xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/RDFGraph.cpp (revision cf6044857e2b20f2ecf90929027e9dd335b38803)
1  //===- RDFGraph.cpp -------------------------------------------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // Target-independent, SSA-based data flow graph for register data flow (RDF).
10  //
11  #include "llvm/CodeGen/RDFGraph.h"
12  #include "llvm/ADT/BitVector.h"
13  #include "llvm/ADT/STLExtras.h"
14  #include "llvm/ADT/SetVector.h"
15  #include "llvm/CodeGen/MachineBasicBlock.h"
16  #include "llvm/CodeGen/MachineDominanceFrontier.h"
17  #include "llvm/CodeGen/MachineDominators.h"
18  #include "llvm/CodeGen/MachineFunction.h"
19  #include "llvm/CodeGen/MachineInstr.h"
20  #include "llvm/CodeGen/MachineOperand.h"
21  #include "llvm/CodeGen/MachineRegisterInfo.h"
22  #include "llvm/CodeGen/RDFRegisters.h"
23  #include "llvm/CodeGen/TargetInstrInfo.h"
24  #include "llvm/CodeGen/TargetLowering.h"
25  #include "llvm/CodeGen/TargetRegisterInfo.h"
26  #include "llvm/CodeGen/TargetSubtargetInfo.h"
27  #include "llvm/IR/Function.h"
28  #include "llvm/MC/LaneBitmask.h"
29  #include "llvm/MC/MCInstrDesc.h"
30  #include "llvm/Support/ErrorHandling.h"
31  #include "llvm/Support/raw_ostream.h"
32  #include <algorithm>
33  #include <cassert>
34  #include <cstdint>
35  #include <cstring>
36  #include <iterator>
37  #include <set>
38  #include <utility>
39  #include <vector>
40  
41  using namespace llvm;
42  using namespace rdf;
43  
44  // Printing functions. Have them here first, so that the rest of the code
45  // can use them.
46  namespace llvm {
47  namespace rdf {
48  
49  raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P) {
50    if (!P.Mask.all())
51      OS << ':' << PrintLaneMask(P.Mask);
52    return OS;
53  }
54  
55  raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) {
56    auto &TRI = P.G.getTRI();
57    if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs())
58      OS << TRI.getName(P.Obj.Reg);
59    else
60      OS << '#' << P.Obj.Reg;
61    OS << PrintLaneMaskOpt(P.Obj.Mask);
62    return OS;
63  }
64  
65  raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) {
66    auto NA = P.G.addr<NodeBase*>(P.Obj);
67    uint16_t Attrs = NA.Addr->getAttrs();
68    uint16_t Kind = NodeAttrs::kind(Attrs);
69    uint16_t Flags = NodeAttrs::flags(Attrs);
70    switch (NodeAttrs::type(Attrs)) {
71      case NodeAttrs::Code:
72        switch (Kind) {
73          case NodeAttrs::Func:   OS << 'f'; break;
74          case NodeAttrs::Block:  OS << 'b'; break;
75          case NodeAttrs::Stmt:   OS << 's'; break;
76          case NodeAttrs::Phi:    OS << 'p'; break;
77          default:                OS << "c?"; break;
78        }
79        break;
80      case NodeAttrs::Ref:
81        if (Flags & NodeAttrs::Undef)
82          OS << '/';
83        if (Flags & NodeAttrs::Dead)
84          OS << '\\';
85        if (Flags & NodeAttrs::Preserving)
86          OS << '+';
87        if (Flags & NodeAttrs::Clobbering)
88          OS << '~';
89        switch (Kind) {
90          case NodeAttrs::Use:    OS << 'u'; break;
91          case NodeAttrs::Def:    OS << 'd'; break;
92          case NodeAttrs::Block:  OS << 'b'; break;
93          default:                OS << "r?"; break;
94        }
95        break;
96      default:
97        OS << '?';
98        break;
99    }
100    OS << P.Obj;
101    if (Flags & NodeAttrs::Shadow)
102      OS << '"';
103    return OS;
104  }
105  
106  static void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA,
107                  const DataFlowGraph &G) {
108    OS << Print<NodeId>(RA.Id, G) << '<'
109       << Print<RegisterRef>(RA.Addr->getRegRef(G), G) << '>';
110    if (RA.Addr->getFlags() & NodeAttrs::Fixed)
111      OS << '!';
112  }
113  
114  raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) {
115    printRefHeader(OS, P.Obj, P.G);
116    OS << '(';
117    if (NodeId N = P.Obj.Addr->getReachingDef())
118      OS << Print<NodeId>(N, P.G);
119    OS << ',';
120    if (NodeId N = P.Obj.Addr->getReachedDef())
121      OS << Print<NodeId>(N, P.G);
122    OS << ',';
123    if (NodeId N = P.Obj.Addr->getReachedUse())
124      OS << Print<NodeId>(N, P.G);
125    OS << "):";
126    if (NodeId N = P.Obj.Addr->getSibling())
127      OS << Print<NodeId>(N, P.G);
128    return OS;
129  }
130  
131  raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) {
132    printRefHeader(OS, P.Obj, P.G);
133    OS << '(';
134    if (NodeId N = P.Obj.Addr->getReachingDef())
135      OS << Print<NodeId>(N, P.G);
136    OS << "):";
137    if (NodeId N = P.Obj.Addr->getSibling())
138      OS << Print<NodeId>(N, P.G);
139    return OS;
140  }
141  
142  raw_ostream &operator<< (raw_ostream &OS,
143        const Print<NodeAddr<PhiUseNode*>> &P) {
144    printRefHeader(OS, P.Obj, P.G);
145    OS << '(';
146    if (NodeId N = P.Obj.Addr->getReachingDef())
147      OS << Print<NodeId>(N, P.G);
148    OS << ',';
149    if (NodeId N = P.Obj.Addr->getPredecessor())
150      OS << Print<NodeId>(N, P.G);
151    OS << "):";
152    if (NodeId N = P.Obj.Addr->getSibling())
153      OS << Print<NodeId>(N, P.G);
154    return OS;
155  }
156  
157  raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) {
158    switch (P.Obj.Addr->getKind()) {
159      case NodeAttrs::Def:
160        OS << PrintNode<DefNode*>(P.Obj, P.G);
161        break;
162      case NodeAttrs::Use:
163        if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef)
164          OS << PrintNode<PhiUseNode*>(P.Obj, P.G);
165        else
166          OS << PrintNode<UseNode*>(P.Obj, P.G);
167        break;
168    }
169    return OS;
170  }
171  
172  raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) {
173    unsigned N = P.Obj.size();
174    for (auto I : P.Obj) {
175      OS << Print<NodeId>(I.Id, P.G);
176      if (--N)
177        OS << ' ';
178    }
179    return OS;
180  }
181  
182  raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) {
183    unsigned N = P.Obj.size();
184    for (auto I : P.Obj) {
185      OS << Print<NodeId>(I, P.G);
186      if (--N)
187        OS << ' ';
188    }
189    return OS;
190  }
191  
192  namespace {
193  
194    template <typename T>
195    struct PrintListV {
196      PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {}
197  
198      using Type = T;
199      const NodeList &List;
200      const DataFlowGraph &G;
201    };
202  
203    template <typename T>
204    raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) {
205      unsigned N = P.List.size();
206      for (NodeAddr<T> A : P.List) {
207        OS << PrintNode<T>(A, P.G);
208        if (--N)
209          OS << ", ";
210      }
211      return OS;
212    }
213  
214  } // end anonymous namespace
215  
216  raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) {
217    OS << Print<NodeId>(P.Obj.Id, P.G) << ": phi ["
218       << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
219    return OS;
220  }
221  
222  raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<StmtNode *>> &P) {
223    const MachineInstr &MI = *P.Obj.Addr->getCode();
224    unsigned Opc = MI.getOpcode();
225    OS << Print<NodeId>(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc);
226    // Print the target for calls and branches (for readability).
