1 //===- RDFGraph.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Target-independent, SSA-based data flow graph for register data flow (RDF). 10 // 11 #include "llvm/ADT/BitVector.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/CodeGen/MachineDominanceFrontier.h" 16 #include "llvm/CodeGen/MachineDominators.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineInstr.h" 19 #include "llvm/CodeGen/MachineOperand.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/RDFGraph.h" 22 #include "llvm/CodeGen/RDFRegisters.h" 23 #include "llvm/CodeGen/TargetInstrInfo.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/MC/LaneBitmask.h" 29 #include "llvm/MC/MCInstrDesc.h" 30 #include "llvm/MC/MCRegisterInfo.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstdint> 37 #include <cstring> 38 #include <iterator> 39 #include <set> 40 #include <utility> 41 #include <vector> 42 43 using namespace llvm; 44 using namespace rdf; 45 46 // Printing functions. Have them here first, so that the rest of the code 47 // can use them. 48 namespace llvm { 49 namespace rdf { 50 51 raw_ostream &operator<< (raw_ostream &OS, const PrintLaneMaskOpt &P) { 52 if (!P.Mask.all()) 53 OS << ':' << PrintLaneMask(P.Mask); 54 return OS; 55 } 56 57 raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) { 58 auto &TRI = P.G.getTRI(); 59 if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs()) 60 OS << TRI.getName(P.Obj.Reg); 61 else 62 OS << '#' << P.Obj.Reg; 63 OS << PrintLaneMaskOpt(P.Obj.Mask); 64 return OS; 65 } 66 67 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) { 68 auto NA = P.G.addr<NodeBase*>(P.Obj); 69 uint16_t Attrs = NA.Addr->getAttrs(); 70 uint16_t Kind = NodeAttrs::kind(Attrs); 71 uint16_t Flags = NodeAttrs::flags(Attrs); 72 switch (NodeAttrs::type(Attrs)) { 73 case NodeAttrs::Code: 74 switch (Kind) { 75 case NodeAttrs::Func: OS << 'f'; break; 76 case NodeAttrs::Block: OS << 'b'; break; 77 case NodeAttrs::Stmt: OS << 's'; break; 78 case NodeAttrs::Phi: OS << 'p'; break; 79 default: OS << "c?"; break; 80 } 81 break; 82 case NodeAttrs::Ref: 83 if (Flags & NodeAttrs::Undef) 84 OS << '/'; 85 if (Flags & NodeAttrs::Dead) 86 OS << '\\'; 87 if (Flags & NodeAttrs::Preserving) 88 OS << '+'; 89 if (Flags & NodeAttrs::Clobbering) 90 OS << '~'; 91 switch (Kind) { 92 case NodeAttrs::Use: OS << 'u'; break; 93 case NodeAttrs::Def: OS << 'd'; break; 94 case NodeAttrs::Block: OS << 'b'; break; 95 default: OS << "r?"; break; 96 } 97 break; 98 default: 99 OS << '?'; 100 break; 101 } 102 OS << P.Obj; 103 if (Flags & NodeAttrs::Shadow) 104 OS << '"'; 105 return OS; 106 } 107 108 static void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA, 109 const DataFlowGraph &G) { 110 OS << Print<NodeId>(RA.Id, G) << '<' 111 << Print<RegisterRef>(RA.Addr->getRegRef(G), G) << '>'; 112 if (RA.Addr->getFlags() & NodeAttrs::Fixed) 113 OS << '!'; 114 } 115 116 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) { 117 printRefHeader(OS, P.Obj, P.G); 118 OS << '('; 119 if (NodeId N = P.Obj.Addr->getReachingDef()) 120 OS << Print<NodeId>(N, P.G); 121 OS << ','; 122 if (NodeId N = P.Obj.Addr->getReachedDef()) 123 OS << Print<NodeId>(N, P.G); 124 OS << ','; 125 if (NodeId N = P.Obj.Addr->getReachedUse()) 126 OS << Print<NodeId>(N, P.G); 127 OS << "):"; 128 if (NodeId N = P.Obj.Addr->getSibling()) 129 OS << Print<NodeId>(N, P.G); 130 return OS; 131 } 132 133 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) { 134 printRefHeader(OS, P.Obj, P.G); 135 OS << '('; 136 if (NodeId N = P.Obj.Addr->getReachingDef()) 137 OS << Print<NodeId>(N, P.G); 138 OS << "):"; 139 if (NodeId N = P.Obj.Addr->getSibling()) 140 OS << Print<NodeId>(N, P.G); 141 return OS; 142 } 143 144 raw_ostream &operator<< (raw_ostream &OS, 145 const Print<NodeAddr<PhiUseNode*>> &P) { 146 printRefHeader(OS, P.Obj, P.G); 147 OS << '('; 148 if (NodeId N = P.Obj.Addr->getReachingDef()) 149 OS << Print<NodeId>(N, P.G); 150 OS << ','; 151 if (NodeId N = P.Obj.Addr->getPredecessor()) 152 OS << Print<NodeId>(N, P.G); 153 OS << "):"; 154 if (NodeId N = P.Obj.Addr->getSibling()) 155 OS << Print<NodeId>(N, P.G); 156 return OS; 157 } 158 159 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) { 160 switch (P.Obj.Addr->getKind()) { 161 case NodeAttrs::Def: 162 OS << PrintNode<DefNode*>(P.Obj, P.G); 163 break; 164 case NodeAttrs::Use: 165 if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef) 166 OS << PrintNode<PhiUseNode*>(P.Obj, P.G); 167 else 168 OS << PrintNode<UseNode*>(P.Obj, P.G); 169 break; 170 } 171 return OS; 172 } 173 174 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) { 175 unsigned N = P.Obj.size(); 176 for (auto I : P.Obj) { 177 OS << Print<NodeId>(I.Id, P.G); 178 if (--N) 179 OS << ' '; 180 } 181 return OS; 182 } 183 184 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) { 185 unsigned N = P.Obj.size(); 186 for (auto I : P.Obj) { 187 OS << Print<NodeId>(I, P.G); 188 if (--N) 189 OS << ' '; 190 } 191 return OS; 192 } 193 194 namespace { 195 196 template <typename T> 197 struct PrintListV { 198 PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {} 199 200 using Type = T; 201 const NodeList &List; 202 const DataFlowGraph &G; 203 }; 204 205 template <typename T> 206 raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) { 207 unsigned N = P.List.size(); 208 for (NodeAddr<T> A : P.List) { 209 OS << PrintNode<T>(A, P.G); 210 if (--N) 211 OS << ", "; 212 } 213 return OS; 214 } 215 216 } // end anonymous namespace 217 218 raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) { 219 OS << Print<NodeId>(P.Obj.Id, P.G) << ": phi [" 220 << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']'; 221 return OS; 222 } 223 224 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<StmtNode *>> &P) { 225 const MachineInstr &MI = *P.Obj.Addr->getCode(); 226 unsigned Opc = MI.getOpcode(); 227 OS << Print<NodeId>(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc); 228 // Print the target for calls and branches (for readability). 229 if (MI.isCall() || MI.isBranch()) { 230 MachineInstr::const_mop_iterator T = 231 llvm::find_if(MI.operands(), 232 [] (const MachineOperand &Op) -> bool { 233 return Op.isMBB() || Op.isGlobal() || Op.isSymbol(); 234 }); 235 if (T != MI.operands_end()) { 236 OS << ' '; 237 if (T->isMBB()) 238 OS << printMBBReference(*T->getMBB()); 239 else if (T->isGlobal()) 240 OS << T->getGlobal()->getName(); 241 else if (T->isSymbol()) 242 OS << T->getSymbolName(); 243 } 244 } 245 OS << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']'; 246 return OS; 247 } 248 249 raw_ostream &operator<< (raw_ostream &OS, 250 const Print<NodeAddr<InstrNode*>> &P) { 251 switch (P.Obj.Addr->getKind()) { 252 case NodeAttrs::Phi: 253 OS << PrintNode<PhiNode*>(P.Obj, P.G); 254 break; 255 case NodeAttrs::Stmt: 256 OS << PrintNode<StmtNode*>(P.Obj, P.G); 257 break; 258 default: 259 OS << "instr? " << Print<NodeId>(P.Obj.Id, P.G); 260 break; 261 } 262 return OS; 263 } 264 265 raw_ostream &operator<< (raw_ostream &OS, 266 const Print<NodeAddr<BlockNode*>> &P) { 267 MachineBasicBlock *BB = P.Obj.Addr->getCode(); 268 unsigned NP = BB->pred_size(); 269 std::vector<int> Ns; 270 auto PrintBBs = [&OS] (std::vector<int> Ns) -> void { 271 unsigned N = Ns.size(); 272 for (int I : Ns) { 273 OS << "%bb." << I; 274 if (--N) 275 OS << ", "; 276 } 277 }; 278 279 OS << Print<NodeId>(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB) 280 << " --- preds(" << NP << "): "; 281 for (MachineBasicBlock *B : BB->predecessors()) 282 Ns.push_back(B->getNumber()); 283 PrintBBs(Ns); 284 285 unsigned NS = BB->succ_size(); 286 OS << " succs(" << NS << "): "; 287 Ns.clear(); 288 