';
739     }
740   }
741 }
742 
743 void Liveness::computeLiveIns() {
744   // Populate the node-to-block map. This speeds up the calculations
745   // significantly.
746   NBMap.clear();
747   for (NodeAddr<BlockNode *> BA : DFG.getFunc().Addr->members(DFG)) {
748     MachineBasicBlock *BB = BA.Addr->getCode();
749     for (NodeAddr<InstrNode *> IA : BA.Addr->members(DFG)) {
750       for (NodeAddr<RefNode *> RA : IA.Addr->members(DFG))
751         NBMap.insert(std::make_pair(RA.Id, BB));
752       NBMap.insert(std::make_pair(IA.Id, BB));
753     }
754   }
755 
756   MachineFunction &MF = DFG.getMF();
757 
758   // Compute IDF first, then the inverse.
759   decltype(IIDF) IDF;
760   for (MachineBasicBlock &B : MF) {
761     auto F1 = MDF.find(&B);
762     if (F1 == MDF.end())
763       continue;
764     SetVector<MachineBasicBlock *> IDFB(F1->second.begin(), F1->second.end());
765     for (unsigned i = 0; i < IDFB.size(); ++i) {
766       auto F2 = MDF.find(IDFB[i]);
767       if (F2 != MDF.end())
768         IDFB.insert(F2->second.begin(), F2->second.end());
769     }
770     // Add B to the IDF(B). This will put B in the IIDF(B).
771     IDFB.insert(&B);
772     IDF[&B].insert(IDFB.begin(), IDFB.end());
773   }
774 
775   for (auto I : IDF)
776     for (auto *S : I.second)
777       IIDF[S].insert(I.first);
778 
779   computePhiInfo();
780 
781   NodeAddr<FuncNode *> FA = DFG.getFunc();
782   NodeList Blocks = FA.Addr->members(DFG);
783 
784   // Build the phi live-on-entry map.
785   for (NodeAddr<BlockNode *> BA : Blocks) {
786     MachineBasicBlock *MB = BA.Addr->getCode();
787     RefMap &LON = PhiLON[MB];
788     for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG)) {
789       for (const RefMap::value_type &S : RealUseMap[P.Id])
790         LON[S.first].insert(S.second.begin(), S.second.end());
791     }
792   }
793 
794   if (Trace) {
795     dbgs() << "Phi live-on-entry map:\n";
796     for (auto &I : PhiLON)
797       dbgs() << "block #" << I.first->getNumber() << " -> "
798              << Print(I.second, DFG) << '\n';
799   }
800 
801   // Build the phi live-on-exit map. Each phi node has some set of reached
802   // "real" uses. Propagate this set backwards into the block predecessors
803   // through the reaching defs of the corresponding phi uses.
804   for (NodeAddr<BlockNode *> BA : Blocks) {
805     NodeList Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
806     for (NodeAddr<PhiNode *> PA : Phis) {
807       RefMap &RUs = RealUseMap[PA.Id];
808       if (RUs.empty())
809         continue;
810 
811       NodeSet SeenUses;
812       for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
813         if (!SeenUses.insert(U.Id).second)
814           continue;
815         NodeAddr<PhiUseNode *> PUA = U;
816         if (PUA.Addr->getReachingDef() == 0)
817           continue;
818 
819         // Each phi has some set (possibly empty) of reached "real" uses,
820         // that is, uses that are part of the compiled program. Such a use
821         // may be located in some farther block, but following a chain of
822         // reaching defs will eventually lead to this phi.
823         // Any chain of reaching defs may fork at a phi node, but there
824         // will be a path upwards that will lead to this phi. Now, this
825         // chain will need to fork at this phi, since some of the reached
826         // uses may have definitions joining in from multiple predecessors.
827         // For each reached "real" use, identify the set of reaching defs
828         // coming from each predecessor P, and add them to PhiLOX[P].
829         //
830         auto PrA = DFG.addr<BlockNode *>(PUA.Addr->getPredecessor());
831         RefMap &LOX = PhiLOX[PrA.Addr->getCode()];
832 
833         for (const std::pair<const RegisterId, NodeRefSet> &RS : RUs) {
834           // We need to visit each individual use.
835           for (std::pair<NodeId, LaneBitmask> P : RS.second) {
836             // Create a register ref corresponding to the use, and find
837             // all reaching defs starting from the phi use, and treating
838             // all related shadows as a single use cluster.
839             RegisterRef S(RS.first, P.second);
840             NodeList Ds = getAllReachingDefs(S, PUA, true, false, NoRegs);
841             for (NodeAddr<DefNode *> D : Ds) {
842               // Calculate the mask corresponding to the visited def.
