1 //===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Perform peephole optimizations on the machine code: 10 // 11 // - Optimize Extensions 12 // 13 // Optimization of sign / zero extension instructions. It may be extended to 14 // handle other instructions with similar properties. 15 // 16 // On some targets, some instructions, e.g. X86 sign / zero extension, may 17 // leave the source value in the lower part of the result. This optimization 18 // will replace some uses of the pre-extension value with uses of the 19 // sub-register of the results. 20 // 21 // - Optimize Comparisons 22 // 23 // Optimization of comparison instructions. For instance, in this code: 24 // 25 // sub r1, 1 26 // cmp r1, 0 27 // bz L1 28 // 29 // If the "sub" instruction all ready sets (or could be modified to set) the 30 // same flag that the "cmp" instruction sets and that "bz" uses, then we can 31 // eliminate the "cmp" instruction. 32 // 33 // Another instance, in this code: 34 // 35 // sub r1, r3 | sub r1, imm 36 // cmp r3, r1 or cmp r1, r3 | cmp r1, imm 37 // bge L1 38 // 39 // If the branch instruction can use flag from "sub", then we can replace 40 // "sub" with "subs" and eliminate the "cmp" instruction. 41 // 42 // - Optimize Loads: 43 // 44 // Loads that can be folded into a later instruction. A load is foldable 45 // if it loads to virtual registers and the virtual register defined has 46 // a single use. 47 // 48 // - Optimize Copies and Bitcast (more generally, target specific copies): 49 // 50 // Rewrite copies and bitcasts to avoid cross register bank copies 51 // when possible. 52 // E.g., Consider the following example, where capital and lower 53 // letters denote different register file: 54 // b = copy A <-- cross-bank copy 55 // C = copy b <-- cross-bank copy 56 // => 57 // b = copy A <-- cross-bank copy 58 // C = copy A <-- same-bank copy 59 // 60 // E.g., for bitcast: 61 // b = bitcast A <-- cross-bank copy 62 // C = bitcast b <-- cross-bank copy 63 // => 64 // b = bitcast A <-- cross-bank copy 65 // C = copy A <-- same-bank copy 66 //===----------------------------------------------------------------------===// 67 68 #include "llvm/ADT/DenseMap.h" 69 #include "llvm/ADT/Optional.h" 70 #include "llvm/ADT/SmallPtrSet.h" 71 #include "llvm/ADT/SmallSet.h" 72 #include "llvm/ADT/SmallVector.h" 73 #include "llvm/ADT/Statistic.h" 74 #include "llvm/CodeGen/MachineBasicBlock.h" 75 #include "llvm/CodeGen/MachineDominators.h" 76 #include "llvm/CodeGen/MachineFunction.h" 77 #include "llvm/CodeGen/MachineFunctionPass.h" 78 #include "llvm/CodeGen/MachineInstr.h" 79 #include "llvm/CodeGen/MachineInstrBuilder.h" 80 #include "llvm/CodeGen/MachineLoopInfo.h" 81 #include "llvm/CodeGen/MachineOperand.h" 82 #include "llvm/CodeGen/MachineRegisterInfo.h" 83 #include "llvm/CodeGen/TargetInstrInfo.h" 84 #include "llvm/CodeGen/TargetOpcodes.h" 85 #include "llvm/CodeGen/TargetRegisterInfo.h" 86 #include "llvm/CodeGen/TargetSubtargetInfo.h" 87 #include "llvm/InitializePasses.h" 88 #include "llvm/MC/LaneBitmask.h" 89 #include "llvm/MC/MCInstrDesc.h" 90 #include "llvm/Pass.h" 91 #include "llvm/Support/CommandLine.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/ErrorHandling.h" 94 #include "llvm/Support/raw_ostream.h" 95 #include <cassert> 96 #include <cstdint> 97 #include <memory> 98 #include <utility> 99 100 using namespace llvm; 101 using RegSubRegPair = TargetInstrInfo::RegSubRegPair; 102 using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx; 103 104 #define DEBUG_TYPE "peephole-opt" 105 106 // Optimize Extensions 107 static cl::opt<bool> 108 Aggressive("aggressive-ext-opt", cl::Hidden, 109 cl::desc("Aggressive extension optimization")); 110 111 static cl::opt<bool> 112 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false), 113 cl::desc("Disable the peephole optimizer")); 114 115 /// Specifiy whether or not the value tracking looks through 116 /// complex instructions. When this is true, the value tracker 117 /// bails on everything that is not a copy or a bitcast. 118 static cl::opt<bool> 119 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false), 120 cl::desc("Disable advanced copy optimization")); 121 122 static cl::opt<bool> DisableNAPhysCopyOpt( 123 "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false), 124 cl::desc("Disable non-allocatable physical register copy optimization")); 125 126 // Limit the number of PHI instructions to process 127 // in PeepholeOptimizer::getNextSource. 128 static cl::opt<unsigned> RewritePHILimit( 129 "rewrite-phi-limit", cl::Hidden, cl::init(10), 130 cl::desc("Limit the length of PHI chains to lookup")); 131 132 // Limit the length of recurrence chain when evaluating the benefit of 133 // commuting operands. 134 static cl::opt<unsigned> MaxRecurrenceChain( 135 "recurrence-chain-limit", cl::Hidden, cl::init(3), 136 cl::desc("Maximum length of recurrence chain when evaluating the benefit " 137 "of commuting operands")); 138 139 140 STATISTIC(NumReuse, "Number of extension results reused"); 141 STATISTIC(NumCmps, "Number of compares eliminated"); 142 STATISTIC(NumImmFold, "Number of move immediate folded"); 143 STATISTIC(NumLoadFold, "Number of loads folded"); 144 STATISTIC(NumSelects, "Number of selects optimized"); 145 STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized"); 146 STATISTIC(NumRewrittenCopies, "Number of copies rewritten"); 147 STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed"); 148 149 namespace { 150 151 class ValueTrackerResult; 152 class RecurrenceInstr; 153 154 class PeepholeOptimizer : public MachineFunctionPass { 155 const TargetInstrInfo *TII; 156 const TargetRegisterInfo *TRI; 157 MachineRegisterInfo *MRI; 158 MachineDominatorTree *DT; // Machine dominator tree 159 MachineLoopInfo *MLI; 160 161 public: 162 static char ID; // Pass identification 163 164 PeepholeOptimizer() : MachineFunctionPass(ID) { 165 initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry()); 166 } 167 168 bool runOnMachineFunction(MachineFunction &MF) override; 169 170 void getAnalysisUsage(AnalysisUsage &AU) const override { 171 AU.setPreservesCFG(); 172 MachineFunctionPass::getAnalysisUsage(AU); 173 AU.addRequired<MachineLoopInfo>(); 174 AU.addPreserved<MachineLoopInfo>(); 175 if (Aggressive) { 176 AU.addRequired<MachineDominatorTree>(); 177 AU.addPreserved<MachineDominatorTree>(); 178 } 179 } 180 181 /// Track Def -> Use info used for rewriting copies. 182 using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>; 183 184 /// Sequence of instructions that formulate recurrence cycle. 185 using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>; 186 187 private: 188 bool optimizeCmpInstr(MachineInstr &MI); 189 bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB, 190 SmallPtrSetImpl<MachineInstr*> &LocalMIs); 191 bool optimizeSelect(MachineInstr &MI, 192 SmallPtrSetImpl<MachineInstr *> &LocalMIs); 193 bool optimizeCondBranch(MachineInstr &MI); 194 bool optimizeCoalescableCopy(MachineInstr &MI); 195 bool optimizeUncoalescableCopy(MachineInstr &MI, 196 SmallPtrSetImpl<MachineInstr *> &LocalMIs); 197 bool optimizeRecurrence(MachineInstr &PHI); 198 bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap); 199 bool isMoveImmediate(MachineInstr &MI, 200 SmallSet<unsigned, 4> &ImmDefRegs, 201 DenseMap<unsigned, MachineInstr*> &ImmDefMIs); 202 bool foldImmediate(MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs, 203 DenseMap<unsigned, MachineInstr*> &ImmDefMIs); 204 205 /// Finds recurrence cycles, but only ones that formulated around 206 /// a def operand and a use operand that are tied. If there is a use 207 /// operand commutable with the tied use operand, find recurrence cycle 208 /// along that operand as well. 209 bool findTargetRecurrence(unsigned Reg, 210 const SmallSet<unsigned, 2> &TargetReg, 211 RecurrenceCycle &RC); 212 213 /// If copy instruction \p MI is a virtual register copy, track it in 214 /// the set \p CopySrcRegs and \p CopyMIs. If this virtual register was 215 /// previously seen as a copy, replace the uses of this copy with the 216 /// previously seen copy's destination register. 217 bool foldRedundantCopy(MachineInstr &MI, 218 SmallSet<unsigned, 4> &CopySrcRegs, 219 DenseMap<unsigned, MachineInstr *> &CopyMIs); 220 221 /// Is the register \p Reg a non-allocatable physical register? 222 bool isNAPhysCopy(unsigned Reg); 223 224 /// If copy instruction \p MI is a non-allocatable virtual<->physical 225 /// register copy, track it in the \p NAPhysToVirtMIs map. If this 226 /// non-allocatable physical register was previously copied to a virtual 227 /// registered and hasn't been clobbered, the virt->phys copy can be 228 /// deleted. 229 bool foldRedundantNAPhysCopy(MachineInstr &MI, 230 DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs); 231 232 bool isLoadFoldable(MachineInstr &MI, 233 SmallSet<unsigned, 16> &FoldAsLoadDefCandidates); 234 235 /// Check whether \p MI is understood by the register coalescer 236 /// but may require some rewriting. 237 bool isCoalescableCopy(const MachineInstr &MI) { 238 // SubregToRegs are not interesting, because they are already register 239 // coalescer friendly. 240 return MI.isCopy() || (!DisableAdvCopyOpt && 241 (MI.isRegSequence() || MI.isInsertSubreg() || 242 MI.isExtractSubreg())); 243 } 244 245 /// Check whether \p MI is a copy like instruction that is 246 /// not recognized by the register coalescer. 247 bool isUncoalescableCopy(const MachineInstr &MI) { 248 return MI.isBitcast() || 249 (!DisableAdvCopyOpt && 250 (MI.isRegSequenceLike() || MI.isInsertSubregLike() || 251 MI.isExtractSubregLike())); 252 } 253 254 MachineInstr &rewriteSource(MachineInstr &CopyLike, 255 RegSubRegPair Def, RewriteMapTy &RewriteMap); 256 }; 257 258 /// Helper class to hold instructions that are inside recurrence cycles. 259 /// The recurrence cycle is formulated around 1) a def operand and its 260 /// tied use operand, or 2) a def operand and a use operand that is commutable 261 /// with another use operand which is tied to the def operand. In the latter 262 /// case, index of the tied use operand and the commutable use operand are 263 /// maintained with CommutePair. 