xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/PostRASchedulerList.cpp (revision cb14a3fe5122c879eae1fb480ed7ce82a699ddb6)
1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements a top-down list scheduler, using standard algorithms.
10 // The basic approach uses a priority queue of available nodes to schedule.
11 // One at a time, nodes are taken from the priority queue (thus in priority
12 // order), checked for legality to schedule, and emitted if legal.
13 //
14 // Nodes may not be legal to schedule either due to structural hazards (e.g.
15 // pipeline or resource constraints) or because an input to the instruction has
16 // not completed execution.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/CodeGen/AntiDepBreaker.h"
23 #include "llvm/CodeGen/LatencyPriorityQueue.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineLoopInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/RegisterClassInfo.h"
29 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
30 #include "llvm/CodeGen/ScheduleDAGMutation.h"
31 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetPassConfig.h"
34 #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 #include "llvm/Config/llvm-config.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 using namespace llvm;
43 
44 #define DEBUG_TYPE "post-RA-sched"
45 
46 STATISTIC(NumNoops, "Number of noops inserted");
47 STATISTIC(NumStalls, "Number of pipeline stalls");
48 STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
49 
50 // Post-RA scheduling is enabled with
51 // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
52 // override the target.
53 static cl::opt<bool>
54 EnablePostRAScheduler("post-RA-scheduler",
55                        cl::desc("Enable scheduling after register allocation"),
56                        cl::init(false), cl::Hidden);
57 static cl::opt<std::string>
58 EnableAntiDepBreaking("break-anti-dependencies",
59                       cl::desc("Break post-RA scheduling anti-dependencies: "
60                                "\"critical\", \"all\", or \"none\""),
61                       cl::init("none"), cl::Hidden);
62 
63 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
64 static cl::opt<int>
65 DebugDiv("postra-sched-debugdiv",
66                       cl::desc("Debug control MBBs that are scheduled"),
67                       cl::init(0), cl::Hidden);
68 static cl::opt<int>
69 DebugMod("postra-sched-debugmod",
70                       cl::desc("Debug control MBBs that are scheduled"),
71                       cl::init(0), cl::Hidden);
72 
73 AntiDepBreaker::~AntiDepBreaker() = default;
74 
75 namespace {
76   class PostRAScheduler : public MachineFunctionPass {
77     const TargetInstrInfo *TII = nullptr;
78     RegisterClassInfo RegClassInfo;
79 
80   public:
81     static char ID;
82     PostRAScheduler() : MachineFunctionPass(ID) {}
83 
84     void getAnalysisUsage(AnalysisUsage &AU) const override {
85       AU.setPreservesCFG();
86       AU.addRequired<AAResultsWrapperPass>();
87       AU.addRequired<TargetPassConfig>();
88       AU.addRequired<MachineDominatorTree>();
89       AU.addPreserved<MachineDominatorTree>();
90       AU.addRequired<MachineLoopInfo>();
91       AU.addPreserved<MachineLoopInfo>();
92       MachineFunctionPass::getAnalysisUsage(AU);
93     }
94 
95     MachineFunctionProperties getRequiredProperties() const override {
96       return MachineFunctionProperties().set(
97           MachineFunctionProperties::Property::NoVRegs);
98     }
99 
100     bool runOnMachineFunction(MachineFunction &Fn) override;
101 
102   private:
103     bool enablePostRAScheduler(
104         const TargetSubtargetInfo &ST, CodeGenOptLevel OptLevel,
105         TargetSubtargetInfo::AntiDepBreakMode &Mode,
106         TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const;
107   };
108   char PostRAScheduler::ID = 0;
109 
110   class SchedulePostRATDList : public ScheduleDAGInstrs {
111     /// AvailableQueue - The priority queue to use for the available SUnits.
112     ///
113     LatencyPriorityQueue AvailableQueue;
114 
115     /// PendingQueue - This contains all of the instructions whose operands have
116     /// been issued, but their results are not ready yet (due to the latency of
117     /// the operation).  Once the operands becomes available, the instruction is
118     /// added to the AvailableQueue.
119     std::vector<SUnit*> PendingQueue;
120 
121     /// HazardRec - The hazard recognizer to use.
