1 //===- RDFLiveness.cpp ----------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Computation of the liveness information from the data-flow graph. 10 // 11 // The main functionality of this code is to compute block live-in 12 // information. With the live-in information in place, the placement 13 // of kill flags can also be recalculated. 14 // 15 // The block live-in calculation is based on the ideas from the following 16 // publication: 17 // 18 // Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin. 19 // "Efficient Liveness Computation Using Merge Sets and DJ-Graphs." 20 // ACM Transactions on Architecture and Code Optimization, Association for 21 // Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance 22 // and Embedded Architectures and Compilers", 8 (4), 23 // <10.1145/2086696.2086706>. <hal-00647369> 24 // 25 #include "llvm/ADT/BitVector.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SetVector.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineDominanceFrontier.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/RDFGraph.h" 36 #include "llvm/CodeGen/RDFLiveness.h" 37 #include "llvm/CodeGen/RDFRegisters.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/MC/LaneBitmask.h" 40 #include "llvm/MC/MCRegisterInfo.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include <algorithm> 45 #include <cassert> 46 #include <cstdint> 47 #include <iterator> 48 #include <map> 49 #include <unordered_map> 50 #include <utility> 51 #include <vector> 52 53 using namespace llvm; 54 55 static cl::opt<unsigned> MaxRecNest("rdf-liveness-max-rec", cl::init(25), 56 cl::Hidden, 57 cl::desc("Maximum recursion level")); 58 59 namespace llvm::rdf { 60 61 raw_ostream &operator<<(raw_ostream &OS, const Print<Liveness::RefMap> &P) { 62 OS << '{'; 63 for (const auto &I : P.Obj) { 64 OS << ' ' << printReg(I.first, &P.G.getTRI()) << '{'; 65 for (auto J = I.second.begin(), E = I.second.end(); J != E;) { 66 OS << Print(J->first, P.G) << PrintLaneMaskShort(J->second); 67 if (++J != E) 68 OS << ','; 69 } 70 OS << '}'; 71 } 72 OS << " }"; 73 return OS; 74 } 75 76 // The order in the returned sequence is the order of reaching defs in the 77 // upward traversal: the first def is the closest to the given reference RefA, 78 // the next one is further up, and so on. 79 // The list ends at a reaching phi def, or when the reference from RefA is 80 // covered by the defs in the list (see FullChain). 81 // This function provides two modes of operation: 82 // (1) Returning the sequence of reaching defs for a particular reference 83 // node. This sequence will terminate at the first phi node [1]. 84 // (2) Returning a partial sequence of reaching defs, where the final goal 85 // is to traverse past phi nodes to the actual defs arising from the code 86 // itself. 87 // In mode (2), the register reference for which the search was started 88 // may be different from the reference node RefA, for which this call was 89 // made, hence the argument RefRR, which holds the original register. 90 // Also, some definitions may have already been encountered in a previous 91 // call that will influence register covering. The register references 92 // already defined are passed in through DefRRs. 93 // In mode (1), the "continuation" considerations do not apply, and the 94 // RefRR is the same as the register in RefA, and the set DefRRs is empty. 95 // 96 // [1] It is possible for multiple phi nodes to be included in the returned 97 // sequence: 98 // SubA = phi ... 99 // SubB = phi ... 100 // ... = SuperAB(rdef:SubA), SuperAB"(rdef:SubB) 101 // However, these phi nodes are independent from one another in terms of 102 // the data-flow. 103 104 NodeList Liveness::getAllReachingDefs(RegisterRef RefRR, 105 NodeAddr<RefNode *> RefA, bool TopShadows, 106 bool FullChain, 107 const RegisterAggr &DefRRs) { 108 NodeList RDefs; // Return value. 109 SetVector<NodeId> DefQ; 110 DenseMap<MachineInstr *, uint32_t> OrdMap; 111 112 // Dead defs will be treated as if they were live, since they are actually 113 // on the data-flow path. They cannot be ignored because even though they 114 // do not generate meaningful values, they still modify registers. 115 116 // If the reference is undefined, there is nothing to do. 117 if (RefA.Addr->getFlags() & NodeAttrs::Undef) 118 return RDefs; 119 120 // The initial queue should not have reaching defs for shadows. The 121 // whole point of a shadow is that it will have a reaching def that 122 // is not aliased to the reaching defs of the related shadows. 123 NodeId Start = RefA.Id; 124 auto SNA = DFG.addr<RefNode *>(Start); 125 if (NodeId RD = SNA.Addr->getReachingDef()) 126 DefQ.insert(RD); 127 if (TopShadows) { 128 for (auto S : DFG.getRelatedRefs(RefA.Addr->getOwner(DFG), RefA)) 129 if (NodeId RD = NodeAddr<RefNode *>(S).Addr->getReachingDef()) 130 DefQ.insert(RD); 131 } 132 133 // Collect all the reaching defs, going up until a phi node is encountered, 134 // or there are no more reaching defs. From this set, the actual set of 135 // reaching defs will be selected. 136 // The traversal upwards must go on until a covering def is encountered. 137 // It is possible that a collection of non-covering (individually) defs 138 // will be sufficient, but keep going until a covering one is found. 