1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements a top-down list scheduler, using standard algorithms. 10 // The basic approach uses a priority queue of available nodes to schedule. 11 // One at a time, nodes are taken from the priority queue (thus in priority 12 // order), checked for legality to schedule, and emitted if legal. 13 // 14 // Nodes may not be legal to schedule either due to structural hazards (e.g. 15 // pipeline or resource constraints) or because an input to the instruction has 16 // not completed execution. 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/CodeGen/AntiDepBreaker.h" 23 #include "llvm/CodeGen/LatencyPriorityQueue.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineLoopInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/Passes.h" 29 #include "llvm/CodeGen/RegisterClassInfo.h" 30 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 31 #include "llvm/CodeGen/ScheduleHazardRecognizer.h" 32 #include "llvm/CodeGen/SchedulerRegistry.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/TargetPassConfig.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/TargetSubtargetInfo.h" 38 #include "llvm/Config/llvm-config.h" 39 #include "llvm/InitializePasses.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 using namespace llvm; 45 46 #define DEBUG_TYPE "post-RA-sched" 47 48 STATISTIC(NumNoops, "Number of noops inserted"); 49 STATISTIC(NumStalls, "Number of pipeline stalls"); 50 STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies"); 51 52 // Post-RA scheduling is enabled with 53 // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to 54 // override the target. 55 static cl::opt<bool> 56 EnablePostRAScheduler("post-RA-scheduler", 57 cl::desc("Enable scheduling after register allocation"), 58 cl::init(false), cl::Hidden); 59 static cl::opt<std::string> 60 EnableAntiDepBreaking("break-anti-dependencies", 61 cl::desc("Break post-RA scheduling anti-dependencies: " 62 "\"critical\", \"all\", or \"none\""), 63 cl::init("none"), cl::Hidden); 64 65 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod 66 static cl::opt<int> 67 DebugDiv("postra-sched-debugdiv", 68 cl::desc("Debug control MBBs that are scheduled"), 69 cl::init(0), cl::Hidden); 70 static cl::opt<int> 71 DebugMod("postra-sched-debugmod", 72 cl::desc("Debug control MBBs that are scheduled"), 73 cl::init(0), cl::Hidden); 74 75 AntiDepBreaker::~AntiDepBreaker() { } 76 77 namespace { 78 class PostRAScheduler : public MachineFunctionPass { 79 const TargetInstrInfo *TII = nullptr; 80 RegisterClassInfo RegClassInfo; 81 82 public: 83 static char ID; 84 PostRAScheduler() : MachineFunctionPass(ID) {} 85 86 void getAnalysisUsage(AnalysisUsage &AU) const override { 87 AU.setPreservesCFG(); 88 AU.addRequired<AAResultsWrapperPass>(); 89 AU.addRequired<TargetPassConfig>(); 90 AU.addRequired<MachineDominatorTree>(); 91 AU.addPreserved<MachineDominatorTree>(); 92 AU.addRequired<MachineLoopInfo>(); 93 AU.addPreserved<MachineLoopInfo>(); 94 MachineFunctionPass::getAnalysisUsage(AU); 95 } 96 97 MachineFunctionProperties getRequiredProperties() const override { 98 return MachineFunctionProperties().set( 99 MachineFunctionProperties::Property::NoVRegs); 100 } 101 102 bool runOnMachineFunction(MachineFunction &Fn) override; 103 104 private: 105 bool enablePostRAScheduler( 106 const TargetSubtargetInfo &ST, CodeGenOpt::Level OptLevel, 107 TargetSubtargetInfo::AntiDepBreakMode &Mode, 108 TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const; 109 }; 110 char PostRAScheduler::ID = 0; 111 112 class SchedulePostRATDList : public ScheduleDAGInstrs { 113 /// AvailableQueue - The priority queue to use for the available SUnits. 114 /// 115 LatencyPriorityQueue AvailableQueue; 116 117 /// PendingQueue - This contains all of the instructions whose operands have 118 /// been issued, but their results are not ready yet (due to the latency of 119 /// the operation). Once the operands becomes available, the instruction is 120 /// added to the AvailableQueue. 