1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements a top-down list scheduler, using standard algorithms. 10 // The basic approach uses a priority queue of available nodes to schedule. 11 // One at a time, nodes are taken from the priority queue (thus in priority 12 // order), checked for legality to schedule, and emitted if legal. 13 // 14 // Nodes may not be legal to schedule either due to structural hazards (e.g. 15 // pipeline or resource constraints) or because an input to the instruction has 16 // not completed execution. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/CodeGen/AntiDepBreaker.h" 23 #include "llvm/CodeGen/LatencyPriorityQueue.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineLoopInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/RegisterClassInfo.h" 29 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 30 #include "llvm/CodeGen/ScheduleDAGMutation.h" 31 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetPassConfig.h" 34 #include "llvm/CodeGen/TargetSubtargetInfo.h" 35 #include "llvm/Config/llvm-config.h" 36 #include "llvm/InitializePasses.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/ErrorHandling.h" 41 #include "llvm/Support/raw_ostream.h" 42 using namespace llvm; 43 44 #define DEBUG_TYPE "post-RA-sched" 45 46 STATISTIC(NumNoops, "Number of noops inserted"); 47 STATISTIC(NumStalls, "Number of pipeline stalls"); 48 STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies"); 49 50 // Post-RA scheduling is enabled with 51 // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to 52 // override the target. 53 static cl::opt<bool> 54 EnablePostRAScheduler("post-RA-scheduler", 55 cl::desc("Enable scheduling after register allocation"), 56 cl::init(false), cl::Hidden); 57 static cl::opt<std::string> 58 EnableAntiDepBreaking("break-anti-dependencies", 59 cl::desc("Break post-RA scheduling anti-dependencies: " 60 "\"critical\", \"all\", or \"none\""), 61 cl::init("none"), cl::Hidden); 62 63 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod 64 static cl::opt<int> 65 DebugDiv("postra-sched-debugdiv", 66 cl::desc("Debug control MBBs that are scheduled"), 67 cl::init(0), cl::Hidden); 68 static cl::opt<int> 69 DebugMod("postra-sched-debugmod", 70 cl::desc("Debug control MBBs that are scheduled"), 71 cl::init(0), cl::Hidden); 72 73 AntiDepBreaker::~AntiDepBreaker() = default; 74 75 namespace { 76 class PostRAScheduler : public MachineFunctionPass { 77 const TargetInstrInfo *TII = nullptr; 78 RegisterClassInfo RegClassInfo; 79 80 public: 81 static char ID; 82 PostRAScheduler() : MachineFunctionPass(ID) {} 83 84 void getAnalysisUsage(AnalysisUsage &AU) const override { 85 AU.setPreservesCFG(); 86 AU.addRequired<AAResultsWrapperPass>(); 87 AU.addRequired<TargetPassConfig>(); 88 AU.addRequired<MachineDominatorTreeWrapperPass>(); 89 AU.addPreserved<MachineDominatorTreeWrapperPass>(); 90 AU.addRequired<MachineLoopInfoWrapperPass>(); 91 AU.addPreserved<MachineLoopInfoWrapperPass>(); 92 MachineFunctionPass::getAnalysisUsage(AU); 93 } 94 95 MachineFunctionProperties getRequiredProperties() const override { 96 return MachineFunctionProperties().set( 97 MachineFunctionProperties::Property::NoVRegs); 98 } 99 100 bool runOnMachineFunction(MachineFunction &Fn) override; 101 102 private: 103 bool enablePostRAScheduler( 104 const TargetSubtargetInfo &ST, CodeGenOptLevel OptLevel, 105 TargetSubtargetInfo::AntiDepBreakMode &Mode, 106 TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const; 107 }; 108 char PostRAScheduler::ID = 0; 109 110 class SchedulePostRATDList : public ScheduleDAGInstrs { 111 /// AvailableQueue - The priority queue to use for the available SUnits. 112 /// 113 LatencyPriorityQueue AvailableQueue; 114 115 /// PendingQueue - This contains all of the instructions whose operands have 116 /// been issued, but their results are not ready yet (due to the latency of 117 /// the operation). Once the operands becomes available, the instruction is 118 /// added to the AvailableQueue. 