xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/PeepholeOptimizer.cpp (revision 963f5dc7a30624e95d72fb7f87b8892651164e46)
1 //===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Perform peephole optimizations on the machine code:
10 //
11 // - Optimize Extensions
12 //
13 //     Optimization of sign / zero extension instructions. It may be extended to
14 //     handle other instructions with similar properties.
15 //
16 //     On some targets, some instructions, e.g. X86 sign / zero extension, may
17 //     leave the source value in the lower part of the result. This optimization
18 //     will replace some uses of the pre-extension value with uses of the
19 //     sub-register of the results.
20 //
21 // - Optimize Comparisons
22 //
23 //     Optimization of comparison instructions. For instance, in this code:
24 //
25 //       sub r1, 1
26 //       cmp r1, 0
27 //       bz  L1
28 //
29 //     If the "sub" instruction all ready sets (or could be modified to set) the
30 //     same flag that the "cmp" instruction sets and that "bz" uses, then we can
31 //     eliminate the "cmp" instruction.
32 //
33 //     Another instance, in this code:
34 //
35 //       sub r1, r3 | sub r1, imm
36 //       cmp r3, r1 or cmp r1, r3 | cmp r1, imm
37 //       bge L1
38 //
39 //     If the branch instruction can use flag from "sub", then we can replace
40 //     "sub" with "subs" and eliminate the "cmp" instruction.
41 //
42 // - Optimize Loads:
43 //
44 //     Loads that can be folded into a later instruction. A load is foldable
45 //     if it loads to virtual registers and the virtual register defined has
46 //     a single use.
47 //
48 // - Optimize Copies and Bitcast (more generally, target specific copies):
49 //
50 //     Rewrite copies and bitcasts to avoid cross register bank copies
51 //     when possible.
52 //     E.g., Consider the following example, where capital and lower
53 //     letters denote different register file:
54 //     b = copy A <-- cross-bank copy
55 //     C = copy b <-- cross-bank copy
56 //   =>
57 //     b = copy A <-- cross-bank copy
58 //     C = copy A <-- same-bank copy
59 //
60 //     E.g., for bitcast:
61 //     b = bitcast A <-- cross-bank copy
62 //     C = bitcast b <-- cross-bank copy
63 //   =>
64 //     b = bitcast A <-- cross-bank copy
65 //     C = copy A    <-- same-bank copy
66 //===----------------------------------------------------------------------===//
67 
68 #include "llvm/ADT/DenseMap.h"
69 #include "llvm/ADT/Optional.h"
70 #include "llvm/ADT/SmallPtrSet.h"
71 #include "llvm/ADT/SmallSet.h"
72 #include "llvm/ADT/SmallVector.h"
73 #include "llvm/ADT/Statistic.h"
74 #include "llvm/CodeGen/MachineBasicBlock.h"
75 #include "llvm/CodeGen/MachineDominators.h"
76 #include "llvm/CodeGen/MachineFunction.h"
77 #include "llvm/CodeGen/MachineFunctionPass.h"
78 #include "llvm/CodeGen/MachineInstr.h"
79 #include "llvm/CodeGen/MachineInstrBuilder.h"
80 #include "llvm/CodeGen/MachineLoopInfo.h"
81 #include "llvm/CodeGen/MachineOperand.h"
82 #include "llvm/CodeGen/MachineRegisterInfo.h"
83 #include "llvm/CodeGen/TargetInstrInfo.h"
84 #include "llvm/CodeGen/TargetOpcodes.h"
85 #include "llvm/CodeGen/TargetRegisterInfo.h"
86 #include "llvm/CodeGen/TargetSubtargetInfo.h"
87 #include "llvm/InitializePasses.h"
88 #include "llvm/MC/LaneBitmask.h"
89 #include "llvm/MC/MCInstrDesc.h"
90 #include "llvm/Pass.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/ErrorHandling.h"
94 #include "llvm/Support/raw_ostream.h"
95 #include <cassert>
96 #include <cstdint>
97 #include <memory>
98 #include <utility>
99 
100 using namespace llvm;
101 using RegSubRegPair = TargetInstrInfo::RegSubRegPair;
102 using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx;
103 
104 #define DEBUG_TYPE "peephole-opt"
105 
106 // Optimize Extensions
107 static cl::opt<bool>
108 Aggressive("aggressive-ext-opt", cl::Hidden,
109            cl::desc("Aggressive extension optimization"));
110 
111 static cl::opt<bool>
112 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
113                 cl::desc("Disable the peephole optimizer"));
114 
115 /// Specifiy whether or not the value tracking looks through
116 /// complex instructions. When this is true, the value tracker
117 /// bails on everything that is not a copy or a bitcast.
118 static cl::opt<bool>
119 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
120                   cl::desc("Disable advanced copy optimization"));
121 
122 static cl::opt<bool> DisableNAPhysCopyOpt(
123     "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false),
124     cl::desc("Disable non-allocatable physical register copy optimization"));
125 
126 // Limit the number of PHI instructions to process
127 // in PeepholeOptimizer::getNextSource.
128 static cl::opt<unsigned> RewritePHILimit(
129     "rewrite-phi-limit", cl::Hidden, cl::init(10),
130     cl::desc("Limit the length of PHI chains to lookup"));
131 
132 // Limit the length of recurrence chain when evaluating the benefit of
133 // commuting operands.
134 static cl::opt<unsigned> MaxRecurrenceChain(
135     "recurrence-chain-limit", cl::Hidden, cl::init(3),
136     cl::desc("Maximum length of recurrence chain when evaluating the benefit "
137              "of commuting operands"));
138 
139 
140 STATISTIC(NumReuse, "Number of extension results reused");
141 STATISTIC(NumCmps, "Number of compares eliminated");
142 STATISTIC(NumImmFold, "Number of move immediate folded");
143 STATISTIC(NumLoadFold, "Number of loads folded");
144 STATISTIC(NumSelects, "Number of selects optimized");
145 STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
146 STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
147 STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed");
148 
149 namespace {
150 
151   class ValueTrackerResult;
152   class RecurrenceInstr;
153 
154   class PeepholeOptimizer : public MachineFunctionPass {
155     const TargetInstrInfo *TII;
156     const TargetRegisterInfo *TRI;
157     MachineRegisterInfo *MRI;
158     MachineDominatorTree *DT;  // Machine dominator tree
159     MachineLoopInfo *MLI;
160 
161   public:
162     static char ID; // Pass identification
163 
164     PeepholeOptimizer() : MachineFunctionPass(ID) {
165       initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
166     }
167 
168     bool runOnMachineFunction(MachineFunction &MF) override;
169 
170     void getAnalysisUsage(AnalysisUsage &AU) const override {
171       AU.setPreservesCFG();
172       MachineFunctionPass::getAnalysisUsage(AU);
173       AU.addRequired<MachineLoopInfo>();
174       AU.addPreserved<MachineLoopInfo>();
175       if (Aggressive) {
176         AU.addRequired<MachineDominatorTree>();
177         AU.addPreserved<MachineDominatorTree>();
178       }
179     }
180 
181     MachineFunctionProperties getRequiredProperties() const override {
182       return MachineFunctionProperties()
183         .set(MachineFunctionProperties::Property::IsSSA);
184     }
185 
186     /// Track Def -> Use info used for rewriting copies.
187     using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>;
188 
189     /// Sequence of instructions that formulate recurrence cycle.
190     using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>;
191 
192   private:
193     bool optimizeCmpInstr(MachineInstr &MI);
194     bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
195                           SmallPtrSetImpl<MachineInstr*> &LocalMIs);
196     bool optimizeSelect(MachineInstr &MI,
197                         SmallPtrSetImpl<MachineInstr *> &LocalMIs);
198     bool optimizeCondBranch(MachineInstr &MI);
199     bool optimizeCoalescableCopy(MachineInstr &MI);
200     bool optimizeUncoalescableCopy(MachineInstr &MI,
201                                    SmallPtrSetImpl<MachineInstr *> &LocalMIs);
202     bool optimizeRecurrence(MachineInstr &PHI);
203     bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap);
204     bool isMoveImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
205                          DenseMap<Register, MachineInstr *> &ImmDefMIs);
206     bool foldImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
207                        DenseMap<Register, MachineInstr *> &ImmDefMIs);
208 
209     /// Finds recurrence cycles, but only ones that formulated around
210     /// a def operand and a use operand that are tied. If there is a use
211     /// operand commutable with the tied use operand, find recurrence cycle
212     /// along that operand as well.
213     bool findTargetRecurrence(Register Reg,
214                               const SmallSet<Register, 2> &TargetReg,
215                               RecurrenceCycle &RC);
216 
217     /// If copy instruction \p MI is a virtual register copy, track it in
218     /// the set \p CopyMIs. If this virtual register was previously seen as a
219     /// copy, replace the uses of this copy with the previously seen copy's
220     /// destination register.
221     bool foldRedundantCopy(MachineInstr &MI,
222                            DenseMap<RegSubRegPair, MachineInstr *> &CopyMIs);
223 
224     /// Is the register \p Reg a non-allocatable physical register?
225     bool isNAPhysCopy(Register Reg);
226 
227     /// If copy instruction \p MI is a non-allocatable virtual<->physical
228     /// register copy, track it in the \p NAPhysToVirtMIs map. If this
229     /// non-allocatable physical register was previously copied to a virtual
230     /// registered and hasn't been clobbered, the virt->phys copy can be
231     /// deleted.
