xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/PostRASchedulerList.cpp (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements a top-down list scheduler, using standard algorithms.
10 // The basic approach uses a priority queue of available nodes to schedule.
11 // One at a time, nodes are taken from the priority queue (thus in priority
12 // order), checked for legality to schedule, and emitted if legal.
13 //
14 // Nodes may not be legal to schedule either due to structural hazards (e.g.
15 // pipeline or resource constraints) or because an input to the instruction has
16 // not completed execution.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/CodeGen/AntiDepBreaker.h"
23 #include "llvm/CodeGen/LatencyPriorityQueue.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineLoopInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/RegisterClassInfo.h"
29 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
30 #include "llvm/CodeGen/ScheduleDAGMutation.h"
31 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetPassConfig.h"
34 #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 #include "llvm/Config/llvm-config.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "post-RA-sched"
45 
46 STATISTIC(NumNoops, "Number of noops inserted");
47 STATISTIC(NumStalls, "Number of pipeline stalls");
48 STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
49 
50 // Post-RA scheduling is enabled with
51 // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
52 // override the target.
53 static cl::opt<bool>
54 EnablePostRAScheduler("post-RA-scheduler",
55                        cl::desc("Enable scheduling after register allocation"),
56                        cl::init(false), cl::Hidden);
57 static cl::opt<std::string>
58 EnableAntiDepBreaking("break-anti-dependencies",
59                       cl::desc("Break post-RA scheduling anti-dependencies: "
60                                "\"critical\", \"all\", or \"none\""),
61                       cl::init("none"), cl::Hidden);
62 
63 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
64 static cl::opt<int>
65 DebugDiv("postra-sched-debugdiv",
66                       cl::desc("Debug control MBBs that are scheduled"),
67                       cl::init(0), cl::Hidden);
68 static cl::opt<int>
69 DebugMod("postra-sched-debugmod",
70                       cl::desc("Debug control MBBs that are scheduled"),
71                       cl::init(0), cl::Hidden);
72 
73 AntiDepBreaker::~AntiDepBreaker() = default;
74 
75 namespace {
76   class PostRAScheduler : public MachineFunctionPass {
77     const TargetInstrInfo *TII = nullptr;
78     RegisterClassInfo RegClassInfo;
79 
80   public:
81     static char ID;
82     PostRAScheduler() : MachineFunctionPass(ID) {}
83 
84     void getAnalysisUsage(AnalysisUsage &AU) const override {
85       AU.setPreservesCFG();
86       AU.addRequired<AAResultsWrapperPass>();
87       AU.addRequired<TargetPassConfig>();
88       AU.addRequired<MachineDominatorTree>();
89       AU.addPreserved<MachineDominatorTree>();
90       AU.addRequired<MachineLoopInfo>();
91       AU.addPreserved<MachineLoopInfo>();
92       MachineFunctionPass::getAnalysisUsage(AU);
93     }
94 
95     MachineFunctionProperties getRequiredProperties() const override {
96       return MachineFunctionProperties().set(
97           MachineFunctionProperties::Property::NoVRegs);
98     }
99 
100     bool runOnMachineFunction(MachineFunction &Fn) override;
101 
102   private:
103     bool enablePostRAScheduler(
104         const TargetSubtargetInfo &ST, CodeGenOpt::Level OptLevel,
105         TargetSubtargetInfo::AntiDepBreakMode &Mode,
106         TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const;
107   };
108   char PostRAScheduler::ID = 0;
109 
110   class SchedulePostRATDList : public ScheduleDAGInstrs {
111     /// AvailableQueue - The priority queue to use for the available SUnits.
112     ///
113     LatencyPriorityQueue AvailableQueue;
114 
115     /// PendingQueue - This contains all of the instructions whose operands have
116     /// been issued, but their results are not ready yet (due to the latency of
117     /// the operation).  Once the operands becomes available, the instruction is
118     /// added to the AvailableQueue.
119     std::vector<SUnit*> PendingQueue;
120 
121     /// HazardRec - The hazard recognizer to use.
122     ScheduleHazardRecognizer *HazardRec;
123 
124     /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
125     AntiDepBreaker *AntiDepBreak;
126 
127     /// AA - AliasAnalysis for making memory reference queries.