121 std::vector<SUnit*> PendingQueue; 122 123 /// HazardRec - The hazard recognizer to use. 124 ScheduleHazardRecognizer *HazardRec; 125 126 /// AntiDepBreak - Anti-dependence breaking object, or NULL if none 127 AntiDepBreaker *AntiDepBreak; 128 129 /// AA - AliasAnalysis for making memory reference queries. 130 AliasAnalysis *AA; 131 132 /// The schedule. Null SUnit*'s represent noop instructions. 133 std::vector<SUnit*> Sequence; 134 135 /// Ordered list of DAG postprocessing steps. 136 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; 137 138 /// The index in BB of RegionEnd. 139 /// 140 /// This is the instruction number from the top of the current block, not 141 /// the SlotIndex. It is only used by the AntiDepBreaker. 142 unsigned EndIndex = 0; 143 144 public: 145 SchedulePostRATDList( 146 MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA, 147 const RegisterClassInfo &, 148 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode, 149 SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs); 150 151 ~SchedulePostRATDList() override; 152 153 /// startBlock - Initialize register live-range state for scheduling in 154 /// this block. 155 /// 156 void startBlock(MachineBasicBlock *BB) override; 157 158 // Set the index of RegionEnd within the current BB. 159 void setEndIndex(unsigned EndIdx) { EndIndex = EndIdx; } 160 161 /// Initialize the scheduler state for the next scheduling region. 162 void enterRegion(MachineBasicBlock *bb, 163 MachineBasicBlock::iterator begin, 164 MachineBasicBlock::iterator end, 165 unsigned regioninstrs) override; 166 167 /// Notify that the scheduler has finished scheduling the current region. 168 void exitRegion() override; 169 170 /// Schedule - Schedule the instruction range using list scheduling. 171 /// 172 void schedule() override; 173 174 void EmitSchedule(); 175 176 /// Observe - Update liveness information to account for the current 177 /// instruction, which will not be scheduled. 178 /// 179 void Observe(MachineInstr &MI, unsigned Count); 180 181 /// finishBlock - Clean up register live-range state. 182 /// 183 void finishBlock() override; 184 185 private: 186 /// Apply each ScheduleDAGMutation step in order. 187 void postprocessDAG(); 188 189 void ReleaseSucc(SUnit *SU, SDep *SuccEdge); 190 void ReleaseSuccessors(SUnit *SU); 191 void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle); 192 void ListScheduleTopDown(); 193 194 void dumpSchedule() const; 195 void emitNoop(unsigned CurCycle); 196 }; 197 } 198 199 char &llvm::PostRASchedulerID = PostRAScheduler::ID; 200 201 INITIALIZE_PASS(PostRAScheduler, DEBUG_TYPE, 202 "Post RA top-down list latency scheduler", false, false) 203 204 SchedulePostRATDList::SchedulePostRATDList( 205 MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA, 206 const RegisterClassInfo &RCI, 207 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode, 208 SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs) 209 : ScheduleDAGInstrs(MF, &MLI), AA(AA) { 210 211 const InstrItineraryData *InstrItins = 212 MF.getSubtarget().getInstrItineraryData(); 213 HazardRec = 214 MF.getSubtarget().getInstrInfo()->CreateTargetPostRAHazardRecognizer( 215 InstrItins, this); 216 MF.getSubtarget().getPostRAMutations(Mutations); 217 218 assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE || 219 MRI.tracksLiveness()) && 220 "Live-ins must be accurate for anti-dependency breaking"); 221 AntiDepBreak = ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) 222 ? createAggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) 223 : ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) 224 ? createCriticalAntiDepBreaker(MF, RCI) 225 : nullptr)); 226 } 227 228 SchedulePostRATDList::~SchedulePostRATDList() { 229 delete HazardRec; 230 delete AntiDepBreak; 231 } 232 233 /// Initialize state associated with the next scheduling region. 