264 class RecurrenceInstr { 265 public: 266 using IndexPair = std::pair<unsigned, unsigned>; 267 268 RecurrenceInstr(MachineInstr *MI) : MI(MI) {} 269 RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2) 270 : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {} 271 272 MachineInstr *getMI() const { return MI; } 273 Optional<IndexPair> getCommutePair() const { return CommutePair; } 274 275 private: 276 MachineInstr *MI; 277 Optional<IndexPair> CommutePair; 278 }; 279 280 /// Helper class to hold a reply for ValueTracker queries. 281 /// Contains the returned sources for a given search and the instructions 282 /// where the sources were tracked from. 283 class ValueTrackerResult { 284 private: 285 /// Track all sources found by one ValueTracker query. 286 SmallVector<RegSubRegPair, 2> RegSrcs; 287 288 /// Instruction using the sources in 'RegSrcs'. 289 const MachineInstr *Inst = nullptr; 290 291 public: 292 ValueTrackerResult() = default; 293 294 ValueTrackerResult(unsigned Reg, unsigned SubReg) { 295 addSource(Reg, SubReg); 296 } 297 298 bool isValid() const { return getNumSources() > 0; } 299 300 void setInst(const MachineInstr *I) { Inst = I; } 301 const MachineInstr *getInst() const { return Inst; } 302 303 void clear() { 304 RegSrcs.clear(); 305 Inst = nullptr; 306 } 307 308 void addSource(unsigned SrcReg, unsigned SrcSubReg) { 309 RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg)); 310 } 311 312 void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) { 313 assert(Idx < getNumSources() && "Reg pair source out of index"); 314 RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg); 315 } 316 317 int getNumSources() const { return RegSrcs.size(); } 318 319 RegSubRegPair getSrc(int Idx) const { 320 return RegSrcs[Idx]; 321 } 322 323 unsigned getSrcReg(int Idx) const { 324 assert(Idx < getNumSources() && "Reg source out of index"); 325 return RegSrcs[Idx].Reg; 326 } 327 328 unsigned getSrcSubReg(int Idx) const { 329 assert(Idx < getNumSources() && "SubReg source out of index"); 330 return RegSrcs[Idx].SubReg; 331 } 332 333 bool operator==(const ValueTrackerResult &Other) { 334 if (Other.getInst() != getInst()) 335 return false; 336 337 if (Other.getNumSources() != getNumSources()) 338 return false; 339 340 for (int i = 0, e = Other.getNumSources(); i != e; ++i) 341 if (Other.getSrcReg(i) != getSrcReg(i) || 342 Other.getSrcSubReg(i) != getSrcSubReg(i)) 343 return false; 344 return true; 345 } 346 }; 347 348 /// Helper class to track the possible sources of a value defined by 349 /// a (chain of) copy related instructions. 350 /// Given a definition (instruction and definition index), this class 351 /// follows the use-def chain to find successive suitable sources. 352 /// The given source can be used to rewrite the definition into 353 /// def = COPY src. 354 /// 355 /// For instance, let us consider the following snippet: 356 /// v0 = 357 /// v2 = INSERT_SUBREG v1, v0, sub0 358 /// def = COPY v2.sub0 359 /// 360 /// Using a ValueTracker for def = COPY v2.sub0 will give the following 361 /// suitable sources: 362 /// v2.sub0 and v0. 363 /// Then, def can be rewritten into def = COPY v0. 364 class ValueTracker { 365 private: 366 /// The current point into the use-def chain. 367 const MachineInstr *Def = nullptr; 368 369 /// The index of the definition in Def. 370 unsigned DefIdx = 0; 371 372 /// The sub register index of the definition. 373 unsigned DefSubReg; 374 375 /// The register where the value can be found. 376 unsigned Reg; 377 378 /// MachineRegisterInfo used to perform tracking. 379 const MachineRegisterInfo &MRI; 380 381 /// Optional TargetInstrInfo used to perform some complex tracking. 382 const TargetInstrInfo *TII; 383 384 /// Dispatcher to the right underlying implementation of getNextSource. 385 ValueTrackerResult getNextSourceImpl(); 386 387 /// Specialized version of getNextSource for Copy instructions. 388 ValueTrackerResult getNextSourceFromCopy(); 389 390 /// Specialized version of getNextSource for Bitcast instructions. 391 ValueTrackerResult getNextSourceFromBitcast(); 392 393 /// Specialized version of getNextSource for RegSequence instructions. 394 ValueTrackerResult getNextSourceFromRegSequence(); 395 396 /// Specialized version of getNextSource for InsertSubreg instructions. 397 ValueTrackerResult getNextSourceFromInsertSubreg(); 398 399 /// Specialized version of getNextSource for ExtractSubreg instructions. 400 ValueTrackerResult getNextSourceFromExtractSubreg(); 401 402 /// Specialized version of getNextSource for SubregToReg instructions. 403 ValueTrackerResult getNextSourceFromSubregToReg(); 404 405 /// Specialized version of getNextSource for PHI instructions. 406 ValueTrackerResult getNextSourceFromPHI(); 407 408 public: 409 /// Create a ValueTracker instance for the value defined by \p Reg. 410 /// \p DefSubReg represents the sub register index the value tracker will 411 /// track. It does not need to match the sub register index used in the 412 /// definition of \p Reg. 413 /// If \p Reg is a physical register, a value tracker constructed with 414 /// this constructor will not find any alternative source. 415 /// Indeed, when \p Reg is a physical register that constructor does not 416 /// know which definition of \p Reg it should track. 417 /// Use the next constructor to track a physical register. 418 ValueTracker(unsigned Reg, unsigned DefSubReg, 419 const MachineRegisterInfo &MRI, 420 const TargetInstrInfo *TII = nullptr) 421 : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) { 422 if (!Register::isPhysicalRegister(Reg)) { 423 Def = MRI.getVRegDef(Reg); 424 DefIdx = MRI.def_begin(Reg).getOperandNo(); 425 } 426 } 427 428 /// Following the use-def chain, get the next available source 429 /// for the tracked value. 430 /// \return A ValueTrackerResult containing a set of registers 431 /// and sub registers with tracked values. A ValueTrackerResult with 432 /// an empty set of registers means no source was found. 433 ValueTrackerResult getNextSource(); 434 }; 435 436 } // end anonymous namespace 437 438 char PeepholeOptimizer::ID = 0; 439 440 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID; 441 442 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE, 443 "Peephole Optimizations", false, false) 444 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 445 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 446 INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE, 447 "Peephole Optimizations", false, false) 448 449 /// If instruction is a copy-like instruction, i.e. it reads a single register 450 /// and writes a single register and it does not modify the source, and if the 451 /// source value is preserved as a sub-register of the result, then replace all 452 /// reachable uses of the source with the subreg of the result. 453 /// 454 /// Do not generate an EXTRACT that is used only in a debug use, as this changes 455 /// the code. Since this code does not currently share EXTRACTs, just ignore all 456 /// debug uses. 457 bool PeepholeOptimizer:: 458 optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB, 459 SmallPtrSetImpl<MachineInstr*> &LocalMIs) { 460 Register SrcReg, DstReg; 461 unsigned SubIdx; 462 if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx)) 463 return false; 464 465 if (DstReg.isPhysical() || SrcReg.isPhysical()) 466 return false; 467 468 if (MRI->hasOneNonDBGUse(SrcReg)) 469 // No other uses. 470 return false; 471 472 // Ensure DstReg can get a register class that actually supports 473 // sub-registers. Don't change the class until we commit. 474 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 475 DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx); 476 if (!DstRC) 477 return false; 478 479 // The ext instr may be operating on a sub-register of SrcReg as well. 480 // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit 481 // register. 482 // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of 483 // SrcReg:SubIdx should be replaced. 484 bool UseSrcSubIdx = 485 TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr; 486 487 // The source has other uses. See if we can replace the other uses with use of 488 // the result of the extension. 489 SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs; 490 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) 491 ReachedBBs.insert(UI.getParent()); 492 493 // Uses that are in the same BB of uses of the result of the instruction. 494 SmallVector<MachineOperand*, 8> Uses; 495 496 // Uses that the result of the instruction can reach. 497 SmallVector<MachineOperand*, 8> ExtendedUses; 498 499 bool ExtendLife = true; 500 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) { 501 MachineInstr *UseMI = UseMO.getParent(); 502 if (UseMI == &MI) 503 continue; 504 505 if (UseMI->isPHI()) { 506 ExtendLife = false; 507 continue; 508 } 509 510 // Only accept uses of SrcReg:SubIdx. 511 if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx) 512 continue; 513 514 // It's an error to translate this: 515 // 516 // %reg1025 = <sext> %reg1024 517 // ... 518 // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4 519 // 520 // into this: 521 // 522 // %reg1025 = <sext> %reg1024 523 // ... 524 // %reg1027 = COPY %reg1025:4 525 // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4 526 // 527 // The problem here is that SUBREG_TO_REG is there to assert that an 528 // implicit zext occurs. It doesn't insert a zext instruction. If we allow 529 // the COPY here, it will give us the value after the <sext>, not the 530 // original value of %reg1024 before <sext>. 531 if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG) 532 continue; 533 534 MachineBasicBlock *UseMBB = UseMI->getParent(); 535 if (UseMBB == &MBB) { 536 // Local uses that come after the extension. 