227    if (MI.isCall() || MI.isBranch()) {
228      MachineInstr::const_mop_iterator T =
229            llvm::find_if(MI.operands(),
230                          [] (const MachineOperand &Op) -> bool {
231                            return Op.isMBB() || Op.isGlobal() || Op.isSymbol();
232                          });
233      if (T != MI.operands_end()) {
234        OS << ' ';
235        if (T->isMBB())
236          OS << printMBBReference(*T->getMBB());
237        else if (T->isGlobal())
238          OS << T->getGlobal()->getName();
239        else if (T->isSymbol())
240          OS << T->getSymbolName();
241      }
242    }
243    OS << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
244    return OS;
245  }
246  
247  raw_ostream &operator<< (raw_ostream &OS,
248        const Print<NodeAddr<InstrNode*>> &P) {
249    switch (P.Obj.Addr->getKind()) {
250      case NodeAttrs::Phi:
251        OS << PrintNode<PhiNode*>(P.Obj, P.G);
252        break;
253      case NodeAttrs::Stmt:
254        OS << PrintNode<StmtNode*>(P.Obj, P.G);
255        break;
256      default:
257        OS << "instr? " << Print<NodeId>(P.Obj.Id, P.G);
258        break;
259    }
260    return OS;
261  }
262  
263  raw_ostream &operator<< (raw_ostream &OS,
264        const Print<NodeAddr<BlockNode*>> &P) {
265    MachineBasicBlock *BB = P.Obj.Addr->getCode();
266    unsigned NP = BB->pred_size();
267    std::vector<int> Ns;
268    auto PrintBBs = [&OS] (std::vector<int> Ns) -> void {
269      unsigned N = Ns.size();
270      for (int I : Ns) {
271        OS << "%bb." << I;
272        if (--N)
273          OS << ", ";
274      }
275    };
276  
277    OS << Print<NodeId>(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB)
278       << " --- preds(" << NP << "): ";
279    for (MachineBasicBlock *B : BB->predecessors())
280      Ns.push_back(B->getNumber());
281    PrintBBs(Ns);
282  
283    unsigned NS = BB->succ_size();
284    OS << "  succs(" << NS << "): ";
285    Ns.clear();
286    for (MachineBasicBlock *B : BB->successors())
287      Ns.push_back(B->getNumber());
288    PrintBBs(Ns);
289    OS << '\n';
290  
291    for (auto I : P.Obj.Addr->members(P.G))
292      OS << PrintNode<InstrNode*>(I, P.G) << '\n';
293    return OS;
294  }
295  
296  raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<FuncNode *>> &P) {
297    OS << "DFG dump:[\n" << Print<NodeId>(P.Obj.Id, P.G) << ": Function: "
298       << P.Obj.Addr->getCode()->getName() << '\n';
299    for (auto I : P.Obj.Addr->members(P.G))
300      OS << PrintNode<BlockNode*>(I, P.G) << '\n';
301    OS << "]\n";
302    return OS;
303  }
304  
305  raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) {
306    OS << '{';
307    for (auto I : P.Obj)
308      OS << ' ' << Print<RegisterRef>(I, P.G);
309    OS << " }";
310    return OS;
311  }
312  
313  raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterAggr> &P) {
314    P.Obj.print(OS);
315    return OS;
316  }
317  
318  raw_ostream &operator<< (raw_ostream &OS,
319        const Print<DataFlowGraph::DefStack> &P) {
320    for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) {
321      OS << Print<NodeId>(I->Id, P.G)
322         << '<' << Print<RegisterRef>(I->Addr->getRegRef(P.G), P.G) << '>';
323      I.down();
324      if (I != E)
325        OS << ' ';
326    }
327    return OS;
328  }
329  
330  } // end namespace rdf
331  } // end namespace llvm
332  
333  // Node allocation functions.
334  //
335  // Node allocator is like a slab memory allocator: it allocates blocks of
336  // memory in sizes that are multiples of the size of a node. Each block has
337  // the same size. Nodes are allocated from the currently active block, and
338  // when it becomes full, a new one is created.
339  // There is a mapping scheme between node id and its location in a block,
340  // and within that block is described in the header file.
341  //
342  void NodeAllocator::startNewBlock() {
343    void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize);
344    char *P = static_cast<char*>(T);
345    Blocks.push_back(P);
346    // Check if the block index is still within the allowed range, i.e. less
347    // than 2^N, where N is the number of bits in NodeId for the block index.
348    // BitsPerIndex is the number of bits per node index.
349    assert((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) &&
350           "Out of bits for block index");
351    ActiveEnd = P;
352  }
353  
354  bool NodeAllocator::needNewBlock() {
355    if (Blocks.empty())
356      return true;
357  
358    char *ActiveBegin = Blocks.back();
359    uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize;
360    return Index >= NodesPerBlock;
361  }
362  
363  NodeAddr<NodeBase*> NodeAllocator::New() {
364    if (needNewBlock())
365      startNewBlock();
366  
367    uint32_t ActiveB = Blocks.size()-1;
368    uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize;
369    NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd),
370                               makeId(ActiveB, Index) };
371    ActiveEnd += NodeMemSize;
372    return NA;
373  }
374  
375  NodeId NodeAllocator::id(const NodeBase *P) const {
376    uintptr_t A = reinterpret_cast<uintptr_t>(P);
377    for (unsigned i = 0, n = Blocks.size(); i != n; ++i) {
378      uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]);
379      if (A < B || A >= B + NodesPerBlock*NodeMemSize)
380        continue;
381      uint32_t Idx = (A-B)/NodeMemSize;
382      return makeId(i, Idx);
383    }
384    llvm_unreachable("Invalid node address");
385  }
386  
387  void NodeAllocator::clear() {
388    MemPool.Reset();
389    Blocks.clear();
390    ActiveEnd = nullptr;
391  }
392  
393  // Insert node NA after "this" in the circular chain.
394  void NodeBase::append(NodeAddr<NodeBase*> NA) {
395    NodeId Nx = Next;
396    // If NA is already "next", do nothing.
397    if (Next != NA.Id) {
398      Next = NA.Id;
399      NA.Addr->Next = Nx;
400    }
401  }
402  
403  // Fundamental node manipulator functions.
404  
405  // Obtain the register reference from a reference node.
406  RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const {
407    assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
408    if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)
409      return G.unpack(Ref.PR);
410    assert(Ref.Op != nullptr);
411    return G.makeRegRef(*Ref.Op);
412  }
413  
414  // Set the register reference in the reference node directly (for references
415  // in phi nodes).
416  void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) {
417    assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
418    assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef);
419    Ref.PR = G.pack(RR);
420  }
421  
422  // Set the register reference in the reference node based on a machine
423  // operand (for references in statement nodes).
424  void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) {
425    assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
426    assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef));
427    (void)G;
428    Ref.Op = Op;
429  }
430  
431  // Get the owner of a given reference node.
432  NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) {
433    NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
434  
435    while (NA.Addr != this) {
436      if (NA.Addr->getType() == NodeAttrs::Code)
437        return NA;
438      NA = G.addr<NodeBase*>(NA.Addr->getNext());
439    }
440    llvm_unreachable("No owner in circular list");
441  }
442  
443  // Connect the def node to the reaching def node.
444  void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
445    Ref.RD = DA.Id;
446    Ref.Sib = DA.Addr->getReachedDef();
447    DA.Addr->setReachedDef(Self);
448  }
449  
450  // Connect the use node to the reaching def node.
451  void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
452    Ref.RD = DA.Id;
453    Ref.Sib = DA.Addr->getReachedUse();
454    DA.Addr->setReachedUse(Self);
455  }
456  
457  // Get the first member of the code node.
458  NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const {
459    if (Code.FirstM == 0)
460      return NodeAddr<NodeBase*>();
461    return G.addr<NodeBase*>(Code.FirstM);
462  }
463  
464  // Get the last member of the code node.
465  NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const {
466    if (Code.LastM == 0)
467      return NodeAddr<NodeBase*>();
468    return G.addr<NodeBase*>(Code.LastM);
469  }
470  
471  // Add node NA at the end of the member list of the given code node.
472  void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
473    NodeAddr<NodeBase*> ML = getLastMember(G);
474    if (ML.Id != 0) {
475      ML.Addr->append(NA);
476    } else {
477      Code.FirstM = NA.Id;
478      NodeId Self = G.id(this);
479      NA.Addr->setNext(Self);
480    }
481    Code.LastM = NA.Id;
482  }
483  
484  // Add node NA after member node MA in the given code node.