for (MachineBasicBlock *B : BB->successors()) 289 Ns.push_back(B->getNumber()); 290 PrintBBs(Ns); 291 OS << '\n'; 292 293 for (auto I : P.Obj.Addr->members(P.G)) 294 OS << PrintNode<InstrNode*>(I, P.G) << '\n'; 295 return OS; 296 } 297 298 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<FuncNode *>> &P) { 299 OS << "DFG dump:[\n" << Print<NodeId>(P.Obj.Id, P.G) << ": Function: " 300 << P.Obj.Addr->getCode()->getName() << '\n'; 301 for (auto I : P.Obj.Addr->members(P.G)) 302 OS << PrintNode<BlockNode*>(I, P.G) << '\n'; 303 OS << "]\n"; 304 return OS; 305 } 306 307 raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) { 308 OS << '{'; 309 for (auto I : P.Obj) 310 OS << ' ' << Print<RegisterRef>(I, P.G); 311 OS << " }"; 312 return OS; 313 } 314 315 raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterAggr> &P) { 316 P.Obj.print(OS); 317 return OS; 318 } 319 320 raw_ostream &operator<< (raw_ostream &OS, 321 const Print<DataFlowGraph::DefStack> &P) { 322 for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) { 323 OS << Print<NodeId>(I->Id, P.G) 324 << '<' << Print<RegisterRef>(I->Addr->getRegRef(P.G), P.G) << '>'; 325 I.down(); 326 if (I != E) 327 OS << ' '; 328 } 329 return OS; 330 } 331 332 } // end namespace rdf 333 } // end namespace llvm 334 335 // Node allocation functions. 336 // 337 // Node allocator is like a slab memory allocator: it allocates blocks of 338 // memory in sizes that are multiples of the size of a node. Each block has 339 // the same size. Nodes are allocated from the currently active block, and 340 // when it becomes full, a new one is created. 341 // There is a mapping scheme between node id and its location in a block, 342 // and within that block is described in the header file. 343 // 344 void NodeAllocator::startNewBlock() { 345 void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize); 346 char *P = static_cast<char*>(T); 347 Blocks.push_back(P); 348 // Check if the block index is still within the allowed range, i.e. less 349 // than 2^N, where N is the number of bits in NodeId for the block index. 350 // BitsPerIndex is the number of bits per node index. 351 assert((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) && 352 "Out of bits for block index"); 353 ActiveEnd = P; 354 } 355 356 bool NodeAllocator::needNewBlock() { 357 if (Blocks.empty()) 358 return true; 359 360 char *ActiveBegin = Blocks.back(); 361 uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize; 362 return Index >= NodesPerBlock; 363 } 364 365 NodeAddr<NodeBase*> NodeAllocator::New() { 366 if (needNewBlock()) 367 startNewBlock(); 368 369 uint32_t ActiveB = Blocks.size()-1; 370 uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize; 371 NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd), 372 makeId(ActiveB, Index) }; 373 ActiveEnd += NodeMemSize; 374 return NA; 375 } 376 377 NodeId NodeAllocator::id(const NodeBase *P) const { 378 uintptr_t A = reinterpret_cast<uintptr_t>(P); 379 for (unsigned i = 0, n = Blocks.size(); i != n; ++i) { 380 uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]); 381 if (A < B || A >= B + NodesPerBlock*NodeMemSize) 382 continue; 383 uint32_t Idx = (A-B)/NodeMemSize; 384 return makeId(i, Idx); 385 } 386 llvm_unreachable("Invalid node address"); 387 } 388 389 void NodeAllocator::clear() { 390 MemPool.Reset(); 391 Blocks.clear(); 392 ActiveEnd = nullptr; 393 } 394 395 // Insert node NA after "this" in the circular chain. 396 void NodeBase::append(NodeAddr<NodeBase*> NA) { 397 NodeId Nx = Next; 398 // If NA is already "next", do nothing. 399 if (Next != NA.Id) { 400 Next = NA.Id; 401 NA.Addr->Next = Nx; 402 } 403 } 404 405 // Fundamental node manipulator functions. 406 407 // Obtain the register reference from a reference node. 408 RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const { 409 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); 410 if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef) 411 return G.unpack(Ref.PR); 412 assert(Ref.Op != nullptr); 413 return G.makeRegRef(*Ref.Op); 414 } 415 416 // Set the register reference in the reference node directly (for references 417 // in phi nodes). 418 void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) { 419 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); 420 assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef); 421 Ref.PR = G.pack(RR); 422 } 423 424 // Set the register reference in the reference node based on a machine 425 // operand (for references in statement nodes). 426 void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) { 427 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); 428 assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)); 429 (void)G; 430 Ref.Op = Op; 431 } 432 433 // Get the owner of a given reference node. 434 NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) { 435 NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext()); 436 437 while (NA.Addr != this) { 438 if (NA.Addr->getType() == NodeAttrs::Code) 439 return NA; 440 NA = G.addr<NodeBase*>(NA.Addr->getNext()); 441 } 442 llvm_unreachable("No owner in circular list"); 443 } 444 445 // Connect the def node to the reaching def node. 446 void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) { 447 Ref.RD = DA.Id; 448 Ref.Sib = DA.Addr->getReachedDef(); 449 DA.Addr->setReachedDef(Self); 450 } 451 452 // Connect the use node to the reaching def node. 453 void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) { 454 Ref.RD = DA.Id; 455 Ref.Sib = DA.Addr->getReachedUse(); 456 DA.Addr->setReachedUse(Self); 457 } 458 459 // Get the first member of the code node. 460 NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const { 461 if (Code.FirstM == 0) 462 return NodeAddr<NodeBase*>(); 463 return G.addr<NodeBase*>(Code.FirstM); 464 } 465 466 // Get the last member of the code node. 467 NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const { 468 if (Code.LastM == 0) 469 return NodeAddr<NodeBase*>(); 470 return G.addr<NodeBase*>(Code.LastM); 471 } 472 473 // Add node NA at the end of the member list of the given code node. 474 void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) { 475 NodeAddr<NodeBase*> ML = getLastMember(G); 476 if (ML.Id != 0) { 477 ML.Addr->append(NA); 478 } else { 479 Code.FirstM = NA.Id; 480 NodeId Self = G.id(this); 481 NA.Addr->setNext(Self); 482 } 483 Code.LastM = NA.Id; 484 } 485 486 // Add node NA after member node MA in the given code node. 487 void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA, 488 const DataFlowGraph &G) { 489 MA.Addr->append(NA); 490 if (Code.LastM == MA.Id) 491 Code.LastM = NA.Id; 492 } 493 494 // Remove member node NA from the given code node. 495 void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) { 496 NodeAddr<NodeBase*> MA = getFirstMember(G); 497 assert(MA.Id != 0); 498 499 // Special handling if the member to remove is the first member. 500 if (MA.Id == NA.Id) { 501 if (Code.LastM == MA.Id) { 502 // If it is the only member, set both first and last to 0. 503 Code.FirstM = Code.LastM = 0; 504 } else { 505 // Otherwise, advance the first member. 506 Code.FirstM = MA.Addr->getNext(); 507 } 508 return; 509 } 510 511 while (MA.Addr != this) { 512 NodeId MX = MA.Addr->getNext(); 513 if (MX == NA.Id) { 514 MA.Addr->setNext(NA.Addr->getNext()); 515 // If the member to remove happens to be the last one, update the 516 // LastM indicator. 