234 void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb, 235 MachineBasicBlock::iterator begin, 236 MachineBasicBlock::iterator end, 237 unsigned regioninstrs) { 238 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); 239 Sequence.clear(); 240 } 241 242 /// Print the schedule before exiting the region. 243 void SchedulePostRATDList::exitRegion() { 244 LLVM_DEBUG({ 245 dbgs() << "*** Final schedule ***\n"; 246 dumpSchedule(); 247 dbgs() << '\n'; 248 }); 249 ScheduleDAGInstrs::exitRegion(); 250 } 251 252 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 253 /// dumpSchedule - dump the scheduled Sequence. 254 LLVM_DUMP_METHOD void SchedulePostRATDList::dumpSchedule() const { 255 for (const SUnit *SU : Sequence) { 256 if (SU) 257 dumpNode(*SU); 258 else 259 dbgs() << "**** NOOP ****\n"; 260 } 261 } 262 #endif 263 264 bool PostRAScheduler::enablePostRAScheduler( 265 const TargetSubtargetInfo &ST, 266 CodeGenOpt::Level OptLevel, 267 TargetSubtargetInfo::AntiDepBreakMode &Mode, 268 TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const { 269 Mode = ST.getAntiDepBreakMode(); 270 ST.getCriticalPathRCs(CriticalPathRCs); 271 272 // Check for explicit enable/disable of post-ra scheduling. 273 if (EnablePostRAScheduler.getPosition() > 0) 274 return EnablePostRAScheduler; 275 276 return ST.enablePostRAScheduler() && 277 OptLevel >= ST.getOptLevelToEnablePostRAScheduler(); 278 } 279 280 bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) { 281 if (skipFunction(Fn.getFunction())) 282 return false; 283 284 TII = Fn.getSubtarget().getInstrInfo(); 285 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); 286 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 287 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 288 289 RegClassInfo.runOnMachineFunction(Fn); 290 291 TargetSubtargetInfo::AntiDepBreakMode AntiDepMode = 292 TargetSubtargetInfo::ANTIDEP_NONE; 293 SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs; 294 295 // Check that post-RA scheduling is enabled for this target. 296 // This may upgrade the AntiDepMode. 297 if (!enablePostRAScheduler(Fn.getSubtarget(), PassConfig->getOptLevel(), 298 AntiDepMode, CriticalPathRCs)) 299 return false; 300 301 // Check for antidep breaking override... 302 if (EnableAntiDepBreaking.getPosition() > 0) { 303 AntiDepMode = (EnableAntiDepBreaking == "all") 304 ? TargetSubtargetInfo::ANTIDEP_ALL 305 : ((EnableAntiDepBreaking == "critical") 306 ? TargetSubtargetInfo::ANTIDEP_CRITICAL 307 : TargetSubtargetInfo::ANTIDEP_NONE); 308 } 309 310 LLVM_DEBUG(dbgs() << "PostRAScheduler\n"); 311 312 SchedulePostRATDList Scheduler(Fn, MLI, AA, RegClassInfo, AntiDepMode, 313 CriticalPathRCs); 314 315 // Loop over all of the basic blocks 316 for (auto &MBB : Fn) { 317 #ifndef NDEBUG 318 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod 319 if (DebugDiv > 0) { 320 static int bbcnt = 0; 321 if (bbcnt++ % DebugDiv != DebugMod) 322 continue; 323 dbgs() << "*** DEBUG scheduling " << Fn.getName() << ":" 324 << printMBBReference(MBB) << " ***\n"; 325 } 326 #endif 327 328 // Initialize register live-range state for scheduling in this block. 329 Scheduler.startBlock(&MBB); 330 331 // Schedule each sequence of instructions not interrupted by a label 332 // or anything else that effectively needs to shut down scheduling. 333 MachineBasicBlock::iterator Current = MBB.end(); 334 unsigned Count = MBB.size(), CurrentCount = Count; 335 for (MachineBasicBlock::iterator I = Current; I != MBB.begin();) { 336 MachineInstr &MI = *std::prev(I); 337 --Count; 338 // Calls are not scheduling boundaries before register allocation, but 339 // post-ra we don't gain anything by scheduling across calls since we 340 // don't need to worry about register pressure. 