232     bool foldRedundantNAPhysCopy(
233         MachineInstr &MI, DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs);
234 
235     bool isLoadFoldable(MachineInstr &MI,
236                         SmallSet<Register, 16> &FoldAsLoadDefCandidates);
237 
238     /// Check whether \p MI is understood by the register coalescer
239     /// but may require some rewriting.
240     bool isCoalescableCopy(const MachineInstr &MI) {
241       // SubregToRegs are not interesting, because they are already register
242       // coalescer friendly.
243       return MI.isCopy() || (!DisableAdvCopyOpt &&
244                              (MI.isRegSequence() || MI.isInsertSubreg() ||
245                               MI.isExtractSubreg()));
246     }
247 
248     /// Check whether \p MI is a copy like instruction that is
249     /// not recognized by the register coalescer.
250     bool isUncoalescableCopy(const MachineInstr &MI) {
251       return MI.isBitcast() ||
252              (!DisableAdvCopyOpt &&
253               (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
254                MI.isExtractSubregLike()));
255     }
256 
257     MachineInstr &rewriteSource(MachineInstr &CopyLike,
258                                 RegSubRegPair Def, RewriteMapTy &RewriteMap);
259   };
260 
261   /// Helper class to hold instructions that are inside recurrence cycles.
262   /// The recurrence cycle is formulated around 1) a def operand and its
263   /// tied use operand, or 2) a def operand and a use operand that is commutable
264   /// with another use operand which is tied to the def operand. In the latter
265   /// case, index of the tied use operand and the commutable use operand are
266   /// maintained with CommutePair.
267   class RecurrenceInstr {
268   public:
269     using IndexPair = std::pair<unsigned, unsigned>;
270 
271     RecurrenceInstr(MachineInstr *MI) : MI(MI) {}
272     RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2)
273       : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {}
274 
275     MachineInstr *getMI() const { return MI; }
276     Optional<IndexPair> getCommutePair() const { return CommutePair; }
277 
278   private:
279     MachineInstr *MI;
280     Optional<IndexPair> CommutePair;
281   };
282 
283   /// Helper class to hold a reply for ValueTracker queries.
284   /// Contains the returned sources for a given search and the instructions
285   /// where the sources were tracked from.
286   class ValueTrackerResult {
287   private:
288     /// Track all sources found by one ValueTracker query.
289     SmallVector<RegSubRegPair, 2> RegSrcs;
290 
291     /// Instruction using the sources in 'RegSrcs'.
292     const MachineInstr *Inst = nullptr;
293 
294   public:
295     ValueTrackerResult() = default;
296 
297     ValueTrackerResult(Register Reg, unsigned SubReg) {
298       addSource(Reg, SubReg);
299     }
300 
301     bool isValid() const { return getNumSources() > 0; }
302 
303     void setInst(const MachineInstr *I) { Inst = I; }
304     const MachineInstr *getInst() const { return Inst; }
305 
306     void clear() {
307       RegSrcs.clear();
308       Inst = nullptr;
309     }
310 
311     void addSource(Register SrcReg, unsigned SrcSubReg) {
312       RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg));
313     }
314 
315     void setSource(int Idx, Register SrcReg, unsigned SrcSubReg) {
316       assert(Idx < getNumSources() && "Reg pair source out of index");
317       RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg);
318     }
319 
320     int getNumSources() const { return RegSrcs.size(); }
321 
322     RegSubRegPair getSrc(int Idx) const {
323       return RegSrcs[Idx];
324     }
325 
326     Register getSrcReg(int Idx) const {
327       assert(Idx < getNumSources() && "Reg source out of index");
328       return RegSrcs[Idx].Reg;
329     }
330 
331     unsigned getSrcSubReg(int Idx) const {
332       assert(Idx < getNumSources() && "SubReg source out of index");
333       return RegSrcs[Idx].SubReg;
334     }
335 
336     bool operator==(const ValueTrackerResult &Other) const {
337       if (Other.getInst() != getInst())
338         return false;
339 
340       if (Other.getNumSources() != getNumSources())
341         return false;
342 
343       for (int i = 0, e = Other.getNumSources(); i != e; ++i)
344         if (Other.getSrcReg(i) != getSrcReg(i) ||
345             Other.getSrcSubReg(i) != getSrcSubReg(i))
346           return false;
347       return true;
348     }
349   };
350 
351   /// Helper class to track the possible sources of a value defined by
352   /// a (chain of) copy related instructions.
353   /// Given a definition (instruction and definition index), this class
354   /// follows the use-def chain to find successive suitable sources.
355   /// The given source can be used to rewrite the definition into
356   /// def = COPY src.
357   ///
358   /// For instance, let us consider the following snippet:
359   /// v0 =
360   /// v2 = INSERT_SUBREG v1, v0, sub0
361   /// def = COPY v2.sub0
362   ///
363   /// Using a ValueTracker for def = COPY v2.sub0 will give the following
364   /// suitable sources:
365   /// v2.sub0 and v0.
366   /// Then, def can be rewritten into def = COPY v0.
367   class ValueTracker {
368   private:
369     /// The current point into the use-def chain.
370     const MachineInstr *Def = nullptr;
371 
372     /// The index of the definition in Def.
373     unsigned DefIdx = 0;
374 
375     /// The sub register index of the definition.
376     unsigned DefSubReg;
377 
378     /// The register where the value can be found.
379     Register Reg;
380 
381     /// MachineRegisterInfo used to perform tracking.
382     const MachineRegisterInfo &MRI;
383 
384     /// Optional TargetInstrInfo used to perform some complex tracking.
385     const TargetInstrInfo *TII;
386 
387     /// Dispatcher to the right underlying implementation of getNextSource.
388     ValueTrackerResult getNextSourceImpl();
389 
390     /// Specialized version of getNextSource for Copy instructions.
391     ValueTrackerResult getNextSourceFromCopy();
392 
393     /// Specialized version of getNextSource for Bitcast instructions.
394     ValueTrackerResult getNextSourceFromBitcast();
395 
396     /// Specialized version of getNextSource for RegSequence instructions.
397     ValueTrackerResult getNextSourceFromRegSequence();
398 
399     /// Specialized version of getNextSource for InsertSubreg instructions.
400     ValueTrackerResult getNextSourceFromInsertSubreg();
401 
402     /// Specialized version of getNextSource for ExtractSubreg instructions.
403     ValueTrackerResult getNextSourceFromExtractSubreg();
404 
405     /// Specialized version of getNextSource for SubregToReg instructions.
406     ValueTrackerResult getNextSourceFromSubregToReg();
407 
408     /// Specialized version of getNextSource for PHI instructions.
409     ValueTrackerResult getNextSourceFromPHI();
410 
411   public:
412     /// Create a ValueTracker instance for the value defined by \p Reg.
413     /// \p DefSubReg represents the sub register index the value tracker will
414     /// track. It does not need to match the sub register index used in the
415     /// definition of \p Reg.
416     /// If \p Reg is a physical register, a value tracker constructed with
417     /// this constructor will not find any alternative source.
418     /// Indeed, when \p Reg is a physical register that constructor does not
419     /// know which definition of \p Reg it should track.
420     /// Use the next constructor to track a physical register.
421     ValueTracker(Register Reg, unsigned DefSubReg,
422                  const MachineRegisterInfo &MRI,
423                  const TargetInstrInfo *TII = nullptr)
424         : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) {
425       if (!Reg.isPhysical()) {
426         Def = MRI.getVRegDef(Reg);
427         DefIdx = MRI.def_begin(Reg).getOperandNo();
428       }
429     }
430 
431     /// Following the use-def chain, get the next available source
432     /// for the tracked value.
433     /// \return A ValueTrackerResult containing a set of registers
434     /// and sub registers with tracked values. A ValueTrackerResult with
435     /// an empty set of registers means no source was found.
436     ValueTrackerResult getNextSource();
437   };
438 
439 } // end anonymous namespace
440 
441 char PeepholeOptimizer::ID = 0;
442 
443 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
444 
445 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE,
446                       "Peephole Optimizations", false, false)
447 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
448 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
449 INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE,
450                     "Peephole Optimizations", false, false)
451 
452 /// If instruction is a copy-like instruction, i.e. it reads a single register
453 /// and writes a single register and it does not modify the source, and if the
454 /// source value is preserved as a sub-register of the result, then replace all
455 /// reachable uses of the source with the subreg of the result.
456 ///
457 /// Do not generate an EXTRACT that is used only in a debug use, as this changes
458 /// the code. Since this code does not currently share EXTRACTs, just ignore all
459 /// debug uses.
460 bool PeepholeOptimizer::
461 optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
462                  SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
463   Register SrcReg, DstReg;
464   unsigned SubIdx;
465   if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx))
466     return false;
467 
468   if (DstReg.isPhysical() || SrcReg.isPhysical())
469     return false;
470 
471   if (MRI->hasOneNonDBGUse(SrcReg))
472     // No other uses.
473     return false;
474 
475   // Ensure DstReg can get a register class that actually supports
476   // sub-registers. Don't change the class until we commit.
477   const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
478   DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
479   if (!DstRC)
480     return false;
481 
482   // The ext instr may be operating on a sub-register of SrcReg as well.
483   // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
484   // register.
485   // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
486   // SrcReg:SubIdx should be replaced.
487   bool UseSrcSubIdx =
488       TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
489 
490   // The source has other uses. See if we can replace the other uses with use of
491   // the result of the extension.
