xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/PeepholeOptimizer.cpp (revision a03411e84728e9b267056fd31c7d1d9d1dc1b01e)
1 //===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Perform peephole optimizations on the machine code:
10 //
11 // - Optimize Extensions
12 //
13 //     Optimization of sign / zero extension instructions. It may be extended to
14 //     handle other instructions with similar properties.
15 //
16 //     On some targets, some instructions, e.g. X86 sign / zero extension, may
17 //     leave the source value in the lower part of the result. This optimization
18 //     will replace some uses of the pre-extension value with uses of the
19 //     sub-register of the results.
20 //
21 // - Optimize Comparisons
22 //
23 //     Optimization of comparison instructions. For instance, in this code:
24 //
25 //       sub r1, 1
26 //       cmp r1, 0
27 //       bz  L1
28 //
29 //     If the "sub" instruction all ready sets (or could be modified to set) the
30 //     same flag that the "cmp" instruction sets and that "bz" uses, then we can
31 //     eliminate the "cmp" instruction.
32 //
33 //     Another instance, in this code:
34 //
35 //       sub r1, r3 | sub r1, imm
36 //       cmp r3, r1 or cmp r1, r3 | cmp r1, imm
37 //       bge L1
38 //
39 //     If the branch instruction can use flag from "sub", then we can replace
40 //     "sub" with "subs" and eliminate the "cmp" instruction.
41 //
42 // - Optimize Loads:
43 //
44 //     Loads that can be folded into a later instruction. A load is foldable
45 //     if it loads to virtual registers and the virtual register defined has
46 //     a single use.
47 //
48 // - Optimize Copies and Bitcast (more generally, target specific copies):
49 //
50 //     Rewrite copies and bitcasts to avoid cross register bank copies
51 //     when possible.
52 //     E.g., Consider the following example, where capital and lower
53 //     letters denote different register file:
54 //     b = copy A <-- cross-bank copy
55 //     C = copy b <-- cross-bank copy
56 //   =>
57 //     b = copy A <-- cross-bank copy
58 //     C = copy A <-- same-bank copy
59 //
60 //     E.g., for bitcast:
61 //     b = bitcast A <-- cross-bank copy
62 //     C = bitcast b <-- cross-bank copy
63 //   =>
64 //     b = bitcast A <-- cross-bank copy
65 //     C = copy A    <-- same-bank copy
66 //===----------------------------------------------------------------------===//
67 
68 #include "llvm/ADT/DenseMap.h"
69 #include "llvm/ADT/SmallPtrSet.h"
70 #include "llvm/ADT/SmallSet.h"
71 #include "llvm/ADT/SmallVector.h"
72 #include "llvm/ADT/Statistic.h"
73 #include "llvm/CodeGen/MachineBasicBlock.h"
74 #include "llvm/CodeGen/MachineDominators.h"
75 #include "llvm/CodeGen/MachineFunction.h"
76 #include "llvm/CodeGen/MachineFunctionPass.h"
77 #include "llvm/CodeGen/MachineInstr.h"
78 #include "llvm/CodeGen/MachineInstrBuilder.h"
79 #include "llvm/CodeGen/MachineLoopInfo.h"
80 #include "llvm/CodeGen/MachineOperand.h"
81 #include "llvm/CodeGen/MachineRegisterInfo.h"
82 #include "llvm/CodeGen/TargetInstrInfo.h"
83 #include "llvm/CodeGen/TargetOpcodes.h"
84 #include "llvm/CodeGen/TargetRegisterInfo.h"
85 #include "llvm/CodeGen/TargetSubtargetInfo.h"
86 #include "llvm/InitializePasses.h"
87 #include "llvm/MC/LaneBitmask.h"
88 #include "llvm/MC/MCInstrDesc.h"
89 #include "llvm/Pass.h"
90 #include "llvm/Support/CommandLine.h"
91 #include "llvm/Support/Debug.h"
92 #include "llvm/Support/raw_ostream.h"
93 #include <cassert>
94 #include <cstdint>
95 #include <memory>
96 #include <utility>
97 
98 using namespace llvm;
99 using RegSubRegPair = TargetInstrInfo::RegSubRegPair;
100 using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx;
101 
102 #define DEBUG_TYPE "peephole-opt"
103 
104 // Optimize Extensions
105 static cl::opt<bool>
106 Aggressive("aggressive-ext-opt", cl::Hidden,
107            cl::desc("Aggressive extension optimization"));
108 
109 static cl::opt<bool>
110 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
111                 cl::desc("Disable the peephole optimizer"));
112 
113 /// Specifiy whether or not the value tracking looks through
114 /// complex instructions. When this is true, the value tracker
115 /// bails on everything that is not a copy or a bitcast.
116 static cl::opt<bool>
117 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
118                   cl::desc("Disable advanced copy optimization"));
119 
120 static cl::opt<bool> DisableNAPhysCopyOpt(
121     "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false),
122     cl::desc("Disable non-allocatable physical register copy optimization"));
123 
124 // Limit the number of PHI instructions to process
125 // in PeepholeOptimizer::getNextSource.
126 static cl::opt<unsigned> RewritePHILimit(
127     "rewrite-phi-limit", cl::Hidden, cl::init(10),
128     cl::desc("Limit the length of PHI chains to lookup"));
129 
130 // Limit the length of recurrence chain when evaluating the benefit of
131 // commuting operands.
132 static cl::opt<unsigned> MaxRecurrenceChain(
133     "recurrence-chain-limit", cl::Hidden, cl::init(3),
134     cl::desc("Maximum length of recurrence chain when evaluating the benefit "
135              "of commuting operands"));
136 
137 
138 STATISTIC(NumReuse, "Number of extension results reused");
139 STATISTIC(NumCmps, "Number of compares eliminated");
140 STATISTIC(NumImmFold, "Number of move immediate folded");
141 STATISTIC(NumLoadFold, "Number of loads folded");
142 STATISTIC(NumSelects, "Number of selects optimized");
143 STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
144 STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
145 STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed");
146 
147 namespace {
148 
149   class ValueTrackerResult;
150   class RecurrenceInstr;
151 
152   class PeepholeOptimizer : public MachineFunctionPass {
153     const TargetInstrInfo *TII = nullptr;
154     const TargetRegisterInfo *TRI = nullptr;
155     MachineRegisterInfo *MRI = nullptr;
156     MachineDominatorTree *DT = nullptr; // Machine dominator tree
157     MachineLoopInfo *MLI = nullptr;
158 
159   public:
160     static char ID; // Pass identification
161 
162     PeepholeOptimizer() : MachineFunctionPass(ID) {
163       initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
164     }
165 
166     bool runOnMachineFunction(MachineFunction &MF) override;
167 
168     void getAnalysisUsage(AnalysisUsage &AU) const override {
169       AU.setPreservesCFG();
170       MachineFunctionPass::getAnalysisUsage(AU);
171       AU.addRequired<MachineLoopInfo>();
172       AU.addPreserved<MachineLoopInfo>();
173       if (Aggressive) {
174         AU.addRequired<MachineDominatorTree>();
175         AU.addPreserved<MachineDominatorTree>();
176       }
177     }
178 
179     MachineFunctionProperties getRequiredProperties() const override {
180       return MachineFunctionProperties()
181         .set(MachineFunctionProperties::Property::IsSSA);
182     }
183 
184     /// Track Def -> Use info used for rewriting copies.
185     using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>;
186 
187     /// Sequence of instructions that formulate recurrence cycle.
188     using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>;
189 
190   private:
191     bool optimizeCmpInstr(MachineInstr &MI);
192     bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
193                           SmallPtrSetImpl<MachineInstr*> &LocalMIs);
194     bool optimizeSelect(MachineInstr &MI,
195                         SmallPtrSetImpl<MachineInstr *> &LocalMIs);
196     bool optimizeCondBranch(MachineInstr &MI);
197     bool optimizeCoalescableCopy(MachineInstr &MI);
198     bool optimizeUncoalescableCopy(MachineInstr &MI,
199                                    SmallPtrSetImpl<MachineInstr *> &LocalMIs);
200     bool optimizeRecurrence(MachineInstr &PHI);
201     bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap);
202     bool isMoveImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
203                          DenseMap<Register, MachineInstr *> &ImmDefMIs);
204     bool foldImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
205                        DenseMap<Register, MachineInstr *> &ImmDefMIs);
206 
207     /// Finds recurrence cycles, but only ones that formulated around
208     /// a def operand and a use operand that are tied. If there is a use
209     /// operand commutable with the tied use operand, find recurrence cycle
210     /// along that operand as well.
211     bool findTargetRecurrence(Register Reg,
212                               const SmallSet<Register, 2> &TargetReg,
213                               RecurrenceCycle &RC);
214 
215     /// If copy instruction \p MI is a virtual register copy or a copy of a
216     /// constant physical register to a virtual register, track it in the
217     /// set \p CopyMIs. If this virtual register was previously seen as a
218     /// copy, replace the uses of this copy with the previously seen copy's
219     /// destination register.
220     bool foldRedundantCopy(MachineInstr &MI,
221                            DenseMap<RegSubRegPair, MachineInstr *> &CopyMIs);
222 
223     /// Is the register \p Reg a non-allocatable physical register?
224     bool isNAPhysCopy(Register Reg);
225 
226     /// If copy instruction \p MI is a non-allocatable virtual<->physical
227     /// register copy, track it in the \p NAPhysToVirtMIs map. If this
228     /// non-allocatable physical register was previously copied to a virtual
229     /// registered and hasn't been clobbered, the virt->phys copy can be
230     /// deleted.
231     bool foldRedundantNAPhysCopy(
232         MachineInstr &MI, DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs);
233 
234     bool isLoadFoldable(MachineInstr &MI,
235                         SmallSet<Register, 16> &FoldAsLoadDefCandidates);
236 
237     /// Check whether \p MI is understood by the register coalescer
238     /// but may require some rewriting.
239     bool isCoalescableCopy(const MachineInstr &MI) {
240       // SubregToRegs are not interesting, because they are already register
241       // coalescer friendly.
242       return MI.isCopy() || (!DisableAdvCopyOpt &&
243                              (MI.isRegSequence() || MI.isInsertSubreg() ||
244                               MI.isExtractSubreg()));
245     }
246 
247     /// Check whether \p MI is a copy like instruction that is
248     /// not recognized by the register coalescer.