537 if (!LocalMIs.count(UseMI)) 538 Uses.push_back(&UseMO); 539 } else if (ReachedBBs.count(UseMBB)) { 540 // Non-local uses where the result of the extension is used. Always 541 // replace these unless it's a PHI. 542 Uses.push_back(&UseMO); 543 } else if (Aggressive && DT->dominates(&MBB, UseMBB)) { 544 // We may want to extend the live range of the extension result in order 545 // to replace these uses. 546 ExtendedUses.push_back(&UseMO); 547 } else { 548 // Both will be live out of the def MBB anyway. Don't extend live range of 549 // the extension result. 550 ExtendLife = false; 551 break; 552 } 553 } 554 555 if (ExtendLife && !ExtendedUses.empty()) 556 // Extend the liveness of the extension result. 557 Uses.append(ExtendedUses.begin(), ExtendedUses.end()); 558 559 // Now replace all uses. 560 bool Changed = false; 561 if (!Uses.empty()) { 562 SmallPtrSet<MachineBasicBlock*, 4> PHIBBs; 563 564 // Look for PHI uses of the extended result, we don't want to extend the 565 // liveness of a PHI input. It breaks all kinds of assumptions down 566 // stream. A PHI use is expected to be the kill of its source values. 567 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg)) 568 if (UI.isPHI()) 569 PHIBBs.insert(UI.getParent()); 570 571 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 572 for (unsigned i = 0, e = Uses.size(); i != e; ++i) { 573 MachineOperand *UseMO = Uses[i]; 574 MachineInstr *UseMI = UseMO->getParent(); 575 MachineBasicBlock *UseMBB = UseMI->getParent(); 576 if (PHIBBs.count(UseMBB)) 577 continue; 578 579 // About to add uses of DstReg, clear DstReg's kill flags. 580 if (!Changed) { 581 MRI->clearKillFlags(DstReg); 582 MRI->constrainRegClass(DstReg, DstRC); 583 } 584 585 Register NewVR = MRI->createVirtualRegister(RC); 586 MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(), 587 TII->get(TargetOpcode::COPY), NewVR) 588 .addReg(DstReg, 0, SubIdx); 589 // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set. 590 if (UseSrcSubIdx) { 591 Copy->getOperand(0).setSubReg(SubIdx); 592 Copy->getOperand(0).setIsUndef(); 593 } 594 UseMO->setReg(NewVR); 595 ++NumReuse; 596 Changed = true; 597 } 598 } 599 600 return Changed; 601 } 602 603 /// If the instruction is a compare and the previous instruction it's comparing 604 /// against already sets (or could be modified to set) the same flag as the 605 /// compare, then we can remove the comparison and use the flag from the 606 /// previous instruction. 607 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) { 608 // If this instruction is a comparison against zero and isn't comparing a 609 // physical register, we can try to optimize it. 610 Register SrcReg, SrcReg2; 611 int CmpMask, CmpValue; 612 if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) || 613 SrcReg.isPhysical() || SrcReg2.isPhysical()) 614 return false; 615 616 // Attempt to optimize the comparison instruction. 617 LLVM_DEBUG(dbgs() << "Attempting to optimize compare: " << MI); 618 if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) { 619 LLVM_DEBUG(dbgs() << " -> Successfully optimized compare!\n"); 620 ++NumCmps; 621 return true; 622 } 623 624 return false; 625 } 626 627 /// Optimize a select instruction. 628 bool PeepholeOptimizer::optimizeSelect(MachineInstr &MI, 629 SmallPtrSetImpl<MachineInstr *> &LocalMIs) { 630 unsigned TrueOp = 0; 631 unsigned FalseOp = 0; 632 bool Optimizable = false; 633 SmallVector<MachineOperand, 4> Cond; 634 if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable)) 635 return false; 636 if (!Optimizable) 637 return false; 638 if (!TII->optimizeSelect(MI, LocalMIs)) 639 return false; 640 LLVM_DEBUG(dbgs() << "Deleting select: " << MI); 641 MI.eraseFromParent(); 642 ++NumSelects; 643 return true; 644 } 645 646 /// Check if a simpler conditional branch can be generated. 647 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) { 648 return TII->optimizeCondBranch(MI); 649 } 650 651 /// Try to find the next source that share the same register file 652 /// for the value defined by \p Reg and \p SubReg. 653 /// When true is returned, the \p RewriteMap can be used by the client to 654 /// retrieve all Def -> Use along the way up to the next source. Any found 655 /// Use that is not itself a key for another entry, is the next source to 656 /// use. During the search for the next source, multiple sources can be found 657 /// given multiple incoming sources of a PHI instruction. In this case, we 658 /// look in each PHI source for the next source; all found next sources must 659 /// share the same register file as \p Reg and \p SubReg. The client should 660 /// then be capable to rewrite all intermediate PHIs to get the next source. 661 /// \return False if no alternative sources are available. True otherwise. 662 bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg, 663 RewriteMapTy &RewriteMap) { 664 // Do not try to find a new source for a physical register. 665 // So far we do not have any motivating example for doing that. 666 // Thus, instead of maintaining untested code, we will revisit that if 667 // that changes at some point. 668 Register Reg = RegSubReg.Reg; 669 if (Reg.isPhysical()) 670 return false; 671 const TargetRegisterClass *DefRC = MRI->getRegClass(Reg); 672 673 SmallVector<RegSubRegPair, 4> SrcToLook; 674 RegSubRegPair CurSrcPair = RegSubReg; 675 SrcToLook.push_back(CurSrcPair); 676 677 unsigned PHICount = 0; 678 do { 679 CurSrcPair = SrcToLook.pop_back_val(); 680 // As explained above, do not handle physical registers 681 if (Register::isPhysicalRegister(CurSrcPair.Reg)) 682 return false; 683 684 ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII); 685 686 // Follow the chain of copies until we find a more suitable source, a phi 687 // or have to abort. 688 while (true) { 689 ValueTrackerResult Res = ValTracker.getNextSource(); 690 // Abort at the end of a chain (without finding a suitable source). 691 if (!Res.isValid()) 692 return false; 693 694 // Insert the Def -> Use entry for the recently found source. 695 ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair); 696 if (CurSrcRes.isValid()) { 697 assert(CurSrcRes == Res && "ValueTrackerResult found must match"); 698 // An existent entry with multiple sources is a PHI cycle we must avoid. 699 // Otherwise it's an entry with a valid next source we already found. 700 if (CurSrcRes.getNumSources() > 1) { 701 LLVM_DEBUG(dbgs() 702 << "findNextSource: found PHI cycle, aborting...\n"); 703 return false; 704 } 705 break; 706 } 707 RewriteMap.insert(std::make_pair(CurSrcPair, Res)); 708 709 // ValueTrackerResult usually have one source unless it's the result from 710 // a PHI instruction. Add the found PHI edges to be looked up further. 711 unsigned NumSrcs = Res.getNumSources(); 712 if (NumSrcs > 1) { 713 PHICount++; 714 if (PHICount >= RewritePHILimit) { 715 LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n"); 716 return false; 717 } 718 719 for (unsigned i = 0; i < NumSrcs; ++i) 720 SrcToLook.push_back(Res.getSrc(i)); 721 break; 722 } 723 724 CurSrcPair = Res.getSrc(0); 725 // Do not extend the live-ranges of physical registers as they add 726 // constraints to the register allocator. Moreover, if we want to extend 727 // the live-range of a physical register, unlike SSA virtual register, 728 // we will have to check that they aren't redefine before the related use. 729 if (Register::isPhysicalRegister(CurSrcPair.Reg)) 730 return false; 731 732 // Keep following the chain if the value isn't any better yet. 733 const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg); 734 if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC, 735 CurSrcPair.SubReg)) 736 continue; 737 738 // We currently cannot deal with subreg operands on PHI instructions 739 // (see insertPHI()). 740 if (PHICount > 0 && CurSrcPair.SubReg != 0) 741 continue; 742 743 // We found a suitable source, and are done with this chain. 744 break; 745 } 746 } while (!SrcToLook.empty()); 747 748 // If we did not find a more suitable source, there is nothing to optimize. 749 return CurSrcPair.Reg != Reg; 750 } 751 752 /// Insert a PHI instruction with incoming edges \p SrcRegs that are 753 /// guaranteed to have the same register class. This is necessary whenever we 754 /// successfully traverse a PHI instruction and find suitable sources coming 755 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def 756 /// suitable to be used in a new COPY instruction. 757 static MachineInstr & 758 insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII, 759 const SmallVectorImpl<RegSubRegPair> &SrcRegs, 760 MachineInstr &OrigPHI) { 761 assert(!SrcRegs.empty() && "No sources to create a PHI instruction?"); 762 763 const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg); 764 // NewRC is only correct if no subregisters are involved. findNextSource() 765 // should have rejected those cases already. 766 assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand"); 767 Register NewVR = MRI.createVirtualRegister(NewRC); 768 MachineBasicBlock *MBB = OrigPHI.getParent(); 769 MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(), 770 TII.get(TargetOpcode::PHI), NewVR); 771 772 unsigned MBBOpIdx = 2; 773 for (const RegSubRegPair &RegPair : SrcRegs) { 774 MIB.addReg(RegPair.Reg, 0, RegPair.SubReg); 775 MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB()); 776 // Since we're extended the lifetime of RegPair.Reg, clear the 777 // kill flags to account for that and make RegPair.Reg reaches 778 // the new PHI. 779 MRI.clearKillFlags(RegPair.Reg); 780 MBBOpIdx += 2; 781 } 782 783 return *MIB; 784 } 785 786 namespace { 787 788 /// Interface to query instructions amenable to copy rewriting. 789 class Rewriter { 790 protected: 791 MachineInstr &CopyLike; 792 unsigned CurrentSrcIdx = 0; ///< The index of the source being rewritten. 793 public: 794 Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {} 795 virtual ~Rewriter() {} 796 797 /// Get the next rewritable source (SrcReg, SrcSubReg) and 798 /// the related value that it affects (DstReg, DstSubReg). 799 /// A source is considered rewritable if its register class and the 800 /// register class of the related DstReg may not be register 801 /// coalescer friendly. In other words, given a copy-like instruction 802 /// not all the arguments may be returned at rewritable source, since 803 /// some arguments are none to be register coalescer friendly. 