843               RegisterAggr TA(PRI);
844               TA.insert(D.Addr->getRegRef(DFG)).intersect(S);
845               LaneBitmask TM = TA.makeRegRef().Mask;
846               LOX[S.Reg].insert({D.Id, TM});
847             }
848           }
849         }
850 
851         for (NodeAddr<PhiUseNode *> T : DFG.getRelatedRefs(PA, PUA))
852           SeenUses.insert(T.Id);
853       } // for U : phi uses
854     }   // for P : Phis
855   }     // for B : Blocks
856 
857   if (Trace) {
858     dbgs() << "Phi live-on-exit map:\n";
859     for (auto &I : PhiLOX)
860       dbgs() << "block #" << I.first->getNumber() << " -> "
861              << Print(I.second, DFG) << '\n';
862   }
863 
864   RefMap LiveIn;
865   traverse(&MF.front(), LiveIn);
866 
867   // Add function live-ins to the live-in set of the function entry block.
868   LiveMap[&MF.front()].insert(DFG.getLiveIns());
869 
870   if (Trace) {
871     // Dump the liveness map
872     for (MachineBasicBlock &B : MF) {
873       std::vector<RegisterRef> LV;
874       for (const MachineBasicBlock::RegisterMaskPair &LI : B.liveins())
875         LV.push_back(RegisterRef(LI.PhysReg, LI.LaneMask));
876       llvm::sort(LV, std::less<RegisterRef>(PRI));
877       dbgs() << printMBBReference(B) << "\t rec = {";
878       for (auto I : LV)
879         dbgs() << ' ' << Print(I, DFG);
880       dbgs() << " }\n";
881       // dbgs() << "\tcomp = " << Print(LiveMap[&B], DFG) << '\n';
882 
883       LV.clear();
884       for (RegisterRef RR : LiveMap[&B].refs())
885         LV.push_back(RR);
886       llvm::sort(LV, std::less<RegisterRef>(PRI));
887       dbgs() << "\tcomp = {";
888       for (auto I : LV)
889         dbgs() << ' ' << Print(I, DFG);
890       dbgs() << " }\n";
891     }
892   }
893 }
894 
895 void Liveness::resetLiveIns() {
896   for (auto &B : DFG.getMF()) {
897     // Remove all live-ins.
898     std::vector<unsigned> T;
899     for (const MachineBasicBlock::RegisterMaskPair &LI : B.liveins())
900       T.push_back(LI.PhysReg);
901     for (auto I : T)
902       B.removeLiveIn(I);
903     // Add the newly computed live-ins.
904     const RegisterAggr &LiveIns = LiveMap[&B];
905     for (RegisterRef R : LiveIns.refs())
906       B.addLiveIn({MCPhysReg(R.Reg), R.Mask});
907   }
908 }
909 
910 void Liveness::resetKills() {
911   for (auto &B : DFG.getMF())
912     resetKills(&B);
913 }
914 
915 void Liveness::resetKills(MachineBasicBlock *B) {
916   auto CopyLiveIns = [this](MachineBasicBlock *B, BitVector &LV) -> void {
917     for (auto I : B->liveins()) {
918       MCSubRegIndexIterator S(I.PhysReg, &TRI);
919       if (!S.isValid()) {
920         LV.set(I.PhysReg);
921         continue;
922       }
923       do {
924         LaneBitmask M = TRI.getSubRegIndexLaneMask(S.getSubRegIndex());
925         if ((M & I.LaneMask).any())
926           LV.set(S.getSubReg());
927         ++S;
928       } while (S.isValid());
929     }
930   };
931 
932   BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs());
933   CopyLiveIns(B, LiveIn);
934   for (auto *SI : B->successors())
935     CopyLiveIns(SI, Live);
936 
937   for (MachineInstr &MI : llvm::reverse(*B)) {
938     if (MI.isDebugInstr())
939       continue;
940 
941     MI.clearKillInfo();
942     for (auto &Op : MI.all_defs()) {
943       // An implicit def of a super-register may not necessarily start a
944       // live range of it, since an implicit use could be used to keep parts
945       // of it live. Instead of analyzing the implicit operands, ignore
946       // implicit defs.
947       if (Op.isImplicit())
948         continue;
949       Register R = Op.getReg();
950       if (!R.isPhysical())
951         continue;
952       for (MCPhysReg SR : TRI.subregs_inclusive(R))
953         Live.reset(SR);
954     }
955     for (auto &Op : MI.all_uses()) {
956       if (Op.isUndef())
957         continue;
958       Register R = Op.getReg();
959       if (!R.isPhysical())
960         continue;
961       bool IsLive = false;
962       for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) {
963         if (!Live[*AR])
964           continue;
965         IsLive = true;
966         break;
967       }
968       if (!IsLive)
969         Op.setIsKill(true);
970       for (MCPhysReg SR : TRI.subregs_inclusive(R))
971         Live.set(SR);
972     }
973   }
974 }
975 
976 // Helper function to obtain the basic block containing the reaching def
977 // of the given use.