249     bool isUncoalescableCopy(const MachineInstr &MI) {
250       return MI.isBitcast() ||
251              (!DisableAdvCopyOpt &&
252               (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
253                MI.isExtractSubregLike()));
254     }
255 
256     MachineInstr &rewriteSource(MachineInstr &CopyLike,
257                                 RegSubRegPair Def, RewriteMapTy &RewriteMap);
258   };
259 
260   /// Helper class to hold instructions that are inside recurrence cycles.
261   /// The recurrence cycle is formulated around 1) a def operand and its
262   /// tied use operand, or 2) a def operand and a use operand that is commutable
263   /// with another use operand which is tied to the def operand. In the latter
264   /// case, index of the tied use operand and the commutable use operand are
265   /// maintained with CommutePair.
266   class RecurrenceInstr {
267   public:
268     using IndexPair = std::pair<unsigned, unsigned>;
269 
270     RecurrenceInstr(MachineInstr *MI) : MI(MI) {}
271     RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2)
272       : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {}
273 
274     MachineInstr *getMI() const { return MI; }
275     std::optional<IndexPair> getCommutePair() const { return CommutePair; }
276 
277   private:
278     MachineInstr *MI;
279     std::optional<IndexPair> CommutePair;
280   };
281 
282   /// Helper class to hold a reply for ValueTracker queries.
283   /// Contains the returned sources for a given search and the instructions
284   /// where the sources were tracked from.
285   class ValueTrackerResult {
286   private:
287     /// Track all sources found by one ValueTracker query.
288     SmallVector<RegSubRegPair, 2> RegSrcs;
289 
290     /// Instruction using the sources in 'RegSrcs'.
291     const MachineInstr *Inst = nullptr;
292 
293   public:
294     ValueTrackerResult() = default;
295 
296     ValueTrackerResult(Register Reg, unsigned SubReg) {
297       addSource(Reg, SubReg);
298     }
299 
300     bool isValid() const { return getNumSources() > 0; }
301 
302     void setInst(const MachineInstr *I) { Inst = I; }
303     const MachineInstr *getInst() const { return Inst; }
304 
305     void clear() {
306       RegSrcs.clear();
307       Inst = nullptr;
308     }
309 
310     void addSource(Register SrcReg, unsigned SrcSubReg) {
311       RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg));
312     }
313 
314     void setSource(int Idx, Register SrcReg, unsigned SrcSubReg) {
315       assert(Idx < getNumSources() && "Reg pair source out of index");
316       RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg);
317     }
318 
319     int getNumSources() const { return RegSrcs.size(); }
320 
321     RegSubRegPair getSrc(int Idx) const {
322       return RegSrcs[Idx];
323     }
324 
325     Register getSrcReg(int Idx) const {
326       assert(Idx < getNumSources() && "Reg source out of index");
327       return RegSrcs[Idx].Reg;
328     }
329 
330     unsigned getSrcSubReg(int Idx) const {
331       assert(Idx < getNumSources() && "SubReg source out of index");
332       return RegSrcs[Idx].SubReg;
333     }
334 
335     bool operator==(const ValueTrackerResult &Other) const {
336       if (Other.getInst() != getInst())
337         return false;
338 
339       if (Other.getNumSources() != getNumSources())
340         return false;
341 
342       for (int i = 0, e = Other.getNumSources(); i != e; ++i)
343         if (Other.getSrcReg(i) != getSrcReg(i) ||
344             Other.getSrcSubReg(i) != getSrcSubReg(i))
345           return false;
346       return true;
347     }
348   };
349 
350   /// Helper class to track the possible sources of a value defined by
351   /// a (chain of) copy related instructions.
352   /// Given a definition (instruction and definition index), this class
353   /// follows the use-def chain to find successive suitable sources.
354   /// The given source can be used to rewrite the definition into
355   /// def = COPY src.
356   ///
357   /// For instance, let us consider the following snippet:
358   /// v0 =
359   /// v2 = INSERT_SUBREG v1, v0, sub0
360   /// def = COPY v2.sub0
361   ///
362   /// Using a ValueTracker for def = COPY v2.sub0 will give the following
363   /// suitable sources:
364   /// v2.sub0 and v0.
365   /// Then, def can be rewritten into def = COPY v0.
366   class ValueTracker {
367   private:
368     /// The current point into the use-def chain.
369     const MachineInstr *Def = nullptr;
370 
371     /// The index of the definition in Def.
372     unsigned DefIdx = 0;
373 
374     /// The sub register index of the definition.
375     unsigned DefSubReg;
376 
377     /// The register where the value can be found.
378     Register Reg;
379 
380     /// MachineRegisterInfo used to perform tracking.
381     const MachineRegisterInfo &MRI;
382 
383     /// Optional TargetInstrInfo used to perform some complex tracking.
384     const TargetInstrInfo *TII;
385 
386     /// Dispatcher to the right underlying implementation of getNextSource.
387     ValueTrackerResult getNextSourceImpl();
388 
389     /// Specialized version of getNextSource for Copy instructions.
390     ValueTrackerResult getNextSourceFromCopy();
391 
392     /// Specialized version of getNextSource for Bitcast instructions.
393     ValueTrackerResult getNextSourceFromBitcast();
394 
395     /// Specialized version of getNextSource for RegSequence instructions.
396     ValueTrackerResult getNextSourceFromRegSequence();
397 
398     /// Specialized version of getNextSource for InsertSubreg instructions.
399     ValueTrackerResult getNextSourceFromInsertSubreg();
400 
401     /// Specialized version of getNextSource for ExtractSubreg instructions.
402     ValueTrackerResult getNextSourceFromExtractSubreg();
403 
404     /// Specialized version of getNextSource for SubregToReg instructions.
405     ValueTrackerResult getNextSourceFromSubregToReg();
406 
407     /// Specialized version of getNextSource for PHI instructions.
408     ValueTrackerResult getNextSourceFromPHI();
409 
410   public:
411     /// Create a ValueTracker instance for the value defined by \p Reg.
412     /// \p DefSubReg represents the sub register index the value tracker will
413     /// track. It does not need to match the sub register index used in the
414     /// definition of \p Reg.
415     /// If \p Reg is a physical register, a value tracker constructed with
416     /// this constructor will not find any alternative source.
417     /// Indeed, when \p Reg is a physical register that constructor does not
418     /// know which definition of \p Reg it should track.
419     /// Use the next constructor to track a physical register.
420     ValueTracker(Register Reg, unsigned DefSubReg,
421                  const MachineRegisterInfo &MRI,
422                  const TargetInstrInfo *TII = nullptr)
423         : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) {
424       if (!Reg.isPhysical()) {
425         Def = MRI.getVRegDef(Reg);
426         DefIdx = MRI.def_begin(Reg).getOperandNo();
427       }
428     }
429 
430     /// Following the use-def chain, get the next available source
431     /// for the tracked value.
432     /// \return A ValueTrackerResult containing a set of registers
433     /// and sub registers with tracked values. A ValueTrackerResult with
434     /// an empty set of registers means no source was found.
435     ValueTrackerResult getNextSource();
436   };
437 
438 } // end anonymous namespace
439 
440 char PeepholeOptimizer::ID = 0;
441 
442 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
443 
444 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE,
445                       "Peephole Optimizations", false, false)
446 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
447 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
448 INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE,
449                     "Peephole Optimizations", false, false)
450 
451 /// If instruction is a copy-like instruction, i.e. it reads a single register
452 /// and writes a single register and it does not modify the source, and if the
453 /// source value is preserved as a sub-register of the result, then replace all
454 /// reachable uses of the source with the subreg of the result.
455 ///
456 /// Do not generate an EXTRACT that is used only in a debug use, as this changes
457 /// the code. Since this code does not currently share EXTRACTs, just ignore all
458 /// debug uses.
459 bool PeepholeOptimizer::
460 optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
461                  SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
462   Register SrcReg, DstReg;
463   unsigned SubIdx;
464   if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx))
465     return false;
466 
467   if (DstReg.isPhysical() || SrcReg.isPhysical())
468     return false;
469 
470   if (MRI->hasOneNonDBGUse(SrcReg))
471     // No other uses.
472     return false;
473 
474   // Ensure DstReg can get a register class that actually supports
475   // sub-registers. Don't change the class until we commit.
476   const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
477   DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
478   if (!DstRC)
479     return false;
480 
481   // The ext instr may be operating on a sub-register of SrcReg as well.
482   // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
483   // register.
484   // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
485   // SrcReg:SubIdx should be replaced.
486   bool UseSrcSubIdx =
487       TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
488 
489   // The source has other uses. See if we can replace the other uses with use of
490   // the result of the extension.
491   SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
492   for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
493     ReachedBBs.insert(UI.getParent());
494 
495   // Uses that are in the same BB of uses of the result of the instruction.
496   SmallVector<MachineOperand*, 8> Uses;
497 
498   // Uses that the result of the instruction can reach.
499   SmallVector<MachineOperand*, 8> ExtendedUses;
500 
501   bool ExtendLife = true;
502   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
503     MachineInstr *UseMI = UseMO.getParent();
504     if (UseMI == &MI)
505       continue;
506 
507     if (UseMI->isPHI()) {
508       ExtendLife = false;
509       continue;
510     }
511 
512     // Only accept uses of SrcReg:SubIdx.
513     if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
514       continue;
515 
516     // It's an error to translate this:
517     //
518     //    %reg1025 = <sext> %reg1024
519     //     ...
520     //    %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
521     //
522     // into this:
523     //
524     //    %reg1025 = <sext> %reg1024
525     //     ...
526     //    %reg1027 = COPY %reg1025:4
527     //    %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
528     //
529     // The problem here is that SUBREG_TO_REG is there to assert that an
530     // implicit zext occurs. It doesn't insert a zext instruction. If we allow
531     // the COPY here, it will give us the value after the <sext>, not the
532     // original value of %reg1024 before <sext>.
533     if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
534       continue;
535 
536     MachineBasicBlock *UseMBB = UseMI->getParent();
537     if (UseMBB == &MBB) {
538       // Local uses that come after the extension.