492   SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
493   for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
494     ReachedBBs.insert(UI.getParent());
495 
496   // Uses that are in the same BB of uses of the result of the instruction.
497   SmallVector<MachineOperand*, 8> Uses;
498 
499   // Uses that the result of the instruction can reach.
500   SmallVector<MachineOperand*, 8> ExtendedUses;
501 
502   bool ExtendLife = true;
503   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
504     MachineInstr *UseMI = UseMO.getParent();
505     if (UseMI == &MI)
506       continue;
507 
508     if (UseMI->isPHI()) {
509       ExtendLife = false;
510       continue;
511     }
512 
513     // Only accept uses of SrcReg:SubIdx.
514     if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
515       continue;
516 
517     // It's an error to translate this:
518     //
519     //    %reg1025 = <sext> %reg1024
520     //     ...
521     //    %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
522     //
523     // into this:
524     //
525     //    %reg1025 = <sext> %reg1024
526     //     ...
527     //    %reg1027 = COPY %reg1025:4
528     //    %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
529     //
530     // The problem here is that SUBREG_TO_REG is there to assert that an
531     // implicit zext occurs. It doesn't insert a zext instruction. If we allow
532     // the COPY here, it will give us the value after the <sext>, not the
533     // original value of %reg1024 before <sext>.
534     if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
535       continue;
536 
537     MachineBasicBlock *UseMBB = UseMI->getParent();
538     if (UseMBB == &MBB) {
539       // Local uses that come after the extension.
540       if (!LocalMIs.count(UseMI))
541         Uses.push_back(&UseMO);
542     } else if (ReachedBBs.count(UseMBB)) {
543       // Non-local uses where the result of the extension is used. Always
544       // replace these unless it's a PHI.
545       Uses.push_back(&UseMO);
546     } else if (Aggressive && DT->dominates(&MBB, UseMBB)) {
547       // We may want to extend the live range of the extension result in order
548       // to replace these uses.
549       ExtendedUses.push_back(&UseMO);
550     } else {
551       // Both will be live out of the def MBB anyway. Don't extend live range of
552       // the extension result.
553       ExtendLife = false;
554       break;
555     }
556   }
557 
558   if (ExtendLife && !ExtendedUses.empty())
559     // Extend the liveness of the extension result.
560     Uses.append(ExtendedUses.begin(), ExtendedUses.end());
561 
562   // Now replace all uses.
563   bool Changed = false;
564   if (!Uses.empty()) {
565     SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
566 
567     // Look for PHI uses of the extended result, we don't want to extend the
568     // liveness of a PHI input. It breaks all kinds of assumptions down
569     // stream. A PHI use is expected to be the kill of its source values.
570     for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
571       if (UI.isPHI())
572         PHIBBs.insert(UI.getParent());
573 
574     const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
575     for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
576       MachineOperand *UseMO = Uses[i];
577       MachineInstr *UseMI = UseMO->getParent();
578       MachineBasicBlock *UseMBB = UseMI->getParent();
579       if (PHIBBs.count(UseMBB))
580         continue;
581 
582       // About to add uses of DstReg, clear DstReg's kill flags.
583       if (!Changed) {
584         MRI->clearKillFlags(DstReg);
585         MRI->constrainRegClass(DstReg, DstRC);
586       }
587 
588       // SubReg defs are illegal in machine SSA phase,
589       // we should not generate SubReg defs.
590       //
591       // For example, for the instructions:
592       //
593       // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc
594       // %3:gprc_and_gprc_nor0 = COPY %0.sub_32:g8rc
595       //
596       // We should generate:
597       //
598       // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc
599       // %6:gprc_and_gprc_nor0 = COPY %1.sub_32:g8rc_and_g8rc_nox0
600       // %3:gprc_and_gprc_nor0 = COPY %6:gprc_and_gprc_nor0
601       //
602       if (UseSrcSubIdx)
603         RC = MRI->getRegClass(UseMI->getOperand(0).getReg());
604 
605       Register NewVR = MRI->createVirtualRegister(RC);
606       BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
607               TII->get(TargetOpcode::COPY), NewVR)
608         .addReg(DstReg, 0, SubIdx);
609       if (UseSrcSubIdx)
610         UseMO->setSubReg(0);
611 
612       UseMO->setReg(NewVR);
613       ++NumReuse;
614       Changed = true;
615     }
616   }
617 
618   return Changed;
619 }
620 
621 /// If the instruction is a compare and the previous instruction it's comparing
622 /// against already sets (or could be modified to set) the same flag as the
623 /// compare, then we can remove the comparison and use the flag from the
624 /// previous instruction.
625 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) {
626   // If this instruction is a comparison against zero and isn't comparing a
627   // physical register, we can try to optimize it.
628   Register SrcReg, SrcReg2;
629   int CmpMask, CmpValue;
630   if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
631       SrcReg.isPhysical() || SrcReg2.isPhysical())
632     return false;
633 
634   // Attempt to optimize the comparison instruction.
635   LLVM_DEBUG(dbgs() << "Attempting to optimize compare: " << MI);
636   if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
637     LLVM_DEBUG(dbgs() << "  -> Successfully optimized compare!\n");
638     ++NumCmps;
639     return true;
640   }
641 
642   return false;
643 }
644 
645 /// Optimize a select instruction.
646 bool PeepholeOptimizer::optimizeSelect(MachineInstr &MI,
647                             SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
648   unsigned TrueOp = 0;
649   unsigned FalseOp = 0;
650   bool Optimizable = false;
651   SmallVector<MachineOperand, 4> Cond;
652   if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
653     return false;
654   if (!Optimizable)
655     return false;
656   if (!TII->optimizeSelect(MI, LocalMIs))
657     return false;
658   LLVM_DEBUG(dbgs() << "Deleting select: " << MI);
659   MI.eraseFromParent();
660   ++NumSelects;
661   return true;
662 }
663 
664 /// Check if a simpler conditional branch can be generated.
665 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) {
666   return TII->optimizeCondBranch(MI);
667 }
668 
669 /// Try to find the next source that share the same register file
670 /// for the value defined by \p Reg and \p SubReg.
671 /// When true is returned, the \p RewriteMap can be used by the client to
672 /// retrieve all Def -> Use along the way up to the next source. Any found
673 /// Use that is not itself a key for another entry, is the next source to
674 /// use. During the search for the next source, multiple sources can be found
675 /// given multiple incoming sources of a PHI instruction. In this case, we
676 /// look in each PHI source for the next source; all found next sources must
677 /// share the same register file as \p Reg and \p SubReg. The client should
678 /// then be capable to rewrite all intermediate PHIs to get the next source.
679 /// \return False if no alternative sources are available. True otherwise.
680 bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg,
681                                        RewriteMapTy &RewriteMap) {
682   // Do not try to find a new source for a physical register.
683   // So far we do not have any motivating example for doing that.
684   // Thus, instead of maintaining untested code, we will revisit that if
685   // that changes at some point.
686   Register Reg = RegSubReg.Reg;
687   if (Reg.isPhysical())
688     return false;
689   const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
690 
691   SmallVector<RegSubRegPair, 4> SrcToLook;
692   RegSubRegPair CurSrcPair = RegSubReg;
693   SrcToLook.push_back(CurSrcPair);
694 
695   unsigned PHICount = 0;
696   do {
697     CurSrcPair = SrcToLook.pop_back_val();
698     // As explained above, do not handle physical registers
699     if (Register::isPhysicalRegister(CurSrcPair.Reg))
700       return false;
701 
702     ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII);
703 
704     // Follow the chain of copies until we find a more suitable source, a phi
705     // or have to abort.
706     while (true) {
707       ValueTrackerResult Res = ValTracker.getNextSource();
708       // Abort at the end of a chain (without finding a suitable source).
709       if (!Res.isValid())
710         return false;
711 
712       // Insert the Def -> Use entry for the recently found source.
713       ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair);
714       if (CurSrcRes.isValid()) {
715         assert(CurSrcRes == Res && "ValueTrackerResult found must match");
716         // An existent entry with multiple sources is a PHI cycle we must avoid.
717         // Otherwise it's an entry with a valid next source we already found.
718         if (CurSrcRes.getNumSources() > 1) {
719           LLVM_DEBUG(dbgs()
720                      << "findNextSource: found PHI cycle, aborting...\n");
721           return false;
722         }
723         break;
724       }
725       RewriteMap.insert(std::make_pair(CurSrcPair, Res));
726 
727       // ValueTrackerResult usually have one source unless it's the result from
728       // a PHI instruction. Add the found PHI edges to be looked up further.
729       unsigned NumSrcs = Res.getNumSources();
730       if (NumSrcs > 1) {
731         PHICount++;
732         if (PHICount >= RewritePHILimit) {
733           LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n");
734           return false;
735         }
736 
737         for (unsigned i = 0; i < NumSrcs; ++i)
738           SrcToLook.push_back(Res.getSrc(i));
739         break;
740       }
741 
742       CurSrcPair = Res.getSrc(0);
743       // Do not extend the live-ranges of physical registers as they add
744       // constraints to the register allocator. Moreover, if we want to extend
745       // the live-range of a physical register, unlike SSA virtual register,
746       // we will have to check that they aren't redefine before the related use.
747       if (Register::isPhysicalRegister(CurSrcPair.Reg))
748         return false;
749 
750       // Keep following the chain if the value isn't any better yet.