122     ScheduleHazardRecognizer *HazardRec;
123 
124     /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
125     AntiDepBreaker *AntiDepBreak;
126 
127     /// AA - AliasAnalysis for making memory reference queries.
128     AliasAnalysis *AA;
129 
130     /// The schedule. Null SUnit*'s represent noop instructions.
131     std::vector<SUnit*> Sequence;
132 
133     /// Ordered list of DAG postprocessing steps.
134     std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
135 
136     /// The index in BB of RegionEnd.
137     ///
138     /// This is the instruction number from the top of the current block, not
139     /// the SlotIndex. It is only used by the AntiDepBreaker.
140     unsigned EndIndex = 0;
141 
142   public:
143     SchedulePostRATDList(
144         MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA,
145         const RegisterClassInfo &,
146         TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
147         SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs);
148 
149     ~SchedulePostRATDList() override;
150 
151     /// startBlock - Initialize register live-range state for scheduling in
152     /// this block.
153     ///
154     void startBlock(MachineBasicBlock *BB) override;
155 
156     // Set the index of RegionEnd within the current BB.
157     void setEndIndex(unsigned EndIdx) { EndIndex = EndIdx; }
158 
159     /// Initialize the scheduler state for the next scheduling region.
160     void enterRegion(MachineBasicBlock *bb,
161                      MachineBasicBlock::iterator begin,
162                      MachineBasicBlock::iterator end,
163                      unsigned regioninstrs) override;
164 
165     /// Notify that the scheduler has finished scheduling the current region.
166     void exitRegion() override;
167 
168     /// Schedule - Schedule the instruction range using list scheduling.
169     ///
170     void schedule() override;
171 
172     void EmitSchedule();
173 
174     /// Observe - Update liveness information to account for the current
175     /// instruction, which will not be scheduled.
176     ///
177     void Observe(MachineInstr &MI, unsigned Count);
178 
179     /// finishBlock - Clean up register live-range state.
180     ///
181     void finishBlock() override;
182 
183   private:
184     /// Apply each ScheduleDAGMutation step in order.
185     void postProcessDAG();
186 
187     void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
188     void ReleaseSuccessors(SUnit *SU);
189     void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
190     void ListScheduleTopDown();
191 
192     void dumpSchedule() const;
193     void emitNoop(unsigned CurCycle);
194   };
195 }
196 
197 char &llvm::PostRASchedulerID = PostRAScheduler::ID;
198 
199 INITIALIZE_PASS(PostRAScheduler, DEBUG_TYPE,
200                 "Post RA top-down list latency scheduler", false, false)
201 
202 SchedulePostRATDList::SchedulePostRATDList(
203     MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA,
204     const RegisterClassInfo &RCI,
205     TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
206     SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs)
207     : ScheduleDAGInstrs(MF, &MLI), AA(AA) {
208 
209   const InstrItineraryData *InstrItins =
210       MF.getSubtarget().getInstrItineraryData();
211   HazardRec =
212       MF.getSubtarget().getInstrInfo()->CreateTargetPostRAHazardRecognizer(
213           InstrItins, this);
214   MF.getSubtarget().getPostRAMutations(Mutations);
215 
216   assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE ||
217           MRI.tracksLiveness()) &&
218          "Live-ins must be accurate for anti-dependency breaking");
219   AntiDepBreak = ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL)
220                       ? createAggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs)
221                       : ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL)
222                              ? createCriticalAntiDepBreaker(MF, RCI)
223                              : nullptr));
224 }
225 
226 SchedulePostRATDList::~SchedulePostRATDList() {
227   delete HazardRec;
228   delete AntiDepBreak;
229 }
230 
231 /// Initialize state associated with the next scheduling region.
232 void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb,
233                  MachineBasicBlock::iterator begin,
234                  MachineBasicBlock::iterator end,
235                  unsigned regioninstrs) {
236   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
237   Sequence.clear();
238 }
239 
240 /// Print the schedule before exiting the region.
241 void SchedulePostRATDList::exitRegion() {
242   LLVM_DEBUG({
243     dbgs() << "*** Final schedule ***\n";
244     dumpSchedule();
245     dbgs() << '\n';
246   });
247   ScheduleDAGInstrs::exitRegion();
248 }
249 
250 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
251 /// dumpSchedule - dump the scheduled Sequence.