539       if (!LocalMIs.count(UseMI))
540         Uses.push_back(&UseMO);
541     } else if (ReachedBBs.count(UseMBB)) {
542       // Non-local uses where the result of the extension is used. Always
543       // replace these unless it's a PHI.
544       Uses.push_back(&UseMO);
545     } else if (Aggressive && DT->dominates(&MBB, UseMBB)) {
546       // We may want to extend the live range of the extension result in order
547       // to replace these uses.
548       ExtendedUses.push_back(&UseMO);
549     } else {
550       // Both will be live out of the def MBB anyway. Don't extend live range of
551       // the extension result.
552       ExtendLife = false;
553       break;
554     }
555   }
556 
557   if (ExtendLife && !ExtendedUses.empty())
558     // Extend the liveness of the extension result.
559     Uses.append(ExtendedUses.begin(), ExtendedUses.end());
560 
561   // Now replace all uses.
562   bool Changed = false;
563   if (!Uses.empty()) {
564     SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
565 
566     // Look for PHI uses of the extended result, we don't want to extend the
567     // liveness of a PHI input. It breaks all kinds of assumptions down
568     // stream. A PHI use is expected to be the kill of its source values.
569     for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
570       if (UI.isPHI())
571         PHIBBs.insert(UI.getParent());
572 
573     const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
574     for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
575       MachineOperand *UseMO = Uses[i];
576       MachineInstr *UseMI = UseMO->getParent();
577       MachineBasicBlock *UseMBB = UseMI->getParent();
578       if (PHIBBs.count(UseMBB))
579         continue;
580 
581       // About to add uses of DstReg, clear DstReg's kill flags.
582       if (!Changed) {
583         MRI->clearKillFlags(DstReg);
584         MRI->constrainRegClass(DstReg, DstRC);
585       }
586 
587       // SubReg defs are illegal in machine SSA phase,
588       // we should not generate SubReg defs.
589       //
590       // For example, for the instructions:
591       //
592       // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc
593       // %3:gprc_and_gprc_nor0 = COPY %0.sub_32:g8rc
594       //
595       // We should generate:
596       //
597       // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc
598       // %6:gprc_and_gprc_nor0 = COPY %1.sub_32:g8rc_and_g8rc_nox0
599       // %3:gprc_and_gprc_nor0 = COPY %6:gprc_and_gprc_nor0
600       //
601       if (UseSrcSubIdx)
602         RC = MRI->getRegClass(UseMI->getOperand(0).getReg());
603 
604       Register NewVR = MRI->createVirtualRegister(RC);
605       BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
606               TII->get(TargetOpcode::COPY), NewVR)
607         .addReg(DstReg, 0, SubIdx);
608       if (UseSrcSubIdx)
609         UseMO->setSubReg(0);
610 
611       UseMO->setReg(NewVR);
612       ++NumReuse;
613       Changed = true;
614     }
615   }
616 
617   return Changed;
618 }
619 
620 /// If the instruction is a compare and the previous instruction it's comparing
621 /// against already sets (or could be modified to set) the same flag as the
622 /// compare, then we can remove the comparison and use the flag from the
623 /// previous instruction.
624 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) {
625   // If this instruction is a comparison against zero and isn't comparing a
626   // physical register, we can try to optimize it.
627   Register SrcReg, SrcReg2;
628   int64_t CmpMask, CmpValue;
629   if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
630       SrcReg.isPhysical() || SrcReg2.isPhysical())
631     return false;
632 
633   // Attempt to optimize the comparison instruction.
634   LLVM_DEBUG(dbgs() << "Attempting to optimize compare: " << MI);
635   if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
636     LLVM_DEBUG(dbgs() << "  -> Successfully optimized compare!\n");
637     ++NumCmps;
638     return true;
639   }
640 
641   return false;
642 }
643 
644 /// Optimize a select instruction.
645 bool PeepholeOptimizer::optimizeSelect(MachineInstr &MI,
646                             SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
647   unsigned TrueOp = 0;
648   unsigned FalseOp = 0;
649   bool Optimizable = false;
650   SmallVector<MachineOperand, 4> Cond;
651   if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
652     return false;
653   if (!Optimizable)
654     return false;
655   if (!TII->optimizeSelect(MI, LocalMIs))
656     return false;
657   LLVM_DEBUG(dbgs() << "Deleting select: " << MI);
658   MI.eraseFromParent();
659   ++NumSelects;
660   return true;
661 }
662 
663 /// Check if a simpler conditional branch can be generated.
664 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) {
665   return TII->optimizeCondBranch(MI);
666 }
667 
668 /// Try to find the next source that share the same register file
669 /// for the value defined by \p Reg and \p SubReg.
670 /// When true is returned, the \p RewriteMap can be used by the client to
671 /// retrieve all Def -> Use along the way up to the next source. Any found
672 /// Use that is not itself a key for another entry, is the next source to
673 /// use. During the search for the next source, multiple sources can be found
674 /// given multiple incoming sources of a PHI instruction. In this case, we
675 /// look in each PHI source for the next source; all found next sources must
676 /// share the same register file as \p Reg and \p SubReg. The client should
677 /// then be capable to rewrite all intermediate PHIs to get the next source.
678 /// \return False if no alternative sources are available. True otherwise.
679 bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg,
680                                        RewriteMapTy &RewriteMap) {
681   // Do not try to find a new source for a physical register.
682   // So far we do not have any motivating example for doing that.
683   // Thus, instead of maintaining untested code, we will revisit that if
684   // that changes at some point.
685   Register Reg = RegSubReg.Reg;
686   if (Reg.isPhysical())
687     return false;
688   const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
689 
690   SmallVector<RegSubRegPair, 4> SrcToLook;
691   RegSubRegPair CurSrcPair = RegSubReg;
692   SrcToLook.push_back(CurSrcPair);
693 
694   unsigned PHICount = 0;
695   do {
696     CurSrcPair = SrcToLook.pop_back_val();
697     // As explained above, do not handle physical registers
698     if (CurSrcPair.Reg.isPhysical())
699       return false;
700 
701     ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII);
702 
703     // Follow the chain of copies until we find a more suitable source, a phi
704     // or have to abort.
705     while (true) {
706       ValueTrackerResult Res = ValTracker.getNextSource();
707       // Abort at the end of a chain (without finding a suitable source).
708       if (!Res.isValid())
709         return false;
710 
711       // Insert the Def -> Use entry for the recently found source.
712       ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair);
713       if (CurSrcRes.isValid()) {
714         assert(CurSrcRes == Res && "ValueTrackerResult found must match");
715         // An existent entry with multiple sources is a PHI cycle we must avoid.
716         // Otherwise it's an entry with a valid next source we already found.
717         if (CurSrcRes.getNumSources() > 1) {
718           LLVM_DEBUG(dbgs()
719                      << "findNextSource: found PHI cycle, aborting...\n");
720           return false;
721         }
722         break;
723       }
724       RewriteMap.insert(std::make_pair(CurSrcPair, Res));
725 
726       // ValueTrackerResult usually have one source unless it's the result from
727       // a PHI instruction. Add the found PHI edges to be looked up further.
728       unsigned NumSrcs = Res.getNumSources();
729       if (NumSrcs > 1) {
730         PHICount++;
731         if (PHICount >= RewritePHILimit) {
732           LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n");
733           return false;
734         }
735 
736         for (unsigned i = 0; i < NumSrcs; ++i)
737           SrcToLook.push_back(Res.getSrc(i));
738         break;
739       }
740 
741       CurSrcPair = Res.getSrc(0);
742       // Do not extend the live-ranges of physical registers as they add
743       // constraints to the register allocator. Moreover, if we want to extend
744       // the live-range of a physical register, unlike SSA virtual register,
745       // we will have to check that they aren't redefine before the related use.
746       if (CurSrcPair.Reg.isPhysical())
747         return false;
748 
749       // Keep following the chain if the value isn't any better yet.
750       const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg);
751       if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC,
752                                      CurSrcPair.SubReg))
753         continue;
754 
755       // We currently cannot deal with subreg operands on PHI instructions
756       // (see insertPHI()).
757       if (PHICount > 0 && CurSrcPair.SubReg != 0)
758         continue;
759 
760       // We found a suitable source, and are done with this chain.
761       break;
762     }
763   } while (!SrcToLook.empty());
764 
765   // If we did not find a more suitable source, there is nothing to optimize.
766   return CurSrcPair.Reg != Reg;
767 }
768 
769 /// Insert a PHI instruction with incoming edges \p SrcRegs that are
770 /// guaranteed to have the same register class. This is necessary whenever we
771 /// successfully traverse a PHI instruction and find suitable sources coming
772 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def
773 /// suitable to be used in a new COPY instruction.
774 static MachineInstr &
775 insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
776           const SmallVectorImpl<RegSubRegPair> &SrcRegs,
777           MachineInstr &OrigPHI) {
778   assert(!SrcRegs.empty() && "No sources to create a PHI instruction?");
779 
780   const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg);
781   // NewRC is only correct if no subregisters are involved. findNextSource()
782   // should have rejected those cases already.
783   assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand");
784   Register NewVR = MRI.createVirtualRegister(NewRC);
785   MachineBasicBlock *MBB = OrigPHI.getParent();
786   MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(),
787                                     TII.get(TargetOpcode::PHI), NewVR);
788 
789   unsigned MBBOpIdx = 2;
790   for (const RegSubRegPair &RegPair : SrcRegs) {
791     MIB.addReg(RegPair.Reg, 0, RegPair.SubReg);
792     MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB());
793     // Since we're extended the lifetime of RegPair.Reg, clear the
794     // kill flags to account for that and make RegPair.Reg reaches
795     // the new PHI.
796     MRI.clearKillFlags(RegPair.Reg);
797     MBBOpIdx += 2;
798   }
799 
800   return *MIB;
801 }
802 
803 namespace {
804 
805 /// Interface to query instructions amenable to copy rewriting.
806 class Rewriter {
807 protected:
808   MachineInstr &CopyLike;
809   unsigned CurrentSrcIdx = 0;   ///< The index of the source being rewritten.
810 public:
811   Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {}
812   virtual ~Rewriter() = default;
813 
814   /// Get the next rewritable source (SrcReg, SrcSubReg) and
815   /// the related value that it affects (DstReg, DstSubReg).