341 if (MI.isCall() || TII->isSchedulingBoundary(MI, &MBB, Fn)) { 342 Scheduler.enterRegion(&MBB, I, Current, CurrentCount - Count); 343 Scheduler.setEndIndex(CurrentCount); 344 Scheduler.schedule(); 345 Scheduler.exitRegion(); 346 Scheduler.EmitSchedule(); 347 Current = &MI; 348 CurrentCount = Count; 349 Scheduler.Observe(MI, CurrentCount); 350 } 351 I = MI; 352 if (MI.isBundle()) 353 Count -= MI.getBundleSize(); 354 } 355 assert(Count == 0 && "Instruction count mismatch!"); 356 assert((MBB.begin() == Current || CurrentCount != 0) && 357 "Instruction count mismatch!"); 358 Scheduler.enterRegion(&MBB, MBB.begin(), Current, CurrentCount); 359 Scheduler.setEndIndex(CurrentCount); 360 Scheduler.schedule(); 361 Scheduler.exitRegion(); 362 Scheduler.EmitSchedule(); 363 364 // Clean up register live-range state. 365 Scheduler.finishBlock(); 366 367 // Update register kills 368 Scheduler.fixupKills(MBB); 369 } 370 371 return true; 372 } 373 374 /// StartBlock - Initialize register live-range state for scheduling in 375 /// this block. 376 /// 377 void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) { 378 // Call the superclass. 379 ScheduleDAGInstrs::startBlock(BB); 380 381 // Reset the hazard recognizer and anti-dep breaker. 382 HazardRec->Reset(); 383 if (AntiDepBreak) 384 AntiDepBreak->StartBlock(BB); 385 } 386 387 /// Schedule - Schedule the instruction range using list scheduling. 388 /// 389 void SchedulePostRATDList::schedule() { 390 // Build the scheduling graph. 391 buildSchedGraph(AA); 392 393 if (AntiDepBreak) { 394 unsigned Broken = 395 AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd, 396 EndIndex, DbgValues); 397 398 if (Broken != 0) { 399 // We made changes. Update the dependency graph. 400 // Theoretically we could update the graph in place: 401 // When a live range is changed to use a different register, remove 402 // the def's anti-dependence *and* output-dependence edges due to 403 // that register, and add new anti-dependence and output-dependence 404 // edges based on the next live range of the register. 405 ScheduleDAG::clearDAG(); 406 buildSchedGraph(AA); 407 408 NumFixedAnti += Broken; 409 } 410 } 411 412 postprocessDAG(); 413 414 LLVM_DEBUG(dbgs() << "********** List Scheduling **********\n"); 415 LLVM_DEBUG(dump()); 416 417 AvailableQueue.initNodes(SUnits); 418 ListScheduleTopDown(); 419 AvailableQueue.releaseState(); 420 } 421 422 /// Observe - Update liveness information to account for the current 423 /// instruction, which will not be scheduled. 424 /// 425 void SchedulePostRATDList::Observe(MachineInstr &MI, unsigned Count) { 426 if (AntiDepBreak) 427 AntiDepBreak->Observe(MI, Count, EndIndex); 428 } 429 430 /// FinishBlock - Clean up register live-range state. 431 /// 432 void SchedulePostRATDList::finishBlock() { 433 if (AntiDepBreak) 434 AntiDepBreak->FinishBlock(); 435 436 // Call the superclass. 437 ScheduleDAGInstrs::finishBlock(); 438 } 439 440 /// Apply each ScheduleDAGMutation step in order. 441 void SchedulePostRATDList::postprocessDAG() { 442 for (auto &M : Mutations) 443 M->apply(this); 444 } 445 446 //===----------------------------------------------------------------------===// 447 // Top-Down Scheduling 448 //===----------------------------------------------------------------------===// 449 450 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to 451 /// the PendingQueue if the count reaches zero. 452 void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) { 453 SUnit *SuccSU = SuccEdge->getSUnit(); 454 455 if (SuccEdge->isWeak()) { 456 --SuccSU->WeakPredsLeft; 457 return; 458 } 459 #ifndef NDEBUG 460 if (SuccSU->NumPredsLeft == 0) { 461 dbgs() << "*** Scheduling failed! ***\n"; 462 dumpNode(*SuccSU); 463 dbgs() << " has been released too many times!