517 if (Code.LastM == NA.Id) 518 Code.LastM = MA.Id; 519 return; 520 } 521 MA = G.addr<NodeBase*>(MX); 522 } 523 llvm_unreachable("No such member"); 524 } 525 526 // Return the list of all members of the code node. 527 NodeList CodeNode::members(const DataFlowGraph &G) const { 528 static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; }; 529 return members_if(True, G); 530 } 531 532 // Return the owner of the given instr node. 533 NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) { 534 NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext()); 535 536 while (NA.Addr != this) { 537 assert(NA.Addr->getType() == NodeAttrs::Code); 538 if (NA.Addr->getKind() == NodeAttrs::Block) 539 return NA; 540 NA = G.addr<NodeBase*>(NA.Addr->getNext()); 541 } 542 llvm_unreachable("No owner in circular list"); 543 } 544 545 // Add the phi node PA to the given block node. 546 void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) { 547 NodeAddr<NodeBase*> M = getFirstMember(G); 548 if (M.Id == 0) { 549 addMember(PA, G); 550 return; 551 } 552 553 assert(M.Addr->getType() == NodeAttrs::Code); 554 if (M.Addr->getKind() == NodeAttrs::Stmt) { 555 // If the first member of the block is a statement, insert the phi as 556 // the first member. 557 Code.FirstM = PA.Id; 558 PA.Addr->setNext(M.Id); 559 } else { 560 // If the first member is a phi, find the last phi, and append PA to it. 561 assert(M.Addr->getKind() == NodeAttrs::Phi); 562 NodeAddr<NodeBase*> MN = M; 563 do { 564 M = MN; 565 MN = G.addr<NodeBase*>(M.Addr->getNext()); 566 assert(MN.Addr->getType() == NodeAttrs::Code); 567 } while (MN.Addr->getKind() == NodeAttrs::Phi); 568 569 // M is the last phi. 570 addMemberAfter(M, PA, G); 571 } 572 } 573 574 // Find the block node corresponding to the machine basic block BB in the 575 // given func node. 576 NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB, 577 const DataFlowGraph &G) const { 578 auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool { 579 return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB; 580 }; 581 NodeList Ms = members_if(EqBB, G); 582 if (!Ms.empty()) 583 return Ms[0]; 584 return NodeAddr<BlockNode*>(); 585 } 586 587 // Get the block node for the entry block in the given function. 588 NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) { 589 MachineBasicBlock *EntryB = &getCode()->front(); 590 return findBlock(EntryB, G); 591 } 592 593 // Target operand information. 594 // 595 596 // For a given instruction, check if there are any bits of RR that can remain 597 // unchanged across this def. 598 bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum) 599 const { 600 return TII.isPredicated(In); 601 } 602 603 // Check if the definition of RR produces an unspecified value. 604 bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum) 605 const { 606 const MachineOperand &Op = In.getOperand(OpNum); 607 if (Op.isRegMask()) 608 return true; 609 assert(Op.isReg()); 610 if (In.isCall()) 611 if (Op.isDef() && Op.isDead()) 612 return true; 613 return false; 614 } 615 616 // Check if the given instruction specifically requires 617 bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum) 618 const { 619 if (In.isCall() || In.isReturn() || In.isInlineAsm()) 620 return true; 621 // Check for a tail call. 622 if (In.isBranch()) 623 for (const MachineOperand &O : In.operands()) 624 if (O.isGlobal() || O.isSymbol()) 625 return true; 626 627 const MCInstrDesc &D = In.getDesc(); 628 if (!D.getImplicitDefs() && !D.getImplicitUses()) 629 return false; 630 const MachineOperand &Op = In.getOperand(OpNum); 631 // If there is a sub-register, treat the operand as non-fixed. Currently, 632 // fixed registers are those that are listed in the descriptor as implicit 633 // uses or defs, and those lists do not allow sub-registers. 634 if (Op.getSubReg() != 0) 635 return false; 636 Register Reg = Op.getReg(); 637 const MCPhysReg *ImpR = Op.isDef() ? D.getImplicitDefs() 638 : D.getImplicitUses(); 639 if (!ImpR) 640 return false; 641 while (*ImpR) 642 if (*ImpR++ == Reg) 643 return true; 644 return false; 645 } 646 647 // 648 // The data flow graph construction. 649 // 650 651 DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, 652 const TargetRegisterInfo &tri, const MachineDominatorTree &mdt, 653 const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi) 654 : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi), 655 LiveIns(PRI) { 656 } 657 658 // The implementation of the definition stack. 659 // Each register reference has its own definition stack. In particular, 660 // for a register references "Reg" and "Reg:subreg" will each have their 661 // own definition stacks. 662 663 // Construct a stack iterator. 664 DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S, 665 bool Top) : DS(S) { 666 if (!Top) { 667 // Initialize to bottom. 668 Pos = 0; 669 return; 670 } 671 // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty). 672 Pos = DS.Stack.size(); 673 while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1])) 674 Pos--; 675 } 676 677 // Return the size of the stack, including block delimiters. 678 unsigned DataFlowGraph::DefStack::size() const { 679 unsigned S = 0; 680 for (auto I = top(), E = bottom(); I != E; I.down()) 681 S++; 682 return S; 683 } 684 685 // Remove the top entry from the stack. Remove all intervening delimiters 686 // so that after this, the stack is either empty, or the top of the stack 687 // is a non-delimiter. 688 void DataFlowGraph::DefStack::pop() { 689 assert(!empty()); 690 unsigned P = nextDown(Stack.size()); 691 Stack.resize(P); 692 } 693 694 // Push a delimiter for block node N on the stack. 695 void DataFlowGraph::DefStack::start_block(NodeId N) { 696 assert(N != 0); 697 Stack.push_back(NodeAddr<DefNode*>(nullptr, N)); 698 } 699 700 // Remove all nodes from the top of the stack, until the delimited for 701 // block node N is encountered. Remove the delimiter as well. In effect, 702 // this will remove from the stack all definitions from block N. 703 void DataFlowGraph::DefStack::clear_block(NodeId N) { 704 assert(N != 0); 705 unsigned P = Stack.size(); 706 while (P > 0) { 707 bool Found = isDelimiter(Stack[P-1], N); 708 P--; 709 if (Found) 710 break; 711 } 712 // This will also remove the delimiter, if found. 713 Stack.resize(P); 714 } 715 716 // Move the stack iterator up by one. 717 unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const { 718 // Get the next valid position after P (skipping all delimiters). 719 // The input position P does not have to point to a non-delimiter. 720 unsigned SS = Stack.size(); 721 bool IsDelim; 722 assert(P < SS); 723 do { 724 P++; 725 IsDelim = isDelimiter(Stack[P-1]); 726 } while (P < SS && IsDelim); 727 assert(!IsDelim); 728 return P; 729 } 730 731 // Move the stack iterator down by one. 732 unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const { 733 // Get the preceding valid position before P (skipping all delimiters). 734 // The input position P does not have to point to a non-delimiter. 735 assert(P > 0 && P <= Stack.size()); 736 bool IsDelim = isDelimiter(Stack[P-1]); 737 do { 738 if (--P == 0) 739 break; 740 IsDelim = isDelimiter(Stack[P-1]); 741 } while (P > 0 && IsDelim); 742 assert(!IsDelim); 743 return P; 744 } 745 746 // Register information. 747 748 RegisterSet DataFlowGraph::getLandingPadLiveIns() const { 749 RegisterSet LR; 750 const Function &F = MF.getFunction(); 751 const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn() 752 : nullptr; 753 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 754 if (RegisterId R = TLI.getExceptionPointerRegister(PF)) 755 LR.insert(RegisterRef(R)); 756 if (!isFuncletEHPersonality(classifyEHPersonality(PF))) { 757 if (RegisterId R = TLI.getExceptionSelectorRegister(PF)) 758 LR.insert(RegisterRef(R)); 759 } 760 return LR; 761 } 762 763 // Node management functions. 