751       const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg);
752       if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC,
753                                      CurSrcPair.SubReg))
754         continue;
755 
756       // We currently cannot deal with subreg operands on PHI instructions
757       // (see insertPHI()).
758       if (PHICount > 0 && CurSrcPair.SubReg != 0)
759         continue;
760 
761       // We found a suitable source, and are done with this chain.
762       break;
763     }
764   } while (!SrcToLook.empty());
765 
766   // If we did not find a more suitable source, there is nothing to optimize.
767   return CurSrcPair.Reg != Reg;
768 }
769 
770 /// Insert a PHI instruction with incoming edges \p SrcRegs that are
771 /// guaranteed to have the same register class. This is necessary whenever we
772 /// successfully traverse a PHI instruction and find suitable sources coming
773 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def
774 /// suitable to be used in a new COPY instruction.
775 static MachineInstr &
776 insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
777           const SmallVectorImpl<RegSubRegPair> &SrcRegs,
778           MachineInstr &OrigPHI) {
779   assert(!SrcRegs.empty() && "No sources to create a PHI instruction?");
780 
781   const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg);
782   // NewRC is only correct if no subregisters are involved. findNextSource()
783   // should have rejected those cases already.
784   assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand");
785   Register NewVR = MRI.createVirtualRegister(NewRC);
786   MachineBasicBlock *MBB = OrigPHI.getParent();
787   MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(),
788                                     TII.get(TargetOpcode::PHI), NewVR);
789 
790   unsigned MBBOpIdx = 2;
791   for (const RegSubRegPair &RegPair : SrcRegs) {
792     MIB.addReg(RegPair.Reg, 0, RegPair.SubReg);
793     MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB());
794     // Since we're extended the lifetime of RegPair.Reg, clear the
795     // kill flags to account for that and make RegPair.Reg reaches
796     // the new PHI.
797     MRI.clearKillFlags(RegPair.Reg);
798     MBBOpIdx += 2;
799   }
800 
801   return *MIB;
802 }
803 
804 namespace {
805 
806 /// Interface to query instructions amenable to copy rewriting.
807 class Rewriter {
808 protected:
809   MachineInstr &CopyLike;
810   unsigned CurrentSrcIdx = 0;   ///< The index of the source being rewritten.
811 public:
812   Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {}
813   virtual ~Rewriter() {}
814 
815   /// Get the next rewritable source (SrcReg, SrcSubReg) and
816   /// the related value that it affects (DstReg, DstSubReg).
817   /// A source is considered rewritable if its register class and the
818   /// register class of the related DstReg may not be register
819   /// coalescer friendly. In other words, given a copy-like instruction
820   /// not all the arguments may be returned at rewritable source, since
821   /// some arguments are none to be register coalescer friendly.
822   ///
823   /// Each call of this method moves the current source to the next
824   /// rewritable source.
825   /// For instance, let CopyLike be the instruction to rewrite.
826   /// CopyLike has one definition and one source:
827   /// dst.dstSubIdx = CopyLike src.srcSubIdx.
828   ///
829   /// The first call will give the first rewritable source, i.e.,
830   /// the only source this instruction has:
831   /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
832   /// This source defines the whole definition, i.e.,
833   /// (DstReg, DstSubReg) = (dst, dstSubIdx).
834   ///
835   /// The second and subsequent calls will return false, as there is only one
836   /// rewritable source.
837   ///
838   /// \return True if a rewritable source has been found, false otherwise.
839   /// The output arguments are valid if and only if true is returned.
840   virtual bool getNextRewritableSource(RegSubRegPair &Src,
841                                        RegSubRegPair &Dst) = 0;
842 
843   /// Rewrite the current source with \p NewReg and \p NewSubReg if possible.
844   /// \return True if the rewriting was possible, false otherwise.
845   virtual bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) = 0;
846 };
847 
848 /// Rewriter for COPY instructions.
849 class CopyRewriter : public Rewriter {
850 public:
851   CopyRewriter(MachineInstr &MI) : Rewriter(MI) {
852     assert(MI.isCopy() && "Expected copy instruction");
853   }
854   virtual ~CopyRewriter() = default;
855 
856   bool getNextRewritableSource(RegSubRegPair &Src,
857                                RegSubRegPair &Dst) override {
858     // CurrentSrcIdx > 0 means this function has already been called.
859     if (CurrentSrcIdx > 0)
860       return false;
861     // This is the first call to getNextRewritableSource.
862     // Move the CurrentSrcIdx to remember that we made that call.
863     CurrentSrcIdx = 1;
864     // The rewritable source is the argument.
865     const MachineOperand &MOSrc = CopyLike.getOperand(1);
866     Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg());
867     // What we track are the alternative sources of the definition.
868     const MachineOperand &MODef = CopyLike.getOperand(0);
869     Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
870     return true;
871   }
872 
873   bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
874     if (CurrentSrcIdx != 1)
875       return false;
876     MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
877     MOSrc.setReg(NewReg);
878     MOSrc.setSubReg(NewSubReg);
879     return true;
880   }
881 };
882 
883 /// Helper class to rewrite uncoalescable copy like instructions
884 /// into new COPY (coalescable friendly) instructions.
885 class UncoalescableRewriter : public Rewriter {
886   unsigned NumDefs;  ///< Number of defs in the bitcast.
887 
888 public:
889   UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) {
890     NumDefs = MI.getDesc().getNumDefs();
891   }
892 
893   /// \see See Rewriter::getNextRewritableSource()
894   /// All such sources need to be considered rewritable in order to
895   /// rewrite a uncoalescable copy-like instruction. This method return
896   /// each definition that must be checked if rewritable.
897   bool getNextRewritableSource(RegSubRegPair &Src,
898                                RegSubRegPair &Dst) override {
899     // Find the next non-dead definition and continue from there.
900     if (CurrentSrcIdx == NumDefs)
901       return false;
902 
903     while (CopyLike.getOperand(CurrentSrcIdx).isDead()) {
904       ++CurrentSrcIdx;
905       if (CurrentSrcIdx == NumDefs)
906         return false;
907     }
908 
909     // What we track are the alternative sources of the definition.
910     Src = RegSubRegPair(0, 0);
911     const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx);
912     Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
913 
914     CurrentSrcIdx++;
915     return true;
916   }
917 
918   bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
919     return false;
920   }
921 };
922 
923 /// Specialized rewriter for INSERT_SUBREG instruction.
924 class InsertSubregRewriter : public Rewriter {
925 public:
926   InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) {
927     assert(MI.isInsertSubreg() && "Invalid instruction");
928   }
929 
930   /// \see See Rewriter::getNextRewritableSource()
931   /// Here CopyLike has the following form:
932   /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
933   /// Src1 has the same register class has dst, hence, there is
934   /// nothing to rewrite.
935   /// Src2.src2SubIdx, may not be register coalescer friendly.
936   /// Therefore, the first call to this method returns:
937   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
938   /// (DstReg, DstSubReg) = (dst, subIdx).
939   ///
940   /// Subsequence calls will return false.
941   bool getNextRewritableSource(RegSubRegPair &Src,
942                                RegSubRegPair &Dst) override {
943     // If we already get the only source we can rewrite, return false.
944     if (CurrentSrcIdx == 2)
945       return false;
946     // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
947     CurrentSrcIdx = 2;
948     const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
949     Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg());
950     const MachineOperand &MODef = CopyLike.getOperand(0);
951 
952     // We want to track something that is compatible with the
953     // partial definition.
954     if (MODef.getSubReg())
955       // Bail if we have to compose sub-register indices.
956       return false;
957     Dst = RegSubRegPair(MODef.getReg(),
958                         (unsigned)CopyLike.getOperand(3).getImm());
959     return true;
960   }
961 
962   bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
963     if (CurrentSrcIdx != 2)
964       return false;
965     // We are rewriting the inserted reg.
966     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
967     MO.setReg(NewReg);
968     MO.setSubReg(NewSubReg);
969     return true;
970   }
971 };
972 
973 /// Specialized rewriter for EXTRACT_SUBREG instruction.
974 class ExtractSubregRewriter : public Rewriter {
975   const TargetInstrInfo &TII;
976 
977 public:
978   ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
979       : Rewriter(MI), TII(TII) {
980     assert(MI.isExtractSubreg() && "Invalid instruction");
981   }
982 
983   /// \see Rewriter::getNextRewritableSource()
984   /// Here CopyLike has the following form:
985   /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
986   /// There is only one rewritable source: Src.subIdx,
987   /// which defines dst.dstSubIdx.
988   bool getNextRewritableSource(RegSubRegPair &Src,
989                                RegSubRegPair &Dst) override {
990     // If we already get the only source we can rewrite, return false.
991     if (CurrentSrcIdx == 1)
992       return false;
993     // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
994     CurrentSrcIdx = 1;
995     const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
996     // If we have to compose sub-register indices, bail out.
997     if (MOExtractedReg.getSubReg())
998       return false;
999 
1000     Src = RegSubRegPair(MOExtractedReg.getReg(),
1001                         CopyLike.getOperand(2).getImm());
1002 
1003     // We want to track something that is compatible with the definition.
1004     const MachineOperand &MODef = CopyLike.getOperand(0);
1005     Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
1006     return true;
1007   }
1008 
1009   bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
1010     // The only source we can rewrite is the input register.
1011     if (CurrentSrcIdx != 1)
1012       return false;
1013 
1014     CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
1015 
1016     // If we find a source that does not require to extract something,
1017     // rewrite the operation with a copy.
1018     if (!NewSubReg) {
1019       // Move the current index to an invalid position.