804 /// 805 /// Each call of this method moves the current source to the next 806 /// rewritable source. 807 /// For instance, let CopyLike be the instruction to rewrite. 808 /// CopyLike has one definition and one source: 809 /// dst.dstSubIdx = CopyLike src.srcSubIdx. 810 /// 811 /// The first call will give the first rewritable source, i.e., 812 /// the only source this instruction has: 813 /// (SrcReg, SrcSubReg) = (src, srcSubIdx). 814 /// This source defines the whole definition, i.e., 815 /// (DstReg, DstSubReg) = (dst, dstSubIdx). 816 /// 817 /// The second and subsequent calls will return false, as there is only one 818 /// rewritable source. 819 /// 820 /// \return True if a rewritable source has been found, false otherwise. 821 /// The output arguments are valid if and only if true is returned. 822 virtual bool getNextRewritableSource(RegSubRegPair &Src, 823 RegSubRegPair &Dst) = 0; 824 825 /// Rewrite the current source with \p NewReg and \p NewSubReg if possible. 826 /// \return True if the rewriting was possible, false otherwise. 827 virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) = 0; 828 }; 829 830 /// Rewriter for COPY instructions. 831 class CopyRewriter : public Rewriter { 832 public: 833 CopyRewriter(MachineInstr &MI) : Rewriter(MI) { 834 assert(MI.isCopy() && "Expected copy instruction"); 835 } 836 virtual ~CopyRewriter() = default; 837 838 bool getNextRewritableSource(RegSubRegPair &Src, 839 RegSubRegPair &Dst) override { 840 // CurrentSrcIdx > 0 means this function has already been called. 841 if (CurrentSrcIdx > 0) 842 return false; 843 // This is the first call to getNextRewritableSource. 844 // Move the CurrentSrcIdx to remember that we made that call. 845 CurrentSrcIdx = 1; 846 // The rewritable source is the argument. 847 const MachineOperand &MOSrc = CopyLike.getOperand(1); 848 Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg()); 849 // What we track are the alternative sources of the definition. 850 const MachineOperand &MODef = CopyLike.getOperand(0); 851 Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); 852 return true; 853 } 854 855 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 856 if (CurrentSrcIdx != 1) 857 return false; 858 MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx); 859 MOSrc.setReg(NewReg); 860 MOSrc.setSubReg(NewSubReg); 861 return true; 862 } 863 }; 864 865 /// Helper class to rewrite uncoalescable copy like instructions 866 /// into new COPY (coalescable friendly) instructions. 867 class UncoalescableRewriter : public Rewriter { 868 unsigned NumDefs; ///< Number of defs in the bitcast. 869 870 public: 871 UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) { 872 NumDefs = MI.getDesc().getNumDefs(); 873 } 874 875 /// \see See Rewriter::getNextRewritableSource() 876 /// All such sources need to be considered rewritable in order to 877 /// rewrite a uncoalescable copy-like instruction. This method return 878 /// each definition that must be checked if rewritable. 879 bool getNextRewritableSource(RegSubRegPair &Src, 880 RegSubRegPair &Dst) override { 881 // Find the next non-dead definition and continue from there. 882 if (CurrentSrcIdx == NumDefs) 883 return false; 884 885 while (CopyLike.getOperand(CurrentSrcIdx).isDead()) { 886 ++CurrentSrcIdx; 887 if (CurrentSrcIdx == NumDefs) 888 return false; 889 } 890 891 // What we track are the alternative sources of the definition. 892 Src = RegSubRegPair(0, 0); 893 const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx); 894 Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); 895 896 CurrentSrcIdx++; 897 return true; 898 } 899 900 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 901 return false; 902 } 903 }; 904 905 /// Specialized rewriter for INSERT_SUBREG instruction. 906 class InsertSubregRewriter : public Rewriter { 907 public: 908 InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) { 909 assert(MI.isInsertSubreg() && "Invalid instruction"); 910 } 911 912 /// \see See Rewriter::getNextRewritableSource() 913 /// Here CopyLike has the following form: 914 /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx. 915 /// Src1 has the same register class has dst, hence, there is 916 /// nothing to rewrite. 917 /// Src2.src2SubIdx, may not be register coalescer friendly. 918 /// Therefore, the first call to this method returns: 919 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). 920 /// (DstReg, DstSubReg) = (dst, subIdx). 921 /// 922 /// Subsequence calls will return false. 923 bool getNextRewritableSource(RegSubRegPair &Src, 924 RegSubRegPair &Dst) override { 925 // If we already get the only source we can rewrite, return false. 926 if (CurrentSrcIdx == 2) 927 return false; 928 // We are looking at v2 = INSERT_SUBREG v0, v1, sub0. 929 CurrentSrcIdx = 2; 930 const MachineOperand &MOInsertedReg = CopyLike.getOperand(2); 931 Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg()); 932 const MachineOperand &MODef = CopyLike.getOperand(0); 933 934 // We want to track something that is compatible with the 935 // partial definition. 936 if (MODef.getSubReg()) 937 // Bail if we have to compose sub-register indices. 938 return false; 939 Dst = RegSubRegPair(MODef.getReg(), 940 (unsigned)CopyLike.getOperand(3).getImm()); 941 return true; 942 } 943 944 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 945 if (CurrentSrcIdx != 2) 946 return false; 947 // We are rewriting the inserted reg. 948 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); 949 MO.setReg(NewReg); 950 MO.setSubReg(NewSubReg); 951 return true; 952 } 953 }; 954 955 /// Specialized rewriter for EXTRACT_SUBREG instruction. 956 class ExtractSubregRewriter : public Rewriter { 957 const TargetInstrInfo &TII; 958 959 public: 960 ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII) 961 : Rewriter(MI), TII(TII) { 962 assert(MI.isExtractSubreg() && "Invalid instruction"); 963 } 964 965 /// \see Rewriter::getNextRewritableSource() 966 /// Here CopyLike has the following form: 967 /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx. 968 /// There is only one rewritable source: Src.subIdx, 969 /// which defines dst.dstSubIdx. 970 bool getNextRewritableSource(RegSubRegPair &Src, 971 RegSubRegPair &Dst) override { 972 // If we already get the only source we can rewrite, return false. 973 if (CurrentSrcIdx == 1) 974 return false; 975 // We are looking at v1 = EXTRACT_SUBREG v0, sub0. 976 CurrentSrcIdx = 1; 977 const MachineOperand &MOExtractedReg = CopyLike.getOperand(1); 978 // If we have to compose sub-register indices, bail out. 979 if (MOExtractedReg.getSubReg()) 980 return false; 981 982 Src = RegSubRegPair(MOExtractedReg.getReg(), 983 CopyLike.getOperand(2).getImm()); 984 985 // We want to track something that is compatible with the definition. 986 const MachineOperand &MODef = CopyLike.getOperand(0); 987 Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); 988 return true; 989 } 990 991 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 992 // The only source we can rewrite is the input register. 993 if (CurrentSrcIdx != 1) 994 return false; 995 996 CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg); 997 998 // If we find a source that does not require to extract something, 999 // rewrite the operation with a copy. 1000 if (!NewSubReg) { 1001 // Move the current index to an invalid position. 1002 // We do not want another call to this method to be able 1003 // to do any change. 1004 CurrentSrcIdx = -1; 1005 // Rewrite the operation as a COPY. 1006 // Get rid of the sub-register index. 1007 CopyLike.RemoveOperand(2); 1008 // Morph the operation into a COPY. 1009 CopyLike.setDesc(TII.get(TargetOpcode::COPY)); 1010 return true; 1011 } 1012 CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg); 1013 return true; 1014 } 1015 }; 1016 1017 /// Specialized rewriter for REG_SEQUENCE instruction. 1018 class RegSequenceRewriter : public Rewriter { 1019 public: 1020 RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) { 1021 assert(MI.isRegSequence() && "Invalid instruction"); 1022 } 1023 1024 /// \see Rewriter::getNextRewritableSource() 1025 /// Here CopyLike has the following form: 1026 /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2. 1027 /// Each call will return a different source, walking all the available 1028 /// source. 1029 /// 1030 /// The first call returns: 1031 /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx). 1032 /// (DstReg, DstSubReg) = (dst, subIdx1). 1033 /// 1034 /// The second call returns: 1035 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). 1036 /// (DstReg, DstSubReg) = (dst, subIdx2). 1037 /// 1038 /// And so on, until all the sources have been traversed, then 1039 /// it returns false. 1040 bool getNextRewritableSource(RegSubRegPair &Src, 1041 RegSubRegPair &Dst) override { 1042 // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc. 1043 1044 // If this is the first call, move to the first argument. 1045 if (CurrentSrcIdx == 0) { 1046 CurrentSrcIdx = 1; 1047 } else { 1048 // Otherwise, move to the next argument and check that it is valid. 1049 CurrentSrcIdx += 2; 1050 if (CurrentSrcIdx >= CopyLike.getNumOperands()) 1051 return false; 1052 } 1053 const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx); 1054 Src.Reg = MOInsertedReg.getReg(); 1055 // If we have to compose sub-register indices, bail out. 1056 if ((Src.SubReg = MOInsertedReg.getSubReg())) 1057 return false; 1058 1059 // We want to track something that is compatible with the related 1060 // partial definition. 1061 Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm(); 1062 1063 const MachineOperand &MODef = CopyLike.getOperand(0); 1064 Dst.Reg = MODef.getReg(); 1065 // If we have to compose sub-registers, bail. 1066 return MODef.getSubReg() == 0; 1067 } 1068 1069 bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override { 1070 // We cannot rewrite out of bound operands. 1071 // Moreover, rewritable sources are at odd positions. 