816   /// A source is considered rewritable if its register class and the
817   /// register class of the related DstReg may not be register
818   /// coalescer friendly. In other words, given a copy-like instruction
819   /// not all the arguments may be returned at rewritable source, since
820   /// some arguments are none to be register coalescer friendly.
821   ///
822   /// Each call of this method moves the current source to the next
823   /// rewritable source.
824   /// For instance, let CopyLike be the instruction to rewrite.
825   /// CopyLike has one definition and one source:
826   /// dst.dstSubIdx = CopyLike src.srcSubIdx.
827   ///
828   /// The first call will give the first rewritable source, i.e.,
829   /// the only source this instruction has:
830   /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
831   /// This source defines the whole definition, i.e.,
832   /// (DstReg, DstSubReg) = (dst, dstSubIdx).
833   ///
834   /// The second and subsequent calls will return false, as there is only one
835   /// rewritable source.
836   ///
837   /// \return True if a rewritable source has been found, false otherwise.
838   /// The output arguments are valid if and only if true is returned.
839   virtual bool getNextRewritableSource(RegSubRegPair &Src,
840                                        RegSubRegPair &Dst) = 0;
841 
842   /// Rewrite the current source with \p NewReg and \p NewSubReg if possible.
843   /// \return True if the rewriting was possible, false otherwise.
844   virtual bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) = 0;
845 };
846 
847 /// Rewriter for COPY instructions.
848 class CopyRewriter : public Rewriter {
849 public:
850   CopyRewriter(MachineInstr &MI) : Rewriter(MI) {
851     assert(MI.isCopy() && "Expected copy instruction");
852   }
853   virtual ~CopyRewriter() = default;
854 
855   bool getNextRewritableSource(RegSubRegPair &Src,
856                                RegSubRegPair &Dst) override {
857     // CurrentSrcIdx > 0 means this function has already been called.
858     if (CurrentSrcIdx > 0)
859       return false;
860     // This is the first call to getNextRewritableSource.
861     // Move the CurrentSrcIdx to remember that we made that call.
862     CurrentSrcIdx = 1;
863     // The rewritable source is the argument.
864     const MachineOperand &MOSrc = CopyLike.getOperand(1);
865     Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg());
866     // What we track are the alternative sources of the definition.
867     const MachineOperand &MODef = CopyLike.getOperand(0);
868     Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
869     return true;
870   }
871 
872   bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
873     if (CurrentSrcIdx != 1)
874       return false;
875     MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
876     MOSrc.setReg(NewReg);
877     MOSrc.setSubReg(NewSubReg);
878     return true;
879   }
880 };
881 
882 /// Helper class to rewrite uncoalescable copy like instructions
883 /// into new COPY (coalescable friendly) instructions.
884 class UncoalescableRewriter : public Rewriter {
885   unsigned NumDefs;  ///< Number of defs in the bitcast.
886 
887 public:
888   UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) {
889     NumDefs = MI.getDesc().getNumDefs();
890   }
891 
892   /// \see See Rewriter::getNextRewritableSource()
893   /// All such sources need to be considered rewritable in order to
894   /// rewrite a uncoalescable copy-like instruction. This method return
895   /// each definition that must be checked if rewritable.
896   bool getNextRewritableSource(RegSubRegPair &Src,
897                                RegSubRegPair &Dst) override {
898     // Find the next non-dead definition and continue from there.
899     if (CurrentSrcIdx == NumDefs)
900       return false;
901 
902     while (CopyLike.getOperand(CurrentSrcIdx).isDead()) {
903       ++CurrentSrcIdx;
904       if (CurrentSrcIdx == NumDefs)
905         return false;
906     }
907 
908     // What we track are the alternative sources of the definition.
909     Src = RegSubRegPair(0, 0);
910     const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx);
911     Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
912 
913     CurrentSrcIdx++;
914     return true;
915   }
916 
917   bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
918     return false;
919   }
920 };
921 
922 /// Specialized rewriter for INSERT_SUBREG instruction.
923 class InsertSubregRewriter : public Rewriter {
924 public:
925   InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) {
926     assert(MI.isInsertSubreg() && "Invalid instruction");
927   }
928 
929   /// \see See Rewriter::getNextRewritableSource()
930   /// Here CopyLike has the following form:
931   /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
932   /// Src1 has the same register class has dst, hence, there is
933   /// nothing to rewrite.
934   /// Src2.src2SubIdx, may not be register coalescer friendly.
935   /// Therefore, the first call to this method returns:
936   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
937   /// (DstReg, DstSubReg) = (dst, subIdx).
938   ///
939   /// Subsequence calls will return false.
940   bool getNextRewritableSource(RegSubRegPair &Src,
941                                RegSubRegPair &Dst) override {
942     // If we already get the only source we can rewrite, return false.
943     if (CurrentSrcIdx == 2)
944       return false;
945     // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
946     CurrentSrcIdx = 2;
947     const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
948     Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg());
949     const MachineOperand &MODef = CopyLike.getOperand(0);
950 
951     // We want to track something that is compatible with the
952     // partial definition.
953     if (MODef.getSubReg())
954       // Bail if we have to compose sub-register indices.
955       return false;
956     Dst = RegSubRegPair(MODef.getReg(),
957                         (unsigned)CopyLike.getOperand(3).getImm());
958     return true;
959   }
960 
961   bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
962     if (CurrentSrcIdx != 2)
963       return false;
964     // We are rewriting the inserted reg.
965     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
966     MO.setReg(NewReg);
967     MO.setSubReg(NewSubReg);
968     return true;
969   }
970 };
971 
972 /// Specialized rewriter for EXTRACT_SUBREG instruction.
973 class ExtractSubregRewriter : public Rewriter {
974   const TargetInstrInfo &TII;
975 
976 public:
977   ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
978       : Rewriter(MI), TII(TII) {
979     assert(MI.isExtractSubreg() && "Invalid instruction");
980   }
981 
982   /// \see Rewriter::getNextRewritableSource()
983   /// Here CopyLike has the following form:
984   /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
985   /// There is only one rewritable source: Src.subIdx,
986   /// which defines dst.dstSubIdx.
987   bool getNextRewritableSource(RegSubRegPair &Src,
988                                RegSubRegPair &Dst) override {
989     // If we already get the only source we can rewrite, return false.
990     if (CurrentSrcIdx == 1)
991       return false;
992     // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
993     CurrentSrcIdx = 1;
994     const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
995     // If we have to compose sub-register indices, bail out.
996     if (MOExtractedReg.getSubReg())
997       return false;
998 
999     Src = RegSubRegPair(MOExtractedReg.getReg(),
1000                         CopyLike.getOperand(2).getImm());
1001 
1002     // We want to track something that is compatible with the definition.
1003     const MachineOperand &MODef = CopyLike.getOperand(0);
1004     Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
1005     return true;
1006   }
1007 
1008   bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
1009     // The only source we can rewrite is the input register.
1010     if (CurrentSrcIdx != 1)
1011       return false;
1012 
1013     CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
1014 
1015     // If we find a source that does not require to extract something,
1016     // rewrite the operation with a copy.
1017     if (!NewSubReg) {
1018       // Move the current index to an invalid position.
1019       // We do not want another call to this method to be able
1020       // to do any change.
1021       CurrentSrcIdx = -1;
1022       // Rewrite the operation as a COPY.
1023       // Get rid of the sub-register index.
1024       CopyLike.removeOperand(2);
1025       // Morph the operation into a COPY.
1026       CopyLike.setDesc(TII.get(TargetOpcode::COPY));
1027       return true;
1028     }
1029     CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
1030     return true;
1031   }
1032 };
1033 
1034 /// Specialized rewriter for REG_SEQUENCE instruction.
1035 class RegSequenceRewriter : public Rewriter {
1036 public:
1037   RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) {
1038     assert(MI.isRegSequence() && "Invalid instruction");
1039   }
1040 
1041   /// \see Rewriter::getNextRewritableSource()
1042   /// Here CopyLike has the following form:
1043   /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
1044   /// Each call will return a different source, walking all the available
1045   /// source.
1046   ///
1047   /// The first call returns:
1048   /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
1049   /// (DstReg, DstSubReg) = (dst, subIdx1).
1050   ///
1051   /// The second call returns:
1052   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
1053   /// (DstReg, DstSubReg) = (dst, subIdx2).
1054   ///
1055   /// And so on, until all the sources have been traversed, then
1056   /// it returns false.
1057   bool getNextRewritableSource(RegSubRegPair &Src,
1058                                RegSubRegPair &Dst) override {
1059     // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
1060 
1061     // If this is the first call, move to the first argument.
1062     if (CurrentSrcIdx == 0) {
1063       CurrentSrcIdx = 1;
1064     } else {
1065       // Otherwise, move to the next argument and check that it is valid.
1066       CurrentSrcIdx += 2;
1067       if (CurrentSrcIdx >= CopyLike.getNumOperands())
1068         return false;
1069     }
1070     const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
1071     Src.Reg = MOInsertedReg.getReg();
1072     // If we have to compose sub-register indices, bail out.
1073     if ((Src.SubReg = MOInsertedReg.getSubReg()))
1074       return false;
1075 
1076     // We want to track something that is compatible with the related
1077     // partial definition.
1078     Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
1079 
1080     const MachineOperand &MODef = CopyLike.getOperand(0);
1081     Dst.Reg = MODef.getReg();
1082     // If we have to compose sub-registers, bail.
1083     return MODef.getSubReg() == 0;
1084   }
1085 
1086   bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
1087     // We cannot rewrite out of bound operands.
1088     // Moreover, rewritable sources are at odd positions.
1089     if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
1090       return false;
1091 
1092     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
1093     MO.setReg(NewReg);
1094     MO.setSubReg(NewSubReg);
1095     return true;
1096   }
1097 };
1098 
1099 } // end anonymous namespace
1100 
1101 /// Get the appropriated Rewriter for \p MI.
1102 /// \return A pointer to a dynamically allocated Rewriter or nullptr if no
1103 /// rewriter works for \p MI.
1104 static Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) {
1105   // Handle uncoalescable copy-like instructions.