\n"; 464 llvm_unreachable(nullptr); 465 } 466 #endif 467 --SuccSU->NumPredsLeft; 468 469 // Standard scheduler algorithms will recompute the depth of the successor 470 // here as such: 471 // SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency()); 472 // 473 // However, we lazily compute node depth instead. Note that 474 // ScheduleNodeTopDown has already updated the depth of this node which causes 475 // all descendents to be marked dirty. Setting the successor depth explicitly 476 // here would cause depth to be recomputed for all its ancestors. If the 477 // successor is not yet ready (because of a transitively redundant edge) then 478 // this causes depth computation to be quadratic in the size of the DAG. 479 480 // If all the node's predecessors are scheduled, this node is ready 481 // to be scheduled. Ignore the special ExitSU node. 482 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) 483 PendingQueue.push_back(SuccSU); 484 } 485 486 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors. 487 void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) { 488 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 489 I != E; ++I) { 490 ReleaseSucc(SU, &*I); 491 } 492 } 493 494 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending 495 /// count of its successors. If a successor pending count is zero, add it to 496 /// the Available queue. 497 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { 498 LLVM_DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: "); 499 LLVM_DEBUG(dumpNode(*SU)); 500 501 Sequence.push_back(SU); 502 assert(CurCycle >= SU->getDepth() && 503 "Node scheduled above its depth!"); 504 SU->setDepthToAtLeast(CurCycle); 505 506 ReleaseSuccessors(SU); 507 SU->isScheduled = true; 508 AvailableQueue.scheduledNode(SU); 509 } 510 511 /// emitNoop - Add a noop to the current instruction sequence. 512 void SchedulePostRATDList::emitNoop(unsigned CurCycle) { 513 LLVM_DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n'); 514 HazardRec->EmitNoop(); 515 Sequence.push_back(nullptr); // NULL here means noop 516 ++NumNoops; 517 } 518 519 /// ListScheduleTopDown - The main loop of list scheduling for top-down 520 /// schedulers. 521 void SchedulePostRATDList::ListScheduleTopDown() { 522 unsigned CurCycle = 0; 523 524 // We're scheduling top-down but we're visiting the regions in 525 // bottom-up order, so we don't know the hazards at the start of a 526 // region. So assume no hazards (this should usually be ok as most 527 // blocks are a single region). 528 HazardRec->Reset(); 529 530 // Release any successors of the special Entry node. 531 ReleaseSuccessors(&EntrySU); 532 533 // Add all leaves to Available queue. 534 for (SUnit &SUnit : SUnits) { 535 // It is available if it has no predecessors. 536 if (!SUnit.NumPredsLeft && !SUnit.isAvailable) { 537 AvailableQueue.push(&SUnit); 538 SUnit.isAvailable = true; 539 } 540 } 541 542 // In any cycle where we can't schedule any instructions, we must 543 // stall or emit a noop, depending on the target. 544 bool CycleHasInsts = false; 545 546 // While Available queue is not empty, grab the node with the highest 547 // priority. If it is not ready put it back. Schedule the node. 548 std::vector<SUnit*> NotReady; 549 Sequence.reserve(SUnits.size()); 550 while (!AvailableQueue.empty() || !PendingQueue.empty()) { 551 // Check to see if any of the pending instructions are ready to issue. If 552 // so, add them to the available queue. 553 unsigned MinDepth = ~0u; 554 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) { 555 if (PendingQueue[i]->getDepth() <= CurCycle) { 556 AvailableQueue.push(PendingQueue[i]); 557 PendingQueue[i]->isAvailable = true; 558 PendingQueue[i] = PendingQueue.back(); 559 PendingQueue.pop_back(); 560 --i; --e; 561 } else if (PendingQueue[i]->getDepth() < MinDepth) 562 MinDepth = PendingQueue[i]->getDepth(); 563 } 564 565 LLVM_DEBUG(dbgs() << "\n*** Examining Available\n"; 566 AvailableQueue.dump(this)); 567 568 SUnit *FoundSUnit = nullptr, *NotPreferredSUnit = nullptr; 569 bool HasNoopHazards = false; 570 while (!AvailableQueue.empty()) { 571 SUnit *CurSUnit = AvailableQueue.pop(); 572 573 ScheduleHazardRecognizer::HazardType HT = 574 HazardRec->getHazardType(CurSUnit, 0/*no stalls*/); 575 if (HT == ScheduleHazardRecognizer::NoHazard) { 576 if (HazardRec->ShouldPreferAnother(CurSUnit)) { 577 if (!NotPreferredSUnit) { 578 // If this is the first non-preferred node for this cycle, then 579 // record it and continue searching for a preferred node. If this 580 // is not the first non-preferred node, then treat it as though 581 // there had been a hazard. 