1072 if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands()) 1073 return false; 1074 1075 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx); 1076 MO.setReg(NewReg); 1077 MO.setSubReg(NewSubReg); 1078 return true; 1079 } 1080 }; 1081 1082 } // end anonymous namespace 1083 1084 /// Get the appropriated Rewriter for \p MI. 1085 /// \return A pointer to a dynamically allocated Rewriter or nullptr if no 1086 /// rewriter works for \p MI. 1087 static Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) { 1088 // Handle uncoalescable copy-like instructions. 1089 if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() || 1090 MI.isExtractSubregLike()) 1091 return new UncoalescableRewriter(MI); 1092 1093 switch (MI.getOpcode()) { 1094 default: 1095 return nullptr; 1096 case TargetOpcode::COPY: 1097 return new CopyRewriter(MI); 1098 case TargetOpcode::INSERT_SUBREG: 1099 return new InsertSubregRewriter(MI); 1100 case TargetOpcode::EXTRACT_SUBREG: 1101 return new ExtractSubregRewriter(MI, TII); 1102 case TargetOpcode::REG_SEQUENCE: 1103 return new RegSequenceRewriter(MI); 1104 } 1105 } 1106 1107 /// Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find 1108 /// the new source to use for rewrite. If \p HandleMultipleSources is true and 1109 /// multiple sources for a given \p Def are found along the way, we found a 1110 /// PHI instructions that needs to be rewritten. 1111 /// TODO: HandleMultipleSources should be removed once we test PHI handling 1112 /// with coalescable copies. 1113 static RegSubRegPair 1114 getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 1115 RegSubRegPair Def, 1116 const PeepholeOptimizer::RewriteMapTy &RewriteMap, 1117 bool HandleMultipleSources = true) { 1118 RegSubRegPair LookupSrc(Def.Reg, Def.SubReg); 1119 while (true) { 1120 ValueTrackerResult Res = RewriteMap.lookup(LookupSrc); 1121 // If there are no entries on the map, LookupSrc is the new source. 1122 if (!Res.isValid()) 1123 return LookupSrc; 1124 1125 // There's only one source for this definition, keep searching... 1126 unsigned NumSrcs = Res.getNumSources(); 1127 if (NumSrcs == 1) { 1128 LookupSrc.Reg = Res.getSrcReg(0); 1129 LookupSrc.SubReg = Res.getSrcSubReg(0); 1130 continue; 1131 } 1132 1133 // TODO: Remove once multiple srcs w/ coalescable copies are supported. 1134 if (!HandleMultipleSources) 1135 break; 1136 1137 // Multiple sources, recurse into each source to find a new source 1138 // for it. Then, rewrite the PHI accordingly to its new edges. 1139 SmallVector<RegSubRegPair, 4> NewPHISrcs; 1140 for (unsigned i = 0; i < NumSrcs; ++i) { 1141 RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i)); 1142 NewPHISrcs.push_back( 1143 getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources)); 1144 } 1145 1146 // Build the new PHI node and return its def register as the new source. 1147 MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst()); 1148 MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI); 1149 LLVM_DEBUG(dbgs() << "-- getNewSource\n"); 1150 LLVM_DEBUG(dbgs() << " Replacing: " << OrigPHI); 1151 LLVM_DEBUG(dbgs() << " With: " << NewPHI); 1152 const MachineOperand &MODef = NewPHI.getOperand(0); 1153 return RegSubRegPair(MODef.getReg(), MODef.getSubReg()); 1154 } 1155 1156 return RegSubRegPair(0, 0); 1157 } 1158 1159 /// Optimize generic copy instructions to avoid cross register bank copy. 1160 /// The optimization looks through a chain of copies and tries to find a source 1161 /// that has a compatible register class. 1162 /// Two register classes are considered to be compatible if they share the same 1163 /// register bank. 1164 /// New copies issued by this optimization are register allocator 1165 /// friendly. This optimization does not remove any copy as it may 1166 /// overconstrain the register allocator, but replaces some operands 1167 /// when possible. 1168 /// \pre isCoalescableCopy(*MI) is true. 1169 /// \return True, when \p MI has been rewritten. False otherwise. 1170 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) { 1171 assert(isCoalescableCopy(MI) && "Invalid argument"); 1172 assert(MI.getDesc().getNumDefs() == 1 && 1173 "Coalescer can understand multiple defs?!"); 1174 const MachineOperand &MODef = MI.getOperand(0); 1175 // Do not rewrite physical definitions. 1176 if (Register::isPhysicalRegister(MODef.getReg())) 1177 return false; 1178 1179 bool Changed = false; 1180 // Get the right rewriter for the current copy. 1181 std::unique_ptr<Rewriter> CpyRewriter(getCopyRewriter(MI, *TII)); 1182 // If none exists, bail out. 1183 if (!CpyRewriter) 1184 return false; 1185 // Rewrite each rewritable source. 1186 RegSubRegPair Src; 1187 RegSubRegPair TrackPair; 1188 while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) { 1189 // Keep track of PHI nodes and its incoming edges when looking for sources. 1190 RewriteMapTy RewriteMap; 1191 // Try to find a more suitable source. If we failed to do so, or get the 1192 // actual source, move to the next source. 1193 if (!findNextSource(TrackPair, RewriteMap)) 1194 continue; 1195 1196 // Get the new source to rewrite. TODO: Only enable handling of multiple 1197 // sources (PHIs) once we have a motivating example and testcases for it. 1198 RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap, 1199 /*HandleMultipleSources=*/false); 1200 if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0) 1201 continue; 1202 1203 // Rewrite source. 1204 if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) { 1205 // We may have extended the live-range of NewSrc, account for that. 1206 MRI->clearKillFlags(NewSrc.Reg); 1207 Changed = true; 1208 } 1209 } 1210 // TODO: We could have a clean-up method to tidy the instruction. 1211 // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0 1212 // => v0 = COPY v1 1213 // Currently we haven't seen motivating example for that and we 1214 // want to avoid untested code. 1215 NumRewrittenCopies += Changed; 1216 return Changed; 1217 } 1218 1219 /// Rewrite the source found through \p Def, by using the \p RewriteMap 1220 /// and create a new COPY instruction. More info about RewriteMap in 1221 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle 1222 /// Uncoalescable copies, since they are copy like instructions that aren't 1223 /// recognized by the register allocator. 1224 MachineInstr & 1225 PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike, 1226 RegSubRegPair Def, RewriteMapTy &RewriteMap) { 1227 assert(!Register::isPhysicalRegister(Def.Reg) && 1228 "We do not rewrite physical registers"); 1229 1230 // Find the new source to use in the COPY rewrite. 1231 RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap); 1232 1233 // Insert the COPY. 1234 const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg); 1235 Register NewVReg = MRI->createVirtualRegister(DefRC); 1236 1237 MachineInstr *NewCopy = 1238 BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(), 1239 TII->get(TargetOpcode::COPY), NewVReg) 1240 .addReg(NewSrc.Reg, 0, NewSrc.SubReg); 1241 1242 if (Def.SubReg) { 1243 NewCopy->getOperand(0).setSubReg(Def.SubReg); 1244 NewCopy->getOperand(0).setIsUndef(); 1245 } 1246 1247 LLVM_DEBUG(dbgs() << "-- RewriteSource\n"); 1248 LLVM_DEBUG(dbgs() << " Replacing: " << CopyLike); 1249 LLVM_DEBUG(dbgs() << " With: " << *NewCopy); 1250 MRI->replaceRegWith(Def.Reg, NewVReg); 1251 MRI->clearKillFlags(NewVReg); 1252 1253 // We extended the lifetime of NewSrc.Reg, clear the kill flags to 1254 // account for that. 1255 MRI->clearKillFlags(NewSrc.Reg); 1256 1257 return *NewCopy; 1258 } 1259 1260 /// Optimize copy-like instructions to create 1261 /// register coalescer friendly instruction. 1262 /// The optimization tries to kill-off the \p MI by looking 1263 /// through a chain of copies to find a source that has a compatible 1264 /// register class. 1265 /// If such a source is found, it replace \p MI by a generic COPY 1266 /// operation. 1267 /// \pre isUncoalescableCopy(*MI) is true. 1268 /// \return True, when \p MI has been optimized. In that case, \p MI has 1269 /// been removed from its parent. 1270 /// All COPY instructions created, are inserted in \p LocalMIs. 1271 bool PeepholeOptimizer::optimizeUncoalescableCopy( 1272 MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) { 1273 assert(isUncoalescableCopy(MI) && "Invalid argument"); 1274 UncoalescableRewriter CpyRewriter(MI); 1275 1276 // Rewrite each rewritable source by generating new COPYs. This works 1277 // differently from optimizeCoalescableCopy since it first makes sure that all 1278 // definitions can be rewritten. 1279 RewriteMapTy RewriteMap; 1280 RegSubRegPair Src; 1281 RegSubRegPair Def; 1282 SmallVector<RegSubRegPair, 4> RewritePairs; 1283 while (CpyRewriter.getNextRewritableSource(Src, Def)) { 1284 // If a physical register is here, this is probably for a good reason. 1285 // Do not rewrite that. 1286 if (Register::isPhysicalRegister(Def.Reg)) 1287 return false; 1288 1289 // If we do not know how to rewrite this definition, there is no point 1290 // in trying to kill this instruction. 1291 if (!findNextSource(Def, RewriteMap)) 1292 return false; 1293 1294 RewritePairs.push_back(Def); 1295 } 1296 1297 // The change is possible for all defs, do it. 1298 for (const RegSubRegPair &Def : RewritePairs) { 1299 // Rewrite the "copy" in a way the register coalescer understands. 1300 MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap); 1301 LocalMIs.insert(&NewCopy); 1302 } 1303 1304 // MI is now dead. 1305 LLVM_DEBUG(dbgs() << "Deleting uncoalescable copy: " << MI); 1306 MI.eraseFromParent(); 1307 ++NumUncoalescableCopies; 1308 return true; 1309 } 1310 1311 /// Check whether MI is a candidate for folding into a later instruction. 1312 /// We only fold loads to virtual registers and the virtual register defined 1313 /// has a single user. 1314 bool PeepholeOptimizer::isLoadFoldable( 1315 MachineInstr &MI, SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) { 1316 if (!MI.canFoldAsLoad() || !MI.mayLoad()) 1317 return false; 1318 const MCInstrDesc &MCID = MI.getDesc(); 1319 if (MCID.getNumDefs() != 1) 1320 return false; 1321 1322 Register Reg = MI.getOperand(0).getReg(); 1323 // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting 1324 // loads. It should be checked when processing uses of the load, since 1325 // uses can be removed during peephole. 