485  void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
486        const DataFlowGraph &G) {
487    MA.Addr->append(NA);
488    if (Code.LastM == MA.Id)
489      Code.LastM = NA.Id;
490  }
491  
492  // Remove member node NA from the given code node.
493  void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
494    NodeAddr<NodeBase*> MA = getFirstMember(G);
495    assert(MA.Id != 0);
496  
497    // Special handling if the member to remove is the first member.
498    if (MA.Id == NA.Id) {
499      if (Code.LastM == MA.Id) {
500        // If it is the only member, set both first and last to 0.
501        Code.FirstM = Code.LastM = 0;
502      } else {
503        // Otherwise, advance the first member.
504        Code.FirstM = MA.Addr->getNext();
505      }
506      return;
507    }
508  
509    while (MA.Addr != this) {
510      NodeId MX = MA.Addr->getNext();
511      if (MX == NA.Id) {
512        MA.Addr->setNext(NA.Addr->getNext());
513        // If the member to remove happens to be the last one, update the
514        // LastM indicator.
515        if (Code.LastM == NA.Id)
516          Code.LastM = MA.Id;
517        return;
518      }
519      MA = G.addr<NodeBase*>(MX);
520    }
521    llvm_unreachable("No such member");
522  }
523  
524  // Return the list of all members of the code node.
525  NodeList CodeNode::members(const DataFlowGraph &G) const {
526    static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; };
527    return members_if(True, G);
528  }
529  
530  // Return the owner of the given instr node.
531  NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) {
532    NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
533  
534    while (NA.Addr != this) {
535      assert(NA.Addr->getType() == NodeAttrs::Code);
536      if (NA.Addr->getKind() == NodeAttrs::Block)
537        return NA;
538      NA = G.addr<NodeBase*>(NA.Addr->getNext());
539    }
540    llvm_unreachable("No owner in circular list");
541  }
542  
543  // Add the phi node PA to the given block node.
544  void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) {
545    NodeAddr<NodeBase*> M = getFirstMember(G);
546    if (M.Id == 0) {
547      addMember(PA, G);
548      return;
549    }
550  
551    assert(M.Addr->getType() == NodeAttrs::Code);
552    if (M.Addr->getKind() == NodeAttrs::Stmt) {
553      // If the first member of the block is a statement, insert the phi as
554      // the first member.
555      Code.FirstM = PA.Id;
556      PA.Addr->setNext(M.Id);
557    } else {
558      // If the first member is a phi, find the last phi, and append PA to it.
559      assert(M.Addr->getKind() == NodeAttrs::Phi);
560      NodeAddr<NodeBase*> MN = M;
561      do {
562        M = MN;
563        MN = G.addr<NodeBase*>(M.Addr->getNext());
564        assert(MN.Addr->getType() == NodeAttrs::Code);
565      } while (MN.Addr->getKind() == NodeAttrs::Phi);
566  
567      // M is the last phi.
568      addMemberAfter(M, PA, G);
569    }
570  }
571  
572  // Find the block node corresponding to the machine basic block BB in the
573  // given func node.
574  NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB,
575        const DataFlowGraph &G) const {
576    auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool {
577      return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB;
578    };
579    NodeList Ms = members_if(EqBB, G);
580    if (!Ms.empty())
581      return Ms[0];
582    return NodeAddr<BlockNode*>();
583  }
584  
585  // Get the block node for the entry block in the given function.
586  NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) {
587    MachineBasicBlock *EntryB = &getCode()->front();
588    return findBlock(EntryB, G);
589  }
590  
591  // Target operand information.
592  //
593  
594  // For a given instruction, check if there are any bits of RR that can remain
595  // unchanged across this def.
596  bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum)
597        const {
598    return TII.isPredicated(In);
599  }
600  
601  // Check if the definition of RR produces an unspecified value.
602  bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum)
603        const {
604    const MachineOperand &Op = In.getOperand(OpNum);
605    if (Op.isRegMask())
606      return true;
607    assert(Op.isReg());
608    if (In.isCall())
609      if (Op.isDef() && Op.isDead())
610        return true;
611    return false;
612  }
613  
614  // Check if the given instruction specifically requires
615  bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum)
616        const {
617    if (In.isCall() || In.isReturn() || In.isInlineAsm())
618      return true;
619    // Check for a tail call.
620    if (In.isBranch())
621      for (const MachineOperand &O : In.operands())
622        if (O.isGlobal() || O.isSymbol())
623          return true;
624  
625    const MCInstrDesc &D = In.getDesc();
626    if (!D.getImplicitDefs() && !D.getImplicitUses())
627      return false;
628    const MachineOperand &Op = In.getOperand(OpNum);
629    // If there is a sub-register, treat the operand as non-fixed. Currently,
630    // fixed registers are those that are listed in the descriptor as implicit
631    // uses or defs, and those lists do not allow sub-registers.
632    if (Op.getSubReg() != 0)
633      return false;
634    Register Reg = Op.getReg();
635    const MCPhysReg *ImpR = Op.isDef() ? D.getImplicitDefs()
636                                       : D.getImplicitUses();
637    if (!ImpR)
638      return false;
639    while (*ImpR)
640      if (*ImpR++ == Reg)
641        return true;
642    return false;
643  }
644  
645  //
646  // The data flow graph construction.
647  //
648  
649  DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
650        const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
651        const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi)
652      : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi),
653        LiveIns(PRI) {
654  }
655  
656  // The implementation of the definition stack.
657  // Each register reference has its own definition stack. In particular,
658  // for a register references "Reg" and "Reg:subreg" will each have their
659  // own definition stacks.
660  
661  // Construct a stack iterator.
662  DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S,
663        bool Top) : DS(S) {
664    if (!Top) {
665      // Initialize to bottom.
666      Pos = 0;
667      return;
668    }
669    // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty).
670    Pos = DS.Stack.size();
671    while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1]))
672      Pos--;
673  }
674  
675  // Return the size of the stack, including block delimiters.
676  unsigned DataFlowGraph::DefStack::size() const {
677    unsigned S = 0;
678    for (auto I = top(), E = bottom(); I != E; I.down())
679      S++;
680    return S;
681  }
682  
683  // Remove the top entry from the stack. Remove all intervening delimiters
684  // so that after this, the stack is either empty, or the top of the stack
685  // is a non-delimiter.
686  void DataFlowGraph::DefStack::pop() {
687    assert(!empty());
688    unsigned P = nextDown(Stack.size());
689    Stack.resize(P);
690  }
691  
692  // Push a delimiter for block node N on the stack.
693  void DataFlowGraph::DefStack::start_block(NodeId N) {
694    assert(N != 0);
695    Stack.push_back(NodeAddr<DefNode*>(nullptr, N));
696  }
697  
698  // Remove all nodes from the top of the stack, until the delimited for
699  // block node N is encountered. Remove the delimiter as well. In effect,
700  // this will remove from the stack all definitions from block N.
701  void DataFlowGraph::DefStack::clear_block(NodeId N) {
702    assert(N != 0);
703    unsigned P = Stack.size();
704    while (P > 0) {
705      bool Found = isDelimiter(Stack[P-1], N);
706      P--;
707      if (Found)
708        break;
709    }
710    // This will also remove the delimiter, if found.
711    Stack.resize(P);
712  }
713  
714  // Move the stack iterator up by one.
715  unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const {
716    // Get the next valid position after P (skipping all delimiters).
717    // The input position P does not have to point to a non-delimiter.
718    unsigned SS = Stack.size();
719    bool IsDelim;
720    assert(P < SS);
721    do {
722      P++;
723      IsDelim = isDelimiter(Stack[P-1]);
724    } while (P < SS && IsDelim);
725    assert(!IsDelim);
726    return P;
727  }
728  
729  // Move the stack iterator down by one.
730  unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const {
731    // Get the preceding valid position before P (skipping all delimiters).
732    // The input position P does not have to point to a non-delimiter.
733    assert(P > 0 && P <= Stack.size());
734    bool IsDelim = isDelimiter(Stack[P-1]);
735    do {
736      if (--P == 0)
737        break;
738      IsDelim = isDelimiter(Stack[P-1]);
739    } while (P > 0 && IsDelim);
740    assert(!IsDelim);
741    return P;
742  }
743  
744  // Register information.
