xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/PeepholeOptimizer.cpp (revision c364ccf9ce2d1d0fc24247aa771cf52e5dfb532a)
1  //===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // Perform peephole optimizations on the machine code:
10  //
11  // - Optimize Extensions
12  //
13  //     Optimization of sign / zero extension instructions. It may be extended to
14  //     handle other instructions with similar properties.
15  //
16  //     On some targets, some instructions, e.g. X86 sign / zero extension, may
17  //     leave the source value in the lower part of the result. This optimization
18  //     will replace some uses of the pre-extension value with uses of the
19  //     sub-register of the results.
20  //
21  // - Optimize Comparisons
22  //
23  //     Optimization of comparison instructions. For instance, in this code:
24  //
25  //       sub r1, 1
26  //       cmp r1, 0
27  //       bz  L1
28  //
29  //     If the "sub" instruction all ready sets (or could be modified to set) the
30  //     same flag that the "cmp" instruction sets and that "bz" uses, then we can
31  //     eliminate the "cmp" instruction.
32  //
33  //     Another instance, in this code:
34  //
35  //       sub r1, r3 | sub r1, imm
36  //       cmp r3, r1 or cmp r1, r3 | cmp r1, imm
37  //       bge L1
38  //
39  //     If the branch instruction can use flag from "sub", then we can replace
40  //     "sub" with "subs" and eliminate the "cmp" instruction.
41  //
42  // - Optimize Loads:
43  //
44  //     Loads that can be folded into a later instruction. A load is foldable
45  //     if it loads to virtual registers and the virtual register defined has
46  //     a single use.
47  //
48  // - Optimize Copies and Bitcast (more generally, target specific copies):
49  //
50  //     Rewrite copies and bitcasts to avoid cross register bank copies
51  //     when possible.
52  //     E.g., Consider the following example, where capital and lower
53  //     letters denote different register file:
54  //     b = copy A <-- cross-bank copy
55  //     C = copy b <-- cross-bank copy
56  //   =>
57  //     b = copy A <-- cross-bank copy
58  //     C = copy A <-- same-bank copy
59  //
60  //     E.g., for bitcast:
61  //     b = bitcast A <-- cross-bank copy
62  //     C = bitcast b <-- cross-bank copy
63  //   =>
64  //     b = bitcast A <-- cross-bank copy
65  //     C = copy A    <-- same-bank copy
66  //===----------------------------------------------------------------------===//
67  
68  #include "llvm/ADT/DenseMap.h"
69  #include "llvm/ADT/Optional.h"
70  #include "llvm/ADT/SmallPtrSet.h"
71  #include "llvm/ADT/SmallSet.h"
72  #include "llvm/ADT/SmallVector.h"
73  #include "llvm/ADT/Statistic.h"
74  #include "llvm/CodeGen/MachineBasicBlock.h"
75  #include "llvm/CodeGen/MachineDominators.h"
76  #include "llvm/CodeGen/MachineFunction.h"
77  #include "llvm/CodeGen/MachineFunctionPass.h"
78  #include "llvm/CodeGen/MachineInstr.h"
79  #include "llvm/CodeGen/MachineInstrBuilder.h"
80  #include "llvm/CodeGen/MachineLoopInfo.h"
81  #include "llvm/CodeGen/MachineOperand.h"
82  #include "llvm/CodeGen/MachineRegisterInfo.h"
83  #include "llvm/CodeGen/TargetInstrInfo.h"
84  #include "llvm/CodeGen/TargetOpcodes.h"
85  #include "llvm/CodeGen/TargetRegisterInfo.h"
86  #include "llvm/CodeGen/TargetSubtargetInfo.h"
87  #include "llvm/InitializePasses.h"
88  #include "llvm/MC/LaneBitmask.h"
89  #include "llvm/MC/MCInstrDesc.h"
90  #include "llvm/Pass.h"
91  #include "llvm/Support/CommandLine.h"
92  #include "llvm/Support/Debug.h"
93  #include "llvm/Support/ErrorHandling.h"
94  #include "llvm/Support/raw_ostream.h"
95  #include <cassert>
96  #include <cstdint>
97  #include <memory>
98  #include <utility>
99  
100  using namespace llvm;
101  using RegSubRegPair = TargetInstrInfo::RegSubRegPair;
102  using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx;
103  
104  #define DEBUG_TYPE "peephole-opt"
105  
106  // Optimize Extensions
107  static cl::opt<bool>
108  Aggressive("aggressive-ext-opt", cl::Hidden,
109             cl::desc("Aggressive extension optimization"));
110  
111  static cl::opt<bool>
112  DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
113                  cl::desc("Disable the peephole optimizer"));
114  
115  /// Specifiy whether or not the value tracking looks through
116  /// complex instructions. When this is true, the value tracker
117  /// bails on everything that is not a copy or a bitcast.
118  static cl::opt<bool>
119  DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
120                    cl::desc("Disable advanced copy optimization"));
121  
122  static cl::opt<bool> DisableNAPhysCopyOpt(
123      "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false),
124      cl::desc("Disable non-allocatable physical register copy optimization"));
125  
126  // Limit the number of PHI instructions to process
127  // in PeepholeOptimizer::getNextSource.
128  static cl::opt<unsigned> RewritePHILimit(
129      "rewrite-phi-limit", cl::Hidden, cl::init(10),
130      cl::desc("Limit the length of PHI chains to lookup"));
131  
132  // Limit the length of recurrence chain when evaluating the benefit of
133  // commuting operands.
134  static cl::opt<unsigned> MaxRecurrenceChain(
135      "recurrence-chain-limit", cl::Hidden, cl::init(3),
136      cl::desc("Maximum length of recurrence chain when evaluating the benefit "
137               "of commuting operands"));
138  
139  
140  STATISTIC(NumReuse, "Number of extension results reused");
141  STATISTIC(NumCmps, "Number of compares eliminated");
142  STATISTIC(NumImmFold, "Number of move immediate folded");
143  STATISTIC(NumLoadFold, "Number of loads folded");
144  STATISTIC(NumSelects, "Number of selects optimized");
145  STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
146  STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
147  STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed");
148  
149  namespace {
150  
151    class ValueTrackerResult;
152    class RecurrenceInstr;
153  
154    class PeepholeOptimizer : public MachineFunctionPass {
155      const TargetInstrInfo *TII;
156      const TargetRegisterInfo *TRI;
157      MachineRegisterInfo *MRI;
158      MachineDominatorTree *DT;  // Machine dominator tree
159      MachineLoopInfo *MLI;
160  
161    public:
162      static char ID; // Pass identification
163  
164      PeepholeOptimizer() : MachineFunctionPass(ID) {
165        initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
166      }
167  
168      bool runOnMachineFunction(MachineFunction &MF) override;
169  
170      void getAnalysisUsage(AnalysisUsage &AU) const override {
171        AU.setPreservesCFG();
172        MachineFunctionPass::getAnalysisUsage(AU);
173        AU.addRequired<MachineLoopInfo>();
174        AU.addPreserved<MachineLoopInfo>();
175        if (Aggressive) {
176          AU.addRequired<MachineDominatorTree>();
177          AU.addPreserved<MachineDominatorTree>();
178        }
179      }
180  
181      /// Track Def -> Use info used for rewriting copies.
182      using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>;
183  
184      /// Sequence of instructions that formulate recurrence cycle.
185      using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>;
186  
187    private:
188      bool optimizeCmpInstr(MachineInstr &MI);
189      bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
190                            SmallPtrSetImpl<MachineInstr*> &LocalMIs);
191      bool optimizeSelect(MachineInstr &MI,
192                          SmallPtrSetImpl<MachineInstr *> &LocalMIs);
193      bool optimizeCondBranch(MachineInstr &MI);
194      bool optimizeCoalescableCopy(MachineInstr &MI);
195      bool optimizeUncoalescableCopy(MachineInstr &MI,
196                                     SmallPtrSetImpl<MachineInstr *> &LocalMIs);
197      bool optimizeRecurrence(MachineInstr &PHI);
198      bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap);
199      bool isMoveImmediate(MachineInstr &MI,
200                           SmallSet<unsigned, 4> &ImmDefRegs,
201                           DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
202      bool foldImmediate(MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs,
203                         DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
204  
205      /// Finds recurrence cycles, but only ones that formulated around
206      /// a def operand and a use operand that are tied. If there is a use
207      /// operand commutable with the tied use operand, find recurrence cycle
208      /// along that operand as well.
209      bool findTargetRecurrence(unsigned Reg,
210                                const SmallSet<unsigned, 2> &TargetReg,
211                                RecurrenceCycle &RC);
212  
213      /// If copy instruction \p MI is a virtual register copy, track it in
214      /// the set \p CopySrcRegs and \p CopyMIs. If this virtual register was
215      /// previously seen as a copy, replace the uses of this copy with the
216      /// previously seen copy's destination register.
217      bool foldRedundantCopy(MachineInstr &MI,
218                             SmallSet<unsigned, 4> &CopySrcRegs,
219                             DenseMap<unsigned, MachineInstr *> &CopyMIs);
220  
221      /// Is the register \p Reg a non-allocatable physical register?
222      bool isNAPhysCopy(unsigned Reg);
223  
224      /// If copy instruction \p MI is a non-allocatable virtual<->physical
225      /// register copy, track it in the \p NAPhysToVirtMIs map. If this
226      /// non-allocatable physical register was previously copied to a virtual
227      /// registered and hasn't been clobbered, the virt->phys copy can be
228      /// deleted.
229      bool foldRedundantNAPhysCopy(MachineInstr &MI,
230          DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs);
231  
232      bool isLoadFoldable(MachineInstr &MI,
233                          SmallSet<unsigned, 16> &FoldAsLoadDefCandidates);
234  
235      /// Check whether \p MI is understood by the register coalescer
236      /// but may require some rewriting.
237      bool isCoalescableCopy(const MachineInstr &MI) {
238        // SubregToRegs are not interesting, because they are already register
239        // coalescer friendly.
240        return MI.isCopy() || (!DisableAdvCopyOpt &&
241                               (MI.isRegSequence() || MI.isInsertSubreg() ||
242                                MI.isExtractSubreg()));
243      }
244  
245      /// Check whether \p MI is a copy like instruction that is
246      /// not recognized by the register coalescer.