1326 if (!MI.getOperand(0).getSubReg() && Register::isVirtualRegister(Reg) && 1327 MRI->hasOneNonDBGUser(Reg)) { 1328 FoldAsLoadDefCandidates.insert(Reg); 1329 return true; 1330 } 1331 return false; 1332 } 1333 1334 bool PeepholeOptimizer::isMoveImmediate( 1335 MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs, 1336 DenseMap<unsigned, MachineInstr *> &ImmDefMIs) { 1337 const MCInstrDesc &MCID = MI.getDesc(); 1338 if (!MI.isMoveImmediate()) 1339 return false; 1340 if (MCID.getNumDefs() != 1) 1341 return false; 1342 Register Reg = MI.getOperand(0).getReg(); 1343 if (Register::isVirtualRegister(Reg)) { 1344 ImmDefMIs.insert(std::make_pair(Reg, &MI)); 1345 ImmDefRegs.insert(Reg); 1346 return true; 1347 } 1348 1349 return false; 1350 } 1351 1352 /// Try folding register operands that are defined by move immediate 1353 /// instructions, i.e. a trivial constant folding optimization, if 1354 /// and only if the def and use are in the same BB. 1355 bool PeepholeOptimizer::foldImmediate(MachineInstr &MI, 1356 SmallSet<unsigned, 4> &ImmDefRegs, 1357 DenseMap<unsigned, MachineInstr *> &ImmDefMIs) { 1358 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { 1359 MachineOperand &MO = MI.getOperand(i); 1360 if (!MO.isReg() || MO.isDef()) 1361 continue; 1362 // Ignore dead implicit defs. 1363 if (MO.isImplicit() && MO.isDead()) 1364 continue; 1365 Register Reg = MO.getReg(); 1366 if (!Register::isVirtualRegister(Reg)) 1367 continue; 1368 if (ImmDefRegs.count(Reg) == 0) 1369 continue; 1370 DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg); 1371 assert(II != ImmDefMIs.end() && "couldn't find immediate definition"); 1372 if (TII->FoldImmediate(MI, *II->second, Reg, MRI)) { 1373 ++NumImmFold; 1374 return true; 1375 } 1376 } 1377 return false; 1378 } 1379 1380 // FIXME: This is very simple and misses some cases which should be handled when 1381 // motivating examples are found. 1382 // 1383 // The copy rewriting logic should look at uses as well as defs and be able to 1384 // eliminate copies across blocks. 1385 // 1386 // Later copies that are subregister extracts will also not be eliminated since 1387 // only the first copy is considered. 1388 // 1389 // e.g. 1390 // %1 = COPY %0 1391 // %2 = COPY %0:sub1 1392 // 1393 // Should replace %2 uses with %1:sub1 1394 bool PeepholeOptimizer::foldRedundantCopy(MachineInstr &MI, 1395 SmallSet<unsigned, 4> &CopySrcRegs, 1396 DenseMap<unsigned, MachineInstr *> &CopyMIs) { 1397 assert(MI.isCopy() && "expected a COPY machine instruction"); 1398 1399 Register SrcReg = MI.getOperand(1).getReg(); 1400 if (!Register::isVirtualRegister(SrcReg)) 1401 return false; 1402 1403 Register DstReg = MI.getOperand(0).getReg(); 1404 if (!Register::isVirtualRegister(DstReg)) 1405 return false; 1406 1407 if (CopySrcRegs.insert(SrcReg).second) { 1408 // First copy of this reg seen. 1409 CopyMIs.insert(std::make_pair(SrcReg, &MI)); 1410 return false; 1411 } 1412 1413 MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second; 1414 1415 unsigned SrcSubReg = MI.getOperand(1).getSubReg(); 1416 unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg(); 1417 1418 // Can't replace different subregister extracts. 1419 if (SrcSubReg != PrevSrcSubReg) 1420 return false; 1421 1422 Register PrevDstReg = PrevCopy->getOperand(0).getReg(); 1423 1424 // Only replace if the copy register class is the same. 1425 // 1426 // TODO: If we have multiple copies to different register classes, we may want 1427 // to track multiple copies of the same source register. 1428 if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg)) 1429 return false; 1430 1431 MRI->replaceRegWith(DstReg, PrevDstReg); 1432 1433 // Lifetime of the previous copy has been extended. 1434 MRI->clearKillFlags(PrevDstReg); 1435 return true; 1436 } 1437 1438 bool PeepholeOptimizer::isNAPhysCopy(unsigned Reg) { 1439 return Register::isPhysicalRegister(Reg) && !MRI->isAllocatable(Reg); 1440 } 1441 1442 bool PeepholeOptimizer::foldRedundantNAPhysCopy( 1443 MachineInstr &MI, DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs) { 1444 assert(MI.isCopy() && "expected a COPY machine instruction"); 1445 1446 if (DisableNAPhysCopyOpt) 1447 return false; 1448 1449 Register DstReg = MI.getOperand(0).getReg(); 1450 Register SrcReg = MI.getOperand(1).getReg(); 1451 if (isNAPhysCopy(SrcReg) && Register::isVirtualRegister(DstReg)) { 1452 // %vreg = COPY %physreg 1453 // Avoid using a datastructure which can track multiple live non-allocatable 1454 // phys->virt copies since LLVM doesn't seem to do this. 1455 NAPhysToVirtMIs.insert({SrcReg, &MI}); 1456 return false; 1457 } 1458 1459 if (!(Register::isVirtualRegister(SrcReg) && isNAPhysCopy(DstReg))) 1460 return false; 1461 1462 // %physreg = COPY %vreg 1463 auto PrevCopy = NAPhysToVirtMIs.find(DstReg); 1464 if (PrevCopy == NAPhysToVirtMIs.end()) { 1465 // We can't remove the copy: there was an intervening clobber of the 1466 // non-allocatable physical register after the copy to virtual. 1467 LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing " 1468 << MI); 1469 return false; 1470 } 1471 1472 Register PrevDstReg = PrevCopy->second->getOperand(0).getReg(); 1473 if (PrevDstReg == SrcReg) { 1474 // Remove the virt->phys copy: we saw the virtual register definition, and 1475 // the non-allocatable physical register's state hasn't changed since then. 1476 LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI); 1477 ++NumNAPhysCopies; 1478 return true; 1479 } 1480 1481 // Potential missed optimization opportunity: we saw a different virtual 1482 // register get a copy of the non-allocatable physical register, and we only 1483 // track one such copy. Avoid getting confused by this new non-allocatable 1484 // physical register definition, and remove it from the tracked copies. 1485 LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI); 1486 NAPhysToVirtMIs.erase(PrevCopy); 1487 return false; 1488 } 1489 1490 /// \bried Returns true if \p MO is a virtual register operand. 1491 static bool isVirtualRegisterOperand(MachineOperand &MO) { 1492 if (!MO.isReg()) 1493 return false; 1494 return Register::isVirtualRegister(MO.getReg()); 1495 } 1496 1497 bool PeepholeOptimizer::findTargetRecurrence( 1498 unsigned Reg, const SmallSet<unsigned, 2> &TargetRegs, 1499 RecurrenceCycle &RC) { 1500 // Recurrence found if Reg is in TargetRegs. 1501 if (TargetRegs.count(Reg)) 1502 return true; 1503 1504 // TODO: Curerntly, we only allow the last instruction of the recurrence 1505 // cycle (the instruction that feeds the PHI instruction) to have more than 1506 // one uses to guarantee that commuting operands does not tie registers 1507 // with overlapping live range. Once we have actual live range info of 1508 // each register, this constraint can be relaxed. 1509 if (!MRI->hasOneNonDBGUse(Reg)) 1510 return false; 1511 1512 // Give up if the reccurrence chain length is longer than the limit. 1513 if (RC.size() >= MaxRecurrenceChain) 1514 return false; 1515 1516 MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg)); 1517 unsigned Idx = MI.findRegisterUseOperandIdx(Reg); 1518 1519 // Only interested in recurrences whose instructions have only one def, which 1520 // is a virtual register. 1521 if (MI.getDesc().getNumDefs() != 1) 1522 return false; 1523 1524 MachineOperand &DefOp = MI.getOperand(0); 1525 if (!isVirtualRegisterOperand(DefOp)) 1526 return false; 1527 1528 // Check if def operand of MI is tied to any use operand. We are only 1529 // interested in the case that all the instructions in the recurrence chain 1530 // have there def operand tied with one of the use operand. 1531 unsigned TiedUseIdx; 1532 if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx)) 1533 return false; 1534 1535 if (Idx == TiedUseIdx) { 1536 RC.push_back(RecurrenceInstr(&MI)); 1537 return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC); 1538 } else { 1539 // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx. 1540 unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex; 1541 if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) { 1542 RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx)); 1543 return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC); 1544 } 1545 } 1546 1547 return false; 1548 } 1549 1550 /// Phi instructions will eventually be lowered to copy instructions. 1551 /// If phi is in a loop header, a recurrence may formulated around the source 1552 /// and destination of the phi. For such case commuting operands of the 1553 /// instructions in the recurrence may enable coalescing of the copy instruction 1554 /// generated from the phi. For example, if there is a recurrence of 1555 /// 1556 /// LoopHeader: 1557 /// %1 = phi(%0, %100) 1558 /// LoopLatch: 1559 /// %0<def, tied1> = ADD %2<def, tied0>, %1 1560 /// 1561 /// , the fact that %0 and %2 are in the same tied operands set makes 1562 /// the coalescing of copy instruction generated from the phi in 1563 /// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and 1564 /// %2 have overlapping live range. This introduces additional move 1565 /// instruction to the final assembly. However, if we commute %2 and 1566 /// %1 of ADD instruction, the redundant move instruction can be 1567 /// avoided. 1568 bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) { 1569 SmallSet<unsigned, 2> TargetRegs; 1570 for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) { 1571 MachineOperand &MO = PHI.getOperand(Idx); 1572 assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction"); 1573 TargetRegs.insert(MO.getReg()); 1574 } 1575 1576 bool Changed = false; 1577 RecurrenceCycle RC; 1578 if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) { 1579 // Commutes operands of instructions in RC if necessary so that the copy to 1580 // be generated from PHI can be coalesced. 