1020       // We do not want another call to this method to be able
1021       // to do any change.
1022       CurrentSrcIdx = -1;
1023       // Rewrite the operation as a COPY.
1024       // Get rid of the sub-register index.
1025       CopyLike.RemoveOperand(2);
1026       // Morph the operation into a COPY.
1027       CopyLike.setDesc(TII.get(TargetOpcode::COPY));
1028       return true;
1029     }
1030     CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
1031     return true;
1032   }
1033 };
1034 
1035 /// Specialized rewriter for REG_SEQUENCE instruction.
1036 class RegSequenceRewriter : public Rewriter {
1037 public:
1038   RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) {
1039     assert(MI.isRegSequence() && "Invalid instruction");
1040   }
1041 
1042   /// \see Rewriter::getNextRewritableSource()
1043   /// Here CopyLike has the following form:
1044   /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
1045   /// Each call will return a different source, walking all the available
1046   /// source.
1047   ///
1048   /// The first call returns:
1049   /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
1050   /// (DstReg, DstSubReg) = (dst, subIdx1).
1051   ///
1052   /// The second call returns:
1053   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
1054   /// (DstReg, DstSubReg) = (dst, subIdx2).
1055   ///
1056   /// And so on, until all the sources have been traversed, then
1057   /// it returns false.
1058   bool getNextRewritableSource(RegSubRegPair &Src,
1059                                RegSubRegPair &Dst) override {
1060     // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
1061 
1062     // If this is the first call, move to the first argument.
1063     if (CurrentSrcIdx == 0) {
1064       CurrentSrcIdx = 1;
1065     } else {
1066       // Otherwise, move to the next argument and check that it is valid.
1067       CurrentSrcIdx += 2;
1068       if (CurrentSrcIdx >= CopyLike.getNumOperands())
1069         return false;
1070     }
1071     const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
1072     Src.Reg = MOInsertedReg.getReg();
1073     // If we have to compose sub-register indices, bail out.
1074     if ((Src.SubReg = MOInsertedReg.getSubReg()))
1075       return false;
1076 
1077     // We want to track something that is compatible with the related
1078     // partial definition.
1079     Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
1080 
1081     const MachineOperand &MODef = CopyLike.getOperand(0);
1082     Dst.Reg = MODef.getReg();
1083     // If we have to compose sub-registers, bail.
1084     return MODef.getSubReg() == 0;
1085   }
1086 
1087   bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
1088     // We cannot rewrite out of bound operands.
1089     // Moreover, rewritable sources are at odd positions.
1090     if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
1091       return false;
1092 
1093     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
1094     MO.setReg(NewReg);
1095     MO.setSubReg(NewSubReg);
1096     return true;
1097   }
1098 };
1099 
1100 } // end anonymous namespace
1101 
1102 /// Get the appropriated Rewriter for \p MI.
1103 /// \return A pointer to a dynamically allocated Rewriter or nullptr if no
1104 /// rewriter works for \p MI.
1105 static Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) {
1106   // Handle uncoalescable copy-like instructions.
1107   if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
1108       MI.isExtractSubregLike())
1109     return new UncoalescableRewriter(MI);
1110 
1111   switch (MI.getOpcode()) {
1112   default:
1113     return nullptr;
1114   case TargetOpcode::COPY:
1115     return new CopyRewriter(MI);
1116   case TargetOpcode::INSERT_SUBREG:
1117     return new InsertSubregRewriter(MI);
1118   case TargetOpcode::EXTRACT_SUBREG:
1119     return new ExtractSubregRewriter(MI, TII);
1120   case TargetOpcode::REG_SEQUENCE:
1121     return new RegSequenceRewriter(MI);
1122   }
1123 }
1124 
1125 /// Given a \p Def.Reg and Def.SubReg  pair, use \p RewriteMap to find
1126 /// the new source to use for rewrite. If \p HandleMultipleSources is true and
1127 /// multiple sources for a given \p Def are found along the way, we found a
1128 /// PHI instructions that needs to be rewritten.
1129 /// TODO: HandleMultipleSources should be removed once we test PHI handling
1130 /// with coalescable copies.
1131 static RegSubRegPair
1132 getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
1133              RegSubRegPair Def,
1134              const PeepholeOptimizer::RewriteMapTy &RewriteMap,
1135              bool HandleMultipleSources = true) {
1136   RegSubRegPair LookupSrc(Def.Reg, Def.SubReg);
1137   while (true) {
1138     ValueTrackerResult Res = RewriteMap.lookup(LookupSrc);
1139     // If there are no entries on the map, LookupSrc is the new source.
1140     if (!Res.isValid())
1141       return LookupSrc;
1142 
1143     // There's only one source for this definition, keep searching...
1144     unsigned NumSrcs = Res.getNumSources();
1145     if (NumSrcs == 1) {
1146       LookupSrc.Reg = Res.getSrcReg(0);
1147       LookupSrc.SubReg = Res.getSrcSubReg(0);
1148       continue;
1149     }
1150 
1151     // TODO: Remove once multiple srcs w/ coalescable copies are supported.
1152     if (!HandleMultipleSources)
1153       break;
1154 
1155     // Multiple sources, recurse into each source to find a new source
1156     // for it. Then, rewrite the PHI accordingly to its new edges.
1157     SmallVector<RegSubRegPair, 4> NewPHISrcs;
1158     for (unsigned i = 0; i < NumSrcs; ++i) {
1159       RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i));
1160       NewPHISrcs.push_back(
1161           getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources));
1162     }
1163 
1164     // Build the new PHI node and return its def register as the new source.
1165     MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst());
1166     MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI);
1167     LLVM_DEBUG(dbgs() << "-- getNewSource\n");
1168     LLVM_DEBUG(dbgs() << "   Replacing: " << OrigPHI);
1169     LLVM_DEBUG(dbgs() << "        With: " << NewPHI);
1170     const MachineOperand &MODef = NewPHI.getOperand(0);
1171     return RegSubRegPair(MODef.getReg(), MODef.getSubReg());
1172   }
1173 
1174   return RegSubRegPair(0, 0);
1175 }
1176 
1177 /// Optimize generic copy instructions to avoid cross register bank copy.
1178 /// The optimization looks through a chain of copies and tries to find a source
1179 /// that has a compatible register class.
1180 /// Two register classes are considered to be compatible if they share the same
1181 /// register bank.
1182 /// New copies issued by this optimization are register allocator
1183 /// friendly. This optimization does not remove any copy as it may
1184 /// overconstrain the register allocator, but replaces some operands
1185 /// when possible.
1186 /// \pre isCoalescableCopy(*MI) is true.
1187 /// \return True, when \p MI has been rewritten. False otherwise.
1188 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) {
1189   assert(isCoalescableCopy(MI) && "Invalid argument");
1190   assert(MI.getDesc().getNumDefs() == 1 &&
1191          "Coalescer can understand multiple defs?!");
1192   const MachineOperand &MODef = MI.getOperand(0);
1193   // Do not rewrite physical definitions.
1194   if (Register::isPhysicalRegister(MODef.getReg()))
1195     return false;
1196 
1197   bool Changed = false;
1198   // Get the right rewriter for the current copy.
1199   std::unique_ptr<Rewriter> CpyRewriter(getCopyRewriter(MI, *TII));
1200   // If none exists, bail out.
1201   if (!CpyRewriter)
1202     return false;
1203   // Rewrite each rewritable source.
1204   RegSubRegPair Src;
1205   RegSubRegPair TrackPair;
1206   while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) {
1207     // Keep track of PHI nodes and its incoming edges when looking for sources.
1208     RewriteMapTy RewriteMap;
1209     // Try to find a more suitable source. If we failed to do so, or get the
1210     // actual source, move to the next source.
1211     if (!findNextSource(TrackPair, RewriteMap))
1212       continue;
1213 
1214     // Get the new source to rewrite. TODO: Only enable handling of multiple
1215     // sources (PHIs) once we have a motivating example and testcases for it.
1216     RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap,
1217                                         /*HandleMultipleSources=*/false);
1218     if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0)
1219       continue;
1220 
1221     // Rewrite source.
1222     if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) {
1223       // We may have extended the live-range of NewSrc, account for that.
1224       MRI->clearKillFlags(NewSrc.Reg);
1225       Changed = true;
1226     }
1227   }
1228   // TODO: We could have a clean-up method to tidy the instruction.
1229   // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
1230   // => v0 = COPY v1
1231   // Currently we haven't seen motivating example for that and we
1232   // want to avoid untested code.
1233   NumRewrittenCopies += Changed;
1234   return Changed;
1235 }
1236 
1237 /// Rewrite the source found through \p Def, by using the \p RewriteMap
1238 /// and create a new COPY instruction. More info about RewriteMap in
1239 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle
1240 /// Uncoalescable copies, since they are copy like instructions that aren't
1241 /// recognized by the register allocator.
1242 MachineInstr &
1243 PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike,
1244                                  RegSubRegPair Def, RewriteMapTy &RewriteMap) {
1245   assert(!Register::isPhysicalRegister(Def.Reg) &&
1246          "We do not rewrite physical registers");
1247 
1248   // Find the new source to use in the COPY rewrite.
1249   RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap);
1250 
1251   // Insert the COPY.