128     AliasAnalysis *AA;
129 
130     /// The schedule. Null SUnit*'s represent noop instructions.
131     std::vector<SUnit*> Sequence;
132 
133     /// Ordered list of DAG postprocessing steps.
134     std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
135 
136     /// The index in BB of RegionEnd.
137     ///
138     /// This is the instruction number from the top of the current block, not
139     /// the SlotIndex. It is only used by the AntiDepBreaker.
140     unsigned EndIndex = 0;
141 
142   public:
143     SchedulePostRATDList(
144         MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA,
145         const RegisterClassInfo &,
146         TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
147         SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs);
148 
149     ~SchedulePostRATDList() override;
150 
151     /// startBlock - Initialize register live-range state for scheduling in
152     /// this block.
153     ///
154     void startBlock(MachineBasicBlock *BB) override;
155 
156     // Set the index of RegionEnd within the current BB.
157     void setEndIndex(unsigned EndIdx) { EndIndex = EndIdx; }
158 
159     /// Initialize the scheduler state for the next scheduling region.
160     void enterRegion(MachineBasicBlock *bb,
161                      MachineBasicBlock::iterator begin,
162                      MachineBasicBlock::iterator end,
163                      unsigned regioninstrs) override;
164 
165     /// Notify that the scheduler has finished scheduling the current region.
166     void exitRegion() override;
167 
168     /// Schedule - Schedule the instruction range using list scheduling.
169     ///
170     void schedule() override;
171 
172     void EmitSchedule();
173 
174     /// Observe - Update liveness information to account for the current
175     /// instruction, which will not be scheduled.
176     ///
177     void Observe(MachineInstr &MI, unsigned Count);
178 
179     /// finishBlock - Clean up register live-range state.
180     ///
181     void finishBlock() override;
182 
183   private:
184     /// Apply each ScheduleDAGMutation step in order.
185     void postprocessDAG();
186 
187     void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
188     void ReleaseSuccessors(SUnit *SU);
189     void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
190     void ListScheduleTopDown();
191 
192     void dumpSchedule() const;
193     void emitNoop(unsigned CurCycle);
194   };
195 }
196 
197 char &llvm::PostRASchedulerID = PostRAScheduler::ID;
198 
199 INITIALIZE_PASS(PostRAScheduler, DEBUG_TYPE,
200                 "Post RA top-down list latency scheduler", false, false)
201 
202 SchedulePostRATDList::SchedulePostRATDList(
203     MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA,
204     const RegisterClassInfo &RCI,
205     TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
206     SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs)
207     : ScheduleDAGInstrs(MF, &MLI), AA(AA) {
208 
209   const InstrItineraryData *InstrItins =
210       MF.getSubtarget().getInstrItineraryData();
211   HazardRec =
212       MF.getSubtarget().getInstrInfo()->CreateTargetPostRAHazardRecognizer(
213           InstrItins, this);
214   MF.getSubtarget().getPostRAMutations(Mutations);
215 
216   assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE ||
217           MRI.tracksLiveness()) &&
218          "Live-ins must be accurate for anti-dependency breaking");
219   AntiDepBreak = ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL)
220                       ? createAggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs)
221                       : ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL)
222                              ? createCriticalAntiDepBreaker(MF, RCI)
223                              : nullptr));
224 }
225 
226 SchedulePostRATDList::~SchedulePostRATDList() {
227   delete HazardRec;
228   delete AntiDepBreak;
229 }
230 
231 /// Initialize state associated with the next scheduling region.
232 void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb,
233                  MachineBasicBlock::iterator begin,
234                  MachineBasicBlock::iterator end,
235                  unsigned regioninstrs) {
236   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
237   Sequence.clear();
238 }
239 
240 /// Print the schedule before exiting the region.
241 void SchedulePostRATDList::exitRegion() {
242   LLVM_DEBUG({
243     dbgs() << "*** Final schedule ***\n";
244     dumpSchedule();
245     dbgs() << '\n';
246   });
247   ScheduleDAGInstrs::exitRegion();
248 }
249 
250 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
251 /// dumpSchedule - dump the scheduled Sequence.