1581 LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI); 1582 for (auto &RI : RC) { 1583 LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI())); 1584 auto CP = RI.getCommutePair(); 1585 if (CP) { 1586 Changed = true; 1587 TII->commuteInstruction(*(RI.getMI()), false, (*CP).first, 1588 (*CP).second); 1589 LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI())); 1590 } 1591 } 1592 } 1593 1594 return Changed; 1595 } 1596 1597 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) { 1598 if (skipFunction(MF.getFunction())) 1599 return false; 1600 1601 LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n"); 1602 LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n'); 1603 1604 if (DisablePeephole) 1605 return false; 1606 1607 TII = MF.getSubtarget().getInstrInfo(); 1608 TRI = MF.getSubtarget().getRegisterInfo(); 1609 MRI = &MF.getRegInfo(); 1610 DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr; 1611 MLI = &getAnalysis<MachineLoopInfo>(); 1612 1613 bool Changed = false; 1614 1615 for (MachineBasicBlock &MBB : MF) { 1616 bool SeenMoveImm = false; 1617 1618 // During this forward scan, at some point it needs to answer the question 1619 // "given a pointer to an MI in the current BB, is it located before or 1620 // after the current instruction". 1621 // To perform this, the following set keeps track of the MIs already seen 1622 // during the scan, if a MI is not in the set, it is assumed to be located 1623 // after. Newly created MIs have to be inserted in the set as well. 1624 SmallPtrSet<MachineInstr*, 16> LocalMIs; 1625 SmallSet<unsigned, 4> ImmDefRegs; 1626 DenseMap<unsigned, MachineInstr*> ImmDefMIs; 1627 SmallSet<unsigned, 16> FoldAsLoadDefCandidates; 1628 1629 // Track when a non-allocatable physical register is copied to a virtual 1630 // register so that useless moves can be removed. 1631 // 1632 // %physreg is the map index; MI is the last valid `%vreg = COPY %physreg` 1633 // without any intervening re-definition of %physreg. 1634 DenseMap<unsigned, MachineInstr *> NAPhysToVirtMIs; 1635 1636 // Set of virtual registers that are copied from. 1637 SmallSet<unsigned, 4> CopySrcRegs; 1638 DenseMap<unsigned, MachineInstr *> CopySrcMIs; 1639 1640 bool IsLoopHeader = MLI->isLoopHeader(&MBB); 1641 1642 for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end(); 1643 MII != MIE; ) { 1644 MachineInstr *MI = &*MII; 1645 // We may be erasing MI below, increment MII now. 1646 ++MII; 1647 LocalMIs.insert(MI); 1648 1649 // Skip debug instructions. They should not affect this peephole optimization. 1650 if (MI->isDebugInstr()) 1651 continue; 1652 1653 if (MI->isPosition()) 1654 continue; 1655 1656 if (IsLoopHeader && MI->isPHI()) { 1657 if (optimizeRecurrence(*MI)) { 1658 Changed = true; 1659 continue; 1660 } 1661 } 1662 1663 if (!MI->isCopy()) { 1664 for (const MachineOperand &MO : MI->operands()) { 1665 // Visit all operands: definitions can be implicit or explicit. 1666 if (MO.isReg()) { 1667 Register Reg = MO.getReg(); 1668 if (MO.isDef() && isNAPhysCopy(Reg)) { 1669 const auto &Def = NAPhysToVirtMIs.find(Reg); 1670 if (Def != NAPhysToVirtMIs.end()) { 1671 // A new definition of the non-allocatable physical register 1672 // invalidates previous copies. 1673 LLVM_DEBUG(dbgs() 1674 << "NAPhysCopy: invalidating because of " << *MI); 1675 NAPhysToVirtMIs.erase(Def); 1676 } 1677 } 1678 } else if (MO.isRegMask()) { 1679 const uint32_t *RegMask = MO.getRegMask(); 1680 for (auto &RegMI : NAPhysToVirtMIs) { 1681 unsigned Def = RegMI.first; 1682 if (MachineOperand::clobbersPhysReg(RegMask, Def)) { 1683 LLVM_DEBUG(dbgs() 1684 << "NAPhysCopy: invalidating because of " << *MI); 1685 NAPhysToVirtMIs.erase(Def); 1686 } 1687 } 1688 } 1689 } 1690 } 1691 1692 if (MI->isImplicitDef() || MI->isKill()) 1693 continue; 1694 1695 if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) { 1696 // Blow away all non-allocatable physical registers knowledge since we 1697 // don't know what's correct anymore. 1698 // 1699 // FIXME: handle explicit asm clobbers. 1700 LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to " 1701 << *MI); 1702 NAPhysToVirtMIs.clear(); 1703 } 1704 1705 if ((isUncoalescableCopy(*MI) && 1706 optimizeUncoalescableCopy(*MI, LocalMIs)) || 1707 (MI->isCompare() && optimizeCmpInstr(*MI)) || 1708 (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) { 1709 // MI is deleted. 1710 LocalMIs.erase(MI); 1711 Changed = true; 1712 continue; 1713 } 1714 1715 if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) { 1716 Changed = true; 1717 continue; 1718 } 1719 1720 if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) { 1721 // MI is just rewritten. 1722 Changed = true; 1723 continue; 1724 } 1725 1726 if (MI->isCopy() && 1727 (foldRedundantCopy(*MI, CopySrcRegs, CopySrcMIs) || 1728 foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) { 1729 LocalMIs.erase(MI); 1730 LLVM_DEBUG(dbgs() << "Deleting redundant copy: " << *MI << "\n"); 1731 MI->eraseFromParent(); 1732 Changed = true; 1733 continue; 1734 } 1735 1736 if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) { 1737 SeenMoveImm = true; 1738 } else { 1739 Changed |= optimizeExtInstr(*MI, MBB, LocalMIs); 1740 // optimizeExtInstr might have created new instructions after MI 1741 // and before the already incremented MII. Adjust MII so that the 1742 // next iteration sees the new instructions. 1743 MII = MI; 1744 ++MII; 1745 if (SeenMoveImm) 1746 Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs); 1747 } 1748 1749 // Check whether MI is a load candidate for folding into a later 1750 // instruction. If MI is not a candidate, check whether we can fold an 1751 // earlier load into MI. 1752 if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) && 1753 !FoldAsLoadDefCandidates.empty()) { 1754 1755 // We visit each operand even after successfully folding a previous 1756 // one. This allows us to fold multiple loads into a single 1757 // instruction. We do assume that optimizeLoadInstr doesn't insert 1758 // foldable uses earlier in the argument list. Since we don't restart 1759 // iteration, we'd miss such cases. 1760 const MCInstrDesc &MIDesc = MI->getDesc(); 1761 for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands(); 1762 ++i) { 1763 const MachineOperand &MOp = MI->getOperand(i); 1764 if (!MOp.isReg()) 1765 continue; 1766 unsigned FoldAsLoadDefReg = MOp.getReg(); 1767 if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) { 1768 // We need to fold load after optimizeCmpInstr, since 1769 // optimizeCmpInstr can enable folding by converting SUB to CMP. 1770 // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and 1771 // we need it for markUsesInDebugValueAsUndef(). 1772 unsigned FoldedReg = FoldAsLoadDefReg; 1773 MachineInstr *DefMI = nullptr; 1774 if (MachineInstr *FoldMI = 1775 TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) { 1776 // Update LocalMIs since we replaced MI with FoldMI and deleted 1777 // DefMI. 1778 LLVM_DEBUG(dbgs() << "Replacing: " << *MI); 1779 LLVM_DEBUG(dbgs() << " With: " << *FoldMI); 1780 LocalMIs.erase(MI); 1781 LocalMIs.erase(DefMI); 1782 LocalMIs.insert(FoldMI); 1783 // Update the call site info. 1784 if (MI->shouldUpdateCallSiteInfo()) 1785 MI->getMF()->moveCallSiteInfo(MI, FoldMI); 1786 MI->eraseFromParent(); 1787 DefMI->eraseFromParent(); 1788 MRI->markUsesInDebugValueAsUndef(FoldedReg); 1789 FoldAsLoadDefCandidates.erase(FoldedReg); 1790 ++NumLoadFold; 1791 1792 // MI is replaced with FoldMI so we can continue trying to fold 1793 Changed = true; 1794 MI = FoldMI; 1795 } 1796 } 1797 } 1798 } 1799 1800 // If we run into an instruction we can't fold across, discard 1801 // the load candidates. Note: We might be able to fold *into* this 1802 // instruction, so this needs to be after the folding logic. 1803 if (MI->isLoadFoldBarrier()) { 1804 LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI); 1805 FoldAsLoadDefCandidates.clear(); 1806 } 1807 } 1808 } 1809 1810 return Changed; 1811 } 1812 1813 ValueTrackerResult ValueTracker::getNextSourceFromCopy() { 1814 assert(Def->isCopy() && "Invalid definition"); 1815 // Copy instruction are supposed to be: Def = Src. 1816 // If someone breaks this assumption, bad things will happen everywhere. 1817 // There may be implicit uses preventing the copy to be moved across 1818 // some target specific register definitions 1819 assert(Def->getNumOperands() - Def->getNumImplicitOperands() == 2 && 1820 "Invalid number of operands"); 1821 assert(!Def->hasImplicitDef() && "Only implicit uses are allowed"); 1822 1823 if (Def->getOperand(DefIdx).getSubReg() != DefSubReg) 1824 // If we look for a different subreg, it means we want a subreg of src. 1825 // Bails as we do not support composing subregs yet. 1826 return ValueTrackerResult(); 1827 // Otherwise, we want the whole source. 1828 const MachineOperand &Src = Def->getOperand(1); 1829 if (Src.isUndef()) 1830 return ValueTrackerResult(); 1831 return ValueTrackerResult(Src.getReg(), Src.getSubReg()); 1832 } 1833 1834 ValueTrackerResult ValueTracker::getNextSourceFromBitcast() { 1835 assert(Def->isBitcast() && "Invalid definition"); 1836 1837 // Bail if there are effects that a plain copy will not expose. 1838 if (Def->mayRaiseFPException() || Def->hasUnmodeledSideEffects()) 1839 return ValueTrackerResult(); 1840 1841 // Bitcasts with more than one def are not supported. 1842 if (Def->getDesc().getNumDefs() != 1) 1843 return ValueTrackerResult(); 1844 const MachineOperand DefOp = Def->getOperand(DefIdx); 1845 if (DefOp.getSubReg() != DefSubReg) 1846 // If we look for a different subreg, it means we want a subreg of the src. 1847 // Bails as we do not support composing subregs yet. 1848 return ValueTrackerResult(); 1849 1850 unsigned SrcIdx = Def->getNumOperands(); 1851 for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; 1852 ++OpIdx) { 1853 const MachineOperand &MO = Def->getOperand(OpIdx); 1854 if (!MO.isReg() || !MO.getReg()) 1855 continue; 1856 // Ignore dead implicit defs. 1857 if (MO.isImplicit() && MO.isDead()) 1858 continue; 1859 assert(!MO.isDef() && "We should have skipped all the definitions by now"); 1860 if (SrcIdx != EndOpIdx) 1861 // Multiple sources? 