119 std::vector<SUnit*> PendingQueue; 120 121 /// HazardRec - The hazard recognizer to use. 122 ScheduleHazardRecognizer *HazardRec; 123 124 /// AntiDepBreak - Anti-dependence breaking object, or NULL if none 125 AntiDepBreaker *AntiDepBreak; 126 127 /// AA - AliasAnalysis for making memory reference queries. 128 AliasAnalysis *AA; 129 130 /// The schedule. Null SUnit*'s represent noop instructions. 131 std::vector<SUnit*> Sequence; 132 133 /// Ordered list of DAG postprocessing steps. 134 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; 135 136 /// The index in BB of RegionEnd. 137 /// 138 /// This is the instruction number from the top of the current block, not 139 /// the SlotIndex. It is only used by the AntiDepBreaker. 140 unsigned EndIndex = 0; 141 142 public: 143 SchedulePostRATDList( 144 MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA, 145 const RegisterClassInfo &, 146 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode, 147 SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs); 148 149 ~SchedulePostRATDList() override; 150 151 /// startBlock - Initialize register live-range state for scheduling in 152 /// this block. 153 /// 154 void startBlock(MachineBasicBlock *BB) override; 155 156 // Set the index of RegionEnd within the current BB. 157 void setEndIndex(unsigned EndIdx) { EndIndex = EndIdx; } 158 159 /// Initialize the scheduler state for the next scheduling region. 160 void enterRegion(MachineBasicBlock *bb, 161 MachineBasicBlock::iterator begin, 162 MachineBasicBlock::iterator end, 163 unsigned regioninstrs) override; 164 165 /// Notify that the scheduler has finished scheduling the current region. 166 void exitRegion() override; 167 168 /// Schedule - Schedule the instruction range using list scheduling. 169 /// 170 void schedule() override; 171 172 void EmitSchedule(); 173 174 /// Observe - Update liveness information to account for the current 175 /// instruction, which will not be scheduled. 176 /// 177 void Observe(MachineInstr &MI, unsigned Count); 178 179 /// finishBlock - Clean up register live-range state. 180 /// 181 void finishBlock() override; 182 183 private: 184 /// Apply each ScheduleDAGMutation step in order. 185 void postProcessDAG(); 186 187 void ReleaseSucc(SUnit *SU, SDep *SuccEdge); 188 void ReleaseSuccessors(SUnit *SU); 189 void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle); 190 void ListScheduleTopDown(); 191 192 void dumpSchedule() const; 193 void emitNoop(unsigned CurCycle); 194 }; 195 } 196 197 char &llvm::PostRASchedulerID = PostRAScheduler::ID; 198 199 INITIALIZE_PASS(PostRAScheduler, DEBUG_TYPE, 200 "Post RA top-down list latency scheduler", false, false) 201 202 SchedulePostRATDList::SchedulePostRATDList( 203 MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA, 204 const RegisterClassInfo &RCI, 205 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode, 206 SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs) 207 : ScheduleDAGInstrs(MF, &MLI), AA(AA) { 208 209 const InstrItineraryData *InstrItins = 210 MF.getSubtarget().getInstrItineraryData(); 211 HazardRec = 212 MF.getSubtarget().getInstrInfo()->CreateTargetPostRAHazardRecognizer( 213 InstrItins, this); 214 MF.getSubtarget().getPostRAMutations(Mutations); 215 216 assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE || 217 MRI.tracksLiveness()) && 218 "Live-ins must be accurate for anti-dependency breaking"); 219 AntiDepBreak = ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) 220 ? createAggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) 221 : ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) 222 ? createCriticalAntiDepBreaker(MF, RCI) 223 : nullptr)); 224 } 225 226 SchedulePostRATDList::~SchedulePostRATDList() { 227 delete HazardRec; 228 delete AntiDepBreak; 229 } 230 231 /// Initialize state associated with the next scheduling region. 