1106   if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
1107       MI.isExtractSubregLike())
1108     return new UncoalescableRewriter(MI);
1109 
1110   switch (MI.getOpcode()) {
1111   default:
1112     return nullptr;
1113   case TargetOpcode::COPY:
1114     return new CopyRewriter(MI);
1115   case TargetOpcode::INSERT_SUBREG:
1116     return new InsertSubregRewriter(MI);
1117   case TargetOpcode::EXTRACT_SUBREG:
1118     return new ExtractSubregRewriter(MI, TII);
1119   case TargetOpcode::REG_SEQUENCE:
1120     return new RegSequenceRewriter(MI);
1121   }
1122 }
1123 
1124 /// Given a \p Def.Reg and Def.SubReg  pair, use \p RewriteMap to find
1125 /// the new source to use for rewrite. If \p HandleMultipleSources is true and
1126 /// multiple sources for a given \p Def are found along the way, we found a
1127 /// PHI instructions that needs to be rewritten.
1128 /// TODO: HandleMultipleSources should be removed once we test PHI handling
1129 /// with coalescable copies.
1130 static RegSubRegPair
1131 getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
1132              RegSubRegPair Def,
1133              const PeepholeOptimizer::RewriteMapTy &RewriteMap,
1134              bool HandleMultipleSources = true) {
1135   RegSubRegPair LookupSrc(Def.Reg, Def.SubReg);
1136   while (true) {
1137     ValueTrackerResult Res = RewriteMap.lookup(LookupSrc);
1138     // If there are no entries on the map, LookupSrc is the new source.
1139     if (!Res.isValid())
1140       return LookupSrc;
1141 
1142     // There's only one source for this definition, keep searching...
1143     unsigned NumSrcs = Res.getNumSources();
1144     if (NumSrcs == 1) {
1145       LookupSrc.Reg = Res.getSrcReg(0);
1146       LookupSrc.SubReg = Res.getSrcSubReg(0);
1147       continue;
1148     }
1149 
1150     // TODO: Remove once multiple srcs w/ coalescable copies are supported.
1151     if (!HandleMultipleSources)
1152       break;
1153 
1154     // Multiple sources, recurse into each source to find a new source
1155     // for it. Then, rewrite the PHI accordingly to its new edges.
1156     SmallVector<RegSubRegPair, 4> NewPHISrcs;
1157     for (unsigned i = 0; i < NumSrcs; ++i) {
1158       RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i));
1159       NewPHISrcs.push_back(
1160           getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources));
1161     }
1162 
1163     // Build the new PHI node and return its def register as the new source.
1164     MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst());
1165     MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI);
1166     LLVM_DEBUG(dbgs() << "-- getNewSource\n");
1167     LLVM_DEBUG(dbgs() << "   Replacing: " << OrigPHI);
1168     LLVM_DEBUG(dbgs() << "        With: " << NewPHI);
1169     const MachineOperand &MODef = NewPHI.getOperand(0);
1170     return RegSubRegPair(MODef.getReg(), MODef.getSubReg());
1171   }
1172 
1173   return RegSubRegPair(0, 0);
1174 }
1175 
1176 /// Optimize generic copy instructions to avoid cross register bank copy.
1177 /// The optimization looks through a chain of copies and tries to find a source
1178 /// that has a compatible register class.
1179 /// Two register classes are considered to be compatible if they share the same
1180 /// register bank.
1181 /// New copies issued by this optimization are register allocator
1182 /// friendly. This optimization does not remove any copy as it may
1183 /// overconstrain the register allocator, but replaces some operands
1184 /// when possible.
1185 /// \pre isCoalescableCopy(*MI) is true.
1186 /// \return True, when \p MI has been rewritten. False otherwise.
1187 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) {
1188   assert(isCoalescableCopy(MI) && "Invalid argument");
1189   assert(MI.getDesc().getNumDefs() == 1 &&
1190          "Coalescer can understand multiple defs?!");
1191   const MachineOperand &MODef = MI.getOperand(0);
1192   // Do not rewrite physical definitions.
1193   if (MODef.getReg().isPhysical())
1194     return false;
1195 
1196   bool Changed = false;
1197   // Get the right rewriter for the current copy.
1198   std::unique_ptr<Rewriter> CpyRewriter(getCopyRewriter(MI, *TII));
1199   // If none exists, bail out.
1200   if (!CpyRewriter)
1201     return false;
1202   // Rewrite each rewritable source.
1203   RegSubRegPair Src;
1204   RegSubRegPair TrackPair;
1205   while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) {
1206     // Keep track of PHI nodes and its incoming edges when looking for sources.
1207     RewriteMapTy RewriteMap;
1208     // Try to find a more suitable source. If we failed to do so, or get the
1209     // actual source, move to the next source.
1210     if (!findNextSource(TrackPair, RewriteMap))
1211       continue;
1212 
1213     // Get the new source to rewrite. TODO: Only enable handling of multiple
1214     // sources (PHIs) once we have a motivating example and testcases for it.
1215     RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap,
1216                                         /*HandleMultipleSources=*/false);
1217     if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0)
1218       continue;
1219 
1220     // Rewrite source.
1221     if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) {
1222       // We may have extended the live-range of NewSrc, account for that.
1223       MRI->clearKillFlags(NewSrc.Reg);
1224       Changed = true;
1225     }
1226   }
1227   // TODO: We could have a clean-up method to tidy the instruction.
1228   // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
1229   // => v0 = COPY v1
1230   // Currently we haven't seen motivating example for that and we
1231   // want to avoid untested code.
1232   NumRewrittenCopies += Changed;
1233   return Changed;
1234 }
1235 
1236 /// Rewrite the source found through \p Def, by using the \p RewriteMap
1237 /// and create a new COPY instruction. More info about RewriteMap in
1238 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle
1239 /// Uncoalescable copies, since they are copy like instructions that aren't
1240 /// recognized by the register allocator.
1241 MachineInstr &
1242 PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike,
1243                                  RegSubRegPair Def, RewriteMapTy &RewriteMap) {
1244   assert(!Def.Reg.isPhysical() && "We do not rewrite physical registers");
1245 
1246   // Find the new source to use in the COPY rewrite.
1247   RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap);
1248 
1249   // Insert the COPY.
1250   const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
1251   Register NewVReg = MRI->createVirtualRegister(DefRC);
1252 
1253   MachineInstr *NewCopy =
1254       BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(),
1255               TII->get(TargetOpcode::COPY), NewVReg)
1256           .addReg(NewSrc.Reg, 0, NewSrc.SubReg);
1257 
1258   if (Def.SubReg) {
1259     NewCopy->getOperand(0).setSubReg(Def.SubReg);
1260     NewCopy->getOperand(0).setIsUndef();
1261   }
1262 
1263   LLVM_DEBUG(dbgs() << "-- RewriteSource\n");
1264   LLVM_DEBUG(dbgs() << "   Replacing: " << CopyLike);
1265   LLVM_DEBUG(dbgs() << "        With: " << *NewCopy);
1266   MRI->replaceRegWith(Def.Reg, NewVReg);
1267   MRI->clearKillFlags(NewVReg);
1268 
1269   // We extended the lifetime of NewSrc.Reg, clear the kill flags to
1270   // account for that.
1271   MRI->clearKillFlags(NewSrc.Reg);
1272 
1273   return *NewCopy;
1274 }
1275 
1276 /// Optimize copy-like instructions to create
1277 /// register coalescer friendly instruction.
1278 /// The optimization tries to kill-off the \p MI by looking
1279 /// through a chain of copies to find a source that has a compatible
1280 /// register class.
1281 /// If such a source is found, it replace \p MI by a generic COPY
1282 /// operation.
1283 /// \pre isUncoalescableCopy(*MI) is true.
1284 /// \return True, when \p MI has been optimized. In that case, \p MI has
1285 /// been removed from its parent.
1286 /// All COPY instructions created, are inserted in \p LocalMIs.
1287 bool PeepholeOptimizer::optimizeUncoalescableCopy(
1288     MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
1289   assert(isUncoalescableCopy(MI) && "Invalid argument");
1290   UncoalescableRewriter CpyRewriter(MI);
1291 
1292   // Rewrite each rewritable source by generating new COPYs. This works
1293   // differently from optimizeCoalescableCopy since it first makes sure that all
1294   // definitions can be rewritten.
1295   RewriteMapTy RewriteMap;
1296   RegSubRegPair Src;
1297   RegSubRegPair Def;
1298   SmallVector<RegSubRegPair, 4> RewritePairs;
1299   while (CpyRewriter.getNextRewritableSource(Src, Def)) {
1300     // If a physical register is here, this is probably for a good reason.
1301     // Do not rewrite that.
1302     if (Def.Reg.isPhysical())
1303       return false;
1304 
1305     // If we do not know how to rewrite this definition, there is no point
1306     // in trying to kill this instruction.
1307     if (!findNextSource(Def, RewriteMap))
1308       return false;
1309 
1310     RewritePairs.push_back(Def);
1311   }
1312 
1313   // The change is possible for all defs, do it.
1314   for (const RegSubRegPair &Def : RewritePairs) {
1315     // Rewrite the "copy" in a way the register coalescer understands.
1316     MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap);
1317     LocalMIs.insert(&NewCopy);
1318   }
1319 
1320   // MI is now dead.
1321   LLVM_DEBUG(dbgs() << "Deleting uncoalescable copy: " << MI);
1322   MI.eraseFromParent();
1323   ++NumUncoalescableCopies;
1324   return true;
1325 }
1326 
1327 /// Check whether MI is a candidate for folding into a later instruction.
1328 /// We only fold loads to virtual registers and the virtual register defined
1329 /// has a single user.
1330 bool PeepholeOptimizer::isLoadFoldable(
1331     MachineInstr &MI, SmallSet<Register, 16> &FoldAsLoadDefCandidates) {
1332   if (!MI.canFoldAsLoad() || !MI.mayLoad())
1333     return false;
1334   const MCInstrDesc &MCID = MI.getDesc();
1335   if (MCID.getNumDefs() != 1)
1336     return false;
1337 
1338   Register Reg = MI.getOperand(0).getReg();
1339   // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting
1340   // loads. It should be checked when processing uses of the load, since
1341   // uses can be removed during peephole.