764 765 // Get the pointer to the node with the id N. 766 NodeBase *DataFlowGraph::ptr(NodeId N) const { 767 if (N == 0) 768 return nullptr; 769 return Memory.ptr(N); 770 } 771 772 // Get the id of the node at the address P. 773 NodeId DataFlowGraph::id(const NodeBase *P) const { 774 if (P == nullptr) 775 return 0; 776 return Memory.id(P); 777 } 778 779 // Allocate a new node and set the attributes to Attrs. 780 NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) { 781 NodeAddr<NodeBase*> P = Memory.New(); 782 P.Addr->init(); 783 P.Addr->setAttrs(Attrs); 784 return P; 785 } 786 787 // Make a copy of the given node B, except for the data-flow links, which 788 // are set to 0. 789 NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) { 790 NodeAddr<NodeBase*> NA = newNode(0); 791 memcpy(NA.Addr, B.Addr, sizeof(NodeBase)); 792 // Ref nodes need to have the data-flow links reset. 793 if (NA.Addr->getType() == NodeAttrs::Ref) { 794 NodeAddr<RefNode*> RA = NA; 795 RA.Addr->setReachingDef(0); 796 RA.Addr->setSibling(0); 797 if (NA.Addr->getKind() == NodeAttrs::Def) { 798 NodeAddr<DefNode*> DA = NA; 799 DA.Addr->setReachedDef(0); 800 DA.Addr->setReachedUse(0); 801 } 802 } 803 return NA; 804 } 805 806 // Allocation routines for specific node types/kinds. 807 808 NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner, 809 MachineOperand &Op, uint16_t Flags) { 810 NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); 811 UA.Addr->setRegRef(&Op, *this); 812 return UA; 813 } 814 815 NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner, 816 RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) { 817 NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); 818 assert(Flags & NodeAttrs::PhiRef); 819 PUA.Addr->setRegRef(RR, *this); 820 PUA.Addr->setPredecessor(PredB.Id); 821 return PUA; 822 } 823 824 NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner, 825 MachineOperand &Op, uint16_t Flags) { 826 NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); 827 DA.Addr->setRegRef(&Op, *this); 828 return DA; 829 } 830 831 NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner, 832 RegisterRef RR, uint16_t Flags) { 833 NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); 834 assert(Flags & NodeAttrs::PhiRef); 835 DA.Addr->setRegRef(RR, *this); 836 return DA; 837 } 838 839 NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) { 840 NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi); 841 Owner.Addr->addPhi(PA, *this); 842 return PA; 843 } 844 845 NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner, 846 MachineInstr *MI) { 847 NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt); 848 SA.Addr->setCode(MI); 849 Owner.Addr->addMember(SA, *this); 850 return SA; 851 } 852 853 NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner, 854 MachineBasicBlock *BB) { 855 NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block); 856 BA.Addr->setCode(BB); 857 Owner.Addr->addMember(BA, *this); 858 return BA; 859 } 860 861 NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) { 862 NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func); 863 FA.Addr->setCode(MF); 864 return FA; 865 } 866 867 // Build the data flow graph. 868 void DataFlowGraph::build(unsigned Options) { 869 reset(); 870 Func = newFunc(&MF); 871 872 if (MF.empty()) 873 return; 874 875 for (MachineBasicBlock &B : MF) { 876 NodeAddr<BlockNode*> BA = newBlock(Func, &B); 877 BlockNodes.insert(std::make_pair(&B, BA)); 878 for (MachineInstr &I : B) { 879 if (I.isDebugInstr()) 880 continue; 881 buildStmt(BA, I); 882 } 883 } 884 885 NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this); 886 NodeList Blocks = Func.Addr->members(*this); 887 888 // Collect information about block references. 889 RegisterSet AllRefs; 890 for (NodeAddr<BlockNode*> BA : Blocks) 891 for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) 892 for (NodeAddr<RefNode*> RA : IA.Addr->members(*this)) 893 AllRefs.insert(RA.Addr->getRegRef(*this)); 894 895 // Collect function live-ins and entry block live-ins. 896 MachineRegisterInfo &MRI = MF.getRegInfo(); 897 MachineBasicBlock &EntryB = *EA.Addr->getCode(); 898 assert(EntryB.pred_empty() && "Function entry block has predecessors"); 899 for (std::pair<unsigned,unsigned> P : MRI.liveins()) 900 LiveIns.insert(RegisterRef(P.first)); 901 if (MRI.tracksLiveness()) { 902 for (auto I : EntryB.liveins()) 903 LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask)); 904 } 905 906 // Add function-entry phi nodes for the live-in registers. 907 //for (std::pair<RegisterId,LaneBitmask> P : LiveIns) { 908 for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) { 909 RegisterRef RR = *I; 910 NodeAddr<PhiNode*> PA = newPhi(EA); 911 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; 912 NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); 913 PA.Addr->addMember(DA, *this); 914 } 915 916 // Add phis for landing pads. 917 // Landing pads, unlike usual backs blocks, are not entered through 918 // branches in the program, or fall-throughs from other blocks. They 919 // are entered from the exception handling runtime and target's ABI 920 // may define certain registers as defined on entry to such a block. 921 RegisterSet EHRegs = getLandingPadLiveIns(); 922 if (!EHRegs.empty()) { 923 for (NodeAddr<BlockNode*> BA : Blocks) { 924 const MachineBasicBlock &B = *BA.Addr->getCode(); 925 if (!B.isEHPad()) 926 continue; 927 928 // Prepare a list of NodeIds of the block's predecessors. 929 NodeList Preds; 930 for (MachineBasicBlock *PB : B.predecessors()) 931 Preds.push_back(findBlock(PB)); 932 933 // Build phi nodes for each live-in. 934 for (RegisterRef RR : EHRegs) { 935 NodeAddr<PhiNode*> PA = newPhi(BA); 936 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; 937 // Add def: 938 NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); 939 PA.Addr->addMember(DA, *this); 940 // Add uses (no reaching defs for phi uses): 941 for (NodeAddr<BlockNode*> PBA : Preds) { 942 NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA); 943 PA.Addr->addMember(PUA, *this); 944 } 945 } 946 } 947 } 948 949 // Build a map "PhiM" which will contain, for each block, the set 950 // of references that will require phi definitions in that block. 951 BlockRefsMap PhiM; 952 for (NodeAddr<BlockNode*> BA : Blocks) 953 recordDefsForDF(PhiM, BA); 954 for (NodeAddr<BlockNode*> BA : Blocks) 955 buildPhis(PhiM, AllRefs, BA); 956 957 // Link all the refs. This will recursively traverse the dominator tree. 958 DefStackMap DM; 959 linkBlockRefs(DM, EA); 960 961 // Finally, remove all unused phi nodes. 962 if (!(Options & BuildOptions::KeepDeadPhis)) 963 removeUnusedPhis(); 964 } 965 966 RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const { 967 assert(PhysicalRegisterInfo::isRegMaskId(Reg) || 968 Register::isPhysicalRegister(Reg)); 969 assert(Reg != 0); 970 if (Sub != 0) 971 Reg = TRI.getSubReg(Reg, Sub); 972 return RegisterRef(Reg); 973 } 974 975 RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const { 976 assert(Op.isReg() || Op.isRegMask()); 977 if (Op.isReg()) 978 return makeRegRef(Op.getReg(), Op.getSubReg()); 979 return RegisterRef(PRI.getRegMaskId(Op.getRegMask()), LaneBitmask::getAll()); 980 } 981 982 RegisterRef DataFlowGraph::restrictRef(RegisterRef AR, RegisterRef BR) const { 983 if (AR.Reg == BR.Reg) { 984 LaneBitmask M = AR.Mask & BR.Mask; 985 return M.any() ? RegisterRef(AR.Reg, M) : RegisterRef(); 986 } 987 #ifndef NDEBUG 988 // RegisterRef NAR = PRI.normalize(AR); 989 // RegisterRef NBR = PRI.normalize(BR); 990 // assert(NAR.Reg != NBR.Reg); 991 #endif 992 // This isn't strictly correct, because the overlap may happen in the 993 // part masked out. 994 if (PRI.alias(AR, BR)) 995 return AR; 996 return RegisterRef(); 997 } 998 999 // For each stack in the map DefM, push the delimiter for block B on it. 1000 void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) { 1001 // Push block delimiters. 