1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements a top-down list scheduler, using standard algorithms. 10 // The basic approach uses a priority queue of available nodes to schedule. 11 // One at a time, nodes are taken from the priority queue (thus in priority 12 // order), checked for legality to schedule, and emitted if legal. 13 // 14 // Nodes may not be legal to schedule either due to structural hazards (e.g. 15 // pipeline or resource constraints) or because an input to the instruction has 16 // not completed execution. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/CodeGen/AntiDepBreaker.h" 23 #include "llvm/CodeGen/LatencyPriorityQueue.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineLoopInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/RegisterClassInfo.h" 29 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 30 #include "llvm/CodeGen/ScheduleDAGMutation.h" 31 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetPassConfig.h" 34 #include "llvm/CodeGen/TargetSubtargetInfo.h" 35 #include "llvm/Config/llvm-config.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/raw_ostream.h" 42 using namespace llvm; 43 44 #define DEBUG_TYPE "post-RA-sched" 45 46 STATISTIC(NumNoops, "Number of noops inserted"); 47 STATISTIC(NumStalls, "Number of pipeline stalls"); 48 STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies"); 49 50 // Post-RA scheduling is enabled with 51 // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to 52 // override the target. 53 static cl::opt<bool> 54 EnablePostRAScheduler("post-RA-scheduler", 55 cl::desc("Enable scheduling after register allocation"), 56 cl::init(false), cl::Hidden); 57 static cl::opt<std::string> 58 EnableAntiDepBreaking("break-anti-dependencies", 59 cl::desc("Break post-RA scheduling anti-dependencies: " 60 "\"critical\", \"all\", or \"none\""), 61 cl::init("none"), cl::Hidden); 62 63 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod 64 static cl::opt<int> 65 DebugDiv("postra-sched-debugdiv", 66 cl::desc("Debug control MBBs that are scheduled"), 67 cl::init(0), cl::Hidden); 68 static cl::opt<int> 69 DebugMod("postra-sched-debugmod", 70 cl::desc("Debug control MBBs that are scheduled"), 71 cl::init(0), cl::Hidden); 72 73 AntiDepBreaker::~AntiDepBreaker() = default; 74 75 namespace { 76 class PostRAScheduler : public MachineFunctionPass { 77 const TargetInstrInfo *TII = nullptr; 78 RegisterClassInfo RegClassInfo; 79 80 public: 81 static char ID; 82 PostRAScheduler() : MachineFunctionPass(ID) {} 83 84 void getAnalysisUsage(AnalysisUsage &AU) const override { 85 AU.setPreservesCFG(); 86 AU.addRequired<AAResultsWrapperPass>(); 87 AU.addRequired<TargetPassConfig>(); 88 AU.addRequired<MachineDominatorTree>(); 89 AU.addPreserved<MachineDominatorTree>(); 90 AU.addRequired<MachineLoopInfo>(); 91 AU.addPreserved<MachineLoopInfo>(); 92 MachineFunctionPass::getAnalysisUsage(AU); 93 } 94 95 MachineFunctionProperties getRequiredProperties() const override { 96 return MachineFunctionProperties().set( 97 MachineFunctionProperties::Property::NoVRegs); 98 } 99 100 bool runOnMachineFunction(MachineFunction &Fn) override; 101 102 private: 103 bool enablePostRAScheduler( 104 const TargetSubtargetInfo &ST, CodeGenOpt::Level OptLevel, 105 TargetSubtargetInfo::AntiDepBreakMode &Mode, 106 TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const; 107 }; 108 char PostRAScheduler::ID = 0; 109 110 class SchedulePostRATDList : public ScheduleDAGInstrs { 111 /// AvailableQueue - The priority queue to use for the available SUnits. 112 /// 113 LatencyPriorityQueue AvailableQueue; 114 115 /// PendingQueue - This contains all of the instructions whose operands have 116 /// been issued, but their results are not ready yet (due to the latency of 117 /// the operation). Once the operands becomes available, the instruction is 118 /// added to the AvailableQueue. 