1342   if (Reg.isVirtual() && !MI.getOperand(0).getSubReg() &&
1343       MRI->hasOneNonDBGUser(Reg)) {
1344     FoldAsLoadDefCandidates.insert(Reg);
1345     return true;
1346   }
1347   return false;
1348 }
1349 
1350 bool PeepholeOptimizer::isMoveImmediate(
1351     MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
1352     DenseMap<Register, MachineInstr *> &ImmDefMIs) {
1353   const MCInstrDesc &MCID = MI.getDesc();
1354   if (!MI.isMoveImmediate())
1355     return false;
1356   if (MCID.getNumDefs() != 1)
1357     return false;
1358   Register Reg = MI.getOperand(0).getReg();
1359   if (Reg.isVirtual()) {
1360     ImmDefMIs.insert(std::make_pair(Reg, &MI));
1361     ImmDefRegs.insert(Reg);
1362     return true;
1363   }
1364 
1365   return false;
1366 }
1367 
1368 /// Try folding register operands that are defined by move immediate
1369 /// instructions, i.e. a trivial constant folding optimization, if
1370 /// and only if the def and use are in the same BB.
1371 bool PeepholeOptimizer::foldImmediate(
1372     MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
1373     DenseMap<Register, MachineInstr *> &ImmDefMIs) {
1374   for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1375     MachineOperand &MO = MI.getOperand(i);
1376     if (!MO.isReg() || MO.isDef())
1377       continue;
1378     Register Reg = MO.getReg();
1379     if (!Reg.isVirtual())
1380       continue;
1381     if (ImmDefRegs.count(Reg) == 0)
1382       continue;
1383     DenseMap<Register, MachineInstr *>::iterator II = ImmDefMIs.find(Reg);
1384     assert(II != ImmDefMIs.end() && "couldn't find immediate definition");
1385     if (TII->FoldImmediate(MI, *II->second, Reg, MRI)) {
1386       ++NumImmFold;
1387       return true;
1388     }
1389   }
1390   return false;
1391 }
1392 
1393 // FIXME: This is very simple and misses some cases which should be handled when
1394 // motivating examples are found.
1395 //
1396 // The copy rewriting logic should look at uses as well as defs and be able to
1397 // eliminate copies across blocks.
1398 //
1399 // Later copies that are subregister extracts will also not be eliminated since
1400 // only the first copy is considered.
1401 //
1402 // e.g.
1403 // %1 = COPY %0
1404 // %2 = COPY %0:sub1
1405 //
1406 // Should replace %2 uses with %1:sub1
1407 bool PeepholeOptimizer::foldRedundantCopy(
1408     MachineInstr &MI, DenseMap<RegSubRegPair, MachineInstr *> &CopyMIs) {
1409   assert(MI.isCopy() && "expected a COPY machine instruction");
1410 
1411   Register SrcReg = MI.getOperand(1).getReg();
1412   unsigned SrcSubReg = MI.getOperand(1).getSubReg();
1413   if (!SrcReg.isVirtual() && !MRI->isConstantPhysReg(SrcReg))
1414     return false;
1415 
1416   Register DstReg = MI.getOperand(0).getReg();
1417   if (!DstReg.isVirtual())
1418     return false;
1419 
1420   RegSubRegPair SrcPair(SrcReg, SrcSubReg);
1421 
1422   if (CopyMIs.insert(std::make_pair(SrcPair, &MI)).second) {
1423     // First copy of this reg seen.
1424     return false;
1425   }
1426 
1427   MachineInstr *PrevCopy = CopyMIs.find(SrcPair)->second;
1428 
1429   assert(SrcSubReg == PrevCopy->getOperand(1).getSubReg() &&
1430          "Unexpected mismatching subreg!");
1431 
1432   Register PrevDstReg = PrevCopy->getOperand(0).getReg();
1433 
1434   // Only replace if the copy register class is the same.
1435   //
1436   // TODO: If we have multiple copies to different register classes, we may want
1437   // to track multiple copies of the same source register.
1438   if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg))
1439     return false;
1440 
1441   MRI->replaceRegWith(DstReg, PrevDstReg);
1442 
1443   // Lifetime of the previous copy has been extended.
1444   MRI->clearKillFlags(PrevDstReg);
1445   return true;
1446 }
1447 
1448 bool PeepholeOptimizer::isNAPhysCopy(Register Reg) {
1449   return Reg.isPhysical() && !MRI->isAllocatable(Reg);
1450 }
1451 
1452 bool PeepholeOptimizer::foldRedundantNAPhysCopy(
1453     MachineInstr &MI, DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs) {
1454   assert(MI.isCopy() && "expected a COPY machine instruction");
1455 
1456   if (DisableNAPhysCopyOpt)
1457     return false;
1458 
1459   Register DstReg = MI.getOperand(0).getReg();
1460   Register SrcReg = MI.getOperand(1).getReg();
1461   if (isNAPhysCopy(SrcReg) && DstReg.isVirtual()) {
1462     // %vreg = COPY $physreg
1463     // Avoid using a datastructure which can track multiple live non-allocatable
1464     // phys->virt copies since LLVM doesn't seem to do this.
1465     NAPhysToVirtMIs.insert({SrcReg, &MI});
1466     return false;
1467   }
1468 
1469   if (!(SrcReg.isVirtual() && isNAPhysCopy(DstReg)))
1470     return false;
1471 
1472   // $physreg = COPY %vreg
1473   auto PrevCopy = NAPhysToVirtMIs.find(DstReg);
1474   if (PrevCopy == NAPhysToVirtMIs.end()) {
1475     // We can't remove the copy: there was an intervening clobber of the
1476     // non-allocatable physical register after the copy to virtual.
1477     LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing "
1478                       << MI);
1479     return false;
1480   }
1481 
1482   Register PrevDstReg = PrevCopy->second->getOperand(0).getReg();
1483   if (PrevDstReg == SrcReg) {
1484     // Remove the virt->phys copy: we saw the virtual register definition, and
1485     // the non-allocatable physical register's state hasn't changed since then.
1486     LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI);
1487     ++NumNAPhysCopies;
1488     return true;
1489   }
1490 
1491   // Potential missed optimization opportunity: we saw a different virtual
1492   // register get a copy of the non-allocatable physical register, and we only
1493   // track one such copy. Avoid getting confused by this new non-allocatable
1494   // physical register definition, and remove it from the tracked copies.
1495   LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI);
1496   NAPhysToVirtMIs.erase(PrevCopy);
1497   return false;
1498 }
1499 
1500 /// \bried Returns true if \p MO is a virtual register operand.
1501 static bool isVirtualRegisterOperand(MachineOperand &MO) {
1502   return MO.isReg() && MO.getReg().isVirtual();
1503 }
1504 
1505 bool PeepholeOptimizer::findTargetRecurrence(
1506     Register Reg, const SmallSet<Register, 2> &TargetRegs,
1507     RecurrenceCycle &RC) {
1508   // Recurrence found if Reg is in TargetRegs.
1509   if (TargetRegs.count(Reg))
1510     return true;
1511 
1512   // TODO: Curerntly, we only allow the last instruction of the recurrence
1513   // cycle (the instruction that feeds the PHI instruction) to have more than
1514   // one uses to guarantee that commuting operands does not tie registers
1515   // with overlapping live range. Once we have actual live range info of
1516   // each register, this constraint can be relaxed.
1517   if (!MRI->hasOneNonDBGUse(Reg))
1518     return false;
1519 
1520   // Give up if the reccurrence chain length is longer than the limit.
1521   if (RC.size() >= MaxRecurrenceChain)
1522     return false;
1523 
1524   MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg));
1525   unsigned Idx = MI.findRegisterUseOperandIdx(Reg);
1526 
1527   // Only interested in recurrences whose instructions have only one def, which
1528   // is a virtual register.
1529   if (MI.getDesc().getNumDefs() != 1)
1530     return false;
1531 
1532   MachineOperand &DefOp = MI.getOperand(0);
1533   if (!isVirtualRegisterOperand(DefOp))
1534     return false;
1535 
1536   // Check if def operand of MI is tied to any use operand. We are only
1537   // interested in the case that all the instructions in the recurrence chain
1538   // have there def operand tied with one of the use operand.
1539   unsigned TiedUseIdx;
1540   if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx))
1541     return false;
1542 
1543   if (Idx == TiedUseIdx) {
1544     RC.push_back(RecurrenceInstr(&MI));
1545     return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1546   } else {
1547     // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx.
1548     unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex;
1549     if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) {
1550       RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx));
1551       return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1552     }
1553   }
1554 
1555   return false;
1556 }
1557 
1558 /// Phi instructions will eventually be lowered to copy instructions.
1559 /// If phi is in a loop header, a recurrence may formulated around the source
1560 /// and destination of the phi. For such case commuting operands of the
1561 /// instructions in the recurrence may enable coalescing of the copy instruction
1562 /// generated from the phi. For example, if there is a recurrence of
1563 ///
1564 /// LoopHeader:
1565 ///   %1 = phi(%0, %100)
1566 /// LoopLatch:
1567 ///   %0<def, tied1> = ADD %2<def, tied0>, %1
1568 ///
1569 /// , the fact that %0 and %2 are in the same tied operands set makes
1570 /// the coalescing of copy instruction generated from the phi in
1571 /// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and
1572 /// %2 have overlapping live range. This introduces additional move
1573 /// instruction to the final assembly. However, if we commute %2 and
1574 /// %1 of ADD instruction, the redundant move instruction can be
1575 /// avoided.
1576 bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) {
1577   SmallSet<Register, 2> TargetRegs;
1578   for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) {
1579     MachineOperand &MO = PHI.getOperand(Idx);
1580     assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction");
1581     TargetRegs.insert(MO.getReg());
1582   }
1583 
1584   bool Changed = false;
1585   RecurrenceCycle RC;
1586   if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) {
1587     // Commutes operands of instructions in RC if necessary so that the copy to
1588     // be generated from PHI can be coalesced.