1002 for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I) 1003 I->second.start_block(B); 1004 } 1005 1006 // Remove all definitions coming from block B from each stack in DefM. 1007 void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) { 1008 // Pop all defs from this block from the definition stack. Defs that were 1009 // added to the map during the traversal of instructions will not have a 1010 // delimiter, but for those, the whole stack will be emptied. 1011 for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I) 1012 I->second.clear_block(B); 1013 1014 // Finally, remove empty stacks from the map. 1015 for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) { 1016 NextI = std::next(I); 1017 // This preserves the validity of iterators other than I. 1018 if (I->second.empty()) 1019 DefM.erase(I); 1020 } 1021 } 1022 1023 // Push all definitions from the instruction node IA to an appropriate 1024 // stack in DefM. 1025 void DataFlowGraph::pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) { 1026 pushClobbers(IA, DefM); 1027 pushDefs(IA, DefM); 1028 } 1029 1030 // Push all definitions from the instruction node IA to an appropriate 1031 // stack in DefM. 1032 void DataFlowGraph::pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DefM) { 1033 NodeSet Visited; 1034 std::set<RegisterId> Defined; 1035 1036 // The important objectives of this function are: 1037 // - to be able to handle instructions both while the graph is being 1038 // constructed, and after the graph has been constructed, and 1039 // - maintain proper ordering of definitions on the stack for each 1040 // register reference: 1041 // - if there are two or more related defs in IA (i.e. coming from 1042 // the same machine operand), then only push one def on the stack, 1043 // - if there are multiple unrelated defs of non-overlapping 1044 // subregisters of S, then the stack for S will have both (in an 1045 // unspecified order), but the order does not matter from the data- 1046 // -flow perspective. 1047 1048 for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) { 1049 if (Visited.count(DA.Id)) 1050 continue; 1051 if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering)) 1052 continue; 1053 1054 NodeList Rel = getRelatedRefs(IA, DA); 1055 NodeAddr<DefNode*> PDA = Rel.front(); 1056 RegisterRef RR = PDA.Addr->getRegRef(*this); 1057 1058 // Push the definition on the stack for the register and all aliases. 1059 // The def stack traversal in linkNodeUp will check the exact aliasing. 1060 DefM[RR.Reg].push(DA); 1061 Defined.insert(RR.Reg); 1062 for (RegisterId A : PRI.getAliasSet(RR.Reg)) { 1063 // Check that we don't push the same def twice. 1064 assert(A != RR.Reg); 1065 if (!Defined.count(A)) 1066 DefM[A].push(DA); 1067 } 1068 // Mark all the related defs as visited. 1069 for (NodeAddr<NodeBase*> T : Rel) 1070 Visited.insert(T.Id); 1071 } 1072 } 1073 1074 // Push all definitions from the instruction node IA to an appropriate 1075 // stack in DefM. 1076 void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) { 1077 NodeSet Visited; 1078 #ifndef NDEBUG 1079 std::set<RegisterId> Defined; 1080 #endif 1081 1082 // The important objectives of this function are: 1083 // - to be able to handle instructions both while the graph is being 1084 // constructed, and after the graph has been constructed, and 1085 // - maintain proper ordering of definitions on the stack for each 1086 // register reference: 1087 // - if there are two or more related defs in IA (i.e. coming from 1088 // the same machine operand), then only push one def on the stack, 1089 // - if there are multiple unrelated defs of non-overlapping 1090 // subregisters of S, then the stack for S will have both (in an 1091 // unspecified order), but the order does not matter from the data- 1092 // -flow perspective. 1093 1094 for (NodeAddr<DefNode*> DA : IA.Addr->members_if(IsDef, *this)) { 1095 if (Visited.count(DA.Id)) 1096 continue; 1097 if (DA.Addr->getFlags() & NodeAttrs::Clobbering) 1098 continue; 1099 1100 NodeList Rel = getRelatedRefs(IA, DA); 1101 NodeAddr<DefNode*> PDA = Rel.front(); 1102 RegisterRef RR = PDA.Addr->getRegRef(*this); 1103 #ifndef NDEBUG 1104 // Assert if the register is defined in two or more unrelated defs. 1105 // This could happen if there are two or more def operands defining it. 1106 if (!Defined.insert(RR.Reg).second) { 1107 MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode(); 1108 dbgs() << "Multiple definitions of register: " 1109 << Print<RegisterRef>(RR, *this) << " in\n " << *MI << "in " 1110 << printMBBReference(*MI->getParent()) << '\n'; 1111 llvm_unreachable(nullptr); 1112 } 1113 #endif 1114 // Push the definition on the stack for the register and all aliases. 1115 // The def stack traversal in linkNodeUp will check the exact aliasing. 1116 DefM[RR.Reg].push(DA); 1117 for (RegisterId A : PRI.getAliasSet(RR.Reg)) { 1118 // Check that we don't push the same def twice. 1119 assert(A != RR.Reg); 1120 DefM[A].push(DA); 1121 } 1122 // Mark all the related defs as visited. 1123 for (NodeAddr<NodeBase*> T : Rel) 1124 Visited.insert(T.Id); 1125 } 1126 } 1127 1128 // Return the list of all reference nodes related to RA, including RA itself. 1129 // See "getNextRelated" for the meaning of a "related reference". 1130 NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA, 1131 NodeAddr<RefNode*> RA) const { 1132 assert(IA.Id != 0 && RA.Id != 0); 1133 1134 NodeList Refs; 1135 NodeId Start = RA.Id; 1136 do { 1137 Refs.push_back(RA); 1138 RA = getNextRelated(IA, RA); 1139 } while (RA.Id != 0 && RA.Id != Start); 1140 return Refs; 1141 } 1142 1143 // Clear all information in the graph. 1144 void DataFlowGraph::reset() { 1145 Memory.clear(); 1146 BlockNodes.clear(); 1147 Func = NodeAddr<FuncNode*>(); 1148 } 1149 1150 // Return the next reference node in the instruction node IA that is related 1151 // to RA. Conceptually, two reference nodes are related if they refer to the 1152 // same instance of a register access, but differ in flags or other minor 1153 // characteristics. Specific examples of related nodes are shadow reference 1154 // nodes. 1155 // Return the equivalent of nullptr if there are no more related references. 1156 NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA, 1157 NodeAddr<RefNode*> RA) const { 1158 assert(IA.Id != 0 && RA.Id != 0); 1159 1160 auto Related = [this,RA](NodeAddr<RefNode*> TA) -> bool { 1161 if (TA.Addr->getKind() != RA.Addr->getKind()) 1162 return false; 1163 if (TA.Addr->getRegRef(*this) != RA.Addr->getRegRef(*this)) 1164 return false; 1165 return true; 1166 }; 1167 auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool { 1168 return Related(TA) && 1169 &RA.Addr->getOp() == &TA.Addr->getOp(); 1170 }; 1171 auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool { 1172 if (!Related(TA)) 1173 return false; 1174 if (TA.Addr->getKind() != NodeAttrs::Use) 1175 return true; 1176 // For phi uses, compare predecessor blocks. 