252 LLVM_DUMP_METHOD void SchedulePostRATDList::dumpSchedule() const {
253   for (const SUnit *SU : Sequence) {
254     if (SU)
255       dumpNode(*SU);
256     else
257       dbgs() << "**** NOOP ****\n";
258   }
259 }
260 #endif
261 
262 bool PostRAScheduler::enablePostRAScheduler(
263     const TargetSubtargetInfo &ST,
264     CodeGenOpt::Level OptLevel,
265     TargetSubtargetInfo::AntiDepBreakMode &Mode,
266     TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const {
267   Mode = ST.getAntiDepBreakMode();
268   ST.getCriticalPathRCs(CriticalPathRCs);
269 
270   // Check for explicit enable/disable of post-ra scheduling.
271   if (EnablePostRAScheduler.getPosition() > 0)
272     return EnablePostRAScheduler;
273 
274   return ST.enablePostRAScheduler() &&
275          OptLevel >= ST.getOptLevelToEnablePostRAScheduler();
276 }
277 
278 bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
279   if (skipFunction(Fn.getFunction()))
280     return false;
281 
282   TII = Fn.getSubtarget().getInstrInfo();
283   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
284   AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
285   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
286 
287   RegClassInfo.runOnMachineFunction(Fn);
288 
289   TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
290     TargetSubtargetInfo::ANTIDEP_NONE;
291   SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs;
292 
293   // Check that post-RA scheduling is enabled for this target.
294   // This may upgrade the AntiDepMode.
295   if (!enablePostRAScheduler(Fn.getSubtarget(), PassConfig->getOptLevel(),
296                              AntiDepMode, CriticalPathRCs))
297     return false;
298 
299   // Check for antidep breaking override...
300   if (EnableAntiDepBreaking.getPosition() > 0) {
301     AntiDepMode = (EnableAntiDepBreaking == "all")
302       ? TargetSubtargetInfo::ANTIDEP_ALL
303       : ((EnableAntiDepBreaking == "critical")
304          ? TargetSubtargetInfo::ANTIDEP_CRITICAL
305          : TargetSubtargetInfo::ANTIDEP_NONE);
306   }
307 
308   LLVM_DEBUG(dbgs() << "PostRAScheduler\n");
309 
310   SchedulePostRATDList Scheduler(Fn, MLI, AA, RegClassInfo, AntiDepMode,
311                                  CriticalPathRCs);
312 
313   // Loop over all of the basic blocks
314   for (auto &MBB : Fn) {
315 #ifndef NDEBUG
316     // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
317     if (DebugDiv > 0) {
318       static int bbcnt = 0;
319       if (bbcnt++ % DebugDiv != DebugMod)
320         continue;
321       dbgs() << "*** DEBUG scheduling " << Fn.getName() << ":"
322              << printMBBReference(MBB) << " ***\n";
323     }
324 #endif
325 
326     // Initialize register live-range state for scheduling in this block.
327     Scheduler.startBlock(&MBB);
328 
329     // Schedule each sequence of instructions not interrupted by a label
330     // or anything else that effectively needs to shut down scheduling.
331     MachineBasicBlock::iterator Current = MBB.end();
332     unsigned Count = MBB.size(), CurrentCount = Count;
333     for (MachineBasicBlock::iterator I = Current; I != MBB.begin();) {
334       MachineInstr &MI = *std::prev(I);
335       --Count;
336       // Calls are not scheduling boundaries before register allocation, but
337       // post-ra we don't gain anything by scheduling across calls since we
338       // don't need to worry about register pressure.
339       if (MI.isCall() || TII->isSchedulingBoundary(MI, &MBB, Fn)) {
340         Scheduler.enterRegion(&MBB, I, Current, CurrentCount - Count);
341         Scheduler.setEndIndex(CurrentCount);
342         Scheduler.schedule();
343         Scheduler.exitRegion();
344         Scheduler.EmitSchedule();
345         Current = &MI;
346         CurrentCount = Count;
347         Scheduler.Observe(MI, CurrentCount);
348       }
349       I = MI;
350       if (MI.isBundle())
351         Count -= MI.getBundleSize();
352     }
353     assert(Count == 0 && "Instruction count mismatch!");
354     assert((MBB.begin() == Current || CurrentCount != 0) &&
355            "Instruction count mismatch!");
356     Scheduler.enterRegion(&MBB, MBB.begin(), Current, CurrentCount);
357     Scheduler.setEndIndex(CurrentCount);
358     Scheduler.schedule();
359     Scheduler.exitRegion();
360     Scheduler.EmitSchedule();
361 
362     // Clean up register live-range state.