252 LLVM_DUMP_METHOD void SchedulePostRATDList::dumpSchedule() const {
253   for (const SUnit *SU : Sequence) {
254     if (SU)
255       dumpNode(*SU);
256     else
257       dbgs() << "**** NOOP ****\n";
258   }
259 }
260 #endif
261 
262 bool PostRAScheduler::enablePostRAScheduler(
263     const TargetSubtargetInfo &ST, CodeGenOptLevel OptLevel,
264     TargetSubtargetInfo::AntiDepBreakMode &Mode,
265     TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const {
266   Mode = ST.getAntiDepBreakMode();
267   ST.getCriticalPathRCs(CriticalPathRCs);
268 
269   // Check for explicit enable/disable of post-ra scheduling.
270   if (EnablePostRAScheduler.getPosition() > 0)
271     return EnablePostRAScheduler;
272 
273   return ST.enablePostRAScheduler() &&
274          OptLevel >= ST.getOptLevelToEnablePostRAScheduler();
275 }
276 
277 bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
278   if (skipFunction(Fn.getFunction()))
279     return false;
280 
281   TII = Fn.getSubtarget().getInstrInfo();
282   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
283   AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
284   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
285 
286   RegClassInfo.runOnMachineFunction(Fn);
287 
288   TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
289     TargetSubtargetInfo::ANTIDEP_NONE;
290   SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs;
291 
292   // Check that post-RA scheduling is enabled for this target.
293   // This may upgrade the AntiDepMode.
294   if (!enablePostRAScheduler(Fn.getSubtarget(), PassConfig->getOptLevel(),
295                              AntiDepMode, CriticalPathRCs))
296     return false;
297 
298   // Check for antidep breaking override...
299   if (EnableAntiDepBreaking.getPosition() > 0) {
300     AntiDepMode = (EnableAntiDepBreaking == "all")
301       ? TargetSubtargetInfo::ANTIDEP_ALL
302       : ((EnableAntiDepBreaking == "critical")
303          ? TargetSubtargetInfo::ANTIDEP_CRITICAL
304          : TargetSubtargetInfo::ANTIDEP_NONE);
305   }
306 
307   LLVM_DEBUG(dbgs() << "PostRAScheduler\n");
308 
309   SchedulePostRATDList Scheduler(Fn, MLI, AA, RegClassInfo, AntiDepMode,
310                                  CriticalPathRCs);
311 
312   // Loop over all of the basic blocks
313   for (auto &MBB : Fn) {
314 #ifndef NDEBUG
315     // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
316     if (DebugDiv > 0) {
317       static int bbcnt = 0;
318       if (bbcnt++ % DebugDiv != DebugMod)
319         continue;
320       dbgs() << "*** DEBUG scheduling " << Fn.getName() << ":"
321              << printMBBReference(MBB) << " ***\n";
322     }
323 #endif
324 
325     // Initialize register live-range state for scheduling in this block.
326     Scheduler.startBlock(&MBB);
327 
328     // Schedule each sequence of instructions not interrupted by a label
329     // or anything else that effectively needs to shut down scheduling.
330     MachineBasicBlock::iterator Current = MBB.end();
331     unsigned Count = MBB.size(), CurrentCount = Count;
332     for (MachineBasicBlock::iterator I = Current; I != MBB.begin();) {
333       MachineInstr &MI = *std::prev(I);
334       --Count;
335       // Calls are not scheduling boundaries before register allocation, but
336       // post-ra we don't gain anything by scheduling across calls since we
337       // don't need to worry about register pressure.