247      bool isUncoalescableCopy(const MachineInstr &MI) {
248        return MI.isBitcast() ||
249               (!DisableAdvCopyOpt &&
250                (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
251                 MI.isExtractSubregLike()));
252      }
253  
254      MachineInstr &rewriteSource(MachineInstr &CopyLike,
255                                  RegSubRegPair Def, RewriteMapTy &RewriteMap);
256    };
257  
258    /// Helper class to hold instructions that are inside recurrence cycles.
259    /// The recurrence cycle is formulated around 1) a def operand and its
260    /// tied use operand, or 2) a def operand and a use operand that is commutable
261    /// with another use operand which is tied to the def operand. In the latter
262    /// case, index of the tied use operand and the commutable use operand are
263    /// maintained with CommutePair.
264    class RecurrenceInstr {
265    public:
266      using IndexPair = std::pair<unsigned, unsigned>;
267  
268      RecurrenceInstr(MachineInstr *MI) : MI(MI) {}
269      RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2)
270        : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {}
271  
272      MachineInstr *getMI() const { return MI; }
273      Optional<IndexPair> getCommutePair() const { return CommutePair; }
274  
275    private:
276      MachineInstr *MI;
277      Optional<IndexPair> CommutePair;
278    };
279  
280    /// Helper class to hold a reply for ValueTracker queries.
281    /// Contains the returned sources for a given search and the instructions
282    /// where the sources were tracked from.
283    class ValueTrackerResult {
284    private:
285      /// Track all sources found by one ValueTracker query.
286      SmallVector<RegSubRegPair, 2> RegSrcs;
287  
288      /// Instruction using the sources in 'RegSrcs'.
289      const MachineInstr *Inst = nullptr;
290  
291    public:
292      ValueTrackerResult() = default;
293  
294      ValueTrackerResult(unsigned Reg, unsigned SubReg) {
295        addSource(Reg, SubReg);
296      }
297  
298      bool isValid() const { return getNumSources() > 0; }
299  
300      void setInst(const MachineInstr *I) { Inst = I; }
301      const MachineInstr *getInst() const { return Inst; }
302  
303      void clear() {
304        RegSrcs.clear();
305        Inst = nullptr;
306      }
307  
308      void addSource(unsigned SrcReg, unsigned SrcSubReg) {
309        RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg));
310      }
311  
312      void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) {
313        assert(Idx < getNumSources() && "Reg pair source out of index");
314        RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg);
315      }
316  
317      int getNumSources() const { return RegSrcs.size(); }
318  
319      RegSubRegPair getSrc(int Idx) const {
320        return RegSrcs[Idx];
321      }
322  
323      unsigned getSrcReg(int Idx) const {
324        assert(Idx < getNumSources() && "Reg source out of index");
325        return RegSrcs[Idx].Reg;
326      }
327  
328      unsigned getSrcSubReg(int Idx) const {
329        assert(Idx < getNumSources() && "SubReg source out of index");
330        return RegSrcs[Idx].SubReg;
331      }
332  
333      bool operator==(const ValueTrackerResult &Other) {
334        if (Other.getInst() != getInst())
335          return false;
336  
337        if (Other.getNumSources() != getNumSources())
338          return false;
339  
340        for (int i = 0, e = Other.getNumSources(); i != e; ++i)
341          if (Other.getSrcReg(i) != getSrcReg(i) ||
342              Other.getSrcSubReg(i) != getSrcSubReg(i))
343            return false;
344        return true;
345      }
346    };
347  
348    /// Helper class to track the possible sources of a value defined by
349    /// a (chain of) copy related instructions.
350    /// Given a definition (instruction and definition index), this class
351    /// follows the use-def chain to find successive suitable sources.
352    /// The given source can be used to rewrite the definition into
353    /// def = COPY src.
354    ///
355    /// For instance, let us consider the following snippet:
356    /// v0 =
357    /// v2 = INSERT_SUBREG v1, v0, sub0
358    /// def = COPY v2.sub0
359    ///
360    /// Using a ValueTracker for def = COPY v2.sub0 will give the following
361    /// suitable sources:
362    /// v2.sub0 and v0.
363    /// Then, def can be rewritten into def = COPY v0.
364    class ValueTracker {
365    private:
366      /// The current point into the use-def chain.
367      const MachineInstr *Def = nullptr;
368  
369      /// The index of the definition in Def.
370      unsigned DefIdx = 0;
371  
372      /// The sub register index of the definition.
373      unsigned DefSubReg;
374  
375      /// The register where the value can be found.
376      unsigned Reg;
377  
378      /// MachineRegisterInfo used to perform tracking.
379      const MachineRegisterInfo &MRI;
380  
381      /// Optional TargetInstrInfo used to perform some complex tracking.
382      const TargetInstrInfo *TII;
383  
384      /// Dispatcher to the right underlying implementation of getNextSource.
385      ValueTrackerResult getNextSourceImpl();
386  
387      /// Specialized version of getNextSource for Copy instructions.
388      ValueTrackerResult getNextSourceFromCopy();
389  
390      /// Specialized version of getNextSource for Bitcast instructions.
391      ValueTrackerResult getNextSourceFromBitcast();
392  
393      /// Specialized version of getNextSource for RegSequence instructions.
394      ValueTrackerResult getNextSourceFromRegSequence();
395  
396      /// Specialized version of getNextSource for InsertSubreg instructions.
397      ValueTrackerResult getNextSourceFromInsertSubreg();
398  
399      /// Specialized version of getNextSource for ExtractSubreg instructions.
400      ValueTrackerResult getNextSourceFromExtractSubreg();
401  
402      /// Specialized version of getNextSource for SubregToReg instructions.
403      ValueTrackerResult getNextSourceFromSubregToReg();
404  
405      /// Specialized version of getNextSource for PHI instructions.
406      ValueTrackerResult getNextSourceFromPHI();
407  
408    public:
409      /// Create a ValueTracker instance for the value defined by \p Reg.
410      /// \p DefSubReg represents the sub register index the value tracker will
411      /// track. It does not need to match the sub register index used in the
412      /// definition of \p Reg.
413      /// If \p Reg is a physical register, a value tracker constructed with
414      /// this constructor will not find any alternative source.
415      /// Indeed, when \p Reg is a physical register that constructor does not
416      /// know which definition of \p Reg it should track.
417      /// Use the next constructor to track a physical register.
418      ValueTracker(unsigned Reg, unsigned DefSubReg,
419                   const MachineRegisterInfo &MRI,
420                   const TargetInstrInfo *TII = nullptr)
421          : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) {
422        if (!Register::isPhysicalRegister(Reg)) {
423          Def = MRI.getVRegDef(Reg);
424          DefIdx = MRI.def_begin(Reg).getOperandNo();
425        }
426      }
427  
428      /// Following the use-def chain, get the next available source
429      /// for the tracked value.
430      /// \return A ValueTrackerResult containing a set of registers
431      /// and sub registers with tracked values. A ValueTrackerResult with
432      /// an empty set of registers means no source was found.
433      ValueTrackerResult getNextSource();
434    };
435  
436  } // end anonymous namespace
437  
438  char PeepholeOptimizer::ID = 0;
439  
440  char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
441  
442  INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE,
443                        "Peephole Optimizations", false, false)
444  INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
445  INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
446  INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE,
447                      "Peephole Optimizations", false, false)
448  
449  /// If instruction is a copy-like instruction, i.e. it reads a single register
450  /// and writes a single register and it does not modify the source, and if the
451  /// source value is preserved as a sub-register of the result, then replace all
452  /// reachable uses of the source with the subreg of the result.
453  ///
454  /// Do not generate an EXTRACT that is used only in a debug use, as this changes
455  /// the code. Since this code does not currently share EXTRACTs, just ignore all
456  /// debug uses.
457  bool PeepholeOptimizer::
458  optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
459                   SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
460    unsigned SrcReg, DstReg, SubIdx;
461    if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx))
462      return false;
463  
464    if (Register::isPhysicalRegister(DstReg) ||
465        Register::isPhysicalRegister(SrcReg))
466      return false;
467  
468    if (MRI->hasOneNonDBGUse(SrcReg))
469      // No other uses.
470      return false;
471  
472    // Ensure DstReg can get a register class that actually supports
473    // sub-registers. Don't change the class until we commit.
474    const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
475    DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
476    if (!DstRC)
477      return false;
478  
479    // The ext instr may be operating on a sub-register of SrcReg as well.
480    // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
481    // register.
482    // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
483    // SrcReg:SubIdx should be replaced.
484    bool UseSrcSubIdx =
485        TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
486  
487    // The source has other uses. See if we can replace the other uses with use of
488    // the result of the extension.
489    SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
490    for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
491      ReachedBBs.insert(UI.getParent());
492  
493    // Uses that are in the same BB of uses of the result of the instruction.
494    SmallVector<MachineOperand*, 8> Uses;
495  
496    // Uses that the result of the instruction can reach.
497    SmallVector<MachineOperand*, 8> ExtendedUses;
498  
499    bool ExtendLife = true;
500    for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
501      MachineInstr *UseMI = UseMO.getParent();
502      if (UseMI == &MI)
503        continue;
504  
505      if (UseMI->isPHI()) {
506        ExtendLife = false;
507        continue;
508      }
509  
510      // Only accept uses of SrcReg:SubIdx.
511      if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
512        continue;
513  
514      // It's an error to translate this:
515      //
516      //    %reg1025 = <sext> %reg1024
517      //     ...
518      //    %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
519      //
520      // into this:
521      //
522      //    %reg1025 = <sext> %reg1024
523      //     ...
524      //    %reg1027 = COPY %reg1025:4
525      //    %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
526      //
527      // The problem here is that SUBREG_TO_REG is there to assert that an
528      // implicit zext occurs. It doesn't insert a zext instruction. If we allow
529      // the COPY here, it will give us the value after the <sext>, not the
530      // original value of %reg1024 before <sext>.
531      if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
532        continue;
533  
534      MachineBasicBlock *UseMBB = UseMI->getParent();
535      if (UseMBB == &MBB) {
536        // Local uses that come after the extension.