1177 const NodeAddr<const PhiUseNode*> TUA = TA; 1178 const NodeAddr<const PhiUseNode*> RUA = RA; 1179 return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor(); 1180 }; 1181 1182 RegisterRef RR = RA.Addr->getRegRef(*this); 1183 if (IA.Addr->getKind() == NodeAttrs::Stmt) 1184 return RA.Addr->getNextRef(RR, RelatedStmt, true, *this); 1185 return RA.Addr->getNextRef(RR, RelatedPhi, true, *this); 1186 } 1187 1188 // Find the next node related to RA in IA that satisfies condition P. 1189 // If such a node was found, return a pair where the second element is the 1190 // located node. If such a node does not exist, return a pair where the 1191 // first element is the element after which such a node should be inserted, 1192 // and the second element is a null-address. 1193 template <typename Predicate> 1194 std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>> 1195 DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA, 1196 Predicate P) const { 1197 assert(IA.Id != 0 && RA.Id != 0); 1198 1199 NodeAddr<RefNode*> NA; 1200 NodeId Start = RA.Id; 1201 while (true) { 1202 NA = getNextRelated(IA, RA); 1203 if (NA.Id == 0 || NA.Id == Start) 1204 break; 1205 if (P(NA)) 1206 break; 1207 RA = NA; 1208 } 1209 1210 if (NA.Id != 0 && NA.Id != Start) 1211 return std::make_pair(RA, NA); 1212 return std::make_pair(RA, NodeAddr<RefNode*>()); 1213 } 1214 1215 // Get the next shadow node in IA corresponding to RA, and optionally create 1216 // such a node if it does not exist. 1217 NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA, 1218 NodeAddr<RefNode*> RA, bool Create) { 1219 assert(IA.Id != 0 && RA.Id != 0); 1220 1221 uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow; 1222 auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool { 1223 return TA.Addr->getFlags() == Flags; 1224 }; 1225 auto Loc = locateNextRef(IA, RA, IsShadow); 1226 if (Loc.second.Id != 0 || !Create) 1227 return Loc.second; 1228 1229 // Create a copy of RA and mark is as shadow. 1230 NodeAddr<RefNode*> NA = cloneNode(RA); 1231 NA.Addr->setFlags(Flags | NodeAttrs::Shadow); 1232 IA.Addr->addMemberAfter(Loc.first, NA, *this); 1233 return NA; 1234 } 1235 1236 // Get the next shadow node in IA corresponding to RA. Return null-address 1237 // if such a node does not exist. 1238 NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA, 1239 NodeAddr<RefNode*> RA) const { 1240 assert(IA.Id != 0 && RA.Id != 0); 1241 uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow; 1242 auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool { 1243 return TA.Addr->getFlags() == Flags; 1244 }; 1245 return locateNextRef(IA, RA, IsShadow).second; 1246 } 1247 1248 // Create a new statement node in the block node BA that corresponds to 1249 // the machine instruction MI. 1250 void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) { 1251 NodeAddr<StmtNode*> SA = newStmt(BA, &In); 1252 1253 auto isCall = [] (const MachineInstr &In) -> bool { 1254 if (In.isCall()) 1255 return true; 1256 // Is tail call? 1257 if (In.isBranch()) { 1258 for (const MachineOperand &Op : In.operands()) 1259 if (Op.isGlobal() || Op.isSymbol()) 1260 return true; 1261 // Assume indirect branches are calls. This is for the purpose of 1262 // keeping implicit operands, and so it won't hurt on intra-function 1263 // indirect branches. 1264 if (In.isIndirectBranch()) 1265 return true; 1266 } 1267 return false; 1268 }; 1269 1270 auto isDefUndef = [this] (const MachineInstr &In, RegisterRef DR) -> bool { 1271 // This instruction defines DR. Check if there is a use operand that 1272 // would make DR live on entry to the instruction. 1273 for (const MachineOperand &Op : In.operands()) { 1274 if (!Op.isReg() || Op.getReg() == 0 || !Op.isUse() || Op.isUndef()) 1275 continue; 1276 RegisterRef UR = makeRegRef(Op); 1277 if (PRI.alias(DR, UR)) 1278 return false; 1279 } 1280 return true; 1281 }; 1282 1283 bool IsCall = isCall(In); 1284 unsigned NumOps = In.getNumOperands(); 1285 1286 // Avoid duplicate implicit defs. This will not detect cases of implicit 1287 // defs that define registers that overlap, but it is not clear how to 1288 // interpret that in the absence of explicit defs. Overlapping explicit 1289 // defs are likely illegal already. 1290 BitVector DoneDefs(TRI.getNumRegs()); 1291 // Process explicit defs first. 1292 for (unsigned OpN = 0; OpN < NumOps; ++OpN) { 1293 MachineOperand &Op = In.getOperand(OpN); 1294 if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) 1295 continue; 1296 Register R = Op.getReg(); 1297 if (!R || !Register::isPhysicalRegister(R)) 1298 continue; 1299 uint16_t Flags = NodeAttrs::None; 1300 if (TOI.isPreserving(In, OpN)) { 1301 Flags |= NodeAttrs::Preserving; 1302 // If the def is preserving, check if it is also undefined. 1303 if (isDefUndef(In, makeRegRef(Op))) 1304 Flags |= NodeAttrs::Undef; 1305 } 1306 if (TOI.isClobbering(In, OpN)) 1307 Flags |= NodeAttrs::Clobbering; 1308 if (TOI.isFixedReg(In, OpN)) 1309 Flags |= NodeAttrs::Fixed; 1310 if (IsCall && Op.isDead()) 1311 Flags |= NodeAttrs::Dead; 1312 NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); 1313 SA.Addr->addMember(DA, *this); 1314 assert(!DoneDefs.test(R)); 1315 DoneDefs.set(R); 1316 } 1317 1318 // Process reg-masks (as clobbers). 1319 BitVector DoneClobbers(TRI.getNumRegs()); 1320 for (unsigned OpN = 0; OpN < NumOps; ++OpN) { 1321 MachineOperand &Op = In.getOperand(OpN); 1322 if (!Op.isRegMask()) 1323 continue; 1324 uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed | 1325 NodeAttrs::Dead; 1326 NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); 1327 SA.Addr->addMember(DA, *this); 1328 // Record all clobbered registers in DoneDefs. 1329 const uint32_t *RM = Op.getRegMask(); 1330 for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i) 1331 if (!(RM[i/32] & (1u << (i%32)))) 1332 DoneClobbers.set(i); 1333 } 1334 1335 // Process implicit defs, skipping those that have already been added 1336 // as explicit. 1337 for (unsigned OpN = 0; OpN < NumOps; ++OpN) { 1338 MachineOperand &Op = In.getOperand(OpN); 1339 if (!Op.isReg() || !Op.isDef() || !Op.isImplicit()) 1340 continue; 1341 Register R = Op.getReg(); 1342 if (!R || !Register::isPhysicalRegister(R) || DoneDefs.test(R)) 1343 continue; 1344 RegisterRef RR = makeRegRef(Op); 1345 uint16_t Flags = NodeAttrs::None; 1346 if (TOI.isPreserving(In, OpN)) { 1347 Flags |= NodeAttrs::Preserving; 1348 // If the def is preserving, check if it is also undefined. 1349 if (isDefUndef(In, RR)) 1350 Flags |= NodeAttrs::Undef; 1351 } 1352 if (TOI.isClobbering(In, OpN)) 1353 Flags |= NodeAttrs::Clobbering; 1354 if (TOI.isFixedReg(In, OpN)) 1355 Flags |= NodeAttrs::Fixed; 1356 if (IsCall && Op.isDead()) { 1357 if (DoneClobbers.test(R)) 1358 continue; 1359 Flags |= NodeAttrs::Dead; 1360 } 1361 NodeAddr<DefNode*> DA = newDef(SA, Op, Flags); 1362 SA.Addr->addMember(DA, *this); 1363 DoneDefs.set(R); 1364 } 1365 1366 for (unsigned OpN = 0; OpN < NumOps; ++OpN) { 1367 MachineOperand &Op = In.getOperand(OpN); 1368 if (!Op.isReg() || !Op.isUse()) 1369 continue; 1370 Register R = Op.getReg(); 1371 if (!R || !Register::isPhysicalRegister(R)) 1372 continue; 1373 uint16_t Flags = NodeAttrs::None; 1374 if (Op.isUndef()) 1375 Flags |= NodeAttrs::Undef; 1376 if (TOI.isFixedReg(In, OpN)) 1377 Flags |= NodeAttrs::Fixed; 1378 NodeAddr<UseNode*> UA = newUse(SA, Op, Flags); 1379 SA.Addr->addMember(UA, *this); 1380 } 1381 } 1382 1383 // Scan all defs in the block node BA and record in PhiM the locations of 1384 // phi nodes corresponding to these defs. 1385 void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM, 1386 NodeAddr<BlockNode*> BA) { 1387 // Check all defs from block BA and record them in each block in BA's 1388 // iterated dominance frontier. This information will later be used to 1389 // create phi nodes. 