745  
746  RegisterSet DataFlowGraph::getLandingPadLiveIns() const {
747    RegisterSet LR;
748    const Function &F = MF.getFunction();
749    const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn()
750                                              : nullptr;
751    const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
752    if (RegisterId R = TLI.getExceptionPointerRegister(PF))
753      LR.insert(RegisterRef(R));
754    if (!isFuncletEHPersonality(classifyEHPersonality(PF))) {
755      if (RegisterId R = TLI.getExceptionSelectorRegister(PF))
756        LR.insert(RegisterRef(R));
757    }
758    return LR;
759  }
760  
761  // Node management functions.
762  
763  // Get the pointer to the node with the id N.
764  NodeBase *DataFlowGraph::ptr(NodeId N) const {
765    if (N == 0)
766      return nullptr;
767    return Memory.ptr(N);
768  }
769  
770  // Get the id of the node at the address P.
771  NodeId DataFlowGraph::id(const NodeBase *P) const {
772    if (P == nullptr)
773      return 0;
774    return Memory.id(P);
775  }
776  
777  // Allocate a new node and set the attributes to Attrs.
778  NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) {
779    NodeAddr<NodeBase*> P = Memory.New();
780    P.Addr->init();
781    P.Addr->setAttrs(Attrs);
782    return P;
783  }
784  
785  // Make a copy of the given node B, except for the data-flow links, which
786  // are set to 0.
787  NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) {
788    NodeAddr<NodeBase*> NA = newNode(0);
789    memcpy(NA.Addr, B.Addr, sizeof(NodeBase));
790    // Ref nodes need to have the data-flow links reset.
791    if (NA.Addr->getType() == NodeAttrs::Ref) {
792      NodeAddr<RefNode*> RA = NA;
793      RA.Addr->setReachingDef(0);
794      RA.Addr->setSibling(0);
795      if (NA.Addr->getKind() == NodeAttrs::Def) {
796        NodeAddr<DefNode*> DA = NA;
797        DA.Addr->setReachedDef(0);
798        DA.Addr->setReachedUse(0);
799      }
800    }
801    return NA;
802  }
803  
804  // Allocation routines for specific node types/kinds.
805  
806  NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner,
807        MachineOperand &Op, uint16_t Flags) {
808    NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
809    UA.Addr->setRegRef(&Op, *this);
810    return UA;
811  }
812  
813  NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner,
814        RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) {
815    NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
816    assert(Flags & NodeAttrs::PhiRef);
817    PUA.Addr->setRegRef(RR, *this);
818    PUA.Addr->setPredecessor(PredB.Id);
819    return PUA;
820  }
821  
822  NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
823        MachineOperand &Op, uint16_t Flags) {
824    NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
825    DA.Addr->setRegRef(&Op, *this);
826    return DA;
827  }
828  
829  NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
830        RegisterRef RR, uint16_t Flags) {
831    NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
832    assert(Flags & NodeAttrs::PhiRef);
833    DA.Addr->setRegRef(RR, *this);
834    return DA;
835  }
836  
837  NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) {
838    NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi);
839    Owner.Addr->addPhi(PA, *this);
840    return PA;
841  }
842  
843  NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner,
844        MachineInstr *MI) {
845    NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt);
846    SA.Addr->setCode(MI);
847    Owner.Addr->addMember(SA, *this);
848    return SA;
849  }
850  
851  NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner,
852        MachineBasicBlock *BB) {
853    NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block);
854    BA.Addr->setCode(BB);
855    Owner.Addr->addMember(BA, *this);
856    return BA;
857  }
858  
859  NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) {
860    NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func);
861    FA.Addr->setCode(MF);
862    return FA;
863  }
864  
865  // Build the data flow graph.
866  void DataFlowGraph::build(unsigned Options) {
867    reset();
868    Func = newFunc(&MF);
869  
870    if (MF.empty())
871      return;
872  
873    for (MachineBasicBlock &B : MF) {
874      NodeAddr<BlockNode*> BA = newBlock(Func, &B);
875      BlockNodes.insert(std::make_pair(&B, BA));
876      for (MachineInstr &I : B) {
877        if (I.isDebugInstr())
878          continue;
879        buildStmt(BA, I);
880      }
881    }
882  
883    NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this);
884    NodeList Blocks = Func.Addr->members(*this);
885  
886    // Collect information about block references.
887    RegisterSet AllRefs;
888    for (NodeAddr<BlockNode*> BA : Blocks)
889      for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
890        for (NodeAddr<RefNode*> RA : IA.Addr->members(*this))
891          AllRefs.insert(RA.Addr->getRegRef(*this));
892  
893    // Collect function live-ins and entry block live-ins.
894    MachineRegisterInfo &MRI = MF.getRegInfo();
895    MachineBasicBlock &EntryB = *EA.Addr->getCode();
896    assert(EntryB.pred_empty() && "Function entry block has predecessors");
897    for (std::pair<unsigned,unsigned> P : MRI.liveins())
898      LiveIns.insert(RegisterRef(P.first));
899    if (MRI.tracksLiveness()) {
900      for (auto I : EntryB.liveins())
901        LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask));
902    }
903  
904    // Add function-entry phi nodes for the live-in registers.
905    //for (std::pair<RegisterId,LaneBitmask> P : LiveIns) {
906    for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
907      RegisterRef RR = *I;
908      NodeAddr<PhiNode*> PA = newPhi(EA);
909      uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
910      NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
911      PA.Addr->addMember(DA, *this);
912    }
913  
914    // Add phis for landing pads.
915    // Landing pads, unlike usual backs blocks, are not entered through
916    // branches in the program, or fall-throughs from other blocks. They
917    // are entered from the exception handling runtime and target's ABI
918    // may define certain registers as defined on entry to such a block.
919    RegisterSet EHRegs = getLandingPadLiveIns();
920    if (!EHRegs.empty()) {
921      for (NodeAddr<BlockNode*> BA : Blocks) {
922        const MachineBasicBlock &B = *BA.Addr->getCode();
923        if (!B.isEHPad())
924          continue;
925  
926        // Prepare a list of NodeIds of the block's predecessors.
927        NodeList Preds;
928        for (MachineBasicBlock *PB : B.predecessors())
929          Preds.push_back(findBlock(PB));
930  
931        // Build phi nodes for each live-in.
932        for (RegisterRef RR : EHRegs) {
933          NodeAddr<PhiNode*> PA = newPhi(BA);
934          uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
935          // Add def:
936          NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
937          PA.Addr->addMember(DA, *this);
938          // Add uses (no reaching defs for phi uses):
939          for (NodeAddr<BlockNode*> PBA : Preds) {
940            NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
941            PA.Addr->addMember(PUA, *this);
942          }
943        }
944      }
945    }
946  
947    // Build a map "PhiM" which will contain, for each block, the set
948    // of references that will require phi definitions in that block.
949    BlockRefsMap PhiM;
950    for (NodeAddr<BlockNode*> BA : Blocks)
951      recordDefsForDF(PhiM, BA);
952    for (NodeAddr<BlockNode*> BA : Blocks)
953      buildPhis(PhiM, AllRefs, BA);
954  
955    // Link all the refs. This will recursively traverse the dominator tree.
956    DefStackMap DM;
957    linkBlockRefs(DM, EA);
958  
959    // Finally, remove all unused phi nodes.
960    if (!(Options & BuildOptions::KeepDeadPhis))
961      removeUnusedPhis();
962  }
963  
964  RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const {
965    assert(PhysicalRegisterInfo::isRegMaskId(Reg) ||
966           Register::isPhysicalRegister(Reg));
967    assert(Reg != 0);
968    if (Sub != 0)
969      Reg = TRI.getSubReg(Reg, Sub);
970    return RegisterRef(Reg);
971  }
972  
973  RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const {
974    assert(Op.isReg() || Op.isRegMask());
975    if (Op.isReg())
976      return makeRegRef(Op.getReg(), Op.getSubReg());
977    return RegisterRef(PRI.getRegMaskId(Op.getRegMask()), LaneBitmask::getAll());
978  }
979  
980  // For each stack in the map DefM, push the delimiter for block B on it.
981  void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) {
982    // Push block delimiters.
983    for (auto &P : DefM)
984      P.second.start_block(B);
985  }
986  
987  // Remove all definitions coming from block B from each stack in DefM.
988  void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) {
989    // Pop all defs from this block from the definition stack. Defs that were
990    // added to the map during the traversal of instructions will not have a
991    // delimiter, but for those, the whole stack will be emptied.