363     Scheduler.finishBlock();
364 
365     // Update register kills
366     Scheduler.fixupKills(MBB);
367   }
368 
369   return true;
370 }
371 
372 /// StartBlock - Initialize register live-range state for scheduling in
373 /// this block.
374 ///
375 void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) {
376   // Call the superclass.
377   ScheduleDAGInstrs::startBlock(BB);
378 
379   // Reset the hazard recognizer and anti-dep breaker.
380   HazardRec->Reset();
381   if (AntiDepBreak)
382     AntiDepBreak->StartBlock(BB);
383 }
384 
385 /// Schedule - Schedule the instruction range using list scheduling.
386 ///
387 void SchedulePostRATDList::schedule() {
388   // Build the scheduling graph.
389   buildSchedGraph(AA);
390 
391   if (AntiDepBreak) {
392     unsigned Broken =
393       AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd,
394                                           EndIndex, DbgValues);
395 
396     if (Broken != 0) {
397       // We made changes. Update the dependency graph.
398       // Theoretically we could update the graph in place:
399       // When a live range is changed to use a different register, remove
400       // the def's anti-dependence *and* output-dependence edges due to
401       // that register, and add new anti-dependence and output-dependence
402       // edges based on the next live range of the register.
403       ScheduleDAG::clearDAG();
404       buildSchedGraph(AA);
405 
406       NumFixedAnti += Broken;
407     }
408   }
409 
410   postprocessDAG();
411 
412   LLVM_DEBUG(dbgs() << "********** List Scheduling **********\n");
413   LLVM_DEBUG(dump());
414 
415   AvailableQueue.initNodes(SUnits);
416   ListScheduleTopDown();
417   AvailableQueue.releaseState();
418 }
419 
420 /// Observe - Update liveness information to account for the current
421 /// instruction, which will not be scheduled.
422 ///
423 void SchedulePostRATDList::Observe(MachineInstr &MI, unsigned Count) {
424   if (AntiDepBreak)
425     AntiDepBreak->Observe(MI, Count, EndIndex);
426 }
427 
428 /// FinishBlock - Clean up register live-range state.
429 ///
430 void SchedulePostRATDList::finishBlock() {
431   if (AntiDepBreak)
432     AntiDepBreak->FinishBlock();
433 
434   // Call the superclass.
435   ScheduleDAGInstrs::finishBlock();
436 }
437 
438 /// Apply each ScheduleDAGMutation step in order.
439 void SchedulePostRATDList::postprocessDAG() {
440   for (auto &M : Mutations)
441     M->apply(this);
442 }
443 
444 //===----------------------------------------------------------------------===//
445 //  Top-Down Scheduling
446 //===----------------------------------------------------------------------===//
447 
448 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
449 /// the PendingQueue if the count reaches zero.
450 void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
451   SUnit *SuccSU = SuccEdge->getSUnit();
452 
453   if (SuccEdge->isWeak()) {
454     --SuccSU->WeakPredsLeft;
455     return;
456   }
457 #ifndef NDEBUG
458   if (SuccSU->NumPredsLeft == 0) {
459     dbgs() << "*** Scheduling failed! ***\n";
460     dumpNode(*SuccSU);
461     dbgs() << " has been released too many times!\n";
462     llvm_unreachable(nullptr);
463   }
464 #endif
465   --SuccSU->NumPredsLeft;
466 
467   // Standard scheduler algorithms will recompute the depth of the successor
468   // here as such:
469   //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
470   //
471   // However, we lazily compute node depth instead. Note that
472   // ScheduleNodeTopDown has already updated the depth of this node which causes
473   // all descendents to be marked dirty. Setting the successor depth explicitly
474   // here would cause depth to be recomputed for all its ancestors. If the
475   // successor is not yet ready (because of a transitively redundant edge) then
476   // this causes depth computation to be quadratic in the size of the DAG.