139 for (unsigned i = 0; i < DefQ.size(); ++i) { 140 auto TA = DFG.addr<DefNode *>(DefQ[i]); 141 if (TA.Addr->getFlags() & NodeAttrs::PhiRef) 142 continue; 143 // Stop at the covering/overwriting def of the initial register reference. 144 RegisterRef RR = TA.Addr->getRegRef(DFG); 145 if (!DFG.IsPreservingDef(TA)) 146 if (RegisterAggr::isCoverOf(RR, RefRR, PRI)) 147 continue; 148 // Get the next level of reaching defs. This will include multiple 149 // reaching defs for shadows. 150 for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA)) 151 if (NodeId RD = NodeAddr<RefNode *>(S).Addr->getReachingDef()) 152 DefQ.insert(RD); 153 // Don't visit sibling defs. They share the same reaching def (which 154 // will be visited anyway), but they define something not aliased to 155 // this ref. 156 } 157 158 // Return the MachineBasicBlock containing a given instruction. 159 auto Block = [this](NodeAddr<InstrNode *> IA) -> MachineBasicBlock * { 160 if (IA.Addr->getKind() == NodeAttrs::Stmt) 161 return NodeAddr<StmtNode *>(IA).Addr->getCode()->getParent(); 162 assert(IA.Addr->getKind() == NodeAttrs::Phi); 163 NodeAddr<PhiNode *> PA = IA; 164 NodeAddr<BlockNode *> BA = PA.Addr->getOwner(DFG); 165 return BA.Addr->getCode(); 166 }; 167 168 SmallSet<NodeId, 32> Defs; 169 170 // Remove all non-phi defs that are not aliased to RefRR, and separate 171 // the the remaining defs into buckets for containing blocks. 172 std::map<NodeId, NodeAddr<InstrNode *>> Owners; 173 std::map<MachineBasicBlock *, SmallVector<NodeId, 32>> Blocks; 174 for (NodeId N : DefQ) { 175 auto TA = DFG.addr<DefNode *>(N); 176 bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef; 177 if (!IsPhi && !PRI.alias(RefRR, TA.Addr->getRegRef(DFG))) 178 continue; 179 Defs.insert(TA.Id); 180 NodeAddr<InstrNode *> IA = TA.Addr->getOwner(DFG); 181 Owners[TA.Id] = IA; 182 Blocks[Block(IA)].push_back(IA.Id); 183 } 184 185 auto Precedes = [this, &OrdMap](NodeId A, NodeId B) { 186 if (A == B) 187 return false; 188 NodeAddr<InstrNode *> OA = DFG.addr<InstrNode *>(A); 189 NodeAddr<InstrNode *> OB = DFG.addr<InstrNode *>(B); 190 bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt; 191 bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt; 192 if (StmtA && StmtB) { 193 const MachineInstr *InA = NodeAddr<StmtNode *>(OA).Addr->getCode(); 194 const MachineInstr *InB = NodeAddr<StmtNode *>(OB).Addr->getCode(); 195 assert(InA->getParent() == InB->getParent()); 196 auto FA = OrdMap.find(InA); 197 if (FA != OrdMap.end()) 198 return FA->second < OrdMap.find(InB)->second; 199 const MachineBasicBlock *BB = InA->getParent(); 200 for (auto It = BB->begin(), E = BB->end(); It != E; ++It) { 201 if (It == InA->getIterator()) 202 return true; 203 if (It == InB->getIterator()) 204 return false; 205 } 206 llvm_unreachable("InA and InB should be in the same block"); 207 } 208 // One of them is a phi node. 209 if (!StmtA && !StmtB) { 210 // Both are phis, which are unordered. Break the tie by id numbers. 211 return A < B; 212 } 213 // Only one of them is a phi. Phis always precede statements. 214 return !StmtA; 215 }; 216 217 auto GetOrder = [&OrdMap](MachineBasicBlock &B) { 218 uint32_t Pos = 0; 219 for (MachineInstr &In : B) 220 OrdMap.insert({&In, ++Pos}); 221 }; 222 223 // For each block, sort the nodes in it. 224 std::vector<MachineBasicBlock *> TmpBB; 225 for (auto &Bucket : Blocks) { 226 TmpBB.push_back(Bucket.first); 227 if (Bucket.second.size() > 2) 228 GetOrder(*Bucket.first); 229 llvm::sort(Bucket.second, Precedes); 230 } 231 232 // Sort the blocks with respect to dominance. 233 llvm::sort(TmpBB, 234 [this](auto A, auto B) { return MDT.properlyDominates(A, B); }); 235 236 std::vector<NodeId> TmpInst; 237 for (MachineBasicBlock *MBB : llvm::reverse(TmpBB)) { 238 auto &Bucket = Blocks[MBB]; 239 TmpInst.insert(TmpInst.end(), Bucket.rbegin(), Bucket.rend()); 240 } 241 242 // The vector is a list of instructions, so that defs coming from 243 // the same instruction don't need to be artificially ordered. 244 // Then, when computing the initial segment, and iterating over an 245 // instruction, pick the defs that contribute to the covering (i.e. is 246 // not covered by previously added defs). Check the defs individually, 247 // i.e. first check each def if is covered or not (without adding them 248 // to the tracking set), and then add all the selected ones. 249 250 // The reason for this is this example: 251 // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes). 252 // *d3<C> If A \incl BuC, and B \incl AuC, then *d2 would be 253 // covered if we added A first, and A would be covered 254 // if we added B first. 255 // In this example we want both A and B, because we don't want to give 256 // either one priority over the other, since they belong to the same 257 // statement. 258 259 RegisterAggr RRs(DefRRs); 260 261 auto DefInSet = [&Defs](NodeAddr<RefNode *> TA) -> bool { 262 return TA.Addr->getKind() == NodeAttrs::Def && Defs.count(TA.Id); 263 }; 264 265 for (NodeId T : TmpInst) { 266 if (!FullChain && RRs.hasCoverOf(RefRR)) 267 break; 268 auto TA = DFG.addr<InstrNode *>(T); 269 bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA); 270 NodeList Ds; 271 for (NodeAddr<DefNode *> DA : TA.Addr->members_if(DefInSet, DFG)) { 272 RegisterRef QR = DA.Addr->getRegRef(DFG); 273 // Add phi defs even if they are covered by subsequent defs. This is 274 // for cases where the reached use is not covered by any of the defs 275 // encountered so far: the phi def is needed to expose the liveness 276 // of that use to the entry of the block. 