992    for (auto &P : DefM)
993      P.second.clear_block(B);
994  
995    // Finally, remove empty stacks from the map.
996    for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) {
997      NextI = std::next(I);
998      // This preserves the validity of iterators other than I.
999      if (I->second.empty())
1000        DefM.erase(I);
1001    }
1002  }
1003  
1004  // Push all definitions from the instruction node IA to an appropriate
1005  // stack in DefM.
1006  void DataFlowGraph::pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
1007    pushClobbers(IA, DefM);
1008    pushDefs(IA, DefM);
1009  }
1010  
1011  // Push all definitions from the instruction node IA to an appropriate
1012  // stack in DefM.
1013  void DataFlowGraph::pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
1014    NodeSet Visited;
1015    std::set<RegisterId> Defined;
1016  
1017    // The important objectives of this function are:
1018    // - to be able to handle instructions both while the graph is being
1019    //   constructed, and after the graph has been constructed, and
1020    // - maintain proper ordering of definitions on the stack for each
1021    //   register reference:
1022    //   - if there are two or more related defs in IA (i.e. coming from
1023    //     the same machine operand), then only push one def on the stack,
1024    //   - if there are multiple unrelated defs of non-overlapping
1025    //     subregisters of S, then the stack for S will have both (in an
1026    //     unspecified order), but the order does not matter from the data-
1027    //     -flow perspective.
1028  
1029    for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
1030      if (Visited.count(DA.Id))
1031        continue;
1032      if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering))
1033        continue;
1034  
1035      NodeList Rel = getRelatedRefs(IA, DA);
1036      NodeAddr<DefNode*> PDA = Rel.front();
1037      RegisterRef RR = PDA.Addr->getRegRef(*this);
1038  
1039      // Push the definition on the stack for the register and all aliases.
1040      // The def stack traversal in linkNodeUp will check the exact aliasing.
1041      DefM[RR.Reg].push(DA);
1042      Defined.insert(RR.Reg);
1043      for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
1044        // Check that we don't push the same def twice.
1045        assert(A != RR.Reg);
1046        if (!Defined.count(A))
1047          DefM[A].push(DA);
1048      }
1049      // Mark all the related defs as visited.
1050      for (NodeAddr<NodeBase*> T : Rel)
1051        Visited.insert(T.Id);
1052    }
1053  }
1054  
1055  // Push all definitions from the instruction node IA to an appropriate
1056  // stack in DefM.
1057  void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
1058    NodeSet Visited;
1059  #ifndef NDEBUG
1060    std::set<RegisterId> Defined;
1061  #endif
1062  
1063    // The important objectives of this function are:
1064    // - to be able to handle instructions both while the graph is being
1065    //   constructed, and after the graph has been constructed, and
1066    // - maintain proper ordering of definitions on the stack for each
1067    //   register reference:
1068    //   - if there are two or more related defs in IA (i.e. coming from
1069    //     the same machine operand), then only push one def on the stack,
1070    //   - if there are multiple unrelated defs of non-overlapping
1071    //     subregisters of S, then the stack for S will have both (in an
1072    //     unspecified order), but the order does not matter from the data-
1073    //     -flow perspective.
1074  
1075    for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) {
1076      if (Visited.count(DA.Id))
1077        continue;
1078      if (DA.Addr->getFlags() & NodeAttrs::Clobbering)
1079        continue;
1080  
1081      NodeList Rel = getRelatedRefs(IA, DA);
1082      NodeAddr<DefNode*> PDA = Rel.front();
1083      RegisterRef RR = PDA.Addr->getRegRef(*this);
1084  #ifndef NDEBUG
1085      // Assert if the register is defined in two or more unrelated defs.
1086      // This could happen if there are two or more def operands defining it.
1087      if (!Defined.insert(RR.Reg).second) {
1088        MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode();
1089        dbgs() << "Multiple definitions of register: "
1090               << Print<RegisterRef>(RR, *this) << " in\n  " << *MI << "in "
1091               << printMBBReference(*MI->getParent()) << '\n';
1092        llvm_unreachable(nullptr);
1093      }
1094  #endif
1095      // Push the definition on the stack for the register and all aliases.
1096      // The def stack traversal in linkNodeUp will check the exact aliasing.
1097      DefM[RR.Reg].push(DA);
1098      for (RegisterId A : PRI.getAliasSet(RR.Reg)) {
1099        // Check that we don't push the same def twice.
1100        assert(A != RR.Reg);
1101        DefM[A].push(DA);
1102      }
1103      // Mark all the related defs as visited.
1104      for (NodeAddr<NodeBase*> T : Rel)
1105        Visited.insert(T.Id);
1106    }
1107  }
1108  
1109  // Return the list of all reference nodes related to RA, including RA itself.
1110  // See "getNextRelated" for the meaning of a "related reference".
1111  NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA,
1112        NodeAddr<RefNode*> RA) const {
1113    assert(IA.Id != 0 && RA.Id != 0);
1114  
1115    NodeList Refs;
1116    NodeId Start = RA.Id;
1117    do {
1118      Refs.push_back(RA);
1119      RA = getNextRelated(IA, RA);
1120    } while (RA.Id != 0 && RA.Id != Start);
1121    return Refs;
1122  }
1123  
1124  // Clear all information in the graph.
1125  void DataFlowGraph::reset() {
1126    Memory.clear();
1127    BlockNodes.clear();
1128    Func = NodeAddr<FuncNode*>();
1129  }
1130  
1131  // Return the next reference node in the instruction node IA that is related
1132  // to RA. Conceptually, two reference nodes are related if they refer to the
1133  // same instance of a register access, but differ in flags or other minor
1134  // characteristics. Specific examples of related nodes are shadow reference
1135  // nodes.
1136  // Return the equivalent of nullptr if there are no more related references.
1137  NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA,
1138        NodeAddr<RefNode*> RA) const {
1139    assert(IA.Id != 0 && RA.Id != 0);
1140  
1141    auto Related = [this,RA](NodeAddr<RefNode*> TA) -> bool {
1142      if (TA.Addr->getKind() != RA.Addr->getKind())
1143        return false;
1144      if (TA.Addr->getRegRef(*this) != RA.Addr->getRegRef(*this))
1145        return false;
1146      return true;
1147    };
1148    auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
1149      return Related(TA) &&
1150             &RA.Addr->getOp() == &TA.Addr->getOp();
1151    };
1152    auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
1153      if (!Related(TA))
1154        return false;
1155      if (TA.Addr->getKind() != NodeAttrs::Use)
1156        return true;
1157      // For phi uses, compare predecessor blocks.
1158      const NodeAddr<const PhiUseNode*> TUA = TA;
1159      const NodeAddr<const PhiUseNode*> RUA = RA;
1160      return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor();
1161    };
1162  
1163    RegisterRef RR = RA.Addr->getRegRef(*this);
1164    if (IA.Addr->getKind() == NodeAttrs::Stmt)
1165      return RA.Addr->getNextRef(RR, RelatedStmt, true, *this);
1166    return RA.Addr->getNextRef(RR, RelatedPhi, true, *this);
1167  }
1168  
1169  // Find the next node related to RA in IA that satisfies condition P.
1170  // If such a node was found, return a pair where the second element is the
1171  // located node. If such a node does not exist, return a pair where the
1172  // first element is the element after which such a node should be inserted,
1173  // and the second element is a null-address.
1174  template <typename Predicate>
1175  std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
1176  DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
1177        Predicate P) const {
1178    assert(IA.Id != 0 && RA.Id != 0);
1179  
1180    NodeAddr<RefNode*> NA;
1181    NodeId Start = RA.Id;
1182    while (true) {
1183      NA = getNextRelated(IA, RA);
1184      if (NA.Id == 0 || NA.Id == Start)
1185        break;
1186      if (P(NA))
1187        break;
1188      RA = NA;
1189    }
1190  
1191    if (NA.Id != 0 && NA.Id != Start)
1192      return std::make_pair(RA, NA);
1193    return std::make_pair(RA, NodeAddr<RefNode*>());
1194  }
1195  
1196  // Get the next shadow node in IA corresponding to RA, and optionally create
1197  // such a node if it does not exist.