338       if (MI.isCall() || TII->isSchedulingBoundary(MI, &MBB, Fn)) {
339         Scheduler.enterRegion(&MBB, I, Current, CurrentCount - Count);
340         Scheduler.setEndIndex(CurrentCount);
341         Scheduler.schedule();
342         Scheduler.exitRegion();
343         Scheduler.EmitSchedule();
344         Current = &MI;
345         CurrentCount = Count;
346         Scheduler.Observe(MI, CurrentCount);
347       }
348       I = MI;
349       if (MI.isBundle())
350         Count -= MI.getBundleSize();
351     }
352     assert(Count == 0 && "Instruction count mismatch!");
353     assert((MBB.begin() == Current || CurrentCount != 0) &&
354            "Instruction count mismatch!");
355     Scheduler.enterRegion(&MBB, MBB.begin(), Current, CurrentCount);
356     Scheduler.setEndIndex(CurrentCount);
357     Scheduler.schedule();
358     Scheduler.exitRegion();
359     Scheduler.EmitSchedule();
360 
361     // Clean up register live-range state.
362     Scheduler.finishBlock();
363 
364     // Update register kills
365     Scheduler.fixupKills(MBB);
366   }
367 
368   return true;
369 }
370 
371 /// StartBlock - Initialize register live-range state for scheduling in
372 /// this block.
373 ///
374 void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) {
375   // Call the superclass.
376   ScheduleDAGInstrs::startBlock(BB);
377 
378   // Reset the hazard recognizer and anti-dep breaker.
379   HazardRec->Reset();
380   if (AntiDepBreak)
381     AntiDepBreak->StartBlock(BB);
382 }
383 
384 /// Schedule - Schedule the instruction range using list scheduling.
385 ///
386 void SchedulePostRATDList::schedule() {
387   // Build the scheduling graph.
388   buildSchedGraph(AA);
389 
390   if (AntiDepBreak) {
391     unsigned Broken =
392       AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd,
393                                           EndIndex, DbgValues);
394 
395     if (Broken != 0) {
396       // We made changes. Update the dependency graph.
397       // Theoretically we could update the graph in place:
398       // When a live range is changed to use a different register, remove
399       // the def's anti-dependence *and* output-dependence edges due to
400       // that register, and add new anti-dependence and output-dependence
401       // edges based on the next live range of the register.
402       ScheduleDAG::clearDAG();
403       buildSchedGraph(AA);
404 
405       NumFixedAnti += Broken;
406     }
407   }
408 
409   postProcessDAG();
410 
411   LLVM_DEBUG(dbgs() << "********** List Scheduling **********\n");
412   LLVM_DEBUG(dump());
413 
414   AvailableQueue.initNodes(SUnits);
415   ListScheduleTopDown();
416   AvailableQueue.releaseState();
417 }
418 
419 /// Observe - Update liveness information to account for the current
420 /// instruction, which will not be scheduled.
421 ///
422 void SchedulePostRATDList::Observe(MachineInstr &MI, unsigned Count) {
423   if (AntiDepBreak)
424     AntiDepBreak->Observe(MI, Count, EndIndex);
425 }
426 
427 /// FinishBlock - Clean up register live-range state.
428 ///
429 void SchedulePostRATDList::finishBlock() {
430   if (AntiDepBreak)
431     AntiDepBreak->FinishBlock();
432 
433   // Call the superclass.
434   ScheduleDAGInstrs::finishBlock();
435 }
436 
437 /// Apply each ScheduleDAGMutation step in order.
438 void SchedulePostRATDList::postProcessDAG() {
439   for (auto &M : Mutations)
440     M->apply(this);
441 }
442 
443 //===----------------------------------------------------------------------===//
444 //  Top-Down Scheduling
445 //===----------------------------------------------------------------------===//
446 
447 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
448 /// the PendingQueue if the count reaches zero.
449 void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
450   SUnit *SuccSU = SuccEdge->getSUnit();
451 
452   if (SuccEdge->isWeak()) {
453     --SuccSU->WeakPredsLeft;
454     return;
455   }
456 #ifndef NDEBUG
457   if (SuccSU->NumPredsLeft == 0) {
458     dbgs() << "*** Scheduling failed! ***\n";
459     dumpNode(*SuccSU);
460     dbgs() << " has been released too many times!\n";
461     llvm_unreachable(nullptr);
462   }
463 #endif
464   --SuccSU->NumPredsLeft;
465 
466   // Standard scheduler algorithms will recompute the depth of the successor
467   // here as such:
468   //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
469   //
470   // However, we lazily compute node depth instead. Note that
471   // ScheduleNodeTopDown has already updated the depth of this node which causes
472   // all descendents to be marked dirty. Setting the successor depth explicitly
473   // here would cause depth to be recomputed for all its ancestors. If the
474   // successor is not yet ready (because of a transitively redundant edge) then
475   // this causes depth computation to be quadratic in the size of the DAG.