582 NotPreferredSUnit = CurSUnit; 583 continue; 584 } 585 } else { 586 FoundSUnit = CurSUnit; 587 break; 588 } 589 } 590 591 // Remember if this is a noop hazard. 592 HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard; 593 594 NotReady.push_back(CurSUnit); 595 } 596 597 // If we have a non-preferred node, push it back onto the available list. 598 // If we did not find a preferred node, then schedule this first 599 // non-preferred node. 600 if (NotPreferredSUnit) { 601 if (!FoundSUnit) { 602 LLVM_DEBUG( 603 dbgs() << "*** Will schedule a non-preferred instruction...\n"); 604 FoundSUnit = NotPreferredSUnit; 605 } else { 606 AvailableQueue.push(NotPreferredSUnit); 607 } 608 609 NotPreferredSUnit = nullptr; 610 } 611 612 // Add the nodes that aren't ready back onto the available list. 613 if (!NotReady.empty()) { 614 AvailableQueue.push_all(NotReady); 615 NotReady.clear(); 616 } 617 618 // If we found a node to schedule... 619 if (FoundSUnit) { 620 // If we need to emit noops prior to this instruction, then do so. 621 unsigned NumPreNoops = HazardRec->PreEmitNoops(FoundSUnit); 622 for (unsigned i = 0; i != NumPreNoops; ++i) 623 emitNoop(CurCycle); 624 625 // ... schedule the node... 626 ScheduleNodeTopDown(FoundSUnit, CurCycle); 627 HazardRec->EmitInstruction(FoundSUnit); 628 CycleHasInsts = true; 629 if (HazardRec->atIssueLimit()) { 630 LLVM_DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle 631 << '\n'); 632 HazardRec->AdvanceCycle(); 633 ++CurCycle; 634 CycleHasInsts = false; 635 } 636 } else { 637 if (CycleHasInsts) { 638 LLVM_DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n'); 639 HazardRec->AdvanceCycle(); 640 } else if (!HasNoopHazards) { 641 // Otherwise, we have a pipeline stall, but no other problem, 642 // just advance the current cycle and try again. 643 LLVM_DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n'); 644 HazardRec->AdvanceCycle(); 645 ++NumStalls; 646 } else { 647 // Otherwise, we have no instructions to issue and we have instructions 648 // that will fault if we don't do this right. This is the case for 649 // processors without pipeline interlocks and other cases. 650 emitNoop(CurCycle); 651 } 652 653 ++CurCycle; 654 CycleHasInsts = false; 655 } 656 } 657 658 #ifndef NDEBUG 659 unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false); 660 unsigned Noops = llvm::count(Sequence, nullptr); 661 assert(Sequence.size() - Noops == ScheduledNodes && 662 "The number of nodes scheduled doesn't match the expected number!"); 663 #endif // NDEBUG 664 } 665 666 // EmitSchedule - Emit the machine code in scheduled order. 667 void SchedulePostRATDList::EmitSchedule() { 668 RegionBegin = RegionEnd; 669 670 // If first instruction was a DBG_VALUE then put it back. 671 if (FirstDbgValue) 672 BB->splice(RegionEnd, BB, FirstDbgValue); 673 674 // Then re-insert them according to the given schedule. 675 for (unsigned i = 0, e = Sequence.size(); i != e; i++) { 676 if (SUnit *SU = Sequence[i]) 677 BB->splice(RegionEnd, BB, SU->getInstr()); 678 else 679 // Null SUnit* is a noop. 680 TII->insertNoop(*BB, RegionEnd); 681 682 // Update the Begin iterator, as the first instruction in the block 683 // may have been scheduled later. 684 if (i == 0) 685 RegionBegin = std::prev(RegionEnd); 686 } 687 688 // Reinsert any remaining debug_values. 689 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator 690 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { 691 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI); 692 MachineInstr *DbgValue = P.first; 693 MachineBasicBlock::iterator OrigPrivMI = P.second; 694 BB->splice(++OrigPrivMI, BB, DbgValue); 695 } 696 DbgValues.clear(); 697 FirstDbgValue = nullptr; 698 } 699