277 // Example: 278 // phi d1<R3>(,d2,), ... Phi def d1 is covered by d2. 279 // d2<R3>(d1,,u3), ... 280 // ..., u3<D1>(d2) This use needs to be live on entry. 281 if (FullChain || IsPhi || !RRs.hasCoverOf(QR)) 282 Ds.push_back(DA); 283 } 284 llvm::append_range(RDefs, Ds); 285 for (NodeAddr<DefNode *> DA : Ds) { 286 // When collecting a full chain of definitions, do not consider phi 287 // defs to actually define a register. 288 uint16_t Flags = DA.Addr->getFlags(); 289 if (!FullChain || !(Flags & NodeAttrs::PhiRef)) 290 if (!(Flags & NodeAttrs::Preserving)) // Don't care about Undef here. 291 RRs.insert(DA.Addr->getRegRef(DFG)); 292 } 293 } 294 295 auto DeadP = [](const NodeAddr<DefNode *> DA) -> bool { 296 return DA.Addr->getFlags() & NodeAttrs::Dead; 297 }; 298 llvm::erase_if(RDefs, DeadP); 299 300 return RDefs; 301 } 302 303 std::pair<NodeSet, bool> 304 Liveness::getAllReachingDefsRec(RegisterRef RefRR, NodeAddr<RefNode *> RefA, 305 NodeSet &Visited, const NodeSet &Defs) { 306 return getAllReachingDefsRecImpl(RefRR, RefA, Visited, Defs, 0, MaxRecNest); 307 } 308 309 std::pair<NodeSet, bool> 310 Liveness::getAllReachingDefsRecImpl(RegisterRef RefRR, NodeAddr<RefNode *> RefA, 311 NodeSet &Visited, const NodeSet &Defs, 312 unsigned Nest, unsigned MaxNest) { 313 if (Nest > MaxNest) 314 return {NodeSet(), false}; 315 // Collect all defined registers. Do not consider phis to be defining 316 // anything, only collect "real" definitions. 317 RegisterAggr DefRRs(PRI); 318 for (NodeId D : Defs) { 319 const auto DA = DFG.addr<const DefNode *>(D); 320 if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef)) 321 DefRRs.insert(DA.Addr->getRegRef(DFG)); 322 } 323 324 NodeList RDs = getAllReachingDefs(RefRR, RefA, false, true, DefRRs); 325 if (RDs.empty()) 326 return {Defs, true}; 327 328 // Make a copy of the preexisting definitions and add the newly found ones. 329 NodeSet TmpDefs = Defs; 330 for (NodeAddr<NodeBase *> R : RDs) 331 TmpDefs.insert(R.Id); 332 333 NodeSet Result = Defs; 334 335 for (NodeAddr<DefNode *> DA : RDs) { 336 Result.insert(DA.Id); 337 if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef)) 338 continue; 339 NodeAddr<PhiNode *> PA = DA.Addr->getOwner(DFG); 340 if (!Visited.insert(PA.Id).second) 341 continue; 342 // Go over all phi uses and get the reaching defs for each use. 343 for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) { 344 const auto &T = getAllReachingDefsRecImpl(RefRR, U, Visited, TmpDefs, 345 Nest + 1, MaxNest); 346 if (!T.second) 347 return {T.first, false}; 348 Result.insert(T.first.begin(), T.first.end()); 349 } 350 } 351 352 return {Result, true}; 353 } 354 355 /// Find the nearest ref node aliased to RefRR, going upwards in the data 356 /// flow, starting from the instruction immediately preceding Inst. 357 NodeAddr<RefNode *> Liveness::getNearestAliasedRef(RegisterRef RefRR, 358 NodeAddr<InstrNode *> IA) { 359 NodeAddr<BlockNode *> BA = IA.Addr->getOwner(DFG); 360 NodeList Ins = BA.Addr->members(DFG); 361 NodeId FindId = IA.Id; 362 auto E = Ins.rend(); 363 auto B = 364 std::find_if(Ins.rbegin(), E, [FindId](const NodeAddr<InstrNode *> T) { 365 return T.Id == FindId; 366 }); 367 // Do not scan IA (which is what B would point to). 368 if (B != E) 369 ++B; 370 371 do { 372 // Process the range of instructions from B to E. 373 for (NodeAddr<InstrNode *> I : make_range(B, E)) { 374 NodeList Refs = I.Addr->members(DFG); 375 NodeAddr<RefNode *> Clob, Use; 376 // Scan all the refs in I aliased to RefRR, and return the one that 377 // is the closest to the output of I, i.e. def > clobber > use. 378 for (NodeAddr<RefNode *> R : Refs) { 379 if (!PRI.alias(R.Addr->getRegRef(DFG), RefRR)) 380 continue; 381 if (DFG.IsDef(R)) { 382 // If it's a non-clobbering def, just return it. 383 if (!(R.Addr->getFlags() & NodeAttrs::Clobbering)) 384 return R; 385 Clob = R; 386 } else { 387 Use = R; 388 } 389 } 390 if (Clob.Id != 0) 391 return Clob; 392 if (Use.Id != 0) 393 return Use; 394 } 395 396 // Go up to the immediate dominator, if any. 397 MachineBasicBlock *BB = BA.Addr->getCode(); 398 BA = NodeAddr<BlockNode *>(); 399 if (MachineDomTreeNode *N = MDT.getNode(BB)) { 400 if ((N = N->getIDom())) 401 BA = DFG.findBlock(N->getBlock()); 402 } 403 if (!BA.Id) 404 break; 405 406 Ins = BA.Addr->members(DFG); 407 B = Ins.rbegin(); 408 E = Ins.rend(); 409 } while (true); 410 411 return NodeAddr<RefNode *>(); 412 } 413 414 NodeSet Liveness::getAllReachedUses(RegisterRef RefRR, NodeAddr<DefNode *> DefA, 415 const RegisterAggr &DefRRs) { 416 NodeSet Uses; 417 418 // If the original register is already covered by all the intervening 419 // defs, no more uses can be reached. 420 if (DefRRs.hasCoverOf(RefRR)) 421 return Uses; 422 423 // Add all directly reached uses. 424 // If the def is dead, it does not provide a value for any use. 425 bool IsDead = DefA.Addr->getFlags() & NodeAttrs::Dead; 426 NodeId U = !IsDead ? DefA.Addr->getReachedUse() : 0; 427 while (U != 0) { 428 auto UA = DFG.addr<UseNode *>(U); 429 if (!