1589     LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI);
1590     for (auto &RI : RC) {
1591       LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI()));
1592       auto CP = RI.getCommutePair();
1593       if (CP) {
1594         Changed = true;
1595         TII->commuteInstruction(*(RI.getMI()), false, (*CP).first,
1596                                 (*CP).second);
1597         LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI()));
1598       }
1599     }
1600   }
1601 
1602   return Changed;
1603 }
1604 
1605 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
1606   if (skipFunction(MF.getFunction()))
1607     return false;
1608 
1609   LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
1610   LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
1611 
1612   if (DisablePeephole)
1613     return false;
1614 
1615   TII = MF.getSubtarget().getInstrInfo();
1616   TRI = MF.getSubtarget().getRegisterInfo();
1617   MRI = &MF.getRegInfo();
1618   DT  = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
1619   MLI = &getAnalysis<MachineLoopInfo>();
1620 
1621   bool Changed = false;
1622 
1623   for (MachineBasicBlock &MBB : MF) {
1624     bool SeenMoveImm = false;
1625 
1626     // During this forward scan, at some point it needs to answer the question
1627     // "given a pointer to an MI in the current BB, is it located before or
1628     // after the current instruction".
1629     // To perform this, the following set keeps track of the MIs already seen
1630     // during the scan, if a MI is not in the set, it is assumed to be located
1631     // after. Newly created MIs have to be inserted in the set as well.
1632     SmallPtrSet<MachineInstr*, 16> LocalMIs;
1633     SmallSet<Register, 4> ImmDefRegs;
1634     DenseMap<Register, MachineInstr *> ImmDefMIs;
1635     SmallSet<Register, 16> FoldAsLoadDefCandidates;
1636 
1637     // Track when a non-allocatable physical register is copied to a virtual
1638     // register so that useless moves can be removed.
1639     //
1640     // $physreg is the map index; MI is the last valid `%vreg = COPY $physreg`
1641     // without any intervening re-definition of $physreg.
1642     DenseMap<Register, MachineInstr *> NAPhysToVirtMIs;
1643 
1644     // Set of copies to virtual registers keyed by source register.  Never
1645     // holds any physreg which requires def tracking.
1646     DenseMap<RegSubRegPair, MachineInstr *> CopySrcMIs;
1647 
1648     bool IsLoopHeader = MLI->isLoopHeader(&MBB);
1649 
1650     for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
1651          MII != MIE; ) {
1652       MachineInstr *MI = &*MII;
1653       // We may be erasing MI below, increment MII now.
1654       ++MII;
1655       LocalMIs.insert(MI);
1656 
1657       // Skip debug instructions. They should not affect this peephole
1658       // optimization.
1659       if (MI->isDebugInstr())
1660         continue;
1661 
1662       if (MI->isPosition())
1663         continue;
1664 
1665       if (IsLoopHeader && MI->isPHI()) {
1666         if (optimizeRecurrence(*MI)) {
1667           Changed = true;
1668           continue;
1669         }
1670       }
1671 
1672       if (!MI->isCopy()) {
1673         for (const MachineOperand &MO : MI->operands()) {
1674           // Visit all operands: definitions can be implicit or explicit.
1675           if (MO.isReg()) {
1676             Register Reg = MO.getReg();
1677             if (MO.isDef() && isNAPhysCopy(Reg)) {
1678               const auto &Def = NAPhysToVirtMIs.find(Reg);
1679               if (Def != NAPhysToVirtMIs.end()) {
1680                 // A new definition of the non-allocatable physical register
1681                 // invalidates previous copies.
1682                 LLVM_DEBUG(dbgs()
1683                            << "NAPhysCopy: invalidating because of " << *MI);
1684                 NAPhysToVirtMIs.erase(Def);
1685               }
1686             }
1687           } else if (MO.isRegMask()) {
1688             const uint32_t *RegMask = MO.getRegMask();
1689             for (auto &RegMI : NAPhysToVirtMIs) {
1690               Register Def = RegMI.first;
1691               if (MachineOperand::clobbersPhysReg(RegMask, Def)) {
1692                 LLVM_DEBUG(dbgs()
1693                            << "NAPhysCopy: invalidating because of " << *MI);
1694                 NAPhysToVirtMIs.erase(Def);
1695               }
1696             }
1697           }
1698         }
1699       }
1700 
1701       if (MI->isImplicitDef() || MI->isKill())
1702         continue;
1703 
1704       if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) {
1705         // Blow away all non-allocatable physical registers knowledge since we
1706         // don't know what's correct anymore.
1707         //
1708         // FIXME: handle explicit asm clobbers.
1709         LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to "
1710                           << *MI);
1711         NAPhysToVirtMIs.clear();
1712       }
1713 
1714       if ((isUncoalescableCopy(*MI) &&
1715            optimizeUncoalescableCopy(*MI, LocalMIs)) ||
1716           (MI->isCompare() && optimizeCmpInstr(*MI)) ||
1717           (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) {
1718         // MI is deleted.
1719         LocalMIs.erase(MI);
1720         Changed = true;
1721         continue;
1722       }
1723 
1724       if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) {
1725         Changed = true;
1726         continue;
1727       }
1728 
1729       if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) {
1730         // MI is just rewritten.
1731         Changed = true;
1732         continue;
1733       }
1734 
1735       if (MI->isCopy() && (foldRedundantCopy(*MI, CopySrcMIs) ||
1736                            foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) {
1737         LocalMIs.erase(MI);
1738         LLVM_DEBUG(dbgs() << "Deleting redundant copy: " << *MI << "\n");
1739         MI->eraseFromParent();
1740         Changed = true;
1741         continue;
1742       }
1743 
1744       if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) {
1745         SeenMoveImm = true;
1746       } else {
1747         Changed |= optimizeExtInstr(*MI, MBB, LocalMIs);
1748         // optimizeExtInstr might have created new instructions after MI
1749         // and before the already incremented MII. Adjust MII so that the
1750         // next iteration sees the new instructions.
1751         MII = MI;
1752         ++MII;
1753         if (SeenMoveImm)
1754           Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs);
1755       }
1756 
1757       // Check whether MI is a load candidate for folding into a later
1758       // instruction. If MI is not a candidate, check whether we can fold an
1759       // earlier load into MI.
1760       if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) &&
1761           !FoldAsLoadDefCandidates.empty()) {
1762 
1763         // We visit each operand even after successfully folding a previous
1764         // one.  This allows us to fold multiple loads into a single
1765         // instruction.  We do assume that optimizeLoadInstr doesn't insert
1766         // foldable uses earlier in the argument list.  Since we don't restart
1767         // iteration, we'd miss such cases.
1768         const MCInstrDesc &MIDesc = MI->getDesc();
1769         for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands();
1770              ++i) {
1771           const MachineOperand &MOp = MI->getOperand(i);
1772           if (!MOp.isReg())
1773             continue;
1774           Register FoldAsLoadDefReg = MOp.getReg();
1775           if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
1776             // We need to fold load after optimizeCmpInstr, since
1777             // optimizeCmpInstr can enable folding by converting SUB to CMP.
1778             // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
1779             // we need it for markUsesInDebugValueAsUndef().
1780             Register FoldedReg = FoldAsLoadDefReg;
1781             MachineInstr *DefMI = nullptr;
1782             if (MachineInstr *FoldMI =
1783                     TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) {
1784               // Update LocalMIs since we replaced MI with FoldMI and deleted
1785               // DefMI.
1786               LLVM_DEBUG(dbgs() << "Replacing: " << *MI);
1787               LLVM_DEBUG(dbgs() << "     With: " << *FoldMI);
1788               LocalMIs.erase(MI);
1789               LocalMIs.erase(DefMI);
1790               LocalMIs.insert(FoldMI);
1791               // Update the call site info.
1792               if (MI->shouldUpdateCallSiteInfo())
1793                 MI->getMF()->moveCallSiteInfo(MI, FoldMI);
1794               MI->eraseFromParent();
1795               DefMI->eraseFromParent();
1796               MRI->markUsesInDebugValueAsUndef(FoldedReg);
1797               FoldAsLoadDefCandidates.erase(FoldedReg);
1798               ++NumLoadFold;
1799 
1800               // MI is replaced with FoldMI so we can continue trying to fold
1801               Changed = true;
1802               MI = FoldMI;
1803             }
1804           }
1805         }
1806       }
1807 
1808       // If we run into an instruction we can't fold across, discard
1809       // the load candidates.  Note: We might be able to fold *into* this
1810       // instruction, so this needs to be after the folding logic.
1811       if (MI->isLoadFoldBarrier()) {
1812         LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI);
1813         FoldAsLoadDefCandidates.clear();
1814       }
1815     }
1816   }
1817 
1818   return Changed;
1819 }
1820 
1821 ValueTrackerResult ValueTracker::getNextSourceFromCopy() {
1822   assert(Def->isCopy() && "Invalid definition");
1823   // Copy instruction are supposed to be: Def = Src.
1824   // If someone breaks this assumption, bad things will happen everywhere.
1825   // There may be implicit uses preventing the copy to be moved across
1826   // some target specific register definitions
1827   assert(Def->getNumOperands() - Def->getNumImplicitOperands() == 2 &&
1828          "Invalid number of operands");
1829   assert(!Def->hasImplicitDef() && "Only implicit uses are allowed");
1830 
1831   if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
1832     // If we look for a different subreg, it means we want a subreg of src.
1833     // Bails as we do not support composing subregs yet.
1834     return ValueTrackerResult();
1835   // Otherwise, we want the whole source.
1836   const MachineOperand &Src = Def->getOperand(1);
1837   if (Src.isUndef())
1838     return ValueTrackerResult();
1839   return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1840 }
1841 
1842 ValueTrackerResult ValueTracker::getNextSourceFromBitcast() {
1843   assert(Def->isBitcast() && "Invalid definition");
1844 
1845   // Bail if there are effects that a plain copy will not expose.
1846   if (Def->mayRaiseFPException() || Def->hasUnmodeledSideEffects())
1847     return ValueTrackerResult();
1848 
1849   // Bitcasts with more than one def are not supported.
1850   if (Def->getDesc().getNumDefs() != 1)
1851     return ValueTrackerResult();
1852   const MachineOperand DefOp = Def->getOperand(DefIdx);
1853   if (DefOp.getSubReg() != DefSubReg)
1854     // If we look for a different subreg, it means we want a subreg of the src.
1855     // Bails as we do not support composing subregs yet.
1856     return ValueTrackerResult();
1857 
1858   unsigned SrcIdx = Def->getNumOperands();
1859   for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
1860        ++OpIdx) {
1861     const MachineOperand &MO = Def->getOperand(OpIdx);
1862     if (!MO.isReg() || !MO.getReg())
1863       continue;
1864     // Ignore dead implicit defs.