477 
478   // If all the node's predecessors are scheduled, this node is ready
479   // to be scheduled. Ignore the special ExitSU node.
480   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
481     PendingQueue.push_back(SuccSU);
482 }
483 
484 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
485 void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
486   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
487        I != E; ++I) {
488     ReleaseSucc(SU, &*I);
489   }
490 }
491 
492 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
493 /// count of its successors. If a successor pending count is zero, add it to
494 /// the Available queue.
495 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
496   LLVM_DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
497   LLVM_DEBUG(dumpNode(*SU));
498 
499   Sequence.push_back(SU);
500   assert(CurCycle >= SU->getDepth() &&
501          "Node scheduled above its depth!");
502   SU->setDepthToAtLeast(CurCycle);
503 
504   ReleaseSuccessors(SU);
505   SU->isScheduled = true;
506   AvailableQueue.scheduledNode(SU);
507 }
508 
509 /// emitNoop - Add a noop to the current instruction sequence.
510 void SchedulePostRATDList::emitNoop(unsigned CurCycle) {
511   LLVM_DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
512   HazardRec->EmitNoop();
513   Sequence.push_back(nullptr);   // NULL here means noop
514   ++NumNoops;
515 }
516 
517 /// ListScheduleTopDown - The main loop of list scheduling for top-down
518 /// schedulers.
519 void SchedulePostRATDList::ListScheduleTopDown() {
520   unsigned CurCycle = 0;
521 
522   // We're scheduling top-down but we're visiting the regions in
523   // bottom-up order, so we don't know the hazards at the start of a
524   // region. So assume no hazards (this should usually be ok as most
525   // blocks are a single region).
526   HazardRec->Reset();
527 
528   // Release any successors of the special Entry node.
529   ReleaseSuccessors(&EntrySU);
530 
531   // Add all leaves to Available queue.
532   for (SUnit &SUnit : SUnits) {
533     // It is available if it has no predecessors.
534     if (!SUnit.NumPredsLeft && !SUnit.isAvailable) {
535       AvailableQueue.push(&SUnit);
536       SUnit.isAvailable = true;
537     }
538   }
539 
540   // In any cycle where we can't schedule any instructions, we must
541   // stall or emit a noop, depending on the target.
542   bool CycleHasInsts = false;
543 
544   // While Available queue is not empty, grab the node with the highest
545   // priority. If it is not ready put it back.  Schedule the node.
546   std::vector<SUnit*> NotReady;
547   Sequence.reserve(SUnits.size());
548   while (!AvailableQueue.empty() || !PendingQueue.empty()) {
549     // Check to see if any of the pending instructions are ready to issue.  If
550     // so, add them to the available queue.
551     unsigned MinDepth = ~0u;
552     for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
553       if (PendingQueue[i]->getDepth() <= CurCycle) {
554         AvailableQueue.push(PendingQueue[i]);
555         PendingQueue[i]->isAvailable = true;
556         PendingQueue[i] = PendingQueue.back();
557         PendingQueue.pop_back();
558         --i; --e;
559       } else if (PendingQueue[i]->getDepth() < MinDepth)
560         MinDepth = PendingQueue[i]->getDepth();
561     }
562 
563     LLVM_DEBUG(dbgs() << "\n*** Examining Available\n";
564                AvailableQueue.dump(this));
565 
566     SUnit *FoundSUnit = nullptr, *NotPreferredSUnit = nullptr;
567     bool HasNoopHazards = false;
568     while (!AvailableQueue.empty()) {
569       SUnit *CurSUnit = AvailableQueue.pop();
570 
571       ScheduleHazardRecognizer::HazardType HT =
572         HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
573       if (HT == ScheduleHazardRecognizer::NoHazard) {
574         if (HazardRec->ShouldPreferAnother(CurSUnit)) {
575           if (!NotPreferredSUnit) {
576             // If this is the first non-preferred node for this cycle, then
577             // record it and continue searching for a preferred node. If this
578             // is not the first non-preferred node, then treat it as though
579             // there had been a hazard.