(UA.Addr->getFlags() & NodeAttrs::Undef)) { 430 RegisterRef UR = UA.Addr->getRegRef(DFG); 431 if (PRI.alias(RefRR, UR) && !DefRRs.hasCoverOf(UR)) 432 Uses.insert(U); 433 } 434 U = UA.Addr->getSibling(); 435 } 436 437 // Traverse all reached defs. This time dead defs cannot be ignored. 438 for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) { 439 auto DA = DFG.addr<DefNode *>(D); 440 NextD = DA.Addr->getSibling(); 441 RegisterRef DR = DA.Addr->getRegRef(DFG); 442 // If this def is already covered, it cannot reach anything new. 443 // Similarly, skip it if it is not aliased to the interesting register. 444 if (DefRRs.hasCoverOf(DR) || !PRI.alias(RefRR, DR)) 445 continue; 446 NodeSet T; 447 if (DFG.IsPreservingDef(DA)) { 448 // If it is a preserving def, do not update the set of intervening defs. 449 T = getAllReachedUses(RefRR, DA, DefRRs); 450 } else { 451 RegisterAggr NewDefRRs = DefRRs; 452 NewDefRRs.insert(DR); 453 T = getAllReachedUses(RefRR, DA, NewDefRRs); 454 } 455 Uses.insert(T.begin(), T.end()); 456 } 457 return Uses; 458 } 459 460 void Liveness::computePhiInfo() { 461 RealUseMap.clear(); 462 463 NodeList Phis; 464 NodeAddr<FuncNode *> FA = DFG.getFunc(); 465 NodeList Blocks = FA.Addr->members(DFG); 466 for (NodeAddr<BlockNode *> BA : Blocks) { 467 auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG); 468 llvm::append_range(Phis, Ps); 469 } 470 471 // phi use -> (map: reaching phi -> set of registers defined in between) 472 std::map<NodeId, std::map<NodeId, RegisterAggr>> PhiUp; 473 std::vector<NodeId> PhiUQ; // Work list of phis for upward propagation. 474 std::unordered_map<NodeId, RegisterAggr> 475 PhiDRs; // Phi -> registers defined by it. 476 477 // Go over all phis. 478 for (NodeAddr<PhiNode *> PhiA : Phis) { 479 // Go over all defs and collect the reached uses that are non-phi uses 480 // (i.e. the "real uses"). 481 RefMap &RealUses = RealUseMap[PhiA.Id]; 482 NodeList PhiRefs = PhiA.Addr->members(DFG); 483 484 // Have a work queue of defs whose reached uses need to be found. 485 // For each def, add to the queue all reached (non-phi) defs. 486 SetVector<NodeId> DefQ; 487 NodeSet PhiDefs; 488 RegisterAggr DRs(PRI); 489 for (NodeAddr<RefNode *> R : PhiRefs) { 490 if (!DFG.IsRef<NodeAttrs::Def>(R)) 491 continue; 492 DRs.insert(R.Addr->getRegRef(DFG)); 493 DefQ.insert(R.Id); 494 PhiDefs.insert(R.Id); 495 } 496 PhiDRs.insert(std::make_pair(PhiA.Id, DRs)); 497 498 // Collect the super-set of all possible reached uses. This set will 499 // contain all uses reached from this phi, either directly from the 500 // phi defs, or (recursively) via non-phi defs reached by the phi defs. 501 // This set of uses will later be trimmed to only contain these uses that 502 // are actually reached by the phi defs. 503 for (unsigned i = 0; i < DefQ.size(); ++i) { 504 NodeAddr<DefNode *> DA = DFG.addr<DefNode *>(DefQ[i]); 505 // Visit all reached uses. Phi defs should not really have the "dead" 506 // flag set, but check it anyway for consistency. 507 bool IsDead = DA.Addr->getFlags() & NodeAttrs::Dead; 508 NodeId UN = !IsDead ? DA.Addr->getReachedUse() : 0; 509 while (UN != 0) { 510 NodeAddr<UseNode *> A = DFG.addr<UseNode *>(UN); 511 uint16_t F = A.Addr->getFlags(); 512 if ((F & (NodeAttrs::Undef | NodeAttrs::PhiRef)) == 0) { 513 RegisterRef R = A.Addr->getRegRef(DFG); 514 RealUses[R.Reg].insert({A.Id, R.Mask}); 515 } 516 UN = A.Addr->getSibling(); 517 } 518 // Visit all reached defs, and add them to the queue. These defs may 519 // override some of the uses collected here, but that will be handled 520 // later. 521 NodeId DN = DA.Addr->getReachedDef(); 522 while (DN != 0) { 523 NodeAddr<DefNode *> A = DFG.addr<DefNode *>(DN); 524 for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) { 525 uint16_t Flags = NodeAddr<DefNode *>(T).Addr->getFlags(); 526 // Must traverse the reached-def chain. Consider: 527 // def(D0) -> def(R0) -> def(R0) -> use(D0) 528 // The reachable use of D0 passes through a def of R0. 529 if (!(Flags & NodeAttrs::PhiRef)) 530 DefQ.insert(T.Id); 531 } 532 DN = A.Addr->getSibling(); 533 } 534 } 535 // Filter out these uses that appear to be reachable, but really 536 // are not. For example: 537 // 538 // R1:0 = d1 539 // = R1:0 u2 Reached by d1. 540 // R0 = d3 541 // = R1:0 u4 Still reached by d1: indirectly through 542 // the def d3. 543 // R1 = d5 544 // = R1:0 u6 Not reached by d1 (covered collectively 545 // by d3 and d5), but following reached 546 // defs and uses from d1 will lead here. 547 for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE;) { 548 // For each reached register UI->first, there is a set UI->second, of 549 // uses of it. For each such use, check if it is reached by this phi, 550 // i.e. check if the set of its reaching uses intersects the set of 551 // this phi's defs. 552 NodeRefSet Uses = UI->second; 553 UI->second.clear(); 554 for (std::pair<NodeId, LaneBitmask> I : Uses) { 555 auto UA = DFG.addr<UseNode *>(I.first); 556 // Undef flag is checked above. 