119 std::vector<SUnit*> PendingQueue; 120 121 /// HazardRec - The hazard recognizer to use. 122 ScheduleHazardRecognizer *HazardRec; 123 124 /// AntiDepBreak - Anti-dependence breaking object, or NULL if none 125 AntiDepBreaker *AntiDepBreak; 126 127 /// AA - AliasAnalysis for making memory reference queries. 128 AliasAnalysis *AA; 129 130 /// The schedule. Null SUnit*'s represent noop instructions. 131 std::vector<SUnit*> Sequence; 132 133 /// Ordered list of DAG postprocessing steps. 134 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; 135 136 /// The index in BB of RegionEnd. 137 /// 138 /// This is the instruction number from the top of the current block, not 139 /// the SlotIndex. It is only used by the AntiDepBreaker. 140 unsigned EndIndex = 0; 141 142 public: 143 SchedulePostRATDList( 144 MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA, 145 const RegisterClassInfo &, 146 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode, 147 SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs); 148 149 ~SchedulePostRATDList() override; 150 151 /// startBlock - Initialize register live-range state for scheduling in 152 /// this block. 153 /// 154 void startBlock(MachineBasicBlock *BB) override; 155 156 // Set the index of RegionEnd within the current BB. 157 void setEndIndex(unsigned EndIdx) { EndIndex = EndIdx; } 158 159 /// Initialize the scheduler state for the next scheduling region. 160 void enterRegion(MachineBasicBlock *bb, 161 MachineBasicBlock::iterator begin, 162 MachineBasicBlock::iterator end, 163 unsigned regioninstrs) override; 164 165 /// Notify that the scheduler has finished scheduling the current region. 166 void exitRegion() override; 167 168 /// Schedule - Schedule the instruction range using list scheduling. 169 /// 170 void schedule() override; 171 172 void EmitSchedule(); 173 174 /// Observe - Update liveness information to account for the current 175 /// instruction, which will not be scheduled. 176 /// 177 void Observe(MachineInstr &MI, unsigned Count); 178 179 /// finishBlock - Clean up register live-range state. 180 /// 181 void finishBlock() override; 182 183 private: 184 /// Apply each ScheduleDAGMutation step in order. 185 void postProcessDAG(); 186 187 void ReleaseSucc(SUnit *SU, SDep *SuccEdge); 188 void ReleaseSuccessors(SUnit *SU); 189 void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle); 190 void ListScheduleTopDown(); 191 192 void dumpSchedule() const; 193 void emitNoop(unsigned CurCycle); 194 }; 195 } 196 197 char &llvm::PostRASchedulerID = PostRAScheduler::ID; 198 199 INITIALIZE_PASS(PostRAScheduler, DEBUG_TYPE, 200 "Post RA top-down list latency scheduler", false, false) 201 202 SchedulePostRATDList::SchedulePostRATDList( 203 MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA, 204 const RegisterClassInfo &RCI, 205 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode, 206 SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs) 207 : ScheduleDAGInstrs(MF, &MLI), AA(AA) { 208 209 const InstrItineraryData *InstrItins = 210 MF.getSubtarget().getInstrItineraryData(); 211 HazardRec = 212 MF.getSubtarget().getInstrInfo()->CreateTargetPostRAHazardRecognizer( 213 InstrItins, this); 214 MF.getSubtarget().getPostRAMutations(Mutations); 215 216 assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE || 217 MRI.tracksLiveness()) && 218 "Live-ins must be accurate for anti-dependency breaking"); 219 AntiDepBreak = ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) 220 ? createAggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) 221 : ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) 222 ? createCriticalAntiDepBreaker(MF, RCI) 223 : nullptr)); 224 } 225 226 SchedulePostRATDList::~SchedulePostRATDList() { 227 delete HazardRec; 228 delete AntiDepBreak; 229 } 230 231 /// Initialize state associated with the next scheduling region. 