580             NotPreferredSUnit = CurSUnit;
581             continue;
582           }
583         } else {
584           FoundSUnit = CurSUnit;
585           break;
586         }
587       }
588 
589       // Remember if this is a noop hazard.
590       HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
591 
592       NotReady.push_back(CurSUnit);
593     }
594 
595     // If we have a non-preferred node, push it back onto the available list.
596     // If we did not find a preferred node, then schedule this first
597     // non-preferred node.
598     if (NotPreferredSUnit) {
599       if (!FoundSUnit) {
600         LLVM_DEBUG(
601             dbgs() << "*** Will schedule a non-preferred instruction...\n");
602         FoundSUnit = NotPreferredSUnit;
603       } else {
604         AvailableQueue.push(NotPreferredSUnit);
605       }
606 
607       NotPreferredSUnit = nullptr;
608     }
609 
610     // Add the nodes that aren't ready back onto the available list.
611     if (!NotReady.empty()) {
612       AvailableQueue.push_all(NotReady);
613       NotReady.clear();
614     }
615 
616     // If we found a node to schedule...
617     if (FoundSUnit) {
618       // If we need to emit noops prior to this instruction, then do so.
619       unsigned NumPreNoops = HazardRec->PreEmitNoops(FoundSUnit);
620       for (unsigned i = 0; i != NumPreNoops; ++i)
621         emitNoop(CurCycle);
622 
623       // ... schedule the node...
624       ScheduleNodeTopDown(FoundSUnit, CurCycle);
625       HazardRec->EmitInstruction(FoundSUnit);
626       CycleHasInsts = true;
627       if (HazardRec->atIssueLimit()) {
628         LLVM_DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle
629                           << '\n');
630         HazardRec->AdvanceCycle();
631         ++CurCycle;
632         CycleHasInsts = false;
633       }
634     } else {
635       if (CycleHasInsts) {
636         LLVM_DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
637         HazardRec->AdvanceCycle();
638       } else if (!HasNoopHazards) {
639         // Otherwise, we have a pipeline stall, but no other problem,
640         // just advance the current cycle and try again.
641         LLVM_DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
642         HazardRec->AdvanceCycle();
643         ++NumStalls;
644       } else {
645         // Otherwise, we have no instructions to issue and we have instructions
646         // that will fault if we don't do this right.  This is the case for
647         // processors without pipeline interlocks and other cases.
648         emitNoop(CurCycle);
649       }
650 
651       ++CurCycle;
652       CycleHasInsts = false;
653     }
654   }
655 
656 #ifndef NDEBUG
657   unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false);
658   unsigned Noops = llvm::count(Sequence, nullptr);
659   assert(Sequence.size() - Noops == ScheduledNodes &&
660          "The number of nodes scheduled doesn't match the expected number!");
661 #endif // NDEBUG
662 }
663 
664 // EmitSchedule - Emit the machine code in scheduled order.
665 void SchedulePostRATDList::EmitSchedule() {
666   RegionBegin = RegionEnd;
667 
668   // If first instruction was a DBG_VALUE then put it back.
669   if (FirstDbgValue)
670     BB->splice(RegionEnd, BB, FirstDbgValue);
671 
672   // Then re-insert them according to the given schedule.
673   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
674     if (SUnit *SU = Sequence[i])
675       BB->splice(RegionEnd, BB, SU->getInstr());
676     else
677       // Null SUnit* is a noop.
678       TII->insertNoop(*BB, RegionEnd);
679 
680     // Update the Begin iterator, as the first instruction in the block
681     // may have been scheduled later.
682     if (i == 0)
683       RegionBegin = std::prev(RegionEnd);
684   }
685 
686   // Reinsert any remaining debug_values.
687   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
688          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
689     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
690     MachineInstr *DbgValue = P.first;
691     MachineBasicBlock::iterator OrigPrivMI = P.second;
692     BB->splice(++OrigPrivMI, BB, DbgValue);
693   }
694   DbgValues.clear();
695   FirstDbgValue = nullptr;
696 }
697