557 assert((UA.Addr->getFlags() & NodeAttrs::Undef) == 0); 558 RegisterRef UseR(UI->first, I.second); // Ref from Uses 559 // R = intersection of the ref from the phi and the ref from Uses 560 RegisterRef R = PhiDRs.at(PhiA.Id).intersectWith(UseR); 561 if (!R) 562 continue; 563 // Calculate the exposed part of the reached use. 564 RegisterAggr Covered(PRI); 565 for (NodeAddr<DefNode *> DA : getAllReachingDefs(R, UA)) { 566 if (PhiDefs.count(DA.Id)) 567 break; 568 Covered.insert(DA.Addr->getRegRef(DFG)); 569 } 570 if (RegisterRef RC = Covered.clearIn(R)) { 571 // We are updating the map for register UI->first, so we need 572 // to map RC to be expressed in terms of that register. 573 RegisterRef S = PRI.mapTo(RC, UI->first); 574 UI->second.insert({I.first, S.Mask}); 575 } 576 } 577 UI = UI->second.empty() ? RealUses.erase(UI) : std::next(UI); 578 } 579 580 // If this phi reaches some "real" uses, add it to the queue for upward 581 // propagation. 582 if (!RealUses.empty()) 583 PhiUQ.push_back(PhiA.Id); 584 585 // Go over all phi uses and check if the reaching def is another phi. 586 // Collect the phis that are among the reaching defs of these uses. 587 // While traversing the list of reaching defs for each phi use, accumulate 588 // the set of registers defined between this phi (PhiA) and the owner phi 589 // of the reaching def. 590 NodeSet SeenUses; 591 592 for (auto I : PhiRefs) { 593 if (!DFG.IsRef<NodeAttrs::Use>(I) || SeenUses.count(I.Id)) 594 continue; 595 NodeAddr<PhiUseNode *> PUA = I; 596 if (PUA.Addr->getReachingDef() == 0) 597 continue; 598 599 RegisterRef UR = PUA.Addr->getRegRef(DFG); 600 NodeList Ds = getAllReachingDefs(UR, PUA, true, false, NoRegs); 601 RegisterAggr DefRRs(PRI); 602 603 for (NodeAddr<DefNode *> D : Ds) { 604 if (D.Addr->getFlags() & NodeAttrs::PhiRef) { 605 NodeId RP = D.Addr->getOwner(DFG).Id; 606 std::map<NodeId, RegisterAggr> &M = PhiUp[PUA.Id]; 607 auto F = M.find(RP); 608 if (F == M.end()) 609 M.insert(std::make_pair(RP, DefRRs)); 610 else 611 F->second.insert(DefRRs); 612 } 613 DefRRs.insert(D.Addr->getRegRef(DFG)); 614 } 615 616 for (NodeAddr<PhiUseNode *> T : DFG.getRelatedRefs(PhiA, PUA)) 617 SeenUses.insert(T.Id); 618 } 619 } 620 621 if (Trace) { 622 dbgs() << "Phi-up-to-phi map with intervening defs:\n"; 623 for (auto I : PhiUp) { 624 dbgs() << "phi " << Print(I.first, DFG) << " -> {"; 625 for (auto R : I.second) 626 dbgs() << ' ' << Print(R.first, DFG) << Print(R.second, DFG); 627 dbgs() << " }\n"; 628 } 629 } 630 631 // Propagate the reached registers up in the phi chain. 632 // 633 // The following type of situation needs careful handling: 634 // 635 // phi d1<R1:0> (1) 636 // | 637 // ... d2<R1> 638 // | 639 // phi u3<R1:0> (2) 640 // | 641 // ... u4<R1> 642 // 643 // The phi node (2) defines a register pair R1:0, and reaches a "real" 644 // use u4 of just R1. The same phi node is also known to reach (upwards) 645 // the phi node (1). However, the use u4 is not reached by phi (1), 646 // because of the intervening definition d2 of R1. The data flow between 647 // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0. 648 // 649 // When propagating uses up the phi chains, get the all reaching defs 650 // for a given phi use, and traverse the list until the propagated ref 651 // is covered, or until reaching the final phi. Only assume that the 652 // reference reaches the phi in the latter case. 653 654 // The operation "clearIn" can be expensive. For a given set of intervening 655 // defs, cache the result of subtracting these defs from a given register 656 // ref. 657 using RefHash = std::hash<RegisterRef>; 658 using RefEqual = std::equal_to<RegisterRef>; 659 using SubMap = std::unordered_map<RegisterRef, RegisterRef>; 660 std::unordered_map<RegisterAggr, SubMap> Subs; 661 auto ClearIn = [](RegisterRef RR, const RegisterAggr &Mid, SubMap &SM) { 662 if (Mid.empty()) 663 return RR; 664 auto F = SM.find(RR); 665 if (F != SM.end()) 666 return F->second; 667 RegisterRef S = Mid.clearIn(RR); 668 SM.insert({RR, S}); 669 return S; 670 }; 671 672 // Go over all phis. 673 for (unsigned i = 0; i < PhiUQ.size(); ++i) { 674 auto PA = DFG.addr<PhiNode *>(PhiUQ[i]); 675 NodeList PUs = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG); 676 RefMap &RUM = RealUseMap[PA.Id]; 677 678 for (NodeAddr<UseNode *> UA : PUs) { 679 std::map<NodeId, RegisterAggr> &PUM = PhiUp[UA.Id]; 680 RegisterRef UR = UA.Addr->getRegRef(DFG); 681 for (const std::pair<const NodeId, RegisterAggr> &P : PUM) { 682 bool Changed = false; 683 const RegisterAggr &MidDefs = P.second; 684 // Collect the set PropUp of uses that are reached by the current 685 // phi PA, and are not covered by any intervening def between the 686 // currently visited use UA and the upward phi P. 687 688 if (MidDefs.hasCoverOf(UR)) 689 continue; 690 if (Subs.find(MidDefs) == Subs.end()) { 691 Subs.insert({MidDefs, SubMap(1, RefHash(), RefEqual(PRI))}); 692 } 693 SubMap &SM = Subs.at(MidDefs); 694 695 // General algorithm: 696 // for each (R,U) : U is use node of R, U is reached by PA 697 // if MidDefs does not cover (R,U) 698 // then add (R-MidDefs,U) to RealUseMap[P] 699 // 700 for (const std::pair<const RegisterId, NodeRefSet> &T : RUM) { 701 RegisterRef R(T.first); 702 // The current phi (PA) could be a phi for a regmask. It could 703 // reach a whole variety of uses that are not related to the 704 // specific upward phi (P.first). 