1252   const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
1253   Register NewVReg = MRI->createVirtualRegister(DefRC);
1254 
1255   MachineInstr *NewCopy =
1256       BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(),
1257               TII->get(TargetOpcode::COPY), NewVReg)
1258           .addReg(NewSrc.Reg, 0, NewSrc.SubReg);
1259 
1260   if (Def.SubReg) {
1261     NewCopy->getOperand(0).setSubReg(Def.SubReg);
1262     NewCopy->getOperand(0).setIsUndef();
1263   }
1264 
1265   LLVM_DEBUG(dbgs() << "-- RewriteSource\n");
1266   LLVM_DEBUG(dbgs() << "   Replacing: " << CopyLike);
1267   LLVM_DEBUG(dbgs() << "        With: " << *NewCopy);
1268   MRI->replaceRegWith(Def.Reg, NewVReg);
1269   MRI->clearKillFlags(NewVReg);
1270 
1271   // We extended the lifetime of NewSrc.Reg, clear the kill flags to
1272   // account for that.
1273   MRI->clearKillFlags(NewSrc.Reg);
1274 
1275   return *NewCopy;
1276 }
1277 
1278 /// Optimize copy-like instructions to create
1279 /// register coalescer friendly instruction.
1280 /// The optimization tries to kill-off the \p MI by looking
1281 /// through a chain of copies to find a source that has a compatible
1282 /// register class.
1283 /// If such a source is found, it replace \p MI by a generic COPY
1284 /// operation.
1285 /// \pre isUncoalescableCopy(*MI) is true.
1286 /// \return True, when \p MI has been optimized. In that case, \p MI has
1287 /// been removed from its parent.
1288 /// All COPY instructions created, are inserted in \p LocalMIs.
1289 bool PeepholeOptimizer::optimizeUncoalescableCopy(
1290     MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
1291   assert(isUncoalescableCopy(MI) && "Invalid argument");
1292   UncoalescableRewriter CpyRewriter(MI);
1293 
1294   // Rewrite each rewritable source by generating new COPYs. This works
1295   // differently from optimizeCoalescableCopy since it first makes sure that all
1296   // definitions can be rewritten.
1297   RewriteMapTy RewriteMap;
1298   RegSubRegPair Src;
1299   RegSubRegPair Def;
1300   SmallVector<RegSubRegPair, 4> RewritePairs;
1301   while (CpyRewriter.getNextRewritableSource(Src, Def)) {
1302     // If a physical register is here, this is probably for a good reason.
1303     // Do not rewrite that.
1304     if (Register::isPhysicalRegister(Def.Reg))
1305       return false;
1306 
1307     // If we do not know how to rewrite this definition, there is no point
1308     // in trying to kill this instruction.
1309     if (!findNextSource(Def, RewriteMap))
1310       return false;
1311 
1312     RewritePairs.push_back(Def);
1313   }
1314 
1315   // The change is possible for all defs, do it.
1316   for (const RegSubRegPair &Def : RewritePairs) {
1317     // Rewrite the "copy" in a way the register coalescer understands.
1318     MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap);
1319     LocalMIs.insert(&NewCopy);
1320   }
1321 
1322   // MI is now dead.
1323   LLVM_DEBUG(dbgs() << "Deleting uncoalescable copy: " << MI);
1324   MI.eraseFromParent();
1325   ++NumUncoalescableCopies;
1326   return true;
1327 }
1328 
1329 /// Check whether MI is a candidate for folding into a later instruction.
1330 /// We only fold loads to virtual registers and the virtual register defined
1331 /// has a single user.
1332 bool PeepholeOptimizer::isLoadFoldable(
1333     MachineInstr &MI, SmallSet<Register, 16> &FoldAsLoadDefCandidates) {
1334   if (!MI.canFoldAsLoad() || !MI.mayLoad())
1335     return false;
1336   const MCInstrDesc &MCID = MI.getDesc();
1337   if (MCID.getNumDefs() != 1)
1338     return false;
1339 
1340   Register Reg = MI.getOperand(0).getReg();
1341   // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting
1342   // loads. It should be checked when processing uses of the load, since
1343   // uses can be removed during peephole.
1344   if (Reg.isVirtual() && !MI.getOperand(0).getSubReg() &&
1345       MRI->hasOneNonDBGUser(Reg)) {
1346     FoldAsLoadDefCandidates.insert(Reg);
1347     return true;
1348   }
1349   return false;
1350 }
1351 
1352 bool PeepholeOptimizer::isMoveImmediate(
1353     MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
1354     DenseMap<Register, MachineInstr *> &ImmDefMIs) {
1355   const MCInstrDesc &MCID = MI.getDesc();
1356   if (!MI.isMoveImmediate())
1357     return false;
1358   if (MCID.getNumDefs() != 1)
1359     return false;
1360   Register Reg = MI.getOperand(0).getReg();
1361   if (Reg.isVirtual()) {
1362     ImmDefMIs.insert(std::make_pair(Reg, &MI));
1363     ImmDefRegs.insert(Reg);
1364     return true;
1365   }
1366 
1367   return false;
1368 }
1369 
1370 /// Try folding register operands that are defined by move immediate
1371 /// instructions, i.e. a trivial constant folding optimization, if
1372 /// and only if the def and use are in the same BB.
1373 bool PeepholeOptimizer::foldImmediate(
1374     MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
1375     DenseMap<Register, MachineInstr *> &ImmDefMIs) {
1376   for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1377     MachineOperand &MO = MI.getOperand(i);
1378     if (!MO.isReg() || MO.isDef())
1379       continue;
1380     Register Reg = MO.getReg();
1381     if (!Reg.isVirtual())
1382       continue;
1383     if (ImmDefRegs.count(Reg) == 0)
1384       continue;
1385     DenseMap<Register, MachineInstr *>::iterator II = ImmDefMIs.find(Reg);
1386     assert(II != ImmDefMIs.end() && "couldn't find immediate definition");
1387     if (TII->FoldImmediate(MI, *II->second, Reg, MRI)) {
1388       ++NumImmFold;
1389       return true;
1390     }
1391   }
1392   return false;
1393 }
1394 
1395 // FIXME: This is very simple and misses some cases which should be handled when
1396 // motivating examples are found.
1397 //
1398 // The copy rewriting logic should look at uses as well as defs and be able to
1399 // eliminate copies across blocks.
1400 //
1401 // Later copies that are subregister extracts will also not be eliminated since
1402 // only the first copy is considered.
1403 //
1404 // e.g.
1405 // %1 = COPY %0
1406 // %2 = COPY %0:sub1
1407 //
1408 // Should replace %2 uses with %1:sub1
1409 bool PeepholeOptimizer::foldRedundantCopy(
1410     MachineInstr &MI, DenseMap<RegSubRegPair, MachineInstr *> &CopyMIs) {
1411   assert(MI.isCopy() && "expected a COPY machine instruction");
1412 
1413   Register SrcReg = MI.getOperand(1).getReg();
1414   unsigned SrcSubReg = MI.getOperand(1).getSubReg();
1415   if (!SrcReg.isVirtual())
1416     return false;
1417 
1418   Register DstReg = MI.getOperand(0).getReg();
1419   if (!DstReg.isVirtual())
1420     return false;
1421 
1422   RegSubRegPair SrcPair(SrcReg, SrcSubReg);
1423 
1424   if (CopyMIs.insert(std::make_pair(SrcPair, &MI)).second) {
1425     // First copy of this reg seen.
1426     return false;
1427   }
1428 
1429   MachineInstr *PrevCopy = CopyMIs.find(SrcPair)->second;
1430 
1431   assert(SrcSubReg == PrevCopy->getOperand(1).getSubReg() &&
1432          "Unexpected mismatching subreg!");
1433 
1434   Register PrevDstReg = PrevCopy->getOperand(0).getReg();
1435 
1436   // Only replace if the copy register class is the same.
1437   //
1438   // TODO: If we have multiple copies to different register classes, we may want
1439   // to track multiple copies of the same source register.
1440   if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg))
1441     return false;
1442 
1443   MRI->replaceRegWith(DstReg, PrevDstReg);
1444 
1445   // Lifetime of the previous copy has been extended.
1446   MRI->clearKillFlags(PrevDstReg);
1447   return true;
1448 }
1449 
1450 bool PeepholeOptimizer::isNAPhysCopy(Register Reg) {
1451   return Reg.isPhysical() && !MRI->isAllocatable(Reg);
1452 }
1453 
1454 bool PeepholeOptimizer::foldRedundantNAPhysCopy(
1455     MachineInstr &MI, DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs) {
1456   assert(MI.isCopy() && "expected a COPY machine instruction");
1457 
1458   if (DisableNAPhysCopyOpt)
1459     return false;
1460 
1461   Register DstReg = MI.getOperand(0).getReg();
1462   Register SrcReg = MI.getOperand(1).getReg();
1463   if (isNAPhysCopy(SrcReg) && Register::isVirtualRegister(DstReg)) {
1464     // %vreg = COPY $physreg
1465     // Avoid using a datastructure which can track multiple live non-allocatable
1466     // phys->virt copies since LLVM doesn't seem to do this.
1467     NAPhysToVirtMIs.insert({SrcReg, &MI});
1468     return false;
1469   }
1470 
1471   if (!(SrcReg.isVirtual() && isNAPhysCopy(DstReg)))
1472     return false;
1473 
1474   // $physreg = COPY %vreg
1475   auto PrevCopy = NAPhysToVirtMIs.find(DstReg);
1476   if (PrevCopy == NAPhysToVirtMIs.end()) {
1477     // We can't remove the copy: there was an intervening clobber of the
1478     // non-allocatable physical register after the copy to virtual.