1198  NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
1199        NodeAddr<RefNode*> RA, bool Create) {
1200    assert(IA.Id != 0 && RA.Id != 0);
1201  
1202    uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
1203    auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
1204      return TA.Addr->getFlags() == Flags;
1205    };
1206    auto Loc = locateNextRef(IA, RA, IsShadow);
1207    if (Loc.second.Id != 0 || !Create)
1208      return Loc.second;
1209  
1210    // Create a copy of RA and mark is as shadow.
1211    NodeAddr<RefNode*> NA = cloneNode(RA);
1212    NA.Addr->setFlags(Flags | NodeAttrs::Shadow);
1213    IA.Addr->addMemberAfter(Loc.first, NA, *this);
1214    return NA;
1215  }
1216  
1217  // Get the next shadow node in IA corresponding to RA. Return null-address
1218  // if such a node does not exist.
1219  NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
1220        NodeAddr<RefNode*> RA) const {
1221    assert(IA.Id != 0 && RA.Id != 0);
1222    uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
1223    auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
1224      return TA.Addr->getFlags() == Flags;
1225    };
1226    return locateNextRef(IA, RA, IsShadow).second;
1227  }
1228  
1229  // Create a new statement node in the block node BA that corresponds to
1230  // the machine instruction MI.
1231  void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) {
1232    NodeAddr<StmtNode*> SA = newStmt(BA, &In);
1233  
1234    auto isCall = [] (const MachineInstr &In) -> bool {
1235      if (In.isCall())
1236        return true;
1237      // Is tail call?
1238      if (In.isBranch()) {
1239        for (const MachineOperand &Op : In.operands())
1240          if (Op.isGlobal() || Op.isSymbol())
1241            return true;
1242        // Assume indirect branches are calls. This is for the purpose of
1243        // keeping implicit operands, and so it won't hurt on intra-function
1244        // indirect branches.
1245        if (In.isIndirectBranch())
1246          return true;
1247      }
1248      return false;
1249    };
1250  
1251    auto isDefUndef = [this] (const MachineInstr &In, RegisterRef DR) -> bool {
1252      // This instruction defines DR. Check if there is a use operand that
1253      // would make DR live on entry to the instruction.
1254      for (const MachineOperand &Op : In.operands()) {
1255        if (!Op.isReg() || Op.getReg() == 0 || !Op.isUse() || Op.isUndef())
1256          continue;
1257        RegisterRef UR = makeRegRef(Op);
1258        if (PRI.alias(DR, UR))
1259          return false;
1260      }
1261      return true;
1262    };
1263  
1264    bool IsCall = isCall(In);
1265    unsigned NumOps = In.getNumOperands();
1266  
1267    // Avoid duplicate implicit defs. This will not detect cases of implicit
1268    // defs that define registers that overlap, but it is not clear how to
1269    // interpret that in the absence of explicit defs. Overlapping explicit
1270    // defs are likely illegal already.
1271    BitVector DoneDefs(TRI.getNumRegs());
1272    // Process explicit defs first.
1273    for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1274      MachineOperand &Op = In.getOperand(OpN);
1275      if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1276        continue;
1277      Register R = Op.getReg();
1278      if (!R || !Register::isPhysicalRegister(R))
1279        continue;
1280      uint16_t Flags = NodeAttrs::None;
1281      if (TOI.isPreserving(In, OpN)) {
1282        Flags |= NodeAttrs::Preserving;
1283        // If the def is preserving, check if it is also undefined.
1284        if (isDefUndef(In, makeRegRef(Op)))
1285          Flags |= NodeAttrs::Undef;
1286      }
1287      if (TOI.isClobbering(In, OpN))
1288        Flags |= NodeAttrs::Clobbering;
1289      if (TOI.isFixedReg(In, OpN))
1290        Flags |= NodeAttrs::Fixed;
1291      if (IsCall && Op.isDead())
1292        Flags |= NodeAttrs::Dead;
1293      NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1294      SA.Addr->addMember(DA, *this);
1295      assert(!DoneDefs.test(R));
1296      DoneDefs.set(R);
1297    }
1298  
1299    // Process reg-masks (as clobbers).
1300    BitVector DoneClobbers(TRI.getNumRegs());
1301    for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1302      MachineOperand &Op = In.getOperand(OpN);
1303      if (!Op.isRegMask())
1304        continue;
1305      uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed |
1306                       NodeAttrs::Dead;
1307      NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1308      SA.Addr->addMember(DA, *this);
1309      // Record all clobbered registers in DoneDefs.
1310      const uint32_t *RM = Op.getRegMask();
1311      for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i)
1312        if (!(RM[i/32] & (1u << (i%32))))
1313          DoneClobbers.set(i);
1314    }
1315  
1316    // Process implicit defs, skipping those that have already been added
1317    // as explicit.
1318    for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1319      MachineOperand &Op = In.getOperand(OpN);
1320      if (!Op.isReg() || !Op.isDef() || !Op.isImplicit())
1321        continue;
1322      Register R = Op.getReg();
1323      if (!R || !Register::isPhysicalRegister(R) || DoneDefs.test(R))
1324        continue;
1325      RegisterRef RR = makeRegRef(Op);
1326      uint16_t Flags = NodeAttrs::None;
1327      if (TOI.isPreserving(In, OpN)) {
1328        Flags |= NodeAttrs::Preserving;
1329        // If the def is preserving, check if it is also undefined.
1330        if (isDefUndef(In, RR))
1331          Flags |= NodeAttrs::Undef;
1332      }
1333      if (TOI.isClobbering(In, OpN))
1334        Flags |= NodeAttrs::Clobbering;
1335      if (TOI.isFixedReg(In, OpN))
1336        Flags |= NodeAttrs::Fixed;
1337      if (IsCall && Op.isDead()) {
1338        if (DoneClobbers.test(R))
1339          continue;
1340        Flags |= NodeAttrs::Dead;
1341      }
1342      NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1343      SA.Addr->addMember(DA, *this);
1344      DoneDefs.set(R);
1345    }
1346  
1347    for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1348      MachineOperand &Op = In.getOperand(OpN);
1349      if (!Op.isReg() || !Op.isUse())
1350        continue;
1351      Register R = Op.getReg();
1352      if (!R || !Register::isPhysicalRegister(R))
1353        continue;
1354      uint16_t Flags = NodeAttrs::None;
1355      if (Op.isUndef())
1356        Flags |= NodeAttrs::Undef;
1357      if (TOI.isFixedReg(In, OpN))
1358        Flags |= NodeAttrs::Fixed;
1359      NodeAddr<UseNode*> UA = newUse(SA, Op, Flags);
1360      SA.Addr->addMember(UA, *this);
1361    }
1362  }
1363  
1364  // Scan all defs in the block node BA and record in PhiM the locations of
1365  // phi nodes corresponding to these defs.
1366  void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM,
1367        NodeAddr<BlockNode*> BA) {
1368    // Check all defs from block BA and record them in each block in BA's
1369    // iterated dominance frontier. This information will later be used to
1370    // create phi nodes.
1371    MachineBasicBlock *BB = BA.Addr->getCode();
1372    assert(BB);
1373    auto DFLoc = MDF.find(BB);
1374    if (DFLoc == MDF.end() || DFLoc->second.empty())
1375      return;
1376  
1377    // Traverse all instructions in the block and collect the set of all
1378    // defined references. For each reference there will be a phi created
1379    // in the block's iterated dominance frontier.
1380    // This is done to make sure that each defined reference gets only one
1381    // phi node, even if it is defined multiple times.
1382    RegisterSet Defs;
1383    for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
1384      for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this))
1385        Defs.insert(RA.Addr->getRegRef(*this));
1386  
1387    // Calculate the iterated dominance frontier of BB.
1388    const MachineDominanceFrontier::DomSetType &DF = DFLoc->second;
1389    SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end());
1390    for (unsigned i = 0; i < IDF.size(); ++i) {
1391      auto F = MDF.find(IDF[i]);
1392      if (F != MDF.end())
1393        IDF.insert(F->second.begin(), F->second.end());
1394    }
1395  
1396    // Finally, add the set of defs to each block in the iterated dominance
1397    // frontier.
1398    for (auto *DB : IDF) {
1399      NodeAddr<BlockNode*> DBA = findBlock(DB);
1400      PhiM[DBA.Id].insert(Defs.begin(), Defs.end());
1401    }
1402  }
1403  
1404  // Given the locations of phi nodes in the map PhiM, create the phi nodes
1405  // that are located in the block node BA.