705 const RegisterAggr &DRs = PhiDRs.at(P.first); 706 if (!DRs.hasAliasOf(R)) 707 continue; 708 R = PRI.mapTo(DRs.intersectWith(R), T.first); 709 for (std::pair<NodeId, LaneBitmask> V : T.second) { 710 LaneBitmask M = R.Mask & V.second; 711 if (M.none()) 712 continue; 713 if (RegisterRef SS = ClearIn(RegisterRef(R.Reg, M), MidDefs, SM)) { 714 NodeRefSet &RS = RealUseMap[P.first][SS.Reg]; 715 Changed |= RS.insert({V.first, SS.Mask}).second; 716 } 717 } 718 } 719 720 if (Changed) 721 PhiUQ.push_back(P.first); 722 } 723 } 724 } 725 726 if (Trace) { 727 dbgs() << "Real use map:\n"; 728 for (auto I : RealUseMap) { 729 dbgs() << "phi " << Print(I.first, DFG); 730 NodeAddr<PhiNode *> PA = DFG.addr<PhiNode *>(I.first); 731 NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG); 732 if (!Ds.empty()) { 733 RegisterRef RR = NodeAddr<DefNode *>(Ds[0]).Addr->getRegRef(DFG); 734 dbgs() << '<' << Print(RR, DFG) << '>'; 735 } else { 736 dbgs() << "<noreg>"; 737 } 738 dbgs() << " -> " << Print(I.second, DFG) << '\n'; 739 } 740 } 741 } 742 743 void Liveness::computeLiveIns() { 744 // Populate the node-to-block map. This speeds up the calculations 745 // significantly. 746 NBMap.clear(); 747 for (NodeAddr<BlockNode *> BA : DFG.getFunc().Addr->members(DFG)) { 748 MachineBasicBlock *BB = BA.Addr->getCode(); 749 for (NodeAddr<InstrNode *> IA : BA.Addr->members(DFG)) { 750 for (NodeAddr<RefNode *> RA : IA.Addr->members(DFG)) 751 NBMap.insert(std::make_pair(RA.Id, BB)); 752 NBMap.insert(std::make_pair(IA.Id, BB)); 753 } 754 } 755 756 MachineFunction &MF = DFG.getMF(); 757 758 // Compute IDF first, then the inverse. 759 decltype(IIDF) IDF; 760 for (MachineBasicBlock &B : MF) { 761 auto F1 = MDF.find(&B); 762 if (F1 == MDF.end()) 763 continue; 764 SetVector<MachineBasicBlock *> IDFB(F1->second.begin(), F1->second.end()); 765 for (unsigned i = 0; i < IDFB.size(); ++i) { 766 auto F2 = MDF.find(IDFB[i]); 767 if (F2 != MDF.end()) 768 IDFB.insert(F2->second.begin(), F2->second.end()); 769 } 770 // Add B to the IDF(B). This will put B in the IIDF(B). 771 IDFB.insert(&B); 772 IDF[&B].insert(IDFB.begin(), IDFB.end()); 773 } 774 775 for (auto I : IDF) 776 for (auto *S : I.second) 777 IIDF[S].insert(I.first); 778 779 computePhiInfo(); 780 781 NodeAddr<FuncNode *> FA = DFG.getFunc(); 782 NodeList Blocks = FA.Addr->members(DFG); 783 784 // Build the phi live-on-entry map. 785 for (NodeAddr<BlockNode *> BA : Blocks) { 786 MachineBasicBlock *MB = BA.Addr->getCode(); 787 RefMap &LON = PhiLON[MB]; 788 for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG)) { 789 for (const RefMap::value_type &S : RealUseMap[P.Id]) 790 LON[S.first].insert(S.second.begin(), S.second.end()); 791 } 792 } 793 794 if (Trace) { 795 dbgs() << "Phi live-on-entry map:\n"; 796 for (auto &I : PhiLON) 797 dbgs() << "block #" << I.first->getNumber() << " -> " 798 << Print(I.second, DFG) << '\n'; 799 } 800 801 // Build the phi live-on-exit map. Each phi node has some set of reached 802 // "real" uses. Propagate this set backwards into the block predecessors 803 // through the reaching defs of the corresponding phi uses. 804 for (NodeAddr<BlockNode *> BA : Blocks) { 805 NodeList Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG); 806 for (NodeAddr<PhiNode *> PA : Phis) { 807 RefMap &RUs = RealUseMap[PA.Id]; 808 if (RUs.empty()) 809 continue; 810 811 NodeSet SeenUses; 812 for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) { 813 if (!SeenUses.insert(U.Id).second) 814 continue; 815 NodeAddr<PhiUseNode *> PUA = U; 816 if (PUA.Addr->getReachingDef() == 0) 817 continue; 818 819 // Each phi has some set (possibly empty) of reached "real" uses, 820 // that is, uses that are part of the compiled program. Such a use 821 // may be located in some farther block, but following a chain of 822 // reaching defs will eventually lead to this phi. 823 // Any chain of reaching defs may fork at a phi node, but there 824 // will be a path upwards that will lead to this phi. Now, this 825 // chain will need to fork at this phi, since some of the reached 826 // uses may have definitions joining in from multiple predecessors. 827 // For each reached "real" use, identify the set of reaching defs 828 // coming from each predecessor P, and add them to PhiLOX[P]. 829 // 830 auto PrA = DFG.addr<BlockNode *>(PUA.Addr->getPredecessor()); 831 RefMap &LOX = PhiLOX[PrA.Addr->getCode()]; 832 833 for (const std::pair<const RegisterId, NodeRefSet> &RS : RUs) { 834 // We need to visit each individual use. 835 for (std::pair<NodeId, LaneBitmask> P : RS.second) { 836 // Create a register ref corresponding to the use, and find 837 // all reaching defs starting from the phi use, and treating 838 // all related shadows as a single use cluster. 839 RegisterRef S(RS.first, P.second); 840 NodeList Ds = getAllReachingDefs(S, PUA, true, false, NoRegs); 841 for (NodeAddr<DefNode *> D : Ds) { 842 // Calculate the mask corresponding to the visited def. 843 RegisterAggr TA(PRI); 844 TA.insert(D.Addr->getRegRef(DFG)).intersect(S); 845 LaneBitmask TM = TA.makeRegRef().Mask; 846 LOX[S.Reg].insert({D.Id, TM}); 847 } 848 } 849 } 850 851 for (NodeAddr<PhiUseNode *> T : DFG.getRelatedRefs(PA, PUA)) 852 SeenUses.insert(T.Id); 853 } // for U : phi uses 854 } // for P : Phis 855 } // for B : Blocks 856 857 if (Trace) { 858 dbgs() << "Phi live-on-exit map:\n"; 859 for (auto &I : PhiLOX) 860 dbgs() << "block #" << I.first->getNumber() << " -> " 861 << Print(I.second, DFG) << '\n'; 862 } 863 864 RefMap LiveIn; 865 traverse(&MF.front(), LiveIn); 866 867 // Add function live-ins to the live-in set of the function entry block. 