1862 return ValueTrackerResult(); 1863 SrcIdx = OpIdx; 1864 } 1865 1866 // In some rare case, Def has no input, SrcIdx is out of bound, 1867 // getOperand(SrcIdx) will fail below. 1868 if (SrcIdx >= Def->getNumOperands()) 1869 return ValueTrackerResult(); 1870 1871 // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY 1872 // will break the assumed guarantees for the upper bits. 1873 for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) { 1874 if (UseMI.isSubregToReg()) 1875 return ValueTrackerResult(); 1876 } 1877 1878 const MachineOperand &Src = Def->getOperand(SrcIdx); 1879 if (Src.isUndef()) 1880 return ValueTrackerResult(); 1881 return ValueTrackerResult(Src.getReg(), Src.getSubReg()); 1882 } 1883 1884 ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() { 1885 assert((Def->isRegSequence() || Def->isRegSequenceLike()) && 1886 "Invalid definition"); 1887 1888 if (Def->getOperand(DefIdx).getSubReg()) 1889 // If we are composing subregs, bail out. 1890 // The case we are checking is Def.<subreg> = REG_SEQUENCE. 1891 // This should almost never happen as the SSA property is tracked at 1892 // the register level (as opposed to the subreg level). 1893 // I.e., 1894 // Def.sub0 = 1895 // Def.sub1 = 1896 // is a valid SSA representation for Def.sub0 and Def.sub1, but not for 1897 // Def. Thus, it must not be generated. 1898 // However, some code could theoretically generates a single 1899 // Def.sub0 (i.e, not defining the other subregs) and we would 1900 // have this case. 1901 // If we can ascertain (or force) that this never happens, we could 1902 // turn that into an assertion. 1903 return ValueTrackerResult(); 1904 1905 if (!TII) 1906 // We could handle the REG_SEQUENCE here, but we do not want to 1907 // duplicate the code from the generic TII. 1908 return ValueTrackerResult(); 1909 1910 SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs; 1911 if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs)) 1912 return ValueTrackerResult(); 1913 1914 // We are looking at: 1915 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... 1916 // Check if one of the operand defines the subreg we are interested in. 1917 for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) { 1918 if (RegSeqInput.SubIdx == DefSubReg) 1919 return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg); 1920 } 1921 1922 // If the subreg we are tracking is super-defined by another subreg, 1923 // we could follow this value. However, this would require to compose 1924 // the subreg and we do not do that for now. 1925 return ValueTrackerResult(); 1926 } 1927 1928 ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() { 1929 assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) && 1930 "Invalid definition"); 1931 1932 if (Def->getOperand(DefIdx).getSubReg()) 1933 // If we are composing subreg, bail out. 1934 // Same remark as getNextSourceFromRegSequence. 1935 // I.e., this may be turned into an assert. 1936 return ValueTrackerResult(); 1937 1938 if (!TII) 1939 // We could handle the REG_SEQUENCE here, but we do not want to 1940 // duplicate the code from the generic TII. 1941 return ValueTrackerResult(); 1942 1943 RegSubRegPair BaseReg; 1944 RegSubRegPairAndIdx InsertedReg; 1945 if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg)) 1946 return ValueTrackerResult(); 1947 1948 // We are looking at: 1949 // Def = INSERT_SUBREG v0, v1, sub1 1950 // There are two cases: 1951 // 1. DefSubReg == sub1, get v1. 1952 // 2. DefSubReg != sub1, the value may be available through v0. 1953 1954 // #1 Check if the inserted register matches the required sub index. 1955 if (InsertedReg.SubIdx == DefSubReg) { 1956 return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg); 1957 } 1958 // #2 Otherwise, if the sub register we are looking for is not partial 1959 // defined by the inserted element, we can look through the main 1960 // register (v0). 1961 const MachineOperand &MODef = Def->getOperand(DefIdx); 1962 // If the result register (Def) and the base register (v0) do not 1963 // have the same register class or if we have to compose 1964 // subregisters, bail out. 1965 if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) || 1966 BaseReg.SubReg) 1967 return ValueTrackerResult(); 1968 1969 // Get the TRI and check if the inserted sub-register overlaps with the 1970 // sub-register we are tracking. 1971 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); 1972 if (!TRI || 1973 !(TRI->getSubRegIndexLaneMask(DefSubReg) & 1974 TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none()) 1975 return ValueTrackerResult(); 1976 // At this point, the value is available in v0 via the same subreg 1977 // we used for Def. 1978 return ValueTrackerResult(BaseReg.Reg, DefSubReg); 1979 } 1980 1981 ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() { 1982 assert((Def->isExtractSubreg() || 1983 Def->isExtractSubregLike()) && "Invalid definition"); 1984 // We are looking at: 1985 // Def = EXTRACT_SUBREG v0, sub0 1986 1987 // Bail if we have to compose sub registers. 1988 // Indeed, if DefSubReg != 0, we would have to compose it with sub0. 1989 if (DefSubReg) 1990 return ValueTrackerResult(); 1991 1992 if (!TII) 1993 // We could handle the EXTRACT_SUBREG here, but we do not want to 1994 // duplicate the code from the generic TII. 1995 return ValueTrackerResult(); 1996 1997 RegSubRegPairAndIdx ExtractSubregInputReg; 1998 if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg)) 1999 return ValueTrackerResult(); 2000 2001 // Bail if we have to compose sub registers. 2002 // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0. 2003 if (ExtractSubregInputReg.SubReg) 2004 return ValueTrackerResult(); 2005 // Otherwise, the value is available in the v0.sub0. 2006 return ValueTrackerResult(ExtractSubregInputReg.Reg, 2007 ExtractSubregInputReg.SubIdx); 2008 } 2009 2010 ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() { 2011 assert(Def->isSubregToReg() && "Invalid definition"); 2012 // We are looking at: 2013 // Def = SUBREG_TO_REG Imm, v0, sub0 2014 2015 // Bail if we have to compose sub registers. 2016 // If DefSubReg != sub0, we would have to check that all the bits 2017 // we track are included in sub0 and if yes, we would have to 2018 // determine the right subreg in v0. 2019 if (DefSubReg != Def->getOperand(3).getImm()) 2020 return ValueTrackerResult(); 2021 // Bail if we have to compose sub registers. 2022 // Likewise, if v0.subreg != 0, we would have to compose it with sub0. 2023 if (Def->getOperand(2).getSubReg()) 2024 return ValueTrackerResult(); 2025 2026 return ValueTrackerResult(Def->getOperand(2).getReg(), 2027 Def->getOperand(3).getImm()); 2028 } 2029 2030 /// Explore each PHI incoming operand and return its sources. 2031 ValueTrackerResult ValueTracker::getNextSourceFromPHI() { 2032 assert(Def->isPHI() && "Invalid definition"); 2033 ValueTrackerResult Res; 2034 2035 // If we look for a different subreg, bail as we do not support composing 2036 // subregs yet. 2037 if (Def->getOperand(0).getSubReg() != DefSubReg) 2038 return ValueTrackerResult(); 2039 2040 // Return all register sources for PHI instructions. 2041 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) { 2042 const MachineOperand &MO = Def->getOperand(i); 2043 assert(MO.isReg() && "Invalid PHI instruction"); 2044 // We have no code to deal with undef operands. They shouldn't happen in 2045 // normal programs anyway. 2046 if (MO.isUndef()) 2047 return ValueTrackerResult(); 2048 Res.addSource(MO.getReg(), MO.getSubReg()); 2049 } 2050 2051 return Res; 2052 } 2053 2054 ValueTrackerResult ValueTracker::getNextSourceImpl() { 2055 assert(Def && "This method needs a valid definition"); 2056 2057 assert(((Def->getOperand(DefIdx).isDef() && 2058 (DefIdx < Def->getDesc().getNumDefs() || 2059 Def->getDesc().isVariadic())) || 2060 Def->getOperand(DefIdx).isImplicit()) && 2061 "Invalid DefIdx"); 2062 if (Def->isCopy()) 2063 return getNextSourceFromCopy(); 2064 if (Def->isBitcast()) 2065 return getNextSourceFromBitcast(); 2066 // All the remaining cases involve "complex" instructions. 2067 // Bail if we did not ask for the advanced tracking. 2068 if (DisableAdvCopyOpt) 2069 return ValueTrackerResult(); 2070 if (Def->isRegSequence() || Def->isRegSequenceLike()) 2071 return getNextSourceFromRegSequence(); 2072 if (Def->isInsertSubreg() || Def->isInsertSubregLike()) 2073 return getNextSourceFromInsertSubreg(); 2074 if (Def->isExtractSubreg() || Def->isExtractSubregLike()) 2075 return getNextSourceFromExtractSubreg(); 2076 if (Def->isSubregToReg()) 2077 return getNextSourceFromSubregToReg(); 2078 if (Def->isPHI()) 2079 return getNextSourceFromPHI(); 2080 return ValueTrackerResult(); 2081 } 2082 2083 ValueTrackerResult ValueTracker::getNextSource() { 2084 // If we reach a point where we cannot move up in the use-def chain, 2085 // there is nothing we can get. 2086 if (!Def) 2087 return ValueTrackerResult(); 2088 2089 ValueTrackerResult Res = getNextSourceImpl(); 2090 if (Res.isValid()) { 2091 // Update definition, definition index, and subregister for the 2092 // next call of getNextSource. 2093 // Update the current register. 2094 bool OneRegSrc = Res.getNumSources() == 1; 2095 if (OneRegSrc) 2096 Reg = Res.getSrcReg(0); 2097 // Update the result before moving up in the use-def chain 2098 // with the instruction containing the last found sources. 2099 Res.setInst(Def); 2100 2101 // If we can still move up in the use-def chain, move to the next 2102 // definition. 2103 if (!Register::isPhysicalRegister(Reg) && OneRegSrc) { 2104 MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg); 2105 if (DI != MRI.def_end()) { 2106 Def = DI->getParent(); 2107 DefIdx = DI.getOperandNo(); 2108 DefSubReg = Res.getSrcSubReg(0); 2109 } else { 2110 Def = nullptr; 2111 } 2112 return Res; 2113 } 2114 } 2115 // If we end up here, this means we will not be able to find another source 2116 // for the next iteration. Make sure any new call to getNextSource bails out 2117 // early by cutting the use-def chain. 2118 Def = nullptr; 2119 return Res; 2120 } 2121