232 void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb, 233 MachineBasicBlock::iterator begin, 234 MachineBasicBlock::iterator end, 235 unsigned regioninstrs) { 236 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 237 Sequence.clear(); 238 } 239 240 /// Print the schedule before exiting the region. 241 void SchedulePostRATDList::exitRegion() { 242 LLVM_DEBUG({ 243 dbgs() << "*** Final schedule ***\n"; 244 dumpSchedule(); 245 dbgs() << '\n'; 246 }); 247 ScheduleDAGInstrs::exitRegion(); 248 } 249 250 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 251 /// dumpSchedule - dump the scheduled Sequence. 252 LLVM_DUMP_METHOD void SchedulePostRATDList::dumpSchedule() const { 253 for (const SUnit *SU : Sequence) { 254 if (SU) 255 dumpNode(*SU); 256 else 257 dbgs() << "**** NOOP ****\n"; 258 } 259 } 260 #endif 261 262 bool PostRAScheduler::enablePostRAScheduler( 263 const TargetSubtargetInfo &ST, 264 CodeGenOpt::Level OptLevel, 265 TargetSubtargetInfo::AntiDepBreakMode &Mode, 266 TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const { 267 Mode = ST.getAntiDepBreakMode(); 268 ST.getCriticalPathRCs(CriticalPathRCs); 269 270 // Check for explicit enable/disable of post-ra scheduling. 271 if (EnablePostRAScheduler.getPosition() > 0) 272 return EnablePostRAScheduler; 273 274 return ST.enablePostRAScheduler() && 275 OptLevel >= ST.getOptLevelToEnablePostRAScheduler(); 276 } 277 278 bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) { 279 if (skipFunction(Fn.getFunction())) 280 return false; 281 282 TII = Fn.getSubtarget().getInstrInfo(); 283 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); 284 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 285 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 286 287 RegClassInfo.runOnMachineFunction(Fn); 288 289 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode = 290 TargetSubtargetInfo::ANTIDEP_NONE; 291 SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs; 292 293 // Check that post-RA scheduling is enabled for this target. 294 // This may upgrade the AntiDepMode. 295 if (!enablePostRAScheduler(Fn.getSubtarget(), PassConfig->getOptLevel(), 296 AntiDepMode, CriticalPathRCs)) 297 return false; 298 299 // Check for antidep breaking override... 300 if (EnableAntiDepBreaking.getPosition() > 0) { 301 AntiDepMode = (EnableAntiDepBreaking == "all") 302 ? TargetSubtargetInfo::ANTIDEP_ALL 303 : ((EnableAntiDepBreaking == "critical") 304 ? TargetSubtargetInfo::ANTIDEP_CRITICAL 305 : TargetSubtargetInfo::ANTIDEP_NONE); 306 } 307 308 LLVM_DEBUG(dbgs() << "PostRAScheduler\n"); 309 310 SchedulePostRATDList Scheduler(Fn, MLI, AA, RegClassInfo, AntiDepMode, 311 CriticalPathRCs); 312 313 // Loop over all of the basic blocks 314 for (auto &MBB : Fn) { 315 #ifndef NDEBUG 316 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod 317 if (DebugDiv > 0) { 318 static int bbcnt = 0; 319 if (bbcnt++ % DebugDiv != DebugMod) 320 continue; 321 dbgs() << "*** DEBUG scheduling " << Fn.getName() << ":" 322 << printMBBReference(MBB) << " ***\n"; 323 } 324 #endif 325 326 // Initialize register live-range state for scheduling in this block. 327 Scheduler.startBlock(&MBB); 328 329 // Schedule each sequence of instructions not interrupted by a label 330 // or anything else that effectively needs to shut down scheduling. 331 MachineBasicBlock::iterator Current = MBB.end(); 332 unsigned Count = MBB.size(), CurrentCount = Count; 333 for (MachineBasicBlock::iterator I = Current; I != MBB.begin();) { 334 MachineInstr &MI = *std::prev(I); 335 --Count; 336 // Calls are not scheduling boundaries before register allocation, but 337 // post-ra we don't gain anything by scheduling across calls since we 338 // don't need to worry about register pressure. 