978 MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const {
979   auto F = NBMap.find(RN);
980   if (F != NBMap.end())
981     return F->second;
982   llvm_unreachable("Node id not in map");
983 }
984 
985 void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) {
986   // The LiveIn map, for each (physical) register, contains the set of live
987   // reaching defs of that register that are live on entry to the associated
988   // block.
989 
990   // The summary of the traversal algorithm:
991   //
992   // R is live-in in B, if there exists a U(R), such that rdef(R) dom B
993   // and (U \in IDF(B) or B dom U).
994   //
995   // for (C : children) {
996   //   LU = {}
997   //   traverse(C, LU)
998   //   LiveUses += LU
999   // }
1000   //
1001   // LiveUses -= Defs(B);
1002   // LiveUses += UpwardExposedUses(B);
1003   // for (C : IIDF[B])
1004   //   for (U : LiveUses)
1005   //     if (Rdef(U) dom C)
1006   //       C.addLiveIn(U)
1007   //
1008 
1009   // Go up the dominator tree (depth-first).
1010   MachineDomTreeNode *N = MDT.getNode(B);
1011   for (auto *I : *N) {
1012     RefMap L;
1013     MachineBasicBlock *SB = I->getBlock();
1014     traverse(SB, L);
1015 
1016     for (auto S : L)
1017       LiveIn[S.first].insert(S.second.begin(), S.second.end());
1018   }
1019 
1020   if (Trace) {
1021     dbgs() << "\n-- " << printMBBReference(*B) << ": " << __func__
1022            << " after recursion into: {";
1023     for (auto *I : *N)
1024       dbgs() << ' ' << I->getBlock()->getNumber();
1025     dbgs() << " }\n";
1026     dbgs() << "  LiveIn: " << Print(LiveIn, DFG) << '\n';
1027     dbgs() << "  Local:  " << Print(LiveMap[B], DFG) << '\n';
1028   }
1029 
1030   // Add reaching defs of phi uses that are live on exit from this block.
1031   RefMap &PUs = PhiLOX[B];
1032   for (auto &S : PUs)
1033     LiveIn[S.first].insert(S.second.begin(), S.second.end());
1034 
1035   if (Trace) {
1036     dbgs() << "after LOX\n";
1037     dbgs() << "  LiveIn: " << Print(LiveIn, DFG) << '\n';
1038     dbgs() << "  Local:  " << Print(LiveMap[B], DFG) << '\n';
1039   }
1040 
1041   // The LiveIn map at this point has all defs that are live-on-exit from B,
1042   // as if they were live-on-entry to B. First, we need to filter out all
1043   // defs that are present in this block. Then we will add reaching defs of
1044   // all upward-exposed uses.
1045 
1046   // To filter out the defs, first make a copy of LiveIn, and then re-populate
1047   // LiveIn with the defs that should remain.
1048   RefMap LiveInCopy = LiveIn;
1049   LiveIn.clear();
1050 
1051   for (const std::pair<const RegisterId, NodeRefSet> &LE : LiveInCopy) {
1052     RegisterRef LRef(LE.first);
1053     NodeRefSet &NewDefs = LiveIn[LRef.Reg]; // To be filled.
1054     const NodeRefSet &OldDefs = LE.second;
1055     for (NodeRef OR : OldDefs) {
1056       // R is a def node that was live-on-exit
1057       auto DA = DFG.addr<DefNode *>(OR.first);
1058       NodeAddr<InstrNode *> IA = DA.Addr->getOwner(DFG);
1059       NodeAddr<BlockNode *> BA = IA.Addr->getOwner(DFG);
1060       if (B != BA.Addr->getCode()) {
1061         // Defs from a different block need to be preserved. Defs from this
1062         // block will need to be processed further, except for phi defs, the
1063         // liveness of which is handled through the PhiLON/PhiLOX maps.
1064         NewDefs.insert(OR);
1065         continue;
1066       }
1067 
1068       // Defs from this block need to stop the liveness from being
1069       // propagated upwards. This only applies to non-preserving defs,
1070       // and to the parts of the register actually covered by those defs.
1071       // (Note that phi defs should always be preserving.)