537        if (!LocalMIs.count(UseMI))
538          Uses.push_back(&UseMO);
539      } else if (ReachedBBs.count(UseMBB)) {
540        // Non-local uses where the result of the extension is used. Always
541        // replace these unless it's a PHI.
542        Uses.push_back(&UseMO);
543      } else if (Aggressive && DT->dominates(&MBB, UseMBB)) {
544        // We may want to extend the live range of the extension result in order
545        // to replace these uses.
546        ExtendedUses.push_back(&UseMO);
547      } else {
548        // Both will be live out of the def MBB anyway. Don't extend live range of
549        // the extension result.
550        ExtendLife = false;
551        break;
552      }
553    }
554  
555    if (ExtendLife && !ExtendedUses.empty())
556      // Extend the liveness of the extension result.
557      Uses.append(ExtendedUses.begin(), ExtendedUses.end());
558  
559    // Now replace all uses.
560    bool Changed = false;
561    if (!Uses.empty()) {
562      SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
563  
564      // Look for PHI uses of the extended result, we don't want to extend the
565      // liveness of a PHI input. It breaks all kinds of assumptions down
566      // stream. A PHI use is expected to be the kill of its source values.
567      for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
568        if (UI.isPHI())
569          PHIBBs.insert(UI.getParent());
570  
571      const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
572      for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
573        MachineOperand *UseMO = Uses[i];
574        MachineInstr *UseMI = UseMO->getParent();
575        MachineBasicBlock *UseMBB = UseMI->getParent();
576        if (PHIBBs.count(UseMBB))
577          continue;
578  
579        // About to add uses of DstReg, clear DstReg's kill flags.
580        if (!Changed) {
581          MRI->clearKillFlags(DstReg);
582          MRI->constrainRegClass(DstReg, DstRC);
583        }
584  
585        Register NewVR = MRI->createVirtualRegister(RC);
586        MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
587                                     TII->get(TargetOpcode::COPY), NewVR)
588          .addReg(DstReg, 0, SubIdx);
589        // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
590        if (UseSrcSubIdx) {
591          Copy->getOperand(0).setSubReg(SubIdx);
592          Copy->getOperand(0).setIsUndef();
593        }
594        UseMO->setReg(NewVR);
595        ++NumReuse;
596        Changed = true;
597      }
598    }
599  
600    return Changed;
601  }
602  
603  /// If the instruction is a compare and the previous instruction it's comparing
604  /// against already sets (or could be modified to set) the same flag as the
605  /// compare, then we can remove the comparison and use the flag from the
606  /// previous instruction.
607  bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) {
608    // If this instruction is a comparison against zero and isn't comparing a
609    // physical register, we can try to optimize it.
610    unsigned SrcReg, SrcReg2;
611    int CmpMask, CmpValue;
612    if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
613        Register::isPhysicalRegister(SrcReg) ||
614        (SrcReg2 != 0 && Register::isPhysicalRegister(SrcReg2)))
615      return false;
616  
617    // Attempt to optimize the comparison instruction.
618    if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
619      ++NumCmps;
620      return true;
621    }
622  
623    return false;
624  }
625  
626  /// Optimize a select instruction.
627  bool PeepholeOptimizer::optimizeSelect(MachineInstr &MI,
628                              SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
629    unsigned TrueOp = 0;
630    unsigned FalseOp = 0;
631    bool Optimizable = false;
632    SmallVector<MachineOperand, 4> Cond;
633    if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
634      return false;
635    if (!Optimizable)
636      return false;
637    if (!TII->optimizeSelect(MI, LocalMIs))
638      return false;
639    MI.eraseFromParent();
640    ++NumSelects;
641    return true;
642  }
643  
644  /// Check if a simpler conditional branch can be generated.
645  bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) {
646    return TII->optimizeCondBranch(MI);
647  }
648  
649  /// Try to find the next source that share the same register file
650  /// for the value defined by \p Reg and \p SubReg.
651  /// When true is returned, the \p RewriteMap can be used by the client to
652  /// retrieve all Def -> Use along the way up to the next source. Any found
653  /// Use that is not itself a key for another entry, is the next source to
654  /// use. During the search for the next source, multiple sources can be found
655  /// given multiple incoming sources of a PHI instruction. In this case, we
656  /// look in each PHI source for the next source; all found next sources must
657  /// share the same register file as \p Reg and \p SubReg. The client should
658  /// then be capable to rewrite all intermediate PHIs to get the next source.
659  /// \return False if no alternative sources are available. True otherwise.
660  bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg,
661                                         RewriteMapTy &RewriteMap) {
662    // Do not try to find a new source for a physical register.
663    // So far we do not have any motivating example for doing that.
664    // Thus, instead of maintaining untested code, we will revisit that if
665    // that changes at some point.
666    unsigned Reg = RegSubReg.Reg;
667    if (Register::isPhysicalRegister(Reg))
668      return false;
669    const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
670  
671    SmallVector<RegSubRegPair, 4> SrcToLook;
672    RegSubRegPair CurSrcPair = RegSubReg;
673    SrcToLook.push_back(CurSrcPair);
674  
675    unsigned PHICount = 0;
676    do {
677      CurSrcPair = SrcToLook.pop_back_val();
678      // As explained above, do not handle physical registers
679      if (Register::isPhysicalRegister(CurSrcPair.Reg))
680        return false;
681  
682      ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII);
683  
684      // Follow the chain of copies until we find a more suitable source, a phi
685      // or have to abort.
686      while (true) {
687        ValueTrackerResult Res = ValTracker.getNextSource();
688        // Abort at the end of a chain (without finding a suitable source).
689        if (!Res.isValid())
690          return false;
691  
692        // Insert the Def -> Use entry for the recently found source.
693        ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair);
694        if (CurSrcRes.isValid()) {
695          assert(CurSrcRes == Res && "ValueTrackerResult found must match");
696          // An existent entry with multiple sources is a PHI cycle we must avoid.
697          // Otherwise it's an entry with a valid next source we already found.
698          if (CurSrcRes.getNumSources() > 1) {
699            LLVM_DEBUG(dbgs()
700                       << "findNextSource: found PHI cycle, aborting...\n");
701            return false;
702          }
703          break;
704        }
705        RewriteMap.insert(std::make_pair(CurSrcPair, Res));
706  
707        // ValueTrackerResult usually have one source unless it's the result from
708        // a PHI instruction. Add the found PHI edges to be looked up further.
709        unsigned NumSrcs = Res.getNumSources();
710        if (NumSrcs > 1) {
711          PHICount++;
712          if (PHICount >= RewritePHILimit) {
713            LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n");
714            return false;
715          }
716  
717          for (unsigned i = 0; i < NumSrcs; ++i)
718            SrcToLook.push_back(Res.getSrc(i));
719          break;
720        }
721  
722        CurSrcPair = Res.getSrc(0);
723        // Do not extend the live-ranges of physical registers as they add
724        // constraints to the register allocator. Moreover, if we want to extend
725        // the live-range of a physical register, unlike SSA virtual register,
726        // we will have to check that they aren't redefine before the related use.
727        if (Register::isPhysicalRegister(CurSrcPair.Reg))
728          return false;
729  
730        // Keep following the chain if the value isn't any better yet.
731        const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg);
732        if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC,
733                                       CurSrcPair.SubReg))
734          continue;
735  
736        // We currently cannot deal with subreg operands on PHI instructions
737        // (see insertPHI()).
738        if (PHICount > 0 && CurSrcPair.SubReg != 0)
739          continue;
740  
741        // We found a suitable source, and are done with this chain.
742        break;
743      }
744    } while (!SrcToLook.empty());
745  
746    // If we did not find a more suitable source, there is nothing to optimize.
747    return CurSrcPair.Reg != Reg;
748  }
749  
750  /// Insert a PHI instruction with incoming edges \p SrcRegs that are
751  /// guaranteed to have the same register class. This is necessary whenever we
752  /// successfully traverse a PHI instruction and find suitable sources coming
753  /// from its edges. By inserting a new PHI, we provide a rewritten PHI def
754  /// suitable to be used in a new COPY instruction.
755  static MachineInstr &
756  insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
757            const SmallVectorImpl<RegSubRegPair> &SrcRegs,
758            MachineInstr &OrigPHI) {
759    assert(!SrcRegs.empty() && "No sources to create a PHI instruction?");
760  
761    const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg);
762    // NewRC is only correct if no subregisters are involved. findNextSource()
763    // should have rejected those cases already.
764    assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand");
765    Register NewVR = MRI.createVirtualRegister(NewRC);
766    MachineBasicBlock *MBB = OrigPHI.getParent();
767    MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(),
768                                      TII.get(TargetOpcode::PHI), NewVR);
769  
770    unsigned MBBOpIdx = 2;
771    for (const RegSubRegPair &RegPair : SrcRegs) {
772      MIB.addReg(RegPair.Reg, 0, RegPair.SubReg);
773      MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB());
774      // Since we're extended the lifetime of RegPair.Reg, clear the
775      // kill flags to account for that and make RegPair.Reg reaches
776      // the new PHI.
777      MRI.clearKillFlags(RegPair.Reg);
778      MBBOpIdx += 2;
779    }
780  
781    return *MIB;
782  }
783  
784  namespace {
785  
786  /// Interface to query instructions amenable to copy rewriting.
787  class Rewriter {
788  protected:
789    MachineInstr &CopyLike;
790    unsigned CurrentSrcIdx = 0;   ///< The index of the source being rewritten.
791  public:
792    Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {}
793    virtual ~Rewriter() {}
794  
795    /// Get the next rewritable source (SrcReg, SrcSubReg) and
796    /// the related value that it affects (DstReg, DstSubReg).
797    /// A source is considered rewritable if its register class and the
798    /// register class of the related DstReg may not be register
799    /// coalescer friendly. In other words, given a copy-like instruction
800    /// not all the arguments may be returned at rewritable source, since
801    /// some arguments are none to be register coalescer friendly.
802    ///
803    /// Each call of this method moves the current source to the next
804    /// rewritable source.
805    /// For instance, let CopyLike be the instruction to rewrite.