1390 MachineBasicBlock *BB = BA.Addr->getCode(); 1391 assert(BB); 1392 auto DFLoc = MDF.find(BB); 1393 if (DFLoc == MDF.end() || DFLoc->second.empty()) 1394 return; 1395 1396 // Traverse all instructions in the block and collect the set of all 1397 // defined references. For each reference there will be a phi created 1398 // in the block's iterated dominance frontier. 1399 // This is done to make sure that each defined reference gets only one 1400 // phi node, even if it is defined multiple times. 1401 RegisterSet Defs; 1402 for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) 1403 for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this)) 1404 Defs.insert(RA.Addr->getRegRef(*this)); 1405 1406 // Calculate the iterated dominance frontier of BB. 1407 const MachineDominanceFrontier::DomSetType &DF = DFLoc->second; 1408 SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end()); 1409 for (unsigned i = 0; i < IDF.size(); ++i) { 1410 auto F = MDF.find(IDF[i]); 1411 if (F != MDF.end()) 1412 IDF.insert(F->second.begin(), F->second.end()); 1413 } 1414 1415 // Finally, add the set of defs to each block in the iterated dominance 1416 // frontier. 1417 for (auto DB : IDF) { 1418 NodeAddr<BlockNode*> DBA = findBlock(DB); 1419 PhiM[DBA.Id].insert(Defs.begin(), Defs.end()); 1420 } 1421 } 1422 1423 // Given the locations of phi nodes in the map PhiM, create the phi nodes 1424 // that are located in the block node BA. 1425 void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs, 1426 NodeAddr<BlockNode*> BA) { 1427 // Check if this blocks has any DF defs, i.e. if there are any defs 1428 // that this block is in the iterated dominance frontier of. 1429 auto HasDF = PhiM.find(BA.Id); 1430 if (HasDF == PhiM.end() || HasDF->second.empty()) 1431 return; 1432 1433 // First, remove all R in Refs in such that there exists T in Refs 1434 // such that T covers R. In other words, only leave those refs that 1435 // are not covered by another ref (i.e. maximal with respect to covering). 1436 1437 auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef { 1438 for (RegisterRef I : RRs) 1439 if (I != RR && RegisterAggr::isCoverOf(I, RR, PRI)) 1440 RR = I; 1441 return RR; 1442 }; 1443 1444 RegisterSet MaxDF; 1445 for (RegisterRef I : HasDF->second) 1446 MaxDF.insert(MaxCoverIn(I, HasDF->second)); 1447 1448 std::vector<RegisterRef> MaxRefs; 1449 for (RegisterRef I : MaxDF) 1450 MaxRefs.push_back(MaxCoverIn(I, AllRefs)); 1451 1452 // Now, for each R in MaxRefs, get the alias closure of R. If the closure 1453 // only has R in it, create a phi a def for R. Otherwise, create a phi, 1454 // and add a def for each S in the closure. 1455 1456 // Sort the refs so that the phis will be created in a deterministic order. 1457 llvm::sort(MaxRefs); 1458 // Remove duplicates. 1459 auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end()); 1460 MaxRefs.erase(NewEnd, MaxRefs.end()); 1461 1462 auto Aliased = [this,&MaxRefs](RegisterRef RR, 1463 std::vector<unsigned> &Closure) -> bool { 1464 for (unsigned I : Closure) 1465 if (PRI.alias(RR, MaxRefs[I])) 1466 return true; 1467 return false; 1468 }; 1469 1470 // Prepare a list of NodeIds of the block's predecessors. 1471 NodeList Preds; 1472 const MachineBasicBlock *MBB = BA.Addr->getCode(); 1473 for (MachineBasicBlock *PB : MBB->predecessors()) 1474 Preds.push_back(findBlock(PB)); 1475 1476 while (!MaxRefs.empty()) { 1477 // Put the first element in the closure, and then add all subsequent 1478 // elements from MaxRefs to it, if they alias at least one element 1479 // already in the closure. 1480 // ClosureIdx: vector of indices in MaxRefs of members of the closure. 1481 std::vector<unsigned> ClosureIdx = { 0 }; 1482 for (unsigned i = 1; i != MaxRefs.size(); ++i) 1483 if (Aliased(MaxRefs[i], ClosureIdx)) 1484 ClosureIdx.push_back(i); 1485 1486 // Build a phi for the closure. 1487 unsigned CS = ClosureIdx.size(); 1488 NodeAddr<PhiNode*> PA = newPhi(BA); 1489 1490 // Add defs. 1491 for (unsigned X = 0; X != CS; ++X) { 1492 RegisterRef RR = MaxRefs[ClosureIdx[X]]; 1493 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; 1494 NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags); 1495 PA.Addr->addMember(DA, *this); 1496 } 1497 // Add phi uses. 1498 for (NodeAddr<BlockNode*> PBA : Preds) { 1499 for (unsigned X = 0; X != CS; ++X) { 1500 RegisterRef RR = MaxRefs[ClosureIdx[X]]; 1501 NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA); 1502 PA.Addr->addMember(PUA, *this); 1503 } 1504 } 1505 1506 // Erase from MaxRefs all elements in the closure. 1507 auto Begin = MaxRefs.begin(); 1508 for (unsigned i = ClosureIdx.size(); i != 0; --i) 1509 MaxRefs.erase(Begin + ClosureIdx[i-1]); 1510 } 1511 } 1512 1513 // Remove any unneeded phi nodes that were created during the build process. 1514 void DataFlowGraph::removeUnusedPhis() { 1515 // This will remove unused phis, i.e. phis where each def does not reach 1516 // any uses or other defs. This will not detect or remove circular phi 1517 // chains that are otherwise dead. Unused/dead phis are created during 1518 // the build process and this function is intended to remove these cases 1519 // that are easily determinable to be unnecessary. 1520 1521 SetVector<NodeId> PhiQ; 1522 for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) { 1523 for (auto P : BA.Addr->members_if(IsPhi, *this)) 1524 PhiQ.insert(P.Id); 1525 } 1526 1527 static auto HasUsedDef = [](NodeList &Ms) -> bool { 1528 for (NodeAddr<NodeBase*> M : Ms) { 1529 if (M.Addr->getKind() != NodeAttrs::Def) 1530 continue; 1531 NodeAddr<DefNode*> DA = M; 1532 if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0) 1533 return true; 1534 } 1535 return false; 1536 }; 1537 1538 // Any phi, if it is removed, may affect other phis (make them dead). 1539 // For each removed phi, collect the potentially affected phis and add 1540 // them back to the queue. 1541 while (!PhiQ.empty()) { 1542 auto PA = addr<PhiNode*>(PhiQ[0]); 1543 PhiQ.remove(PA.Id); 1544 NodeList Refs = PA.Addr->members(*this); 1545 if (HasUsedDef(Refs)) 1546 continue; 1547 for (NodeAddr<RefNode*> RA : Refs) { 1548 if (NodeId RD = RA.Addr->getReachingDef()) { 1549 auto RDA = addr<DefNode*>(RD); 1550 NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this); 1551 if (IsPhi(OA)) 1552 PhiQ.insert(OA.Id); 1553 } 1554 if (RA.Addr->isDef()) 1555 unlinkDef(RA, true); 1556 else 1557 unlinkUse(RA, true); 1558 } 1559 NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this); 1560 BA.Addr->removeMember(PA, *this); 1561 } 1562 } 1563 1564 // For a given reference node TA in an instruction node IA, connect the 1565 // reaching def of TA to the appropriate def node. Create any shadow nodes 1566 // as appropriate. 1567 template <typename T> 1568 void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA, 1569 DefStack &DS) { 1570 if (DS.empty()) 1571 return; 1572 RegisterRef RR = TA.Addr->getRegRef(*this); 1573 NodeAddr<T> TAP; 1574 1575 // References from the def stack that have been examined so far. 1576 RegisterAggr Defs(PRI); 1577 1578 for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) { 1579 RegisterRef QR = I->Addr->getRegRef(*this); 1580 1581 // Skip all defs that are aliased to any of the defs that we have already 1582 // seen. If this completes a cover of RR, stop the stack traversal. 1583 bool Alias = Defs.hasAliasOf(QR); 1584 bool Cover = Defs.insert(QR).hasCoverOf(RR); 1585 if (Alias) { 1586 if (Cover) 1587 break; 1588 continue; 1589 } 1590 1591 // The reaching def. 1592 NodeAddr<DefNode*> RDA = *I; 1593 1594 // Pick the reached node. 1595 if (TAP.Id == 0) { 1596 TAP = TA; 1597 } else { 1598 // Mark the existing ref as "shadow" and create a new shadow. 