1479     LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing "
1480                       << MI);
1481     return false;
1482   }
1483 
1484   Register PrevDstReg = PrevCopy->second->getOperand(0).getReg();
1485   if (PrevDstReg == SrcReg) {
1486     // Remove the virt->phys copy: we saw the virtual register definition, and
1487     // the non-allocatable physical register's state hasn't changed since then.
1488     LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI);
1489     ++NumNAPhysCopies;
1490     return true;
1491   }
1492 
1493   // Potential missed optimization opportunity: we saw a different virtual
1494   // register get a copy of the non-allocatable physical register, and we only
1495   // track one such copy. Avoid getting confused by this new non-allocatable
1496   // physical register definition, and remove it from the tracked copies.
1497   LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI);
1498   NAPhysToVirtMIs.erase(PrevCopy);
1499   return false;
1500 }
1501 
1502 /// \bried Returns true if \p MO is a virtual register operand.
1503 static bool isVirtualRegisterOperand(MachineOperand &MO) {
1504   return MO.isReg() && MO.getReg().isVirtual();
1505 }
1506 
1507 bool PeepholeOptimizer::findTargetRecurrence(
1508     Register Reg, const SmallSet<Register, 2> &TargetRegs,
1509     RecurrenceCycle &RC) {
1510   // Recurrence found if Reg is in TargetRegs.
1511   if (TargetRegs.count(Reg))
1512     return true;
1513 
1514   // TODO: Curerntly, we only allow the last instruction of the recurrence
1515   // cycle (the instruction that feeds the PHI instruction) to have more than
1516   // one uses to guarantee that commuting operands does not tie registers
1517   // with overlapping live range. Once we have actual live range info of
1518   // each register, this constraint can be relaxed.
1519   if (!MRI->hasOneNonDBGUse(Reg))
1520     return false;
1521 
1522   // Give up if the reccurrence chain length is longer than the limit.
1523   if (RC.size() >= MaxRecurrenceChain)
1524     return false;
1525 
1526   MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg));
1527   unsigned Idx = MI.findRegisterUseOperandIdx(Reg);
1528 
1529   // Only interested in recurrences whose instructions have only one def, which
1530   // is a virtual register.
1531   if (MI.getDesc().getNumDefs() != 1)
1532     return false;
1533 
1534   MachineOperand &DefOp = MI.getOperand(0);
1535   if (!isVirtualRegisterOperand(DefOp))
1536     return false;
1537 
1538   // Check if def operand of MI is tied to any use operand. We are only
1539   // interested in the case that all the instructions in the recurrence chain
1540   // have there def operand tied with one of the use operand.
1541   unsigned TiedUseIdx;
1542   if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx))
1543     return false;
1544 
1545   if (Idx == TiedUseIdx) {
1546     RC.push_back(RecurrenceInstr(&MI));
1547     return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1548   } else {
1549     // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx.
1550     unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex;
1551     if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) {
1552       RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx));
1553       return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1554     }
1555   }
1556 
1557   return false;
1558 }
1559 
1560 /// Phi instructions will eventually be lowered to copy instructions.
1561 /// If phi is in a loop header, a recurrence may formulated around the source
1562 /// and destination of the phi. For such case commuting operands of the
1563 /// instructions in the recurrence may enable coalescing of the copy instruction
1564 /// generated from the phi. For example, if there is a recurrence of
1565 ///
1566 /// LoopHeader:
1567 ///   %1 = phi(%0, %100)
1568 /// LoopLatch:
1569 ///   %0<def, tied1> = ADD %2<def, tied0>, %1
1570 ///
1571 /// , the fact that %0 and %2 are in the same tied operands set makes
1572 /// the coalescing of copy instruction generated from the phi in
1573 /// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and
1574 /// %2 have overlapping live range. This introduces additional move
1575 /// instruction to the final assembly. However, if we commute %2 and
1576 /// %1 of ADD instruction, the redundant move instruction can be
1577 /// avoided.
1578 bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) {
1579   SmallSet<Register, 2> TargetRegs;
1580   for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) {
1581     MachineOperand &MO = PHI.getOperand(Idx);
1582     assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction");
1583     TargetRegs.insert(MO.getReg());
1584   }
1585 
1586   bool Changed = false;
1587   RecurrenceCycle RC;
1588   if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) {
1589     // Commutes operands of instructions in RC if necessary so that the copy to
1590     // be generated from PHI can be coalesced.
1591     LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI);
1592     for (auto &RI : RC) {
1593       LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI()));
1594       auto CP = RI.getCommutePair();
1595       if (CP) {
1596         Changed = true;
1597         TII->commuteInstruction(*(RI.getMI()), false, (*CP).first,
1598                                 (*CP).second);
1599         LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI()));
1600       }
1601     }
1602   }
1603 
1604   return Changed;
1605 }
1606 
1607 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
1608   if (skipFunction(MF.getFunction()))
1609     return false;
1610 
1611   LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
1612   LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
1613 
1614   if (DisablePeephole)
1615     return false;
1616 
1617   TII = MF.getSubtarget().getInstrInfo();
1618   TRI = MF.getSubtarget().getRegisterInfo();
1619   MRI = &MF.getRegInfo();
1620   DT  = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
1621   MLI = &getAnalysis<MachineLoopInfo>();
1622 
1623   bool Changed = false;
1624 
1625   for (MachineBasicBlock &MBB : MF) {
1626     bool SeenMoveImm = false;
1627 
1628     // During this forward scan, at some point it needs to answer the question
1629     // "given a pointer to an MI in the current BB, is it located before or
1630     // after the current instruction".
1631     // To perform this, the following set keeps track of the MIs already seen
1632     // during the scan, if a MI is not in the set, it is assumed to be located
1633     // after. Newly created MIs have to be inserted in the set as well.
1634     SmallPtrSet<MachineInstr*, 16> LocalMIs;
1635     SmallSet<Register, 4> ImmDefRegs;
1636     DenseMap<Register, MachineInstr *> ImmDefMIs;
1637     SmallSet<Register, 16> FoldAsLoadDefCandidates;
1638 
1639     // Track when a non-allocatable physical register is copied to a virtual
1640     // register so that useless moves can be removed.
1641     //
1642     // $physreg is the map index; MI is the last valid `%vreg = COPY $physreg`
1643     // without any intervening re-definition of $physreg.
1644     DenseMap<Register, MachineInstr *> NAPhysToVirtMIs;
1645 
1646     // Set of pairs of virtual registers and their subregs that are copied
1647     // from.
1648     DenseMap<RegSubRegPair, MachineInstr *> CopySrcMIs;
1649 
1650     bool IsLoopHeader = MLI->isLoopHeader(&MBB);
1651 
1652     for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
1653          MII != MIE; ) {
1654       MachineInstr *MI = &*MII;
1655       // We may be erasing MI below, increment MII now.
1656       ++MII;
1657       LocalMIs.insert(MI);
1658 
1659       // Skip debug instructions. They should not affect this peephole
1660       // optimization.
1661       if (MI->isDebugInstr())
1662         continue;
1663 
1664       if (MI->isPosition())
1665         continue;
1666 
1667       if (IsLoopHeader && MI->isPHI()) {
1668         if (optimizeRecurrence(*MI)) {
1669           Changed = true;
1670           continue;
1671         }
1672       }
1673 
1674       if (!MI->isCopy()) {
1675         for (const MachineOperand &MO : MI->operands()) {
1676           // Visit all operands: definitions can be implicit or explicit.
1677           if (MO.isReg()) {
1678             Register Reg = MO.getReg();
1679             if (MO.isDef() && isNAPhysCopy(Reg)) {
1680               const auto &Def = NAPhysToVirtMIs.find(Reg);
1681               if (Def != NAPhysToVirtMIs.end()) {
1682                 // A new definition of the non-allocatable physical register
1683                 // invalidates previous copies.
1684                 LLVM_DEBUG(dbgs()
1685                            << "NAPhysCopy: invalidating because of " << *MI);
1686                 NAPhysToVirtMIs.erase(Def);
1687               }
1688             }
1689           } else if (MO.isRegMask()) {
1690             const uint32_t *RegMask = MO.getRegMask();
1691             for (auto &RegMI : NAPhysToVirtMIs) {
1692               Register Def = RegMI.first;
1693               if (MachineOperand::clobbersPhysReg(RegMask, Def)) {
1694                 LLVM_DEBUG(dbgs()
1695                            << "NAPhysCopy: invalidating because of " << *MI);
1696                 NAPhysToVirtMIs.erase(Def);
1697               }
1698             }
1699           }
1700         }
1701       }
1702 
1703       if (MI->isImplicitDef() || MI->isKill())
1704         continue;
1705 
1706       if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) {
1707         // Blow away all non-allocatable physical registers knowledge since we
1708         // don't know what's correct anymore.
1709         //
1710         // FIXME: handle explicit asm clobbers.
1711         LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to "
1712                           << *MI);
1713         NAPhysToVirtMIs.clear();
1714       }
1715 
1716       if ((isUncoalescableCopy(*MI) &&
1717            optimizeUncoalescableCopy(*MI, LocalMIs)) ||
1718           (MI->isCompare() && optimizeCmpInstr(*MI)) ||
1719           (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) {
1720         // MI is deleted.
1721         LocalMIs.erase(MI);
1722         Changed = true;
1723         continue;
1724       }
1725 
1726       if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) {
1727         Changed = true;
1728         continue;
1729       }
1730 
1731       if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) {
1732         // MI is just rewritten.