868 LiveMap[&MF.front()].insert(DFG.getLiveIns()); 869 870 if (Trace) { 871 // Dump the liveness map 872 for (MachineBasicBlock &B : MF) { 873 std::vector<RegisterRef> LV; 874 for (const MachineBasicBlock::RegisterMaskPair &LI : B.liveins()) 875 LV.push_back(RegisterRef(LI.PhysReg, LI.LaneMask)); 876 llvm::sort(LV, std::less<RegisterRef>(PRI)); 877 dbgs() << printMBBReference(B) << "\t rec = {"; 878 for (auto I : LV) 879 dbgs() << ' ' << Print(I, DFG); 880 dbgs() << " }\n"; 881 // dbgs() << "\tcomp = " << Print(LiveMap[&B], DFG) << '\n'; 882 883 LV.clear(); 884 for (RegisterRef RR : LiveMap[&B].refs()) 885 LV.push_back(RR); 886 llvm::sort(LV, std::less<RegisterRef>(PRI)); 887 dbgs() << "\tcomp = {"; 888 for (auto I : LV) 889 dbgs() << ' ' << Print(I, DFG); 890 dbgs() << " }\n"; 891 } 892 } 893 } 894 895 void Liveness::resetLiveIns() { 896 for (auto &B : DFG.getMF()) { 897 // Remove all live-ins. 898 std::vector<unsigned> T; 899 for (const MachineBasicBlock::RegisterMaskPair &LI : B.liveins()) 900 T.push_back(LI.PhysReg); 901 for (auto I : T) 902 B.removeLiveIn(I); 903 // Add the newly computed live-ins. 904 const RegisterAggr &LiveIns = LiveMap[&B]; 905 for (RegisterRef R : LiveIns.refs()) 906 B.addLiveIn({MCPhysReg(R.Reg), R.Mask}); 907 } 908 } 909 910 void Liveness::resetKills() { 911 for (auto &B : DFG.getMF()) 912 resetKills(&B); 913 } 914 915 void Liveness::resetKills(MachineBasicBlock *B) { 916 auto CopyLiveIns = [this](MachineBasicBlock *B, BitVector &LV) -> void { 917 for (auto I : B->liveins()) { 918 MCSubRegIndexIterator S(I.PhysReg, &TRI); 919 if (!S.isValid()) { 920 LV.set(I.PhysReg); 921 continue; 922 } 923 do { 924 LaneBitmask M = TRI.getSubRegIndexLaneMask(S.getSubRegIndex()); 925 if ((M & I.LaneMask).any()) 926 LV.set(S.getSubReg()); 927 ++S; 928 } while (S.isValid()); 929 } 930 }; 931 932 BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs()); 933 CopyLiveIns(B, LiveIn); 934 for (auto *SI : B->successors()) 935 CopyLiveIns(SI, Live); 936 937 for (MachineInstr &MI : llvm::reverse(*B)) { 938 if (MI.isDebugInstr()) 939 continue; 940 941 MI.clearKillInfo(); 942 for (auto &Op : MI.all_defs()) { 943 // An implicit def of a super-register may not necessarily start a 944 // live range of it, since an implicit use could be used to keep parts 945 // of it live. Instead of analyzing the implicit operands, ignore 946 // implicit defs. 947 if (Op.isImplicit()) 948 continue; 949 Register R = Op.getReg(); 950 if (!R.isPhysical()) 951 continue; 952 for (MCPhysReg SR : TRI.subregs_inclusive(R)) 953 Live.reset(SR); 954 } 955 for (auto &Op : MI.all_uses()) { 956 if (Op.isUndef()) 957 continue; 958 Register R = Op.getReg(); 959 if (!R.isPhysical()) 960 continue; 961 bool IsLive = false; 962 for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) { 963 if (!Live[*AR]) 964 continue; 965 IsLive = true; 966 break; 967 } 968 if (!IsLive) 969 Op.setIsKill(true); 970 for (MCPhysReg SR : TRI.subregs_inclusive(R)) 971 Live.set(SR); 972 } 973 } 974 } 975 976 // Helper function to obtain the basic block containing the reaching def 977 // of the given use. 978 MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const { 979 auto F = NBMap.find(RN); 980 if (F != NBMap.end()) 981 return F->second; 982 llvm_unreachable("Node id not in map"); 983 } 984 985 void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) { 986 // The LiveIn map, for each (physical) register, contains the set of live 987 // reaching defs of that register that are live on entry to the associated 988 // block. 989 990 // The summary of the traversal algorithm: 991 // 992 // R is live-in in B, if there exists a U(R), such that rdef(R) dom B 993 // and (U \in IDF(B) or B dom U). 994 // 995 // for (C : children) { 996 // LU = {} 997 // traverse(C, LU) 998 // LiveUses += LU 999 // } 1000 // 1001 // LiveUses -= Defs(B); 1002 // LiveUses += UpwardExposedUses(B); 1003 // for (C : IIDF[B]) 1004 // for (U : LiveUses) 1005 // if (Rdef(U) dom C) 1006 // C.addLiveIn(U) 1007 // 1008 1009 // Go up the dominator tree (depth-first). 1010 MachineDomTreeNode *N = MDT.getNode(B); 1011 for (auto *I : *N) { 1012 RefMap L; 1013 MachineBasicBlock *SB = I->getBlock(); 1014 traverse(SB, L); 1015 1016 for (auto S : L) 1017 LiveIn[S.first].insert(S.second.begin(), S.second.end()); 1018 } 1019 1020 if (Trace) { 1021 dbgs() << "\n-- " << printMBBReference(*B) << ": " << __func__ 1022 << " after recursion into: {"; 1023 for (auto *I : *N) 1024 dbgs() << ' ' << I->getBlock()->getNumber(); 1025 dbgs() << " }\n"; 1026 dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n'; 1027 dbgs() << " Local: " << Print(LiveMap[B], DFG) << '\n'; 1028 } 1029 1030 // Add reaching defs of phi uses that are live on exit from this block. 1031 RefMap &PUs = PhiLOX[B]; 1032 for (auto &S : PUs) 1033 LiveIn[S.first].insert(S.second.begin(), S.second.end()); 1034 1035 if (Trace) { 1036 dbgs() << "after LOX\n"; 1037 dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n'; 1038 dbgs() << " Local: " << Print(LiveMap[B], DFG) << '\n'; 1039 } 1040 1041 // The LiveIn map at this point has all defs that are live-on-exit from B, 1042 // as if they were live-on-entry to B. First, we need to filter out all 1043 // defs that are present in this block. Then we will add reaching defs of 1044 // all upward-exposed uses. 1045 1046 // To filter out the defs, first make a copy of LiveIn, and then re-populate 1047 // LiveIn with the defs that should remain. 