232 void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb, 233 MachineBasicBlock::iterator begin, 234 MachineBasicBlock::iterator end, 235 unsigned regioninstrs) { 236 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 237 Sequence.clear(); 238 } 239 240 /// Print the schedule before exiting the region. 241 void SchedulePostRATDList::exitRegion() { 242 LLVM_DEBUG({ 243 dbgs() << "*** Final schedule ***\n"; 244 dumpSchedule(); 245 dbgs() << '\n'; 246 }); 247 ScheduleDAGInstrs::exitRegion(); 248 } 249 250 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 251 /// dumpSchedule - dump the scheduled Sequence. 252 LLVM_DUMP_METHOD void SchedulePostRATDList::dumpSchedule() const { 253 for (const SUnit *SU : Sequence) { 254 if (SU) 255 dumpNode(*SU); 256 else 257 dbgs() << "**** NOOP ****\n"; 258 } 259 } 260 #endif 261 262 bool PostRAScheduler::enablePostRAScheduler( 263 const TargetSubtargetInfo &ST, CodeGenOptLevel OptLevel, 264 TargetSubtargetInfo::AntiDepBreakMode &Mode, 265 TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const { 266 Mode = ST.getAntiDepBreakMode(); 267 ST.getCriticalPathRCs(CriticalPathRCs); 268 269 // Check for explicit enable/disable of post-ra scheduling. 270 if (EnablePostRAScheduler.getPosition() > 0) 271 return EnablePostRAScheduler; 272 273 return ST.enablePostRAScheduler() && 274 OptLevel >= ST.getOptLevelToEnablePostRAScheduler(); 275 } 276 277 bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) { 278 if (skipFunction(Fn.getFunction())) 279 return false; 280 281 TII = Fn.getSubtarget().getInstrInfo(); 282 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 283 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 284 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 285 286 RegClassInfo.runOnMachineFunction(Fn); 287 288 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode = 289 TargetSubtargetInfo::ANTIDEP_NONE; 290 SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs; 291 292 // Check that post-RA scheduling is enabled for this target. 293 // This may upgrade the AntiDepMode. 294 if (!enablePostRAScheduler(Fn.getSubtarget(), PassConfig->getOptLevel(), 295 AntiDepMode, CriticalPathRCs)) 296 return false; 297 298 // Check for antidep breaking override... 299 if (EnableAntiDepBreaking.getPosition() > 0) { 300 AntiDepMode = (EnableAntiDepBreaking == "all") 301 ? TargetSubtargetInfo::ANTIDEP_ALL 302 : ((EnableAntiDepBreaking == "critical") 303 ? TargetSubtargetInfo::ANTIDEP_CRITICAL 304 : TargetSubtargetInfo::ANTIDEP_NONE); 305 } 306 307 LLVM_DEBUG(dbgs() << "PostRAScheduler\n"); 308 309 SchedulePostRATDList Scheduler(Fn, MLI, AA, RegClassInfo, AntiDepMode, 310 CriticalPathRCs); 311 312 // Loop over all of the basic blocks 313 for (auto &MBB : Fn) { 314 #ifndef NDEBUG 315 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod 316 if (DebugDiv > 0) { 317 static int bbcnt = 0; 318 if (bbcnt++ % DebugDiv != DebugMod) 319 continue; 320 dbgs() << "*** DEBUG scheduling " << Fn.getName() << ":" 321 << printMBBReference(MBB) << " ***\n"; 322 } 323 #endif 324 325 // Initialize register live-range state for scheduling in this block. 326 Scheduler.startBlock(&MBB); 327 328 // Schedule each sequence of instructions not interrupted by a label 329 // or anything else that effectively needs to shut down scheduling. 330 MachineBasicBlock::iterator Current = MBB.end(); 331 unsigned Count = MBB.size(), CurrentCount = Count; 332 for (MachineBasicBlock::iterator I = Current; I != MBB.begin();) { 333 MachineInstr &MI = *std::prev(I); 334 --Count; 335 // Calls are not scheduling boundaries before register allocation, but 336 // post-ra we don't gain anything by scheduling across calls since we 337 // don't need to worry about register pressure. 