476 
477   // If all the node's predecessors are scheduled, this node is ready
478   // to be scheduled. Ignore the special ExitSU node.
479   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
480     PendingQueue.push_back(SuccSU);
481 }
482 
483 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
484 void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
485   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
486        I != E; ++I) {
487     ReleaseSucc(SU, &*I);
488   }
489 }
490 
491 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
492 /// count of its successors. If a successor pending count is zero, add it to
493 /// the Available queue.
494 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
495   LLVM_DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
496   LLVM_DEBUG(dumpNode(*SU));
497 
498   Sequence.push_back(SU);
499   assert(CurCycle >= SU->getDepth() &&
500          "Node scheduled above its depth!");
501   SU->setDepthToAtLeast(CurCycle);
502 
503   ReleaseSuccessors(SU);
504   SU->isScheduled = true;
505   AvailableQueue.scheduledNode(SU);
506 }
507 
508 /// emitNoop - Add a noop to the current instruction sequence.
509 void SchedulePostRATDList::emitNoop(unsigned CurCycle) {
510   LLVM_DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
511   HazardRec->EmitNoop();
512   Sequence.push_back(nullptr);   // NULL here means noop
513   ++NumNoops;
514 }
515 
516 /// ListScheduleTopDown - The main loop of list scheduling for top-down
517 /// schedulers.
518 void SchedulePostRATDList::ListScheduleTopDown() {
519   unsigned CurCycle = 0;
520 
521   // We're scheduling top-down but we're visiting the regions in
522   // bottom-up order, so we don't know the hazards at the start of a
523   // region. So assume no hazards (this should usually be ok as most
524   // blocks are a single region).
525   HazardRec->Reset();
526 
527   // Release any successors of the special Entry node.
528   ReleaseSuccessors(&EntrySU);
529 
530   // Add all leaves to Available queue.
531   for (SUnit &SUnit : SUnits) {
532     // It is available if it has no predecessors.
533     if (!SUnit.NumPredsLeft && !SUnit.isAvailable) {
534       AvailableQueue.push(&SUnit);
535       SUnit.isAvailable = true;
536     }
537   }
538 
539   // In any cycle where we can't schedule any instructions, we must
540   // stall or emit a noop, depending on the target.
541   bool CycleHasInsts = false;
542 
543   // While Available queue is not empty, grab the node with the highest
544   // priority. If it is not ready put it back.  Schedule the node.
545   std::vector<SUnit*> NotReady;
546   Sequence.reserve(SUnits.size());
547   while (!AvailableQueue.empty() || !PendingQueue.empty()) {
548     // Check to see if any of the pending instructions are ready to issue.  If
549     // so, add them to the available queue.
550     unsigned MinDepth = ~0u;
551     for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
552       if (PendingQueue[i]->getDepth() <= CurCycle) {
553         AvailableQueue.push(PendingQueue[i]);
554         PendingQueue[i]->isAvailable = true;
555         PendingQueue[i] = PendingQueue.back();
556         PendingQueue.pop_back();
557         --i; --e;
558       } else if (PendingQueue[i]->getDepth() < MinDepth)
559         MinDepth = PendingQueue[i]->getDepth();
560     }
561 
562     LLVM_DEBUG(dbgs() << "\n*** Examining Available\n";
563                AvailableQueue.dump(this));
564 
565     SUnit *FoundSUnit = nullptr, *NotPreferredSUnit = nullptr;
566     bool HasNoopHazards = false;
567     while (!AvailableQueue.empty()) {
568       SUnit *CurSUnit = AvailableQueue.pop();
569 
570       ScheduleHazardRecognizer::HazardType HT =
571         HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
572       if (HT == ScheduleHazardRecognizer::NoHazard) {
573         if (HazardRec->ShouldPreferAnother(CurSUnit)) {
574           if (!NotPreferredSUnit) {
575             // If this is the first non-preferred node for this cycle, then
576             // record it and continue searching for a preferred node. If this
577             // is not the first non-preferred node, then treat it as though
578             // there had been a hazard.