806    /// CopyLike has one definition and one source:
807    /// dst.dstSubIdx = CopyLike src.srcSubIdx.
808    ///
809    /// The first call will give the first rewritable source, i.e.,
810    /// the only source this instruction has:
811    /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
812    /// This source defines the whole definition, i.e.,
813    /// (DstReg, DstSubReg) = (dst, dstSubIdx).
814    ///
815    /// The second and subsequent calls will return false, as there is only one
816    /// rewritable source.
817    ///
818    /// \return True if a rewritable source has been found, false otherwise.
819    /// The output arguments are valid if and only if true is returned.
820    virtual bool getNextRewritableSource(RegSubRegPair &Src,
821                                         RegSubRegPair &Dst) = 0;
822  
823    /// Rewrite the current source with \p NewReg and \p NewSubReg if possible.
824    /// \return True if the rewriting was possible, false otherwise.
825    virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) = 0;
826  };
827  
828  /// Rewriter for COPY instructions.
829  class CopyRewriter : public Rewriter {
830  public:
831    CopyRewriter(MachineInstr &MI) : Rewriter(MI) {
832      assert(MI.isCopy() && "Expected copy instruction");
833    }
834    virtual ~CopyRewriter() = default;
835  
836    bool getNextRewritableSource(RegSubRegPair &Src,
837                                 RegSubRegPair &Dst) override {
838      // CurrentSrcIdx > 0 means this function has already been called.
839      if (CurrentSrcIdx > 0)
840        return false;
841      // This is the first call to getNextRewritableSource.
842      // Move the CurrentSrcIdx to remember that we made that call.
843      CurrentSrcIdx = 1;
844      // The rewritable source is the argument.
845      const MachineOperand &MOSrc = CopyLike.getOperand(1);
846      Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg());
847      // What we track are the alternative sources of the definition.
848      const MachineOperand &MODef = CopyLike.getOperand(0);
849      Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
850      return true;
851    }
852  
853    bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
854      if (CurrentSrcIdx != 1)
855        return false;
856      MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
857      MOSrc.setReg(NewReg);
858      MOSrc.setSubReg(NewSubReg);
859      return true;
860    }
861  };
862  
863  /// Helper class to rewrite uncoalescable copy like instructions
864  /// into new COPY (coalescable friendly) instructions.
865  class UncoalescableRewriter : public Rewriter {
866    unsigned NumDefs;  ///< Number of defs in the bitcast.
867  
868  public:
869    UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) {
870      NumDefs = MI.getDesc().getNumDefs();
871    }
872  
873    /// \see See Rewriter::getNextRewritableSource()
874    /// All such sources need to be considered rewritable in order to
875    /// rewrite a uncoalescable copy-like instruction. This method return
876    /// each definition that must be checked if rewritable.
877    bool getNextRewritableSource(RegSubRegPair &Src,
878                                 RegSubRegPair &Dst) override {
879      // Find the next non-dead definition and continue from there.
880      if (CurrentSrcIdx == NumDefs)
881        return false;
882  
883      while (CopyLike.getOperand(CurrentSrcIdx).isDead()) {
884        ++CurrentSrcIdx;
885        if (CurrentSrcIdx == NumDefs)
886          return false;
887      }
888  
889      // What we track are the alternative sources of the definition.
890      Src = RegSubRegPair(0, 0);
891      const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx);
892      Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
893  
894      CurrentSrcIdx++;
895      return true;
896    }
897  
898    bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
899      return false;
900    }
901  };
902  
903  /// Specialized rewriter for INSERT_SUBREG instruction.
904  class InsertSubregRewriter : public Rewriter {
905  public:
906    InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) {
907      assert(MI.isInsertSubreg() && "Invalid instruction");
908    }
909  
910    /// \see See Rewriter::getNextRewritableSource()
911    /// Here CopyLike has the following form:
912    /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
913    /// Src1 has the same register class has dst, hence, there is
914    /// nothing to rewrite.
915    /// Src2.src2SubIdx, may not be register coalescer friendly.
916    /// Therefore, the first call to this method returns:
917    /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
918    /// (DstReg, DstSubReg) = (dst, subIdx).
919    ///
920    /// Subsequence calls will return false.
921    bool getNextRewritableSource(RegSubRegPair &Src,
922                                 RegSubRegPair &Dst) override {
923      // If we already get the only source we can rewrite, return false.
924      if (CurrentSrcIdx == 2)
925        return false;
926      // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
927      CurrentSrcIdx = 2;
928      const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
929      Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg());
930      const MachineOperand &MODef = CopyLike.getOperand(0);
931  
932      // We want to track something that is compatible with the
933      // partial definition.
934      if (MODef.getSubReg())
935        // Bail if we have to compose sub-register indices.
936        return false;
937      Dst = RegSubRegPair(MODef.getReg(),
938                          (unsigned)CopyLike.getOperand(3).getImm());
939      return true;
940    }
941  
942    bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
943      if (CurrentSrcIdx != 2)
944        return false;
945      // We are rewriting the inserted reg.
946      MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
947      MO.setReg(NewReg);
948      MO.setSubReg(NewSubReg);
949      return true;
950    }
951  };
952  
953  /// Specialized rewriter for EXTRACT_SUBREG instruction.
954  class ExtractSubregRewriter : public Rewriter {
955    const TargetInstrInfo &TII;
956  
957  public:
958    ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
959        : Rewriter(MI), TII(TII) {
960      assert(MI.isExtractSubreg() && "Invalid instruction");
961    }
962  
963    /// \see Rewriter::getNextRewritableSource()
964    /// Here CopyLike has the following form:
965    /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
966    /// There is only one rewritable source: Src.subIdx,
967    /// which defines dst.dstSubIdx.
968    bool getNextRewritableSource(RegSubRegPair &Src,
969                                 RegSubRegPair &Dst) override {
970      // If we already get the only source we can rewrite, return false.
971      if (CurrentSrcIdx == 1)
972        return false;
973      // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
974      CurrentSrcIdx = 1;
975      const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
976      // If we have to compose sub-register indices, bail out.
977      if (MOExtractedReg.getSubReg())
978        return false;
979  
980      Src = RegSubRegPair(MOExtractedReg.getReg(),
981                          CopyLike.getOperand(2).getImm());
982  
983      // We want to track something that is compatible with the definition.
984      const MachineOperand &MODef = CopyLike.getOperand(0);
985      Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
986      return true;
987    }
988  
989    bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
990      // The only source we can rewrite is the input register.
991      if (CurrentSrcIdx != 1)
992        return false;
993  
994      CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
995  
996      // If we find a source that does not require to extract something,
997      // rewrite the operation with a copy.
998      if (!NewSubReg) {
999        // Move the current index to an invalid position.
1000        // We do not want another call to this method to be able
1001        // to do any change.
1002        CurrentSrcIdx = -1;
1003        // Rewrite the operation as a COPY.
1004        // Get rid of the sub-register index.
1005        CopyLike.RemoveOperand(2);
1006        // Morph the operation into a COPY.
1007        CopyLike.setDesc(TII.get(TargetOpcode::COPY));
1008        return true;
1009      }
1010      CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
1011      return true;
1012    }
1013  };
1014  
1015  /// Specialized rewriter for REG_SEQUENCE instruction.
1016  class RegSequenceRewriter : public Rewriter {
1017  public:
1018    RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) {
1019      assert(MI.isRegSequence() && "Invalid instruction");
1020    }
1021  
1022    /// \see Rewriter::getNextRewritableSource()
1023    /// Here CopyLike has the following form:
1024    /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
1025    /// Each call will return a different source, walking all the available
1026    /// source.
1027    ///
1028    /// The first call returns:
1029    /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
1030    /// (DstReg, DstSubReg) = (dst, subIdx1).
1031    ///
1032    /// The second call returns:
1033    /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
1034    /// (DstReg, DstSubReg) = (dst, subIdx2).
1035    ///
1036    /// And so on, until all the sources have been traversed, then
1037    /// it returns false.
1038    bool getNextRewritableSource(RegSubRegPair &Src,
1039                                 RegSubRegPair &Dst) override {
1040      // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
1041  
1042      // If this is the first call, move to the first argument.
1043      if (CurrentSrcIdx == 0) {
1044        CurrentSrcIdx = 1;
1045      } else {
1046        // Otherwise, move to the next argument and check that it is valid.
1047        CurrentSrcIdx += 2;
1048        if (CurrentSrcIdx >= CopyLike.getNumOperands())
1049          return false;
1050      }
1051      const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
1052      Src.Reg = MOInsertedReg.getReg();
1053      // If we have to compose sub-register indices, bail out.
1054      if ((Src.SubReg = MOInsertedReg.getSubReg()))
1055        return false;
1056  
1057      // We want to track something that is compatible with the related
1058      // partial definition.
1059      Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
1060  
1061      const MachineOperand &MODef = CopyLike.getOperand(0);
1062      Dst.Reg = MODef.getReg();
1063      // If we have to compose sub-registers, bail.
1064      return MODef.getSubReg() == 0;
1065    }
1066  
1067    bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
1068      // We cannot rewrite out of bound operands.
1069      // Moreover, rewritable sources are at odd positions.
1070      if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
1071        return false;
1072  
1073      MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
1074      MO.setReg(NewReg);
1075      MO.setSubReg(NewSubReg);
1076      return true;
1077    }
1078  };
1079  
1080  } // end anonymous namespace
1081  
1082  /// Get the appropriated Rewriter for \p MI.
1083  /// \return A pointer to a dynamically allocated Rewriter or nullptr if no
1084  /// rewriter works for \p MI.
1085  static Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) {
1086    // Handle uncoalescable copy-like instructions.
1087    if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
1088        MI.isExtractSubregLike())
1089      return new UncoalescableRewriter(MI);
1090  
1091    switch (MI.getOpcode()) {
1092    default:
1093      return nullptr;
1094    case TargetOpcode::COPY:
1095      return new CopyRewriter(MI);
1096    case TargetOpcode::INSERT_SUBREG:
1097      return new InsertSubregRewriter(MI);
1098    case TargetOpcode::EXTRACT_SUBREG:
1099      return new ExtractSubregRewriter(MI, TII);
1100    case TargetOpcode::REG_SEQUENCE:
1101      return new RegSequenceRewriter(MI);
1102    }
1103  }
1104  
1105  /// Given a \p Def.Reg and Def.SubReg  pair, use \p RewriteMap to find
1106  /// the new source to use for rewrite. If \p HandleMultipleSources is true and
1107  /// multiple sources for a given \p Def are found along the way, we found a
1108  /// PHI instructions that needs to be rewritten.