338 if (MI.isCall() || TII->isSchedulingBoundary(MI, &MBB, Fn)) { 339 Scheduler.enterRegion(&MBB, I, Current, CurrentCount - Count); 340 Scheduler.setEndIndex(CurrentCount); 341 Scheduler.schedule(); 342 Scheduler.exitRegion(); 343 Scheduler.EmitSchedule(); 344 Current = &MI; 345 CurrentCount = Count; 346 Scheduler.Observe(MI, CurrentCount); 347 } 348 I = MI; 349 if (MI.isBundle()) 350 Count -= MI.getBundleSize(); 351 } 352 assert(Count == 0 && "Instruction count mismatch!"); 353 assert((MBB.begin() == Current || CurrentCount != 0) && 354 "Instruction count mismatch!"); 355 Scheduler.enterRegion(&MBB, MBB.begin(), Current, CurrentCount); 356 Scheduler.setEndIndex(CurrentCount); 357 Scheduler.schedule(); 358 Scheduler.exitRegion(); 359 Scheduler.EmitSchedule(); 360 361 // Clean up register live-range state. 362 Scheduler.finishBlock(); 363 364 // Update register kills 365 Scheduler.fixupKills(MBB); 366 } 367 368 return true; 369 } 370 371 /// StartBlock - Initialize register live-range state for scheduling in 372 /// this block. 373 /// 374 void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) { 375 // Call the superclass. 376 ScheduleDAGInstrs::startBlock(BB); 377 378 // Reset the hazard recognizer and anti-dep breaker. 379 HazardRec->Reset(); 380 if (AntiDepBreak) 381 AntiDepBreak->StartBlock(BB); 382 } 383 384 /// Schedule - Schedule the instruction range using list scheduling. 385 /// 386 void SchedulePostRATDList::schedule() { 387 // Build the scheduling graph. 388 buildSchedGraph(AA); 389 390 if (AntiDepBreak) { 391 unsigned Broken = 392 AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd, 393 EndIndex, DbgValues); 394 395 if (Broken != 0) { 396 // We made changes. Update the dependency graph. 397 // Theoretically we could update the graph in place: 398 // When a live range is changed to use a different register, remove 399 // the def's anti-dependence *and* output-dependence edges due to 400 // that register, and add new anti-dependence and output-dependence 401 // edges based on the next live range of the register. 402 ScheduleDAG::clearDAG(); 403 buildSchedGraph(AA); 404 405 NumFixedAnti += Broken; 406 } 407 } 408 409 postProcessDAG(); 410 411 LLVM_DEBUG(dbgs() << "********** List Scheduling **********\n"); 412 LLVM_DEBUG(dump()); 413 414 AvailableQueue.initNodes(SUnits); 415 ListScheduleTopDown(); 416 AvailableQueue.releaseState(); 417 } 418 419 /// Observe - Update liveness information to account for the current 420 /// instruction, which will not be scheduled. 421 /// 422 void SchedulePostRATDList::Observe(MachineInstr &MI, unsigned Count) { 423 if (AntiDepBreak) 424 AntiDepBreak->Observe(MI, Count, EndIndex); 425 } 426 427 /// FinishBlock - Clean up register live-range state. 428 /// 429 void SchedulePostRATDList::finishBlock() { 430 if (AntiDepBreak) 431 AntiDepBreak->FinishBlock(); 432 433 // Call the superclass. 434 ScheduleDAGInstrs::finishBlock(); 435 } 436 437 /// Apply each ScheduleDAGMutation step in order. 438 void SchedulePostRATDList::postProcessDAG() { 439 for (auto &M : Mutations) 440 M->apply(this); 441 } 442 443 //===----------------------------------------------------------------------===// 444 // Top-Down Scheduling 445 //===----------------------------------------------------------------------===// 446 447 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to 448 /// the PendingQueue if the count reaches zero. 449 void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) { 450 SUnit *SuccSU = SuccEdge->getSUnit(); 451 452 if (SuccEdge->isWeak()) { 453 --SuccSU->WeakPredsLeft; 454 return; 455 } 456 #ifndef NDEBUG 457 if (SuccSU->NumPredsLeft == 0) { 458 dbgs() << "*** Scheduling failed! ***\n"; 459 dumpNode(*SuccSU); 460 dbgs() << " has been released too many times!