339 if (MI.isCall() || TII->isSchedulingBoundary(MI, &MBB, Fn)) { 340 Scheduler.enterRegion(&MBB, I, Current, CurrentCount - Count); 341 Scheduler.setEndIndex(CurrentCount); 342 Scheduler.schedule(); 343 Scheduler.exitRegion(); 344 Scheduler.EmitSchedule(); 345 Current = &MI; 346 CurrentCount = Count; 347 Scheduler.Observe(MI, CurrentCount); 348 } 349 I = MI; 350 if (MI.isBundle()) 351 Count -= MI.getBundleSize(); 352 } 353 assert(Count == 0 && "Instruction count mismatch!"); 354 assert((MBB.begin() == Current || CurrentCount != 0) && 355 "Instruction count mismatch!"); 356 Scheduler.enterRegion(&MBB, MBB.begin(), Current, CurrentCount); 357 Scheduler.setEndIndex(CurrentCount); 358 Scheduler.schedule(); 359 Scheduler.exitRegion(); 360 Scheduler.EmitSchedule(); 361 362 // Clean up register live-range state. 363 Scheduler.finishBlock(); 364 365 // Update register kills 366 Scheduler.fixupKills(MBB); 367 } 368 369 return true; 370 } 371 372 /// StartBlock - Initialize register live-range state for scheduling in 373 /// this block. 374 /// 375 void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) { 376 // Call the superclass. 377 ScheduleDAGInstrs::startBlock(BB); 378 379 // Reset the hazard recognizer and anti-dep breaker. 380 HazardRec->Reset(); 381 if (AntiDepBreak) 382 AntiDepBreak->StartBlock(BB); 383 } 384 385 /// Schedule - Schedule the instruction range using list scheduling. 386 /// 387 void SchedulePostRATDList::schedule() { 388 // Build the scheduling graph. 389 buildSchedGraph(AA); 390 391 if (AntiDepBreak) { 392 unsigned Broken = 393 AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd, 394 EndIndex, DbgValues); 395 396 if (Broken != 0) { 397 // We made changes. Update the dependency graph. 398 // Theoretically we could update the graph in place: 399 // When a live range is changed to use a different register, remove 400 // the def's anti-dependence *and* output-dependence edges due to 401 // that register, and add new anti-dependence and output-dependence 402 // edges based on the next live range of the register. 403 ScheduleDAG::clearDAG(); 404 buildSchedGraph(AA); 405 406 NumFixedAnti += Broken; 407 } 408 } 409 410 postProcessDAG(); 411 412 LLVM_DEBUG(dbgs() << "********** List Scheduling **********\n"); 413 LLVM_DEBUG(dump()); 414 415 AvailableQueue.initNodes(SUnits); 416 ListScheduleTopDown(); 417 AvailableQueue.releaseState(); 418 } 419 420 /// Observe - Update liveness information to account for the current 421 /// instruction, which will not be scheduled. 422 /// 423 void SchedulePostRATDList::Observe(MachineInstr &MI, unsigned Count) { 424 if (AntiDepBreak) 425 AntiDepBreak->Observe(MI, Count, EndIndex); 426 } 427 428 /// FinishBlock - Clean up register live-range state. 429 /// 430 void SchedulePostRATDList::finishBlock() { 431 if (AntiDepBreak) 432 AntiDepBreak->FinishBlock(); 433 434 // Call the superclass. 435 ScheduleDAGInstrs::finishBlock(); 436 } 437 438 /// Apply each ScheduleDAGMutation step in order. 439 void SchedulePostRATDList::postProcessDAG() { 440 for (auto &M : Mutations) 441 M->apply(this); 442 } 443 444 //===----------------------------------------------------------------------===// 445 // Top-Down Scheduling 446 //===----------------------------------------------------------------------===// 447 448 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to 449 /// the PendingQueue if the count reaches zero. 450 void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) { 451 SUnit *SuccSU = SuccEdge->getSUnit(); 452 453 if (SuccEdge->isWeak()) { 454 --SuccSU->WeakPredsLeft; 455 return; 456 } 457 #ifndef NDEBUG 458 if (SuccSU->NumPredsLeft == 0) { 459 dbgs() << "*** Scheduling failed! ***\n"; 460 dumpNode(*SuccSU); 461 dbgs() << " has been released too many times!