1109  /// TODO: HandleMultipleSources should be removed once we test PHI handling
1110  /// with coalescable copies.
1111  static RegSubRegPair
1112  getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
1113               RegSubRegPair Def,
1114               const PeepholeOptimizer::RewriteMapTy &RewriteMap,
1115               bool HandleMultipleSources = true) {
1116    RegSubRegPair LookupSrc(Def.Reg, Def.SubReg);
1117    while (true) {
1118      ValueTrackerResult Res = RewriteMap.lookup(LookupSrc);
1119      // If there are no entries on the map, LookupSrc is the new source.
1120      if (!Res.isValid())
1121        return LookupSrc;
1122  
1123      // There's only one source for this definition, keep searching...
1124      unsigned NumSrcs = Res.getNumSources();
1125      if (NumSrcs == 1) {
1126        LookupSrc.Reg = Res.getSrcReg(0);
1127        LookupSrc.SubReg = Res.getSrcSubReg(0);
1128        continue;
1129      }
1130  
1131      // TODO: Remove once multiple srcs w/ coalescable copies are supported.
1132      if (!HandleMultipleSources)
1133        break;
1134  
1135      // Multiple sources, recurse into each source to find a new source
1136      // for it. Then, rewrite the PHI accordingly to its new edges.
1137      SmallVector<RegSubRegPair, 4> NewPHISrcs;
1138      for (unsigned i = 0; i < NumSrcs; ++i) {
1139        RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i));
1140        NewPHISrcs.push_back(
1141            getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources));
1142      }
1143  
1144      // Build the new PHI node and return its def register as the new source.
1145      MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst());
1146      MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI);
1147      LLVM_DEBUG(dbgs() << "-- getNewSource\n");
1148      LLVM_DEBUG(dbgs() << "   Replacing: " << OrigPHI);
1149      LLVM_DEBUG(dbgs() << "        With: " << NewPHI);
1150      const MachineOperand &MODef = NewPHI.getOperand(0);
1151      return RegSubRegPair(MODef.getReg(), MODef.getSubReg());
1152    }
1153  
1154    return RegSubRegPair(0, 0);
1155  }
1156  
1157  /// Optimize generic copy instructions to avoid cross register bank copy.
1158  /// The optimization looks through a chain of copies and tries to find a source
1159  /// that has a compatible register class.
1160  /// Two register classes are considered to be compatible if they share the same
1161  /// register bank.
1162  /// New copies issued by this optimization are register allocator
1163  /// friendly. This optimization does not remove any copy as it may
1164  /// overconstrain the register allocator, but replaces some operands
1165  /// when possible.
1166  /// \pre isCoalescableCopy(*MI) is true.
1167  /// \return True, when \p MI has been rewritten. False otherwise.
1168  bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) {
1169    assert(isCoalescableCopy(MI) && "Invalid argument");
1170    assert(MI.getDesc().getNumDefs() == 1 &&
1171           "Coalescer can understand multiple defs?!");
1172    const MachineOperand &MODef = MI.getOperand(0);
1173    // Do not rewrite physical definitions.
1174    if (Register::isPhysicalRegister(MODef.getReg()))
1175      return false;
1176  
1177    bool Changed = false;
1178    // Get the right rewriter for the current copy.
1179    std::unique_ptr<Rewriter> CpyRewriter(getCopyRewriter(MI, *TII));
1180    // If none exists, bail out.
1181    if (!CpyRewriter)
1182      return false;
1183    // Rewrite each rewritable source.
1184    RegSubRegPair Src;
1185    RegSubRegPair TrackPair;
1186    while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) {
1187      // Keep track of PHI nodes and its incoming edges when looking for sources.
1188      RewriteMapTy RewriteMap;
1189      // Try to find a more suitable source. If we failed to do so, or get the
1190      // actual source, move to the next source.
1191      if (!findNextSource(TrackPair, RewriteMap))
1192        continue;
1193  
1194      // Get the new source to rewrite. TODO: Only enable handling of multiple
1195      // sources (PHIs) once we have a motivating example and testcases for it.
1196      RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap,
1197                                          /*HandleMultipleSources=*/false);
1198      if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0)
1199        continue;
1200  
1201      // Rewrite source.
1202      if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) {
1203        // We may have extended the live-range of NewSrc, account for that.
1204        MRI->clearKillFlags(NewSrc.Reg);
1205        Changed = true;
1206      }
1207    }
1208    // TODO: We could have a clean-up method to tidy the instruction.
1209    // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
1210    // => v0 = COPY v1
1211    // Currently we haven't seen motivating example for that and we
1212    // want to avoid untested code.
1213    NumRewrittenCopies += Changed;
1214    return Changed;
1215  }
1216  
1217  /// Rewrite the source found through \p Def, by using the \p RewriteMap
1218  /// and create a new COPY instruction. More info about RewriteMap in
1219  /// PeepholeOptimizer::findNextSource. Right now this is only used to handle
1220  /// Uncoalescable copies, since they are copy like instructions that aren't
1221  /// recognized by the register allocator.
1222  MachineInstr &
1223  PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike,
1224                                   RegSubRegPair Def, RewriteMapTy &RewriteMap) {
1225    assert(!Register::isPhysicalRegister(Def.Reg) &&
1226           "We do not rewrite physical registers");
1227  
1228    // Find the new source to use in the COPY rewrite.
1229    RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap);
1230  
1231    // Insert the COPY.
1232    const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
1233    Register NewVReg = MRI->createVirtualRegister(DefRC);
1234  
1235    MachineInstr *NewCopy =
1236        BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(),
1237                TII->get(TargetOpcode::COPY), NewVReg)
1238            .addReg(NewSrc.Reg, 0, NewSrc.SubReg);
1239  
1240    if (Def.SubReg) {
1241      NewCopy->getOperand(0).setSubReg(Def.SubReg);
1242      NewCopy->getOperand(0).setIsUndef();
1243    }
1244  
1245    LLVM_DEBUG(dbgs() << "-- RewriteSource\n");
1246    LLVM_DEBUG(dbgs() << "   Replacing: " << CopyLike);
1247    LLVM_DEBUG(dbgs() << "        With: " << *NewCopy);
1248    MRI->replaceRegWith(Def.Reg, NewVReg);
1249    MRI->clearKillFlags(NewVReg);
1250  
1251    // We extended the lifetime of NewSrc.Reg, clear the kill flags to
1252    // account for that.
1253    MRI->clearKillFlags(NewSrc.Reg);
1254  
1255    return *NewCopy;
1256  }
1257  
1258  /// Optimize copy-like instructions to create
1259  /// register coalescer friendly instruction.
1260  /// The optimization tries to kill-off the \p MI by looking
1261  /// through a chain of copies to find a source that has a compatible
1262  /// register class.
1263  /// If such a source is found, it replace \p MI by a generic COPY
1264  /// operation.
1265  /// \pre isUncoalescableCopy(*MI) is true.
1266  /// \return True, when \p MI has been optimized. In that case, \p MI has
1267  /// been removed from its parent.
1268  /// All COPY instructions created, are inserted in \p LocalMIs.
1269  bool PeepholeOptimizer::optimizeUncoalescableCopy(
1270      MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
1271    assert(isUncoalescableCopy(MI) && "Invalid argument");
1272    UncoalescableRewriter CpyRewriter(MI);
1273  
1274    // Rewrite each rewritable source by generating new COPYs. This works
1275    // differently from optimizeCoalescableCopy since it first makes sure that all
1276    // definitions can be rewritten.
1277    RewriteMapTy RewriteMap;
1278    RegSubRegPair Src;
1279    RegSubRegPair Def;
1280    SmallVector<RegSubRegPair, 4> RewritePairs;
1281    while (CpyRewriter.getNextRewritableSource(Src, Def)) {
1282      // If a physical register is here, this is probably for a good reason.
1283      // Do not rewrite that.
1284      if (Register::isPhysicalRegister(Def.Reg))
1285        return false;
1286  
1287      // If we do not know how to rewrite this definition, there is no point
1288      // in trying to kill this instruction.
1289      if (!findNextSource(Def, RewriteMap))
1290        return false;
1291  
1292      RewritePairs.push_back(Def);
1293    }
1294  
1295    // The change is possible for all defs, do it.
1296    for (const RegSubRegPair &Def : RewritePairs) {
1297      // Rewrite the "copy" in a way the register coalescer understands.
1298      MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap);
1299      LocalMIs.insert(&NewCopy);
1300    }
1301  
1302    // MI is now dead.
1303    MI.eraseFromParent();
1304    ++NumUncoalescableCopies;
1305    return true;
1306  }
1307  
1308  /// Check whether MI is a candidate for folding into a later instruction.
1309  /// We only fold loads to virtual registers and the virtual register defined
1310  /// has a single user.
1311  bool PeepholeOptimizer::isLoadFoldable(
1312      MachineInstr &MI, SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) {
1313    if (!MI.canFoldAsLoad() || !MI.mayLoad())
1314      return false;
1315    const MCInstrDesc &MCID = MI.getDesc();
1316    if (MCID.getNumDefs() != 1)
1317      return false;
1318  
1319    Register Reg = MI.getOperand(0).getReg();
1320    // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting
1321    // loads. It should be checked when processing uses of the load, since
1322    // uses can be removed during peephole.