\n"; 461 llvm_unreachable(nullptr); 462 } 463 #endif 464 --SuccSU->NumPredsLeft; 465 466 // Standard scheduler algorithms will recompute the depth of the successor 467 // here as such: 468 // SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency()); 469 // 470 // However, we lazily compute node depth instead. Note that 471 // ScheduleNodeTopDown has already updated the depth of this node which causes 472 // all descendents to be marked dirty. Setting the successor depth explicitly 473 // here would cause depth to be recomputed for all its ancestors. If the 474 // successor is not yet ready (because of a transitively redundant edge) then 475 // this causes depth computation to be quadratic in the size of the DAG. 476 477 // If all the node's predecessors are scheduled, this node is ready 478 // to be scheduled. Ignore the special ExitSU node. 479 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 480 PendingQueue.push_back(SuccSU); 481 } 482 483 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors. 484 void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) { 485 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 486 I != E; ++I) { 487 ReleaseSucc(SU, &*I); 488 } 489 } 490 491 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending 492 /// count of its successors. If a successor pending count is zero, add it to 493 /// the Available queue. 494 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { 495 LLVM_DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: "); 496 LLVM_DEBUG(dumpNode(*SU)); 497 498 Sequence.push_back(SU); 499 assert(CurCycle >= SU->getDepth() && 500 "Node scheduled above its depth!"); 501 SU->setDepthToAtLeast(CurCycle); 502 503 ReleaseSuccessors(SU); 504 SU->isScheduled = true; 505 AvailableQueue.scheduledNode(SU); 506 } 507 508 /// emitNoop - Add a noop to the current instruction sequence. 509 void SchedulePostRATDList::emitNoop(unsigned CurCycle) { 510 LLVM_DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n'); 511 HazardRec->EmitNoop(); 512 Sequence.push_back(nullptr); // NULL here means noop 513 ++NumNoops; 514 } 515 516 /// ListScheduleTopDown - The main loop of list scheduling for top-down 517 /// schedulers. 518 void SchedulePostRATDList::ListScheduleTopDown() { 519 unsigned CurCycle = 0; 520 521 // We're scheduling top-down but we're visiting the regions in 522 // bottom-up order, so we don't know the hazards at the start of a 523 // region. So assume no hazards (this should usually be ok as most 524 // blocks are a single region). 525 HazardRec->Reset(); 526 527 // Release any successors of the special Entry node. 528 ReleaseSuccessors(&EntrySU); 529 530 // Add all leaves to Available queue. 531 for (SUnit &SUnit : SUnits) { 532 // It is available if it has no predecessors. 533 if (!SUnit.NumPredsLeft && !SUnit.isAvailable) { 534 AvailableQueue.push(&SUnit); 535 SUnit.isAvailable = true; 536 } 537 } 538 539 // In any cycle where we can't schedule any instructions, we must 540 // stall or emit a noop, depending on the target. 541 bool CycleHasInsts = false; 542 543 // While Available queue is not empty, grab the node with the highest 544 // priority. If it is not ready put it back. Schedule the node. 545 std::vector<SUnit*> NotReady; 546 Sequence.reserve(SUnits.size()); 547 while (!AvailableQueue.empty() || !PendingQueue.empty()) { 548 // Check to see if any of the pending instructions are ready to issue. If 549 // so, add them to the available queue. 550 unsigned MinDepth = ~0u; 551 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) { 552 if (PendingQueue[i]->getDepth() <= CurCycle) { 553 AvailableQueue.push(PendingQueue[i]); 554 PendingQueue[i]->isAvailable = true; 555 PendingQueue[i] = PendingQueue.back(); 556 PendingQueue.pop_back(); 557 --i; --e; 558 } else if (PendingQueue[i]->getDepth() < MinDepth) 559 MinDepth = PendingQueue[i]->getDepth(); 560 } 561 562 LLVM_DEBUG(dbgs() << "\n*** Examining Available\n"; 563 AvailableQueue.dump(this)); 564 565 SUnit *FoundSUnit = nullptr, *NotPreferredSUnit = nullptr; 566 bool HasNoopHazards = false; 567 while (!AvailableQueue.empty()) { 568 SUnit *CurSUnit = AvailableQueue.pop(); 569 570 ScheduleHazardRecognizer::HazardType HT = 571 HazardRec->getHazardType(CurSUnit, 0/*no stalls*/); 572 if (HT == ScheduleHazardRecognizer::NoHazard) { 573 if (HazardRec->ShouldPreferAnother(CurSUnit)) { 574 if (!NotPreferredSUnit) { 575 // If this is the first non-preferred node for this cycle, then 576 // record it and continue searching for a preferred node. If this 577 // is not the first non-preferred node, then treat it as though 578 // there had been a hazard. 