1048 RefMap LiveInCopy = LiveIn; 1049 LiveIn.clear(); 1050 1051 for (const std::pair<const RegisterId, NodeRefSet> &LE : LiveInCopy) { 1052 RegisterRef LRef(LE.first); 1053 NodeRefSet &NewDefs = LiveIn[LRef.Reg]; // To be filled. 1054 const NodeRefSet &OldDefs = LE.second; 1055 for (NodeRef OR : OldDefs) { 1056 // R is a def node that was live-on-exit 1057 auto DA = DFG.addr<DefNode *>(OR.first); 1058 NodeAddr<InstrNode *> IA = DA.Addr->getOwner(DFG); 1059 NodeAddr<BlockNode *> BA = IA.Addr->getOwner(DFG); 1060 if (B != BA.Addr->getCode()) { 1061 // Defs from a different block need to be preserved. Defs from this 1062 // block will need to be processed further, except for phi defs, the 1063 // liveness of which is handled through the PhiLON/PhiLOX maps. 1064 NewDefs.insert(OR); 1065 continue; 1066 } 1067 1068 // Defs from this block need to stop the liveness from being 1069 // propagated upwards. This only applies to non-preserving defs, 1070 // and to the parts of the register actually covered by those defs. 1071 // (Note that phi defs should always be preserving.) 1072 RegisterAggr RRs(PRI); 1073 LRef.Mask = OR.second; 1074 1075 if (!DFG.IsPreservingDef(DA)) { 1076 assert(!(IA.Addr->getFlags() & NodeAttrs::Phi)); 1077 // DA is a non-phi def that is live-on-exit from this block, and 1078 // that is also located in this block. LRef is a register ref 1079 // whose use this def reaches. If DA covers LRef, then no part 1080 // of LRef is exposed upwards.A 1081 if (RRs.insert(DA.Addr->getRegRef(DFG)).hasCoverOf(LRef)) 1082 continue; 1083 } 1084 1085 // DA itself was not sufficient to cover LRef. In general, it is 1086 // the last in a chain of aliased defs before the exit from this block. 1087 // There could be other defs in this block that are a part of that 1088 // chain. Check that now: accumulate the registers from these defs, 1089 // and if they all together cover LRef, it is not live-on-entry. 1090 for (NodeAddr<DefNode *> TA : getAllReachingDefs(DA)) { 1091 // DefNode -> InstrNode -> BlockNode. 1092 NodeAddr<InstrNode *> ITA = TA.Addr->getOwner(DFG); 1093 NodeAddr<BlockNode *> BTA = ITA.Addr->getOwner(DFG); 1094 // Reaching defs are ordered in the upward direction. 1095 if (BTA.Addr->getCode() != B) { 1096 // We have reached past the beginning of B, and the accumulated 1097 // registers are not covering LRef. The first def from the 1098 // upward chain will be live. 1099 // Subtract all accumulated defs (RRs) from LRef. 1100 RegisterRef T = RRs.clearIn(LRef); 1101 assert(T); 1102 NewDefs.insert({TA.Id, T.Mask}); 1103 break; 1104 } 1105 1106 // TA is in B. Only add this def to the accumulated cover if it is 1107 // not preserving. 1108 if (!(TA.Addr->getFlags() & NodeAttrs::Preserving)) 1109 RRs.insert(TA.Addr->getRegRef(DFG)); 1110 // If this is enough to cover LRef, then stop. 1111 if (RRs.hasCoverOf(LRef)) 1112 break; 1113 } 1114 } 1115 } 1116 1117 emptify(LiveIn); 1118 1119 if (Trace) { 1120 dbgs() << "after defs in block\n"; 1121 dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n'; 1122 dbgs() << " Local: " << Print(LiveMap[B], DFG) << '\n'; 1123 } 1124 1125 // Scan the block for upward-exposed uses and add them to the tracking set. 1126 for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) { 1127 NodeAddr<InstrNode *> IA = I; 1128 if (IA.Addr->getKind() != NodeAttrs::Stmt) 1129 continue; 1130 for (NodeAddr<UseNode *> UA : IA.Addr->members_if(DFG.IsUse, DFG)) { 1131 if (UA.Addr->getFlags() & NodeAttrs::Undef) 1132 continue; 1133 RegisterRef RR = UA.Addr->getRegRef(DFG); 1134 for (NodeAddr<DefNode *> D : getAllReachingDefs(UA)) 1135 if (getBlockWithRef(D.Id) != B) 1136 LiveIn[RR.Reg].insert({D.Id, RR.Mask}); 1137 } 1138 } 1139 1140 if (Trace) { 1141 dbgs() << "after uses in block\n"; 1142 dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n'; 1143 dbgs() << " Local: " << Print(LiveMap[B], DFG) << '\n'; 1144 } 1145 1146 // Phi uses should not be propagated up the dominator tree, since they 1147 // are not dominated by their corresponding reaching defs. 1148 RegisterAggr &Local = LiveMap[B]; 1149 RefMap &LON = PhiLON[B]; 1150 for (auto &R : LON) { 1151 LaneBitmask M; 1152 for (auto P : R.second) 1153 M |= P.second; 1154 Local.insert(RegisterRef(R.first, M)); 1155 } 1156 1157 if (Trace) { 1158 dbgs() << "after phi uses in block\n"; 1159 dbgs() << " LiveIn: " << Print(LiveIn, DFG) << '\n'; 1160 dbgs() << " Local: " << Print(Local, DFG) << '\n'; 1161 } 1162 1163 for (auto *C : IIDF[B]) { 1164 RegisterAggr &LiveC = LiveMap[C]; 1165 for (const std::pair<const RegisterId, NodeRefSet> &S : LiveIn) 1166 for (auto R : S.second) 1167 if (MDT.properlyDominates(getBlockWithRef(R.first), C)) 1168 LiveC.insert(RegisterRef(S.first, R.second)); 1169 } 1170 } 1171 1172 void Liveness::emptify(RefMap &M) { 1173 for (auto I = M.begin(), E = M.end(); I != E;) 1174 I = I->second.empty() ? M.erase(I) : std::next(I); 1175 } 1176 1177 } // namespace llvm::rdf 1178