1323    if (!MI.getOperand(0).getSubReg() && Register::isVirtualRegister(Reg) &&
1324        MRI->hasOneNonDBGUser(Reg)) {
1325      FoldAsLoadDefCandidates.insert(Reg);
1326      return true;
1327    }
1328    return false;
1329  }
1330  
1331  bool PeepholeOptimizer::isMoveImmediate(
1332      MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs,
1333      DenseMap<unsigned, MachineInstr *> &ImmDefMIs) {
1334    const MCInstrDesc &MCID = MI.getDesc();
1335    if (!MI.isMoveImmediate())
1336      return false;
1337    if (MCID.getNumDefs() != 1)
1338      return false;
1339    Register Reg = MI.getOperand(0).getReg();
1340    if (Register::isVirtualRegister(Reg)) {
1341      ImmDefMIs.insert(std::make_pair(Reg, &MI));
1342      ImmDefRegs.insert(Reg);
1343      return true;
1344    }
1345  
1346    return false;
1347  }
1348  
1349  /// Try folding register operands that are defined by move immediate
1350  /// instructions, i.e. a trivial constant folding optimization, if
1351  /// and only if the def and use are in the same BB.
1352  bool PeepholeOptimizer::foldImmediate(MachineInstr &MI,
1353      SmallSet<unsigned, 4> &ImmDefRegs,
1354      DenseMap<unsigned, MachineInstr *> &ImmDefMIs) {
1355    for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1356      MachineOperand &MO = MI.getOperand(i);
1357      if (!MO.isReg() || MO.isDef())
1358        continue;
1359      // Ignore dead implicit defs.
1360      if (MO.isImplicit() && MO.isDead())
1361        continue;
1362      Register Reg = MO.getReg();
1363      if (!Register::isVirtualRegister(Reg))
1364        continue;
1365      if (ImmDefRegs.count(Reg) == 0)
1366        continue;
1367      DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
1368      assert(II != ImmDefMIs.end() && "couldn't find immediate definition");
1369      if (TII->FoldImmediate(MI, *II->second, Reg, MRI)) {
1370        ++NumImmFold;
1371        return true;
1372      }
1373    }
1374    return false;
1375  }
1376  
1377  // FIXME: This is very simple and misses some cases which should be handled when
1378  // motivating examples are found.
1379  //
1380  // The copy rewriting logic should look at uses as well as defs and be able to
1381  // eliminate copies across blocks.
1382  //
1383  // Later copies that are subregister extracts will also not be eliminated since
1384  // only the first copy is considered.
1385  //
1386  // e.g.
1387  // %1 = COPY %0
1388  // %2 = COPY %0:sub1
1389  //
1390  // Should replace %2 uses with %1:sub1
1391  bool PeepholeOptimizer::foldRedundantCopy(MachineInstr &MI,
1392      SmallSet<unsigned, 4> &CopySrcRegs,
1393      DenseMap<unsigned, MachineInstr *> &CopyMIs) {
1394    assert(MI.isCopy() && "expected a COPY machine instruction");
1395  
1396    Register SrcReg = MI.getOperand(1).getReg();
1397    if (!Register::isVirtualRegister(SrcReg))
1398      return false;
1399  
1400    Register DstReg = MI.getOperand(0).getReg();
1401    if (!Register::isVirtualRegister(DstReg))
1402      return false;
1403  
1404    if (CopySrcRegs.insert(SrcReg).second) {
1405      // First copy of this reg seen.
1406      CopyMIs.insert(std::make_pair(SrcReg, &MI));
1407      return false;
1408    }
1409  
1410    MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second;
1411  
1412    unsigned SrcSubReg = MI.getOperand(1).getSubReg();
1413    unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg();
1414  
1415    // Can't replace different subregister extracts.
1416    if (SrcSubReg != PrevSrcSubReg)
1417      return false;
1418  
1419    Register PrevDstReg = PrevCopy->getOperand(0).getReg();
1420  
1421    // Only replace if the copy register class is the same.
1422    //
1423    // TODO: If we have multiple copies to different register classes, we may want
1424    // to track multiple copies of the same source register.
1425    if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg))
1426      return false;
1427  
1428    MRI->replaceRegWith(DstReg, PrevDstReg);
1429  
1430    // Lifetime of the previous copy has been extended.
1431    MRI->clearKillFlags(PrevDstReg);
1432    return true;
1433  }
1434  
1435  bool PeepholeOptimizer::isNAPhysCopy(unsigned Reg) {
1436    return Register::isPhysicalRegister(Reg) && !MRI->isAllocatable(Reg);
1437  }
1438  
1439  bool PeepholeOptimizer::foldRedundantNAPhysCopy(
1440      MachineInstr &MI, DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs) {
1441    assert(MI.isCopy() && "expected a COPY machine instruction");
1442  
1443    if (DisableNAPhysCopyOpt)
1444      return false;
1445  
1446    Register DstReg = MI.getOperand(0).getReg();
1447    Register SrcReg = MI.getOperand(1).getReg();
1448    if (isNAPhysCopy(SrcReg) && Register::isVirtualRegister(DstReg)) {
1449      // %vreg = COPY %physreg
1450      // Avoid using a datastructure which can track multiple live non-allocatable
1451      // phys->virt copies since LLVM doesn't seem to do this.
1452      NAPhysToVirtMIs.insert({SrcReg, &MI});
1453      return false;
1454    }
1455  
1456    if (!(Register::isVirtualRegister(SrcReg) && isNAPhysCopy(DstReg)))
1457      return false;
1458  
1459    // %physreg = COPY %vreg
1460    auto PrevCopy = NAPhysToVirtMIs.find(DstReg);
1461    if (PrevCopy == NAPhysToVirtMIs.end()) {
1462      // We can't remove the copy: there was an intervening clobber of the
1463      // non-allocatable physical register after the copy to virtual.
1464      LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing "
1465                        << MI);
1466      return false;
1467    }
1468  
1469    Register PrevDstReg = PrevCopy->second->getOperand(0).getReg();
1470    if (PrevDstReg == SrcReg) {
1471      // Remove the virt->phys copy: we saw the virtual register definition, and
1472      // the non-allocatable physical register's state hasn't changed since then.
1473      LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI);
1474      ++NumNAPhysCopies;
1475      return true;
1476    }
1477  
1478    // Potential missed optimization opportunity: we saw a different virtual
1479    // register get a copy of the non-allocatable physical register, and we only
1480    // track one such copy. Avoid getting confused by this new non-allocatable
1481    // physical register definition, and remove it from the tracked copies.
1482    LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI);
1483    NAPhysToVirtMIs.erase(PrevCopy);
1484    return false;
1485  }
1486  
1487  /// \bried Returns true if \p MO is a virtual register operand.
1488  static bool isVirtualRegisterOperand(MachineOperand &MO) {
1489    if (!MO.isReg())
1490      return false;
1491    return Register::isVirtualRegister(MO.getReg());
1492  }
1493  
1494  bool PeepholeOptimizer::findTargetRecurrence(
1495      unsigned Reg, const SmallSet<unsigned, 2> &TargetRegs,
1496      RecurrenceCycle &RC) {
1497    // Recurrence found if Reg is in TargetRegs.
1498    if (TargetRegs.count(Reg))
1499      return true;
1500  
1501    // TODO: Curerntly, we only allow the last instruction of the recurrence
1502    // cycle (the instruction that feeds the PHI instruction) to have more than
1503    // one uses to guarantee that commuting operands does not tie registers
1504    // with overlapping live range. Once we have actual live range info of
1505    // each register, this constraint can be relaxed.
1506    if (!MRI->hasOneNonDBGUse(Reg))
1507      return false;
1508  
1509    // Give up if the reccurrence chain length is longer than the limit.
1510    if (RC.size() >= MaxRecurrenceChain)
1511      return false;
1512  
1513    MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg));
1514    unsigned Idx = MI.findRegisterUseOperandIdx(Reg);
1515  
1516    // Only interested in recurrences whose instructions have only one def, which
1517    // is a virtual register.
1518    if (MI.getDesc().getNumDefs() != 1)
1519      return false;
1520  
1521    MachineOperand &DefOp = MI.getOperand(0);
1522    if (!isVirtualRegisterOperand(DefOp))
1523      return false;
1524  
1525    // Check if def operand of MI is tied to any use operand. We are only
1526    // interested in the case that all the instructions in the recurrence chain
1527    // have there def operand tied with one of the use operand.
1528    unsigned TiedUseIdx;
1529    if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx))
1530      return false;
1531  
1532    if (Idx == TiedUseIdx) {
1533      RC.push_back(RecurrenceInstr(&MI));
1534      return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1535    } else {
1536      // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx.
1537      unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex;
1538      if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) {
1539        RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx));
1540        return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1541      }
1542    }
1543  
1544    return false;
1545  }
1546  
1547  /// Phi instructions will eventually be lowered to copy instructions.
1548  /// If phi is in a loop header, a recurrence may formulated around the source
1549  /// and destination of the phi. For such case commuting operands of the
1550  /// instructions in the recurrence may enable coalescing of the copy instruction
1551  /// generated from the phi. For example, if there is a recurrence of
1552  ///
1553  /// LoopHeader:
1554  ///   %1 = phi(%0, %100)
1555  /// LoopLatch:
1556  ///   %0<def, tied1> = ADD %2<def, tied0>, %1
1557  ///
1558  /// , the fact that %0 and %2 are in the same tied operands set makes
1559  /// the coalescing of copy instruction generated from the phi in
1560  /// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and
1561  /// %2 have overlapping live range. This introduces additional move
1562  /// instruction to the final assembly. However, if we commute %2 and
1563  /// %1 of ADD instruction, the redundant move instruction can be
1564  /// avoided.
1565  bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) {
1566    SmallSet<unsigned, 2> TargetRegs;
1567    for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) {
1568      MachineOperand &MO = PHI.getOperand(Idx);
1569      assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction");
1570      TargetRegs.insert(MO.getReg());
1571    }
1572  
1573    bool Changed = false;
1574    RecurrenceCycle RC;
1575    if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) {
1576      // Commutes operands of instructions in RC if necessary so that the copy to
1577      // be generated from PHI can be coalesced.