1406  void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs,
1407        NodeAddr<BlockNode*> BA) {
1408    // Check if this blocks has any DF defs, i.e. if there are any defs
1409    // that this block is in the iterated dominance frontier of.
1410    auto HasDF = PhiM.find(BA.Id);
1411    if (HasDF == PhiM.end() || HasDF->second.empty())
1412      return;
1413  
1414    // First, remove all R in Refs in such that there exists T in Refs
1415    // such that T covers R. In other words, only leave those refs that
1416    // are not covered by another ref (i.e. maximal with respect to covering).
1417  
1418    auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef {
1419      for (RegisterRef I : RRs)
1420        if (I != RR && RegisterAggr::isCoverOf(I, RR, PRI))
1421          RR = I;
1422      return RR;
1423    };
1424  
1425    RegisterSet MaxDF;
1426    for (RegisterRef I : HasDF->second)
1427      MaxDF.insert(MaxCoverIn(I, HasDF->second));
1428  
1429    std::vector<RegisterRef> MaxRefs;
1430    for (RegisterRef I : MaxDF)
1431      MaxRefs.push_back(MaxCoverIn(I, AllRefs));
1432  
1433    // Now, for each R in MaxRefs, get the alias closure of R. If the closure
1434    // only has R in it, create a phi a def for R. Otherwise, create a phi,
1435    // and add a def for each S in the closure.
1436  
1437    // Sort the refs so that the phis will be created in a deterministic order.
1438    llvm::sort(MaxRefs);
1439    // Remove duplicates.
1440    auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end());
1441    MaxRefs.erase(NewEnd, MaxRefs.end());
1442  
1443    auto Aliased = [this,&MaxRefs](RegisterRef RR,
1444                                   std::vector<unsigned> &Closure) -> bool {
1445      for (unsigned I : Closure)
1446        if (PRI.alias(RR, MaxRefs[I]))
1447          return true;
1448      return false;
1449    };
1450  
1451    // Prepare a list of NodeIds of the block's predecessors.
1452    NodeList Preds;
1453    const MachineBasicBlock *MBB = BA.Addr->getCode();
1454    for (MachineBasicBlock *PB : MBB->predecessors())
1455      Preds.push_back(findBlock(PB));
1456  
1457    while (!MaxRefs.empty()) {
1458      // Put the first element in the closure, and then add all subsequent
1459      // elements from MaxRefs to it, if they alias at least one element
1460      // already in the closure.
1461      // ClosureIdx: vector of indices in MaxRefs of members of the closure.
1462      std::vector<unsigned> ClosureIdx = { 0 };
1463      for (unsigned i = 1; i != MaxRefs.size(); ++i)
1464        if (Aliased(MaxRefs[i], ClosureIdx))
1465          ClosureIdx.push_back(i);
1466  
1467      // Build a phi for the closure.
1468      unsigned CS = ClosureIdx.size();
1469      NodeAddr<PhiNode*> PA = newPhi(BA);
1470  
1471      // Add defs.
1472      for (unsigned X = 0; X != CS; ++X) {
1473        RegisterRef RR = MaxRefs[ClosureIdx[X]];
1474        uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
1475        NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
1476        PA.Addr->addMember(DA, *this);
1477      }
1478      // Add phi uses.
1479      for (NodeAddr<BlockNode*> PBA : Preds) {
1480        for (unsigned X = 0; X != CS; ++X) {
1481          RegisterRef RR = MaxRefs[ClosureIdx[X]];
1482          NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
1483          PA.Addr->addMember(PUA, *this);
1484        }
1485      }
1486  
1487      // Erase from MaxRefs all elements in the closure.
1488      auto Begin = MaxRefs.begin();
1489      for (unsigned Idx : llvm::reverse(ClosureIdx))
1490        MaxRefs.erase(Begin + Idx);
1491    }
1492  }
1493  
1494  // Remove any unneeded phi nodes that were created during the build process.
1495  void DataFlowGraph::removeUnusedPhis() {
1496    // This will remove unused phis, i.e. phis where each def does not reach
1497    // any uses or other defs. This will not detect or remove circular phi
1498    // chains that are otherwise dead. Unused/dead phis are created during
1499    // the build process and this function is intended to remove these cases
1500    // that are easily determinable to be unnecessary.
1501  
1502    SetVector<NodeId> PhiQ;
1503    for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) {
1504      for (auto P : BA.Addr->members_if(IsPhi, *this))
1505        PhiQ.insert(P.Id);
1506    }
1507  
1508    static auto HasUsedDef = [](NodeList &Ms) -> bool {
1509      for (NodeAddr<NodeBase*> M : Ms) {
1510        if (M.Addr->getKind() != NodeAttrs::Def)
1511          continue;
1512        NodeAddr<DefNode*> DA = M;
1513        if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0)
1514          return true;
1515      }
1516      return false;
1517    };
1518  
1519    // Any phi, if it is removed, may affect other phis (make them dead).
1520    // For each removed phi, collect the potentially affected phis and add
1521    // them back to the queue.
1522    while (!PhiQ.empty()) {
1523      auto PA = addr<PhiNode*>(PhiQ[0]);
1524      PhiQ.remove(PA.Id);
1525      NodeList Refs = PA.Addr->members(*this);
1526      if (HasUsedDef(Refs))
1527        continue;
1528      for (NodeAddr<RefNode*> RA : Refs) {
1529        if (NodeId RD = RA.Addr->getReachingDef()) {
1530          auto RDA = addr<DefNode*>(RD);
1531          NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this);
1532          if (IsPhi(OA))
1533            PhiQ.insert(OA.Id);
1534        }
1535        if (RA.Addr->isDef())
1536          unlinkDef(RA, true);
1537        else
1538          unlinkUse(RA, true);
1539      }
1540      NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this);
1541      BA.Addr->removeMember(PA, *this);
1542    }
1543  }
1544  
1545  // For a given reference node TA in an instruction node IA, connect the
1546  // reaching def of TA to the appropriate def node. Create any shadow nodes
1547  // as appropriate.
1548  template <typename T>
1549  void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA,
1550        DefStack &DS) {
1551    if (DS.empty())
1552      return;
1553    RegisterRef RR = TA.Addr->getRegRef(*this);
1554    NodeAddr<T> TAP;
1555  
1556    // References from the def stack that have been examined so far.
1557    RegisterAggr Defs(PRI);
1558  
1559    for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) {
1560      RegisterRef QR = I->Addr->getRegRef(*this);
1561  
1562      // Skip all defs that are aliased to any of the defs that we have already
1563      // seen. If this completes a cover of RR, stop the stack traversal.
1564      bool Alias = Defs.hasAliasOf(QR);
1565      bool Cover = Defs.insert(QR).hasCoverOf(RR);
1566      if (Alias) {
1567        if (Cover)
1568          break;
1569        continue;
1570      }
1571  
1572      // The reaching def.
1573      NodeAddr<DefNode*> RDA = *I;
1574  
1575      // Pick the reached node.
1576      if (TAP.Id == 0) {
1577        TAP = TA;
1578      } else {
1579        // Mark the existing ref as "shadow" and create a new shadow.
1580        TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow);
1581        TAP = getNextShadow(IA, TAP, true);
1582      }
1583  
1584      // Create the link.
1585      TAP.Addr->linkToDef(TAP.Id, RDA);
1586  
1587      if (Cover)
1588        break;
1589    }
1590  }
1591  
1592  // Create data-flow links for all reference nodes in the statement node SA.
1593  template <typename Predicate>
1594  void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA,
1595        Predicate P) {
1596  #ifndef NDEBUG
1597    RegisterSet Defs;
1598  #endif
1599  
1600    // Link all nodes (upwards in the data-flow) with their reaching defs.
1601    for (NodeAddr<RefNode*> RA : SA.Addr->members_if(P, *this)) {
1602      uint16_t Kind = RA.Addr->getKind();
1603      assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use);
1604      RegisterRef RR = RA.Addr->getRegRef(*this);
1605  #ifndef NDEBUG
1606      // Do not expect multiple defs of the same reference.