1865     if (MO.isImplicit() && MO.isDead())
1866       continue;
1867     assert(!MO.isDef() && "We should have skipped all the definitions by now");
1868     if (SrcIdx != EndOpIdx)
1869       // Multiple sources?
1870       return ValueTrackerResult();
1871     SrcIdx = OpIdx;
1872   }
1873 
1874   // In some rare case, Def has no input, SrcIdx is out of bound,
1875   // getOperand(SrcIdx) will fail below.
1876   if (SrcIdx >= Def->getNumOperands())
1877     return ValueTrackerResult();
1878 
1879   // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY
1880   // will break the assumed guarantees for the upper bits.
1881   for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) {
1882     if (UseMI.isSubregToReg())
1883       return ValueTrackerResult();
1884   }
1885 
1886   const MachineOperand &Src = Def->getOperand(SrcIdx);
1887   if (Src.isUndef())
1888     return ValueTrackerResult();
1889   return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1890 }
1891 
1892 ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() {
1893   assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
1894          "Invalid definition");
1895 
1896   if (Def->getOperand(DefIdx).getSubReg())
1897     // If we are composing subregs, bail out.
1898     // The case we are checking is Def.<subreg> = REG_SEQUENCE.
1899     // This should almost never happen as the SSA property is tracked at
1900     // the register level (as opposed to the subreg level).
1901     // I.e.,
1902     // Def.sub0 =
1903     // Def.sub1 =
1904     // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
1905     // Def. Thus, it must not be generated.
1906     // However, some code could theoretically generates a single
1907     // Def.sub0 (i.e, not defining the other subregs) and we would
1908     // have this case.
1909     // If we can ascertain (or force) that this never happens, we could
1910     // turn that into an assertion.
1911     return ValueTrackerResult();
1912 
1913   if (!TII)
1914     // We could handle the REG_SEQUENCE here, but we do not want to
1915     // duplicate the code from the generic TII.
1916     return ValueTrackerResult();
1917 
1918   SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs;
1919   if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
1920     return ValueTrackerResult();
1921 
1922   // We are looking at:
1923   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1924   // Check if one of the operand defines the subreg we are interested in.
1925   for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) {
1926     if (RegSeqInput.SubIdx == DefSubReg)
1927       return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg);
1928   }
1929 
1930   // If the subreg we are tracking is super-defined by another subreg,
1931   // we could follow this value. However, this would require to compose
1932   // the subreg and we do not do that for now.
1933   return ValueTrackerResult();
1934 }
1935 
1936 ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() {
1937   assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
1938          "Invalid definition");
1939 
1940   if (Def->getOperand(DefIdx).getSubReg())
1941     // If we are composing subreg, bail out.
1942     // Same remark as getNextSourceFromRegSequence.
1943     // I.e., this may be turned into an assert.
1944     return ValueTrackerResult();
1945 
1946   if (!TII)
1947     // We could handle the REG_SEQUENCE here, but we do not want to
1948     // duplicate the code from the generic TII.
1949     return ValueTrackerResult();
1950 
1951   RegSubRegPair BaseReg;
1952   RegSubRegPairAndIdx InsertedReg;
1953   if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
1954     return ValueTrackerResult();
1955 
1956   // We are looking at:
1957   // Def = INSERT_SUBREG v0, v1, sub1
1958   // There are two cases:
1959   // 1. DefSubReg == sub1, get v1.
1960   // 2. DefSubReg != sub1, the value may be available through v0.
1961 
1962   // #1 Check if the inserted register matches the required sub index.
1963   if (InsertedReg.SubIdx == DefSubReg) {
1964     return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg);
1965   }
1966   // #2 Otherwise, if the sub register we are looking for is not partial
1967   // defined by the inserted element, we can look through the main
1968   // register (v0).
1969   const MachineOperand &MODef = Def->getOperand(DefIdx);
1970   // If the result register (Def) and the base register (v0) do not
1971   // have the same register class or if we have to compose
1972   // subregisters, bail out.
1973   if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
1974       BaseReg.SubReg)
1975     return ValueTrackerResult();
1976 
1977   // Get the TRI and check if the inserted sub-register overlaps with the
1978   // sub-register we are tracking.
1979   const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
1980   if (!TRI ||
1981       !(TRI->getSubRegIndexLaneMask(DefSubReg) &
1982         TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none())
1983     return ValueTrackerResult();
1984   // At this point, the value is available in v0 via the same subreg
1985   // we used for Def.
1986   return ValueTrackerResult(BaseReg.Reg, DefSubReg);
1987 }
1988 
1989 ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() {
1990   assert((Def->isExtractSubreg() ||
1991           Def->isExtractSubregLike()) && "Invalid definition");
1992   // We are looking at:
1993   // Def = EXTRACT_SUBREG v0, sub0
1994 
1995   // Bail if we have to compose sub registers.
1996   // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
1997   if (DefSubReg)
1998     return ValueTrackerResult();
1999 
2000   if (!TII)
2001     // We could handle the EXTRACT_SUBREG here, but we do not want to
2002     // duplicate the code from the generic TII.
2003     return ValueTrackerResult();
2004 
2005   RegSubRegPairAndIdx ExtractSubregInputReg;
2006   if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
2007     return ValueTrackerResult();
2008 
2009   // Bail if we have to compose sub registers.
2010   // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
2011   if (ExtractSubregInputReg.SubReg)
2012     return ValueTrackerResult();
2013   // Otherwise, the value is available in the v0.sub0.
2014   return ValueTrackerResult(ExtractSubregInputReg.Reg,
2015                             ExtractSubregInputReg.SubIdx);
2016 }
2017 
2018 ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() {
2019   assert(Def->isSubregToReg() && "Invalid definition");
2020   // We are looking at:
2021   // Def = SUBREG_TO_REG Imm, v0, sub0
2022 
2023   // Bail if we have to compose sub registers.
2024   // If DefSubReg != sub0, we would have to check that all the bits
2025   // we track are included in sub0 and if yes, we would have to
2026   // determine the right subreg in v0.
2027   if (DefSubReg != Def->getOperand(3).getImm())
2028     return ValueTrackerResult();
2029   // Bail if we have to compose sub registers.
2030   // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
2031   if (Def->getOperand(2).getSubReg())
2032     return ValueTrackerResult();
2033 
2034   return ValueTrackerResult(Def->getOperand(2).getReg(),
2035                             Def->getOperand(3).getImm());
2036 }
2037 
2038 /// Explore each PHI incoming operand and return its sources.
2039 ValueTrackerResult ValueTracker::getNextSourceFromPHI() {
2040   assert(Def->isPHI() && "Invalid definition");
2041   ValueTrackerResult Res;
2042 
2043   // If we look for a different subreg, bail as we do not support composing
2044   // subregs yet.
2045   if (Def->getOperand(0).getSubReg() != DefSubReg)
2046     return ValueTrackerResult();
2047 
2048   // Return all register sources for PHI instructions.
2049   for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) {
2050     const MachineOperand &MO = Def->getOperand(i);
2051     assert(MO.isReg() && "Invalid PHI instruction");
2052     // We have no code to deal with undef operands. They shouldn't happen in
2053     // normal programs anyway.
2054     if (MO.isUndef())
2055       return ValueTrackerResult();
2056     Res.addSource(MO.getReg(), MO.getSubReg());
2057   }
2058 
2059   return Res;
2060 }
2061 
2062 ValueTrackerResult ValueTracker::getNextSourceImpl() {
2063   assert(Def && "This method needs a valid definition");
2064 
2065   assert(((Def->getOperand(DefIdx).isDef() &&
2066            (DefIdx < Def->getDesc().getNumDefs() ||
2067             Def->getDesc().isVariadic())) ||
2068           Def->getOperand(DefIdx).isImplicit()) &&
2069          "Invalid DefIdx");
2070   if (Def->isCopy())
2071     return getNextSourceFromCopy();
2072   if (Def->isBitcast())
2073     return getNextSourceFromBitcast();
2074   // All the remaining cases involve "complex" instructions.
2075   // Bail if we did not ask for the advanced tracking.
2076   if (DisableAdvCopyOpt)
2077     return ValueTrackerResult();
2078   if (Def->isRegSequence() || Def->isRegSequenceLike())
2079     return getNextSourceFromRegSequence();
2080   if (Def->isInsertSubreg() || Def->isInsertSubregLike())
2081     return getNextSourceFromInsertSubreg();
2082   if (Def->isExtractSubreg() || Def->isExtractSubregLike())
2083     return getNextSourceFromExtractSubreg();
2084   if (Def->isSubregToReg())
2085     return getNextSourceFromSubregToReg();
2086   if (Def->isPHI())
2087     return getNextSourceFromPHI();
2088   return ValueTrackerResult();
2089 }
2090 
2091 ValueTrackerResult ValueTracker::getNextSource() {
2092   // If we reach a point where we cannot move up in the use-def chain,
2093   // there is nothing we can get.
2094   if (!Def)
2095     return ValueTrackerResult();
2096 
2097   ValueTrackerResult Res = getNextSourceImpl();
2098   if (Res.isValid()) {
2099     // Update definition, definition index, and subregister for the
2100     // next call of getNextSource.
2101     // Update the current register.
2102     bool OneRegSrc = Res.getNumSources() == 1;
2103     if (OneRegSrc)
2104       Reg = Res.getSrcReg(0);
2105     // Update the result before moving up in the use-def chain
2106     // with the instruction containing the last found sources.
2107     Res.setInst(Def);
2108 
2109     // If we can still move up in the use-def chain, move to the next
2110     // definition.
2111     if (!Reg.isPhysical() && OneRegSrc) {
2112       MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg);
2113       if (DI != MRI.def_end()) {
2114         Def = DI->getParent();
2115         DefIdx = DI.getOperandNo();
2116         DefSubReg = Res.getSrcSubReg(0);
2117       } else {
2118         Def = nullptr;
2119       }
2120       return Res;
2121     }
2122   }
2123   // If we end up here, this means we will not be able to find another source
2124   // for the next iteration. Make sure any new call to getNextSource bails out
2125   // early by cutting the use-def chain.
2126   Def = nullptr;
2127   return Res;
2128 }
2129