1578      LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI);
1579      for (auto &RI : RC) {
1580        LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI()));
1581        auto CP = RI.getCommutePair();
1582        if (CP) {
1583          Changed = true;
1584          TII->commuteInstruction(*(RI.getMI()), false, (*CP).first,
1585                                  (*CP).second);
1586          LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI()));
1587        }
1588      }
1589    }
1590  
1591    return Changed;
1592  }
1593  
1594  bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
1595    if (skipFunction(MF.getFunction()))
1596      return false;
1597  
1598    LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
1599    LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
1600  
1601    if (DisablePeephole)
1602      return false;
1603  
1604    TII = MF.getSubtarget().getInstrInfo();
1605    TRI = MF.getSubtarget().getRegisterInfo();
1606    MRI = &MF.getRegInfo();
1607    DT  = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
1608    MLI = &getAnalysis<MachineLoopInfo>();
1609  
1610    bool Changed = false;
1611  
1612    for (MachineBasicBlock &MBB : MF) {
1613      bool SeenMoveImm = false;
1614  
1615      // During this forward scan, at some point it needs to answer the question
1616      // "given a pointer to an MI in the current BB, is it located before or
1617      // after the current instruction".
1618      // To perform this, the following set keeps track of the MIs already seen
1619      // during the scan, if a MI is not in the set, it is assumed to be located
1620      // after. Newly created MIs have to be inserted in the set as well.
1621      SmallPtrSet<MachineInstr*, 16> LocalMIs;
1622      SmallSet<unsigned, 4> ImmDefRegs;
1623      DenseMap<unsigned, MachineInstr*> ImmDefMIs;
1624      SmallSet<unsigned, 16> FoldAsLoadDefCandidates;
1625  
1626      // Track when a non-allocatable physical register is copied to a virtual
1627      // register so that useless moves can be removed.
1628      //
1629      // %physreg is the map index; MI is the last valid `%vreg = COPY %physreg`
1630      // without any intervening re-definition of %physreg.
1631      DenseMap<unsigned, MachineInstr *> NAPhysToVirtMIs;
1632  
1633      // Set of virtual registers that are copied from.
1634      SmallSet<unsigned, 4> CopySrcRegs;
1635      DenseMap<unsigned, MachineInstr *> CopySrcMIs;
1636  
1637      bool IsLoopHeader = MLI->isLoopHeader(&MBB);
1638  
1639      for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
1640           MII != MIE; ) {
1641        MachineInstr *MI = &*MII;
1642        // We may be erasing MI below, increment MII now.
1643        ++MII;
1644        LocalMIs.insert(MI);
1645  
1646        // Skip debug instructions. They should not affect this peephole optimization.
1647        if (MI->isDebugInstr())
1648            continue;
1649  
1650        if (MI->isPosition())
1651          continue;
1652  
1653        if (IsLoopHeader && MI->isPHI()) {
1654          if (optimizeRecurrence(*MI)) {
1655            Changed = true;
1656            continue;
1657          }
1658        }
1659  
1660        if (!MI->isCopy()) {
1661          for (const MachineOperand &MO : MI->operands()) {
1662            // Visit all operands: definitions can be implicit or explicit.
1663            if (MO.isReg()) {
1664              Register Reg = MO.getReg();
1665              if (MO.isDef() && isNAPhysCopy(Reg)) {
1666                const auto &Def = NAPhysToVirtMIs.find(Reg);
1667                if (Def != NAPhysToVirtMIs.end()) {
1668                  // A new definition of the non-allocatable physical register
1669                  // invalidates previous copies.
1670                  LLVM_DEBUG(dbgs()
1671                             << "NAPhysCopy: invalidating because of " << *MI);
1672                  NAPhysToVirtMIs.erase(Def);
1673                }
1674              }
1675            } else if (MO.isRegMask()) {
1676              const uint32_t *RegMask = MO.getRegMask();
1677              for (auto &RegMI : NAPhysToVirtMIs) {
1678                unsigned Def = RegMI.first;
1679                if (MachineOperand::clobbersPhysReg(RegMask, Def)) {
1680                  LLVM_DEBUG(dbgs()
1681                             << "NAPhysCopy: invalidating because of " << *MI);
1682                  NAPhysToVirtMIs.erase(Def);
1683                }
1684              }
1685            }
1686          }
1687        }
1688  
1689        if (MI->isImplicitDef() || MI->isKill())
1690          continue;
1691  
1692        if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) {
1693          // Blow away all non-allocatable physical registers knowledge since we
1694          // don't know what's correct anymore.
1695          //
1696          // FIXME: handle explicit asm clobbers.
1697          LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to "
1698                            << *MI);
1699          NAPhysToVirtMIs.clear();
1700        }
1701  
1702        if ((isUncoalescableCopy(*MI) &&
1703             optimizeUncoalescableCopy(*MI, LocalMIs)) ||
1704            (MI->isCompare() && optimizeCmpInstr(*MI)) ||
1705            (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) {
1706          // MI is deleted.
1707          LocalMIs.erase(MI);
1708          Changed = true;
1709          continue;
1710        }
1711  
1712        if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) {
1713          Changed = true;
1714          continue;
1715        }
1716  
1717        if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) {
1718          // MI is just rewritten.
1719          Changed = true;
1720          continue;
1721        }
1722  
1723        if (MI->isCopy() &&
1724            (foldRedundantCopy(*MI, CopySrcRegs, CopySrcMIs) ||
1725             foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) {
1726          LocalMIs.erase(MI);
1727          MI->eraseFromParent();
1728          Changed = true;
1729          continue;
1730        }
1731  
1732        if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) {
1733          SeenMoveImm = true;
1734        } else {
1735          Changed |= optimizeExtInstr(*MI, MBB, LocalMIs);
1736          // optimizeExtInstr might have created new instructions after MI
1737          // and before the already incremented MII. Adjust MII so that the
1738          // next iteration sees the new instructions.
1739          MII = MI;
1740          ++MII;
1741          if (SeenMoveImm)
1742            Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs);
1743        }
1744  
1745        // Check whether MI is a load candidate for folding into a later
1746        // instruction. If MI is not a candidate, check whether we can fold an
1747        // earlier load into MI.
1748        if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) &&
1749            !FoldAsLoadDefCandidates.empty()) {
1750  
1751          // We visit each operand even after successfully folding a previous
1752          // one.  This allows us to fold multiple loads into a single
1753          // instruction.  We do assume that optimizeLoadInstr doesn't insert
1754          // foldable uses earlier in the argument list.  Since we don't restart
1755          // iteration, we'd miss such cases.
1756          const MCInstrDesc &MIDesc = MI->getDesc();
1757          for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands();
1758               ++i) {
1759            const MachineOperand &MOp = MI->getOperand(i);
1760            if (!MOp.isReg())
1761              continue;
1762            unsigned FoldAsLoadDefReg = MOp.getReg();
1763            if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
1764              // We need to fold load after optimizeCmpInstr, since
1765              // optimizeCmpInstr can enable folding by converting SUB to CMP.
1766              // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
1767              // we need it for markUsesInDebugValueAsUndef().
1768              unsigned FoldedReg = FoldAsLoadDefReg;
1769              MachineInstr *DefMI = nullptr;
1770              if (MachineInstr *FoldMI =
1771                      TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) {
1772                // Update LocalMIs since we replaced MI with FoldMI and deleted
1773                // DefMI.
1774                LLVM_DEBUG(dbgs() << "Replacing: " << *MI);
1775                LLVM_DEBUG(dbgs() << "     With: " << *FoldMI);
1776                LocalMIs.erase(MI);
1777                LocalMIs.erase(DefMI);
1778                LocalMIs.insert(FoldMI);
1779                if (MI->isCall())
1780                  MI->getMF()->moveCallSiteInfo(MI, FoldMI);
1781                MI->eraseFromParent();
1782                DefMI->eraseFromParent();
1783                MRI->markUsesInDebugValueAsUndef(FoldedReg);
1784                FoldAsLoadDefCandidates.erase(FoldedReg);
1785                ++NumLoadFold;
1786  
1787                // MI is replaced with FoldMI so we can continue trying to fold
1788                Changed = true;
1789                MI = FoldMI;
1790              }
1791            }
1792          }
1793        }
1794  
1795        // If we run into an instruction we can't fold across, discard
1796        // the load candidates.  Note: We might be able to fold *into* this
1797        // instruction, so this needs to be after the folding logic.
1798        if (MI->isLoadFoldBarrier()) {
1799          LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI);
1800          FoldAsLoadDefCandidates.clear();
1801        }
1802      }
1803    }
1804  
1805    return Changed;
1806  }
1807  
1808  ValueTrackerResult ValueTracker::getNextSourceFromCopy() {
1809    assert(Def->isCopy() && "Invalid definition");
1810    // Copy instruction are supposed to be: Def = Src.
1811    // If someone breaks this assumption, bad things will happen everywhere.
1812    // There may be implicit uses preventing the copy to be moved across
1813    // some target specific register definitions
1814    assert(Def->getNumOperands() - Def->getNumImplicitOperands() == 2 &&
1815           "Invalid number of operands");
1816    assert(!Def->hasImplicitDef() && "Only implicit uses are allowed");
1817  
1818    if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
1819      // If we look for a different subreg, it means we want a subreg of src.
1820      // Bails as we do not support composing subregs yet.
1821      return ValueTrackerResult();
1822    // Otherwise, we want the whole source.
1823    const MachineOperand &Src = Def->getOperand(1);
1824    if (Src.isUndef())
1825      return ValueTrackerResult();
1826    return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1827  }
1828  
1829  ValueTrackerResult ValueTracker::getNextSourceFromBitcast() {
1830    assert(Def->isBitcast() && "Invalid definition");
1831  
1832    // Bail if there are effects that a plain copy will not expose.
1833    if (Def->mayRaiseFPException() || Def->hasUnmodeledSideEffects())
1834      return ValueTrackerResult();
1835  
1836    // Bitcasts with more than one def are not supported.
1837    if (Def->getDesc().getNumDefs() != 1)
1838      return ValueTrackerResult();
1839    const MachineOperand DefOp = Def->getOperand(DefIdx);
1840    if (DefOp.getSubReg() != DefSubReg)
1841      // If we look for a different subreg, it means we want a subreg of the src.
1842      // Bails as we do not support composing subregs yet.
1843      return ValueTrackerResult();
1844  
1845    unsigned SrcIdx = Def->getNumOperands();
1846    for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
1847         ++OpIdx) {
1848      const MachineOperand &MO = Def->getOperand(OpIdx);
1849      if (!MO.isReg() || !MO.getReg())
1850        continue;
1851      // Ignore dead implicit defs.