1072       RegisterAggr RRs(PRI);
1073       LRef.Mask = OR.second;
1074 
1075       if (!DFG.IsPreservingDef(DA)) {
1076         assert(!(IA.Addr->getFlags() & NodeAttrs::Phi));
1077         // DA is a non-phi def that is live-on-exit from this block, and
1078         // that is also located in this block. LRef is a register ref
1079         // whose use this def reaches. If DA covers LRef, then no part
1080         // of LRef is exposed upwards.A
1081         if (RRs.insert(DA.Addr->getRegRef(DFG)).hasCoverOf(LRef))
1082           continue;
1083       }
1084 
1085       // DA itself was not sufficient to cover LRef. In general, it is
1086       // the last in a chain of aliased defs before the exit from this block.
1087       // There could be other defs in this block that are a part of that
1088       // chain. Check that now: accumulate the registers from these defs,
1089       // and if they all together cover LRef, it is not live-on-entry.
1090       for (NodeAddr<DefNode *> TA : getAllReachingDefs(DA)) {
1091         // DefNode -> InstrNode -> BlockNode.
1092         NodeAddr<InstrNode *> ITA = TA.Addr->getOwner(DFG);
1093         NodeAddr<BlockNode *> BTA = ITA.Addr->getOwner(DFG);
1094         // Reaching defs are ordered in the upward direction.
1095         if (BTA.Addr->getCode() != B) {
1096           // We have reached past the beginning of B, and the accumulated
1097           // registers are not covering LRef. The first def from the
1098           // upward chain will be live.
1099           // Subtract all accumulated defs (RRs) from LRef.
1100           RegisterRef T = RRs.clearIn(LRef);
1101           assert(T);
1102           NewDefs.insert({TA.Id, T.Mask});
1103           break;
1104         }
1105 
1106         // TA is in B. Only add this def to the accumulated cover if it is
1107         // not preserving.
1108         if (!(TA.Addr->getFlags() & NodeAttrs::Preserving))
1109           RRs.insert(TA.Addr->getRegRef(DFG));
1110         // If this is enough to cover LRef, then stop.
1111         if (RRs.hasCoverOf(LRef))
1112           break;
1113       }
1114     }
1115   }
1116 
1117   emptify(LiveIn);
1118 
1119   if (Trace) {
1120     dbgs() << "after defs in block\n";
1121     dbgs() << "  LiveIn: " << Print(LiveIn, DFG) << '\n';
1122     dbgs() << "  Local:  " << Print(LiveMap[B], DFG) << '\n';
1123   }
1124 
1125   // Scan the block for upward-exposed uses and add them to the tracking set.
1126   for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) {
1127     NodeAddr<InstrNode *> IA = I;
1128     if (IA.Addr->getKind() != NodeAttrs::Stmt)
1129       continue;
1130     for (NodeAddr<UseNode *> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
1131       if (UA.Addr->getFlags() & NodeAttrs::Undef)
1132         continue;
1133       RegisterRef RR = UA.Addr->getRegRef(DFG);
1134       for (NodeAddr<DefNode *> D : getAllReachingDefs(UA))
1135         if (getBlockWithRef(D.Id) != B)
1136           LiveIn[RR.Reg].insert({D.Id, RR.Mask});
1137     }
1138   }
1139 
1140   if (Trace) {
1141     dbgs() << "after uses in block\n";
1142     dbgs() << "  LiveIn: " << Print(LiveIn, DFG) << '\n';
1143     dbgs() << "  Local:  " << Print(LiveMap[B], DFG) << '\n';
1144   }
1145 
1146   // Phi uses should not be propagated up the dominator tree, since they
1147   // are not dominated by their corresponding reaching defs.
1148   RegisterAggr &Local = LiveMap[B];
1149   RefMap &LON = PhiLON[B];
1150   for (auto &R : LON) {
1151     LaneBitmask M;
1152     for (auto P : R.second)
1153       M |= P.second;
1154     Local.insert(RegisterRef(R.first, M));
1155   }
1156 
1157   if (Trace) {
1158     dbgs() << "after phi uses in block\n";
1159     dbgs() << "  LiveIn: " << Print(LiveIn, DFG) << '\n';
1160     dbgs() << "  Local:  " << Print(Local, DFG) << '\n';
1161   }
1162 
1163   for (auto *C : IIDF[B]) {
1164     RegisterAggr &LiveC = LiveMap[C];
1165     for (const std::pair<const RegisterId, NodeRefSet> &S : LiveIn)
1166       for (auto R : S.second)
1167         if (MDT.properlyDominates(getBlockWithRef(R.first), C))
1168           LiveC.insert(RegisterRef(S.first, R.second));
1169   }
1170 }
1171 
1172 void Liveness::emptify(RefMap &M) {
1173   for (auto I = M.begin(), E = M.end(); I != E;)
1174     I = I->second.empty() ? M.erase(I) : std::next(I);
1175 }
1176 
1177 } // namespace llvm::rdf
1178