579             NotPreferredSUnit = CurSUnit;
580             continue;
581           }
582         } else {
583           FoundSUnit = CurSUnit;
584           break;
585         }
586       }
587 
588       // Remember if this is a noop hazard.
589       HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
590 
591       NotReady.push_back(CurSUnit);
592     }
593 
594     // If we have a non-preferred node, push it back onto the available list.
595     // If we did not find a preferred node, then schedule this first
596     // non-preferred node.
597     if (NotPreferredSUnit) {
598       if (!FoundSUnit) {
599         LLVM_DEBUG(
600             dbgs() << "*** Will schedule a non-preferred instruction...\n");
601         FoundSUnit = NotPreferredSUnit;
602       } else {
603         AvailableQueue.push(NotPreferredSUnit);
604       }
605 
606       NotPreferredSUnit = nullptr;
607     }
608 
609     // Add the nodes that aren't ready back onto the available list.
610     if (!NotReady.empty()) {
611       AvailableQueue.push_all(NotReady);
612       NotReady.clear();
613     }
614 
615     // If we found a node to schedule...
616     if (FoundSUnit) {
617       // If we need to emit noops prior to this instruction, then do so.
618       unsigned NumPreNoops = HazardRec->PreEmitNoops(FoundSUnit);
619       for (unsigned i = 0; i != NumPreNoops; ++i)
620         emitNoop(CurCycle);
621 
622       // ... schedule the node...
623       ScheduleNodeTopDown(FoundSUnit, CurCycle);
624       HazardRec->EmitInstruction(FoundSUnit);
625       CycleHasInsts = true;
626       if (HazardRec->atIssueLimit()) {
627         LLVM_DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle
628                           << '\n');
629         HazardRec->AdvanceCycle();
630         ++CurCycle;
631         CycleHasInsts = false;
632       }
633     } else {
634       if (CycleHasInsts) {
635         LLVM_DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
636         HazardRec->AdvanceCycle();
637       } else if (!HasNoopHazards) {
638         // Otherwise, we have a pipeline stall, but no other problem,
639         // just advance the current cycle and try again.
640         LLVM_DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
641         HazardRec->AdvanceCycle();
642         ++NumStalls;
643       } else {
644         // Otherwise, we have no instructions to issue and we have instructions
645         // that will fault if we don't do this right.  This is the case for
646         // processors without pipeline interlocks and other cases.
647         emitNoop(CurCycle);
648       }
649 
650       ++CurCycle;
651       CycleHasInsts = false;
652     }
653   }
654 
655 #ifndef NDEBUG
656   unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false);
657   unsigned Noops = llvm::count(Sequence, nullptr);
658   assert(Sequence.size() - Noops == ScheduledNodes &&
659          "The number of nodes scheduled doesn't match the expected number!");
660 #endif // NDEBUG
661 }
662 
663 // EmitSchedule - Emit the machine code in scheduled order.
664 void SchedulePostRATDList::EmitSchedule() {
665   RegionBegin = RegionEnd;
666 
667   // If first instruction was a DBG_VALUE then put it back.
668   if (FirstDbgValue)
669     BB->splice(RegionEnd, BB, FirstDbgValue);
670 
671   // Then re-insert them according to the given schedule.
672   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
673     if (SUnit *SU = Sequence[i])
674       BB->splice(RegionEnd, BB, SU->getInstr());
675     else
676       // Null SUnit* is a noop.
677       TII->insertNoop(*BB, RegionEnd);
678 
679     // Update the Begin iterator, as the first instruction in the block
680     // may have been scheduled later.
681     if (i == 0)
682       RegionBegin = std::prev(RegionEnd);
683   }
684 
685   // Reinsert any remaining debug_values.
686   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
687          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
688     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
689     MachineInstr *DbgValue = P.first;
690     MachineBasicBlock::iterator OrigPrivMI = P.second;
691     BB->splice(++OrigPrivMI, BB, DbgValue);
692   }
693   DbgValues.clear();
694   FirstDbgValue = nullptr;
695 }
696