1599 TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow); 1600 TAP = getNextShadow(IA, TAP, true); 1601 } 1602 1603 // Create the link. 1604 TAP.Addr->linkToDef(TAP.Id, RDA); 1605 1606 if (Cover) 1607 break; 1608 } 1609 } 1610 1611 // Create data-flow links for all reference nodes in the statement node SA. 1612 template <typename Predicate> 1613 void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA, 1614 Predicate P) { 1615 #ifndef NDEBUG 1616 RegisterSet Defs; 1617 #endif 1618 1619 // Link all nodes (upwards in the data-flow) with their reaching defs. 1620 for (NodeAddr<RefNode*> RA : SA.Addr->members_if(P, *this)) { 1621 uint16_t Kind = RA.Addr->getKind(); 1622 assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use); 1623 RegisterRef RR = RA.Addr->getRegRef(*this); 1624 #ifndef NDEBUG 1625 // Do not expect multiple defs of the same reference. 1626 assert(Kind != NodeAttrs::Def || !Defs.count(RR)); 1627 Defs.insert(RR); 1628 #endif 1629 1630 auto F = DefM.find(RR.Reg); 1631 if (F == DefM.end()) 1632 continue; 1633 DefStack &DS = F->second; 1634 if (Kind == NodeAttrs::Use) 1635 linkRefUp<UseNode*>(SA, RA, DS); 1636 else if (Kind == NodeAttrs::Def) 1637 linkRefUp<DefNode*>(SA, RA, DS); 1638 else 1639 llvm_unreachable("Unexpected node in instruction"); 1640 } 1641 } 1642 1643 // Create data-flow links for all instructions in the block node BA. This 1644 // will include updating any phi nodes in BA. 1645 void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) { 1646 // Push block delimiters. 1647 markBlock(BA.Id, DefM); 1648 1649 auto IsClobber = [] (NodeAddr<RefNode*> RA) -> bool { 1650 return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering); 1651 }; 1652 auto IsNoClobber = [] (NodeAddr<RefNode*> RA) -> bool { 1653 return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering); 1654 }; 1655 1656 assert(BA.Addr && "block node address is needed to create a data-flow link"); 1657 // For each non-phi instruction in the block, link all the defs and uses 1658 // to their reaching defs. For any member of the block (including phis), 1659 // push the defs on the corresponding stacks. 1660 for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) { 1661 // Ignore phi nodes here. They will be linked part by part from the 1662 // predecessors. 1663 if (IA.Addr->getKind() == NodeAttrs::Stmt) { 1664 linkStmtRefs(DefM, IA, IsUse); 1665 linkStmtRefs(DefM, IA, IsClobber); 1666 } 1667 1668 // Push the definitions on the stack. 1669 pushClobbers(IA, DefM); 1670 1671 if (IA.Addr->getKind() == NodeAttrs::Stmt) 1672 linkStmtRefs(DefM, IA, IsNoClobber); 1673 1674 pushDefs(IA, DefM); 1675 } 1676 1677 // Recursively process all children in the dominator tree. 1678 MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode()); 1679 for (auto I : *N) { 1680 MachineBasicBlock *SB = I->getBlock(); 1681 NodeAddr<BlockNode*> SBA = findBlock(SB); 1682 linkBlockRefs(DefM, SBA); 1683 } 1684 1685 // Link the phi uses from the successor blocks. 1686 auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool { 1687 if (NA.Addr->getKind() != NodeAttrs::Use) 1688 return false; 1689 assert(NA.Addr->getFlags() & NodeAttrs::PhiRef); 1690 NodeAddr<PhiUseNode*> PUA = NA; 1691 return PUA.Addr->getPredecessor() == BA.Id; 1692 }; 1693 1694 RegisterSet EHLiveIns = getLandingPadLiveIns(); 1695 MachineBasicBlock *MBB = BA.Addr->getCode(); 1696 1697 for (MachineBasicBlock *SB : MBB->successors()) { 1698 bool IsEHPad = SB->isEHPad(); 1699 NodeAddr<BlockNode*> SBA = findBlock(SB); 1700 for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) { 1701 // Do not link phi uses for landing pad live-ins. 1702 if (IsEHPad) { 1703 // Find what register this phi is for. 1704 NodeAddr<RefNode*> RA = IA.Addr->getFirstMember(*this); 1705 assert(RA.Id != 0); 1706 if (EHLiveIns.count(RA.Addr->getRegRef(*this))) 1707 continue; 1708 } 1709 // Go over each phi use associated with MBB, and link it. 1710 for (auto U : IA.Addr->members_if(IsUseForBA, *this)) { 1711 NodeAddr<PhiUseNode*> PUA = U; 1712 RegisterRef RR = PUA.Addr->getRegRef(*this); 1713 linkRefUp<UseNode*>(IA, PUA, DefM[RR.Reg]); 1714 } 1715 } 1716 } 1717 1718 // Pop all defs from this block from the definition stacks. 1719 releaseBlock(BA.Id, DefM); 1720 } 1721 1722 // Remove the use node UA from any data-flow and structural links. 1723 void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode*> UA) { 1724 NodeId RD = UA.Addr->getReachingDef(); 1725 NodeId Sib = UA.Addr->getSibling(); 1726 1727 if (RD == 0) { 1728 assert(Sib == 0); 1729 return; 1730 } 1731 1732 auto RDA = addr<DefNode*>(RD); 1733 auto TA = addr<UseNode*>(RDA.Addr->getReachedUse()); 1734 if (TA.Id == UA.Id) { 1735 RDA.Addr->setReachedUse(Sib); 1736 return; 1737 } 1738 1739 while (TA.Id != 0) { 1740 NodeId S = TA.Addr->getSibling(); 1741 if (S == UA.Id) { 1742 TA.Addr->setSibling(UA.Addr->getSibling()); 1743 return; 1744 } 1745 TA = addr<UseNode*>(S); 1746 } 1747 } 1748 1749 // Remove the def node DA from any data-flow and structural links. 1750 void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode*> DA) { 1751 // 1752 // RD 1753 // | reached 1754 // | def 1755 // : 1756 // . 1757 // +----+ 1758 // ... -- | DA | -- ... -- 0 : sibling chain of DA 1759 // +----+ 1760 // | | reached 1761 // | : def 1762 // | . 1763 // | ... : Siblings (defs) 1764 // | 1765 // : reached 1766 // . use 1767 // ... : sibling chain of reached uses 1768 1769 NodeId RD = DA.Addr->getReachingDef(); 1770 1771 // Visit all siblings of the reached def and reset their reaching defs. 1772 // Also, defs reached by DA are now "promoted" to being reached by RD, 1773 // so all of them will need to be spliced into the sibling chain where 1774 // DA belongs. 1775 auto getAllNodes = [this] (NodeId N) -> NodeList { 1776 NodeList Res; 1777 while (N) { 1778 auto RA = addr<RefNode*>(N); 1779 // Keep the nodes in the exact sibling order. 1780 Res.push_back(RA); 1781 N = RA.Addr->getSibling(); 1782 } 1783 return Res; 1784 }; 1785 NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef()); 1786 NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse()); 1787 1788 if (RD == 0) { 1789 for (NodeAddr<RefNode*> I : ReachedDefs) 1790 I.Addr->setSibling(0); 1791 for (NodeAddr<RefNode*> I : ReachedUses) 1792 I.Addr->setSibling(0); 1793 } 1794 for (NodeAddr<DefNode*> I : ReachedDefs) 1795 I.Addr->setReachingDef(RD); 1796 for (NodeAddr<UseNode*> I : ReachedUses) 1797 I.Addr->setReachingDef(RD); 1798 1799 NodeId Sib = DA.Addr->getSibling(); 1800 if (RD == 0) { 1801 assert(Sib == 0); 1802 return; 1803 } 1804 1805 // Update the reaching def node and remove DA from the sibling list. 1806 auto RDA = addr<DefNode*>(RD); 1807 auto TA = addr<DefNode*>(RDA.Addr->getReachedDef()); 1808 if (TA.Id == DA.Id) { 1809 // If DA is the first reached def, just update the RD's reached def 1810 // to the DA's sibling. 1811 RDA.Addr->setReachedDef(Sib); 1812 } else { 1813 // Otherwise, traverse the sibling list of the reached defs and remove 1814 // DA from it. 1815 while (TA.Id != 0) { 1816 NodeId S = TA.Addr->getSibling(); 1817 if (S == DA.Id) { 1818 TA.Addr->setSibling(Sib); 1819 break; 1820 } 1821 TA = addr<DefNode*>(S); 1822 } 1823 } 1824 1825 // Splice the DA's reached defs into the RDA's reached def chain. 1826 if (!ReachedDefs.empty()) { 1827 auto Last = NodeAddr<DefNode*>(ReachedDefs.back()); 1828 Last.Addr->setSibling(RDA.Addr->getReachedDef()); 1829 RDA.Addr->setReachedDef(ReachedDefs.front().Id); 1830 } 1831 // Splice the DA's reached uses into the RDA's reached use chain. 1832 if (!ReachedUses.empty()) { 1833 auto Last = NodeAddr<UseNode*>(ReachedUses.back()); 1834 Last.Addr->setSibling(RDA.Addr->getReachedUse()); 1835 RDA.Addr->setReachedUse(ReachedUses.front().Id); 1836 } 1837 } 1838