\n"; 462 llvm_unreachable(nullptr); 463 } 464 #endif 465 --SuccSU->NumPredsLeft; 466 467 // Standard scheduler algorithms will recompute the depth of the successor 468 // here as such: 469 // SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency()); 470 // 471 // However, we lazily compute node depth instead. Note that 472 // ScheduleNodeTopDown has already updated the depth of this node which causes 473 // all descendents to be marked dirty. Setting the successor depth explicitly 474 // here would cause depth to be recomputed for all its ancestors. If the 475 // successor is not yet ready (because of a transitively redundant edge) then 476 // this causes depth computation to be quadratic in the size of the DAG. 477 478 // If all the node's predecessors are scheduled, this node is ready 479 // to be scheduled. Ignore the special ExitSU node. 480 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 481 PendingQueue.push_back(SuccSU); 482 } 483 484 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors. 485 void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) { 486 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 487 I != E; ++I) { 488 ReleaseSucc(SU, &*I); 489 } 490 } 491 492 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending 493 /// count of its successors. If a successor pending count is zero, add it to 494 /// the Available queue. 495 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { 496 LLVM_DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: "); 497 LLVM_DEBUG(dumpNode(*SU)); 498 499 Sequence.push_back(SU); 500 assert(CurCycle >= SU->getDepth() && 501 "Node scheduled above its depth!"); 502 SU->setDepthToAtLeast(CurCycle); 503 504 ReleaseSuccessors(SU); 505 SU->isScheduled = true; 506 AvailableQueue.scheduledNode(SU); 507 } 508 509 /// emitNoop - Add a noop to the current instruction sequence. 510 void SchedulePostRATDList::emitNoop(unsigned CurCycle) { 511 LLVM_DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n'); 512 HazardRec->EmitNoop(); 513 Sequence.push_back(nullptr); // NULL here means noop 514 ++NumNoops; 515 } 516 517 /// ListScheduleTopDown - The main loop of list scheduling for top-down 518 /// schedulers. 519 void SchedulePostRATDList::ListScheduleTopDown() { 520 unsigned CurCycle = 0; 521 522 // We're scheduling top-down but we're visiting the regions in 523 // bottom-up order, so we don't know the hazards at the start of a 524 // region. So assume no hazards (this should usually be ok as most 525 // blocks are a single region). 526 HazardRec->Reset(); 527 528 // Release any successors of the special Entry node. 529 ReleaseSuccessors(&EntrySU); 530 531 // Add all leaves to Available queue. 532 for (SUnit &SUnit : SUnits) { 533 // It is available if it has no predecessors. 534 if (!SUnit.NumPredsLeft && !SUnit.isAvailable) { 535 AvailableQueue.push(&SUnit); 536 SUnit.isAvailable = true; 537 } 538 } 539 540 // In any cycle where we can't schedule any instructions, we must 541 // stall or emit a noop, depending on the target. 542 bool CycleHasInsts = false; 543 544 // While Available queue is not empty, grab the node with the highest 545 // priority. If it is not ready put it back. Schedule the node. 546 std::vector<SUnit*> NotReady; 547 Sequence.reserve(SUnits.size()); 548 while (!AvailableQueue.empty() || !PendingQueue.empty()) { 549 // Check to see if any of the pending instructions are ready to issue. If 550 // so, add them to the available queue. 551 unsigned MinDepth = ~0u; 552 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) { 553 if (PendingQueue[i]->getDepth() <= CurCycle) { 554 AvailableQueue.push(PendingQueue[i]); 555 PendingQueue[i]->isAvailable = true; 556 PendingQueue[i] = PendingQueue.back(); 557 PendingQueue.pop_back(); 558 --i; --e; 559 } else if (PendingQueue[i]->getDepth() < MinDepth) 560 MinDepth = PendingQueue[i]->getDepth(); 561 } 562 563 LLVM_DEBUG(dbgs() << "\n*** Examining Available\n"; 564 AvailableQueue.dump(this)); 565 566 SUnit *FoundSUnit = nullptr, *NotPreferredSUnit = nullptr; 567 bool HasNoopHazards = false; 568 while (!AvailableQueue.empty()) { 569 SUnit *CurSUnit = AvailableQueue.pop(); 570 571 ScheduleHazardRecognizer::HazardType HT = 572 HazardRec->getHazardType(CurSUnit, 0/*no stalls*/); 573 if (HT == ScheduleHazardRecognizer::NoHazard) { 574 if (HazardRec->ShouldPreferAnother(CurSUnit)) { 575 if (!NotPreferredSUnit) { 576 // If this is the first non-preferred node for this cycle, then 577 // record it and continue searching for a preferred node. If this 578 // is not the first non-preferred node, then treat it as though 579 // there had been a hazard. 