1607      assert(Kind != NodeAttrs::Def || !Defs.count(RR));
1608      Defs.insert(RR);
1609  #endif
1610  
1611      auto F = DefM.find(RR.Reg);
1612      if (F == DefM.end())
1613        continue;
1614      DefStack &DS = F->second;
1615      if (Kind == NodeAttrs::Use)
1616        linkRefUp<UseNode*>(SA, RA, DS);
1617      else if (Kind == NodeAttrs::Def)
1618        linkRefUp<DefNode*>(SA, RA, DS);
1619      else
1620        llvm_unreachable("Unexpected node in instruction");
1621    }
1622  }
1623  
1624  // Create data-flow links for all instructions in the block node BA. This
1625  // will include updating any phi nodes in BA.
1626  void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) {
1627    // Push block delimiters.
1628    markBlock(BA.Id, DefM);
1629  
1630    auto IsClobber = [] (NodeAddr<RefNode*> RA) -> bool {
1631      return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering);
1632    };
1633    auto IsNoClobber = [] (NodeAddr<RefNode*> RA) -> bool {
1634      return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering);
1635    };
1636  
1637    assert(BA.Addr && "block node address is needed to create a data-flow link");
1638    // For each non-phi instruction in the block, link all the defs and uses
1639    // to their reaching defs. For any member of the block (including phis),
1640    // push the defs on the corresponding stacks.
1641    for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) {
1642      // Ignore phi nodes here. They will be linked part by part from the
1643      // predecessors.
1644      if (IA.Addr->getKind() == NodeAttrs::Stmt) {
1645        linkStmtRefs(DefM, IA, IsUse);
1646        linkStmtRefs(DefM, IA, IsClobber);
1647      }
1648  
1649      // Push the definitions on the stack.
1650      pushClobbers(IA, DefM);
1651  
1652      if (IA.Addr->getKind() == NodeAttrs::Stmt)
1653        linkStmtRefs(DefM, IA, IsNoClobber);
1654  
1655      pushDefs(IA, DefM);
1656    }
1657  
1658    // Recursively process all children in the dominator tree.
1659    MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode());
1660    for (auto *I : *N) {
1661      MachineBasicBlock *SB = I->getBlock();
1662      NodeAddr<BlockNode*> SBA = findBlock(SB);
1663      linkBlockRefs(DefM, SBA);
1664    }
1665  
1666    // Link the phi uses from the successor blocks.
1667    auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool {
1668      if (NA.Addr->getKind() != NodeAttrs::Use)
1669        return false;
1670      assert(NA.Addr->getFlags() & NodeAttrs::PhiRef);
1671      NodeAddr<PhiUseNode*> PUA = NA;
1672      return PUA.Addr->getPredecessor() == BA.Id;
1673    };
1674  
1675    RegisterSet EHLiveIns = getLandingPadLiveIns();
1676    MachineBasicBlock *MBB = BA.Addr->getCode();
1677  
1678    for (MachineBasicBlock *SB : MBB->successors()) {
1679      bool IsEHPad = SB->isEHPad();
1680      NodeAddr<BlockNode*> SBA = findBlock(SB);
1681      for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) {
1682        // Do not link phi uses for landing pad live-ins.
1683        if (IsEHPad) {
1684          // Find what register this phi is for.
1685          NodeAddr<RefNode*> RA = IA.Addr->getFirstMember(*this);
1686          assert(RA.Id != 0);
1687          if (EHLiveIns.count(RA.Addr->getRegRef(*this)))
1688            continue;
1689        }
1690        // Go over each phi use associated with MBB, and link it.
1691        for (auto U : IA.Addr->members_if(IsUseForBA, *this)) {
1692          NodeAddr<PhiUseNode*> PUA = U;
1693          RegisterRef RR = PUA.Addr->getRegRef(*this);
1694          linkRefUp<UseNode*>(IA, PUA, DefM[RR.Reg]);
1695        }
1696      }
1697    }
1698  
1699    // Pop all defs from this block from the definition stacks.
1700    releaseBlock(BA.Id, DefM);
1701  }
1702  
1703  // Remove the use node UA from any data-flow and structural links.
1704  void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode*> UA) {
1705    NodeId RD = UA.Addr->getReachingDef();
1706    NodeId Sib = UA.Addr->getSibling();
1707  
1708    if (RD == 0) {
1709      assert(Sib == 0);
1710      return;
1711    }
1712  
1713    auto RDA = addr<DefNode*>(RD);
1714    auto TA = addr<UseNode*>(RDA.Addr->getReachedUse());
1715    if (TA.Id == UA.Id) {
1716      RDA.Addr->setReachedUse(Sib);
1717      return;
1718    }
1719  
1720    while (TA.Id != 0) {
1721      NodeId S = TA.Addr->getSibling();
1722      if (S == UA.Id) {
1723        TA.Addr->setSibling(UA.Addr->getSibling());
1724        return;
1725      }
1726      TA = addr<UseNode*>(S);
1727    }
1728  }
1729  
1730  // Remove the def node DA from any data-flow and structural links.
1731  void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode*> DA) {
1732    //
1733    //         RD
1734    //         | reached
1735    //         | def
1736    //         :
1737    //         .
1738    //        +----+
1739    // ... -- | DA | -- ... -- 0  : sibling chain of DA
1740    //        +----+
1741    //         |  | reached
1742    //         |  : def
1743    //         |  .
1744    //         | ...  : Siblings (defs)
1745    //         |
1746    //         : reached
1747    //         . use
1748    //        ... : sibling chain of reached uses
1749  
1750    NodeId RD = DA.Addr->getReachingDef();
1751  
1752    // Visit all siblings of the reached def and reset their reaching defs.
1753    // Also, defs reached by DA are now "promoted" to being reached by RD,
1754    // so all of them will need to be spliced into the sibling chain where
1755    // DA belongs.
1756    auto getAllNodes = [this] (NodeId N) -> NodeList {
1757      NodeList Res;
1758      while (N) {
1759        auto RA = addr<RefNode*>(N);
1760        // Keep the nodes in the exact sibling order.
1761        Res.push_back(RA);
1762        N = RA.Addr->getSibling();
1763      }
1764      return Res;
1765    };
1766    NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef());
1767    NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse());
1768  
1769    if (RD == 0) {
1770      for (NodeAddr<RefNode*> I : ReachedDefs)
1771        I.Addr->setSibling(0);
1772      for (NodeAddr<RefNode*> I : ReachedUses)
1773        I.Addr->setSibling(0);
1774    }
1775    for (NodeAddr<DefNode*> I : ReachedDefs)
1776      I.Addr->setReachingDef(RD);
1777    for (NodeAddr<UseNode*> I : ReachedUses)
1778      I.Addr->setReachingDef(RD);
1779  
1780    NodeId Sib = DA.Addr->getSibling();
1781    if (RD == 0) {
1782      assert(Sib == 0);
1783      return;
1784    }
1785  
1786    // Update the reaching def node and remove DA from the sibling list.
1787    auto RDA = addr<DefNode*>(RD);
1788    auto TA = addr<DefNode*>(RDA.Addr->getReachedDef());
1789    if (TA.Id == DA.Id) {
1790      // If DA is the first reached def, just update the RD's reached def
1791      // to the DA's sibling.
1792      RDA.Addr->setReachedDef(Sib);
1793    } else {
1794      // Otherwise, traverse the sibling list of the reached defs and remove
1795      // DA from it.
1796      while (TA.Id != 0) {
1797        NodeId S = TA.Addr->getSibling();
1798        if (S == DA.Id) {
1799          TA.Addr->setSibling(Sib);
1800          break;
1801        }
1802        TA = addr<DefNode*>(S);
1803      }
1804    }
1805  
1806    // Splice the DA's reached defs into the RDA's reached def chain.
1807    if (!ReachedDefs.empty()) {
1808      auto Last = NodeAddr<DefNode*>(ReachedDefs.back());
1809      Last.Addr->setSibling(RDA.Addr->getReachedDef());
1810      RDA.Addr->setReachedDef(ReachedDefs.front().Id);
1811    }
1812    // Splice the DA's reached uses into the RDA's reached use chain.
1813    if (!ReachedUses.empty()) {
1814      auto Last = NodeAddr<UseNode*>(ReachedUses.back());
1815      Last.Addr->setSibling(RDA.Addr->getReachedUse());
1816      RDA.Addr->setReachedUse(ReachedUses.front().Id);
1817    }
1818  }
1819