579 NotPreferredSUnit = CurSUnit; 580 continue; 581 } 582 } else { 583 FoundSUnit = CurSUnit; 584 break; 585 } 586 } 587 588 // Remember if this is a noop hazard. 589 HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard; 590 591 NotReady.push_back(CurSUnit); 592 } 593 594 // If we have a non-preferred node, push it back onto the available list. 595 // If we did not find a preferred node, then schedule this first 596 // non-preferred node. 597 if (NotPreferredSUnit) { 598 if (!FoundSUnit) { 599 LLVM_DEBUG( 600 dbgs() << "*** Will schedule a non-preferred instruction...\n"); 601 FoundSUnit = NotPreferredSUnit; 602 } else { 603 AvailableQueue.push(NotPreferredSUnit); 604 } 605 606 NotPreferredSUnit = nullptr; 607 } 608 609 // Add the nodes that aren't ready back onto the available list. 610 if (!NotReady.empty()) { 611 AvailableQueue.push_all(NotReady); 612 NotReady.clear(); 613 } 614 615 // If we found a node to schedule... 616 if (FoundSUnit) { 617 // If we need to emit noops prior to this instruction, then do so. 618 unsigned NumPreNoops = HazardRec->PreEmitNoops(FoundSUnit); 619 for (unsigned i = 0; i != NumPreNoops; ++i) 620 emitNoop(CurCycle); 621 622 // ... schedule the node... 623 ScheduleNodeTopDown(FoundSUnit, CurCycle); 624 HazardRec->EmitInstruction(FoundSUnit); 625 CycleHasInsts = true; 626 if (HazardRec->atIssueLimit()) { 627 LLVM_DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle 628 << '\n'); 629 HazardRec->AdvanceCycle(); 630 ++CurCycle; 631 CycleHasInsts = false; 632 } 633 } else { 634 if (CycleHasInsts) { 635 LLVM_DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n'); 636 HazardRec->AdvanceCycle(); 637 } else if (!HasNoopHazards) { 638 // Otherwise, we have a pipeline stall, but no other problem, 639 // just advance the current cycle and try again. 640 LLVM_DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n'); 641 HazardRec->AdvanceCycle(); 642 ++NumStalls; 643 } else { 644 // Otherwise, we have no instructions to issue and we have instructions 645 // that will fault if we don't do this right. This is the case for 646 // processors without pipeline interlocks and other cases. 647 emitNoop(CurCycle); 648 } 649 650 ++CurCycle; 651 CycleHasInsts = false; 652 } 653 } 654 655 #ifndef NDEBUG 656 unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false); 657 unsigned Noops = llvm::count(Sequence, nullptr); 658 assert(Sequence.size() - Noops == ScheduledNodes && 659 "The number of nodes scheduled doesn't match the expected number!"); 660 #endif // NDEBUG 661 } 662 663 // EmitSchedule - Emit the machine code in scheduled order. 664 void SchedulePostRATDList::EmitSchedule() { 665 RegionBegin = RegionEnd; 666 667 // If first instruction was a DBG_VALUE then put it back. 668 if (FirstDbgValue) 669 BB->splice(RegionEnd, BB, FirstDbgValue); 670 671 // Then re-insert them according to the given schedule. 672 for (unsigned i = 0, e = Sequence.size(); i != e; i++) { 673 if (SUnit *SU = Sequence[i]) 674 BB->splice(RegionEnd, BB, SU->getInstr()); 675 else 676 // Null SUnit* is a noop. 677 TII->insertNoop(*BB, RegionEnd); 678 679 // Update the Begin iterator, as the first instruction in the block 680 // may have been scheduled later. 681 if (i == 0) 682 RegionBegin = std::prev(RegionEnd); 683 } 684 685 // Reinsert any remaining debug_values. 686 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 687 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 688 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 689 MachineInstr *DbgValue = P.first; 690 MachineBasicBlock::iterator OrigPrivMI = P.second; 691 BB->splice(++OrigPrivMI, BB, DbgValue); 692 } 693 DbgValues.clear(); 694 FirstDbgValue = nullptr; 695 } 696