580 NotPreferredSUnit = CurSUnit; 581 continue; 582 } 583 } else { 584 FoundSUnit = CurSUnit; 585 break; 586 } 587 } 588 589 // Remember if this is a noop hazard. 590 HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard; 591 592 NotReady.push_back(CurSUnit); 593 } 594 595 // If we have a non-preferred node, push it back onto the available list. 596 // If we did not find a preferred node, then schedule this first 597 // non-preferred node. 598 if (NotPreferredSUnit) { 599 if (!FoundSUnit) { 600 LLVM_DEBUG( 601 dbgs() << "*** Will schedule a non-preferred instruction...\n"); 602 FoundSUnit = NotPreferredSUnit; 603 } else { 604 AvailableQueue.push(NotPreferredSUnit); 605 } 606 607 NotPreferredSUnit = nullptr; 608 } 609 610 // Add the nodes that aren't ready back onto the available list. 611 if (!NotReady.empty()) { 612 AvailableQueue.push_all(NotReady); 613 NotReady.clear(); 614 } 615 616 // If we found a node to schedule... 617 if (FoundSUnit) { 618 // If we need to emit noops prior to this instruction, then do so. 619 unsigned NumPreNoops = HazardRec->PreEmitNoops(FoundSUnit); 620 for (unsigned i = 0; i != NumPreNoops; ++i) 621 emitNoop(CurCycle); 622 623 // ... schedule the node... 624 ScheduleNodeTopDown(FoundSUnit, CurCycle); 625 HazardRec->EmitInstruction(FoundSUnit); 626 CycleHasInsts = true; 627 if (HazardRec->atIssueLimit()) { 628 LLVM_DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle 629 << '\n'); 630 HazardRec->AdvanceCycle(); 631 ++CurCycle; 632 CycleHasInsts = false; 633 } 634 } else { 635 if (CycleHasInsts) { 636 LLVM_DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n'); 637 HazardRec->AdvanceCycle(); 638 } else if (!HasNoopHazards) { 639 // Otherwise, we have a pipeline stall, but no other problem, 640 // just advance the current cycle and try again. 641 LLVM_DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n'); 642 HazardRec->AdvanceCycle(); 643 ++NumStalls; 644 } else { 645 // Otherwise, we have no instructions to issue and we have instructions 646 // that will fault if we don't do this right. This is the case for 647 // processors without pipeline interlocks and other cases. 648 emitNoop(CurCycle); 649 } 650 651 ++CurCycle; 652 CycleHasInsts = false; 653 } 654 } 655 656 #ifndef NDEBUG 657 unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false); 658 unsigned Noops = llvm::count(Sequence, nullptr); 659 assert(Sequence.size() - Noops == ScheduledNodes && 660 "The number of nodes scheduled doesn't match the expected number!"); 661 #endif // NDEBUG 662 } 663 664 // EmitSchedule - Emit the machine code in scheduled order. 665 void SchedulePostRATDList::EmitSchedule() { 666 RegionBegin = RegionEnd; 667 668 // If first instruction was a DBG_VALUE then put it back. 669 if (FirstDbgValue) 670 BB->splice(RegionEnd, BB, FirstDbgValue); 671 672 // Then re-insert them according to the given schedule. 673 for (unsigned i = 0, e = Sequence.size(); i != e; i++) { 674 if (SUnit *SU = Sequence[i]) 675 BB->splice(RegionEnd, BB, SU->getInstr()); 676 else 677 // Null SUnit* is a noop. 678 TII->insertNoop(*BB, RegionEnd); 679 680 // Update the Begin iterator, as the first instruction in the block 681 // may have been scheduled later. 682 if (i == 0) 683 RegionBegin = std::prev(RegionEnd); 684 } 685 686 // Reinsert any remaining debug_values. 687 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 688 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 689 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 690 MachineInstr *DbgValue = P.first; 691 MachineBasicBlock::iterator OrigPrivMI = P.second; 692 BB->splice(++OrigPrivMI, BB, DbgValue); 693 } 694 DbgValues.clear(); 695 FirstDbgValue = nullptr; 696 } 697