1852      if (MO.isImplicit() && MO.isDead())
1853        continue;
1854      assert(!MO.isDef() && "We should have skipped all the definitions by now");
1855      if (SrcIdx != EndOpIdx)
1856        // Multiple sources?
1857        return ValueTrackerResult();
1858      SrcIdx = OpIdx;
1859    }
1860  
1861    // In some rare case, Def has no input, SrcIdx is out of bound,
1862    // getOperand(SrcIdx) will fail below.
1863    if (SrcIdx >= Def->getNumOperands())
1864      return ValueTrackerResult();
1865  
1866    // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY
1867    // will break the assumed guarantees for the upper bits.
1868    for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) {
1869      if (UseMI.isSubregToReg())
1870        return ValueTrackerResult();
1871    }
1872  
1873    const MachineOperand &Src = Def->getOperand(SrcIdx);
1874    if (Src.isUndef())
1875      return ValueTrackerResult();
1876    return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1877  }
1878  
1879  ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() {
1880    assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
1881           "Invalid definition");
1882  
1883    if (Def->getOperand(DefIdx).getSubReg())
1884      // If we are composing subregs, bail out.
1885      // The case we are checking is Def.<subreg> = REG_SEQUENCE.
1886      // This should almost never happen as the SSA property is tracked at
1887      // the register level (as opposed to the subreg level).
1888      // I.e.,
1889      // Def.sub0 =
1890      // Def.sub1 =
1891      // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
1892      // Def. Thus, it must not be generated.
1893      // However, some code could theoretically generates a single
1894      // Def.sub0 (i.e, not defining the other subregs) and we would
1895      // have this case.
1896      // If we can ascertain (or force) that this never happens, we could
1897      // turn that into an assertion.
1898      return ValueTrackerResult();
1899  
1900    if (!TII)
1901      // We could handle the REG_SEQUENCE here, but we do not want to
1902      // duplicate the code from the generic TII.
1903      return ValueTrackerResult();
1904  
1905    SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs;
1906    if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
1907      return ValueTrackerResult();
1908  
1909    // We are looking at:
1910    // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1911    // Check if one of the operand defines the subreg we are interested in.
1912    for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) {
1913      if (RegSeqInput.SubIdx == DefSubReg)
1914        return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg);
1915    }
1916  
1917    // If the subreg we are tracking is super-defined by another subreg,
1918    // we could follow this value. However, this would require to compose
1919    // the subreg and we do not do that for now.
1920    return ValueTrackerResult();
1921  }
1922  
1923  ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() {
1924    assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
1925           "Invalid definition");
1926  
1927    if (Def->getOperand(DefIdx).getSubReg())
1928      // If we are composing subreg, bail out.
1929      // Same remark as getNextSourceFromRegSequence.
1930      // I.e., this may be turned into an assert.
1931      return ValueTrackerResult();
1932  
1933    if (!TII)
1934      // We could handle the REG_SEQUENCE here, but we do not want to
1935      // duplicate the code from the generic TII.
1936      return ValueTrackerResult();
1937  
1938    RegSubRegPair BaseReg;
1939    RegSubRegPairAndIdx InsertedReg;
1940    if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
1941      return ValueTrackerResult();
1942  
1943    // We are looking at:
1944    // Def = INSERT_SUBREG v0, v1, sub1
1945    // There are two cases:
1946    // 1. DefSubReg == sub1, get v1.
1947    // 2. DefSubReg != sub1, the value may be available through v0.
1948  
1949    // #1 Check if the inserted register matches the required sub index.
1950    if (InsertedReg.SubIdx == DefSubReg) {
1951      return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg);
1952    }
1953    // #2 Otherwise, if the sub register we are looking for is not partial
1954    // defined by the inserted element, we can look through the main
1955    // register (v0).
1956    const MachineOperand &MODef = Def->getOperand(DefIdx);
1957    // If the result register (Def) and the base register (v0) do not
1958    // have the same register class or if we have to compose
1959    // subregisters, bail out.
1960    if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
1961        BaseReg.SubReg)
1962      return ValueTrackerResult();
1963  
1964    // Get the TRI and check if the inserted sub-register overlaps with the
1965    // sub-register we are tracking.
1966    const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
1967    if (!TRI ||
1968        !(TRI->getSubRegIndexLaneMask(DefSubReg) &
1969          TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none())
1970      return ValueTrackerResult();
1971    // At this point, the value is available in v0 via the same subreg
1972    // we used for Def.
1973    return ValueTrackerResult(BaseReg.Reg, DefSubReg);
1974  }
1975  
1976  ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() {
1977    assert((Def->isExtractSubreg() ||
1978            Def->isExtractSubregLike()) && "Invalid definition");
1979    // We are looking at:
1980    // Def = EXTRACT_SUBREG v0, sub0
1981  
1982    // Bail if we have to compose sub registers.
1983    // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
1984    if (DefSubReg)
1985      return ValueTrackerResult();
1986  
1987    if (!TII)
1988      // We could handle the EXTRACT_SUBREG here, but we do not want to
1989      // duplicate the code from the generic TII.
1990      return ValueTrackerResult();
1991  
1992    RegSubRegPairAndIdx ExtractSubregInputReg;
1993    if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
1994      return ValueTrackerResult();
1995  
1996    // Bail if we have to compose sub registers.
1997    // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
1998    if (ExtractSubregInputReg.SubReg)
1999      return ValueTrackerResult();
2000    // Otherwise, the value is available in the v0.sub0.
2001    return ValueTrackerResult(ExtractSubregInputReg.Reg,
2002                              ExtractSubregInputReg.SubIdx);
2003  }
2004  
2005  ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() {
2006    assert(Def->isSubregToReg() && "Invalid definition");
2007    // We are looking at:
2008    // Def = SUBREG_TO_REG Imm, v0, sub0
2009  
2010    // Bail if we have to compose sub registers.
2011    // If DefSubReg != sub0, we would have to check that all the bits
2012    // we track are included in sub0 and if yes, we would have to
2013    // determine the right subreg in v0.
2014    if (DefSubReg != Def->getOperand(3).getImm())
2015      return ValueTrackerResult();
2016    // Bail if we have to compose sub registers.
2017    // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
2018    if (Def->getOperand(2).getSubReg())
2019      return ValueTrackerResult();
2020  
2021    return ValueTrackerResult(Def->getOperand(2).getReg(),
2022                              Def->getOperand(3).getImm());
2023  }
2024  
2025  /// Explore each PHI incoming operand and return its sources.
2026  ValueTrackerResult ValueTracker::getNextSourceFromPHI() {
2027    assert(Def->isPHI() && "Invalid definition");
2028    ValueTrackerResult Res;
2029  
2030    // If we look for a different subreg, bail as we do not support composing
2031    // subregs yet.
2032    if (Def->getOperand(0).getSubReg() != DefSubReg)
2033      return ValueTrackerResult();
2034  
2035    // Return all register sources for PHI instructions.
2036    for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) {
2037      const MachineOperand &MO = Def->getOperand(i);
2038      assert(MO.isReg() && "Invalid PHI instruction");
2039      // We have no code to deal with undef operands. They shouldn't happen in
2040      // normal programs anyway.
2041      if (MO.isUndef())
2042        return ValueTrackerResult();
2043      Res.addSource(MO.getReg(), MO.getSubReg());
2044    }
2045  
2046    return Res;
2047  }
2048  
2049  ValueTrackerResult ValueTracker::getNextSourceImpl() {
2050    assert(Def && "This method needs a valid definition");
2051  
2052    assert(((Def->getOperand(DefIdx).isDef() &&
2053             (DefIdx < Def->getDesc().getNumDefs() ||
2054              Def->getDesc().isVariadic())) ||
2055            Def->getOperand(DefIdx).isImplicit()) &&
2056           "Invalid DefIdx");
2057    if (Def->isCopy())
2058      return getNextSourceFromCopy();
2059    if (Def->isBitcast())
2060      return getNextSourceFromBitcast();
2061    // All the remaining cases involve "complex" instructions.
2062    // Bail if we did not ask for the advanced tracking.
2063    if (DisableAdvCopyOpt)
2064      return ValueTrackerResult();
2065    if (Def->isRegSequence() || Def->isRegSequenceLike())
2066      return getNextSourceFromRegSequence();
2067    if (Def->isInsertSubreg() || Def->isInsertSubregLike())
2068      return getNextSourceFromInsertSubreg();
2069    if (Def->isExtractSubreg() || Def->isExtractSubregLike())
2070      return getNextSourceFromExtractSubreg();
2071    if (Def->isSubregToReg())
2072      return getNextSourceFromSubregToReg();
2073    if (Def->isPHI())
2074      return getNextSourceFromPHI();
2075    return ValueTrackerResult();
2076  }
2077  
2078  ValueTrackerResult ValueTracker::getNextSource() {
2079    // If we reach a point where we cannot move up in the use-def chain,
2080    // there is nothing we can get.
2081    if (!Def)
2082      return ValueTrackerResult();
2083  
2084    ValueTrackerResult Res = getNextSourceImpl();
2085    if (Res.isValid()) {
2086      // Update definition, definition index, and subregister for the
2087      // next call of getNextSource.
2088      // Update the current register.
2089      bool OneRegSrc = Res.getNumSources() == 1;
2090      if (OneRegSrc)
2091        Reg = Res.getSrcReg(0);
2092      // Update the result before moving up in the use-def chain
2093      // with the instruction containing the last found sources.
2094      Res.setInst(Def);
2095  
2096      // If we can still move up in the use-def chain, move to the next
2097      // definition.
2098      if (!Register::isPhysicalRegister(Reg) && OneRegSrc) {
2099        MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg);
2100        if (DI != MRI.def_end()) {
2101          Def = DI->getParent();
2102          DefIdx = DI.getOperandNo();
2103          DefSubReg = Res.getSrcSubReg(0);
2104        } else {
2105          Def = nullptr;
2106        }
2107        return Res;
2108      }
2109    }
2110    // If we end up here, this means we will not be able to find another source
2111    // for the next iteration. Make sure any new call to getNextSource bails out
2112    // early by cutting the use-def chain.
2113    Def = nullptr;
2114    return Res;
2115  }
2116