1733         Changed = true;
1734         continue;
1735       }
1736 
1737       if (MI->isCopy() && (foldRedundantCopy(*MI, CopySrcMIs) ||
1738                            foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) {
1739         LocalMIs.erase(MI);
1740         LLVM_DEBUG(dbgs() << "Deleting redundant copy: " << *MI << "\n");
1741         MI->eraseFromParent();
1742         Changed = true;
1743         continue;
1744       }
1745 
1746       if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) {
1747         SeenMoveImm = true;
1748       } else {
1749         Changed |= optimizeExtInstr(*MI, MBB, LocalMIs);
1750         // optimizeExtInstr might have created new instructions after MI
1751         // and before the already incremented MII. Adjust MII so that the
1752         // next iteration sees the new instructions.
1753         MII = MI;
1754         ++MII;
1755         if (SeenMoveImm)
1756           Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs);
1757       }
1758 
1759       // Check whether MI is a load candidate for folding into a later
1760       // instruction. If MI is not a candidate, check whether we can fold an
1761       // earlier load into MI.
1762       if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) &&
1763           !FoldAsLoadDefCandidates.empty()) {
1764 
1765         // We visit each operand even after successfully folding a previous
1766         // one.  This allows us to fold multiple loads into a single
1767         // instruction.  We do assume that optimizeLoadInstr doesn't insert
1768         // foldable uses earlier in the argument list.  Since we don't restart
1769         // iteration, we'd miss such cases.
1770         const MCInstrDesc &MIDesc = MI->getDesc();
1771         for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands();
1772              ++i) {
1773           const MachineOperand &MOp = MI->getOperand(i);
1774           if (!MOp.isReg())
1775             continue;
1776           Register FoldAsLoadDefReg = MOp.getReg();
1777           if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
1778             // We need to fold load after optimizeCmpInstr, since
1779             // optimizeCmpInstr can enable folding by converting SUB to CMP.
1780             // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
1781             // we need it for markUsesInDebugValueAsUndef().
1782             Register FoldedReg = FoldAsLoadDefReg;
1783             MachineInstr *DefMI = nullptr;
1784             if (MachineInstr *FoldMI =
1785                     TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) {
1786               // Update LocalMIs since we replaced MI with FoldMI and deleted
1787               // DefMI.
1788               LLVM_DEBUG(dbgs() << "Replacing: " << *MI);
1789               LLVM_DEBUG(dbgs() << "     With: " << *FoldMI);
1790               LocalMIs.erase(MI);
1791               LocalMIs.erase(DefMI);
1792               LocalMIs.insert(FoldMI);
1793               // Update the call site info.
1794               if (MI->shouldUpdateCallSiteInfo())
1795                 MI->getMF()->moveCallSiteInfo(MI, FoldMI);
1796               MI->eraseFromParent();
1797               DefMI->eraseFromParent();
1798               MRI->markUsesInDebugValueAsUndef(FoldedReg);
1799               FoldAsLoadDefCandidates.erase(FoldedReg);
1800               ++NumLoadFold;
1801 
1802               // MI is replaced with FoldMI so we can continue trying to fold
1803               Changed = true;
1804               MI = FoldMI;
1805             }
1806           }
1807         }
1808       }
1809 
1810       // If we run into an instruction we can't fold across, discard
1811       // the load candidates.  Note: We might be able to fold *into* this
1812       // instruction, so this needs to be after the folding logic.
1813       if (MI->isLoadFoldBarrier()) {
1814         LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI);
1815         FoldAsLoadDefCandidates.clear();
1816       }
1817     }
1818   }
1819 
1820   return Changed;
1821 }
1822 
1823 ValueTrackerResult ValueTracker::getNextSourceFromCopy() {
1824   assert(Def->isCopy() && "Invalid definition");
1825   // Copy instruction are supposed to be: Def = Src.
1826   // If someone breaks this assumption, bad things will happen everywhere.
1827   // There may be implicit uses preventing the copy to be moved across
1828   // some target specific register definitions
1829   assert(Def->getNumOperands() - Def->getNumImplicitOperands() == 2 &&
1830          "Invalid number of operands");
1831   assert(!Def->hasImplicitDef() && "Only implicit uses are allowed");
1832 
1833   if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
1834     // If we look for a different subreg, it means we want a subreg of src.
1835     // Bails as we do not support composing subregs yet.
1836     return ValueTrackerResult();
1837   // Otherwise, we want the whole source.
1838   const MachineOperand &Src = Def->getOperand(1);
1839   if (Src.isUndef())
1840     return ValueTrackerResult();
1841   return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1842 }
1843 
1844 ValueTrackerResult ValueTracker::getNextSourceFromBitcast() {
1845   assert(Def->isBitcast() && "Invalid definition");
1846 
1847   // Bail if there are effects that a plain copy will not expose.
1848   if (Def->mayRaiseFPException() || Def->hasUnmodeledSideEffects())
1849     return ValueTrackerResult();
1850 
1851   // Bitcasts with more than one def are not supported.
1852   if (Def->getDesc().getNumDefs() != 1)
1853     return ValueTrackerResult();
1854   const MachineOperand DefOp = Def->getOperand(DefIdx);
1855   if (DefOp.getSubReg() != DefSubReg)
1856     // If we look for a different subreg, it means we want a subreg of the src.
1857     // Bails as we do not support composing subregs yet.
1858     return ValueTrackerResult();
1859 
1860   unsigned SrcIdx = Def->getNumOperands();
1861   for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
1862        ++OpIdx) {
1863     const MachineOperand &MO = Def->getOperand(OpIdx);
1864     if (!MO.isReg() || !MO.getReg())
1865       continue;
1866     // Ignore dead implicit defs.
1867     if (MO.isImplicit() && MO.isDead())
1868       continue;
1869     assert(!MO.isDef() && "We should have skipped all the definitions by now");
1870     if (SrcIdx != EndOpIdx)
1871       // Multiple sources?
1872       return ValueTrackerResult();
1873     SrcIdx = OpIdx;
1874   }
1875 
1876   // In some rare case, Def has no input, SrcIdx is out of bound,
1877   // getOperand(SrcIdx) will fail below.
1878   if (SrcIdx >= Def->getNumOperands())
1879     return ValueTrackerResult();
1880 
1881   // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY
1882   // will break the assumed guarantees for the upper bits.
1883   for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) {
1884     if (UseMI.isSubregToReg())
1885       return ValueTrackerResult();
1886   }
1887 
1888   const MachineOperand &Src = Def->getOperand(SrcIdx);
1889   if (Src.isUndef())
1890     return ValueTrackerResult();
1891   return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1892 }
1893 
1894 ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() {
1895   assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
1896          "Invalid definition");
1897 
1898   if (Def->getOperand(DefIdx).getSubReg())
1899     // If we are composing subregs, bail out.
1900     // The case we are checking is Def.<subreg> = REG_SEQUENCE.
1901     // This should almost never happen as the SSA property is tracked at
1902     // the register level (as opposed to the subreg level).
1903     // I.e.,
1904     // Def.sub0 =
1905     // Def.sub1 =
1906     // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
1907     // Def. Thus, it must not be generated.
1908     // However, some code could theoretically generates a single
1909     // Def.sub0 (i.e, not defining the other subregs) and we would
1910     // have this case.
1911     // If we can ascertain (or force) that this never happens, we could
1912     // turn that into an assertion.
1913     return ValueTrackerResult();
1914 
1915   if (!TII)
1916     // We could handle the REG_SEQUENCE here, but we do not want to
1917     // duplicate the code from the generic TII.
1918     return ValueTrackerResult();
1919 
1920   SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs;
1921   if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
1922     return ValueTrackerResult();
1923 
1924   // We are looking at:
1925   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1926   // Check if one of the operand defines the subreg we are interested in.
1927   for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) {
1928     if (RegSeqInput.SubIdx == DefSubReg)
1929       return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg);
1930   }
1931 
1932   // If the subreg we are tracking is super-defined by another subreg,
1933   // we could follow this value. However, this would require to compose
1934   // the subreg and we do not do that for now.
1935   return ValueTrackerResult();
1936 }
1937 
1938 ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() {
1939   assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
1940          "Invalid definition");
1941 
1942   if (Def->getOperand(DefIdx).getSubReg())
1943     // If we are composing subreg, bail out.
1944     // Same remark as getNextSourceFromRegSequence.
1945     // I.e., this may be turned into an assert.
1946     return ValueTrackerResult();
1947 
1948   if (!TII)
1949     // We could handle the REG_SEQUENCE here, but we do not want to
1950     // duplicate the code from the generic TII.
1951     return ValueTrackerResult();
1952 
1953   RegSubRegPair BaseReg;
1954   RegSubRegPairAndIdx InsertedReg;
1955   if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
1956     return ValueTrackerResult();
1957 
1958   // We are looking at:
1959   // Def = INSERT_SUBREG v0, v1, sub1
1960   // There are two cases:
1961   // 1. DefSubReg == sub1, get v1.
1962   // 2. DefSubReg != sub1, the value may be available through v0.
1963 
1964   // #1 Check if the inserted register matches the required sub index.
1965   if (InsertedReg.SubIdx == DefSubReg) {
1966     return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg);
1967   }
1968   // #2 Otherwise, if the sub register we are looking for is not partial
1969   // defined by the inserted element, we can look through the main
1970   // register (v0).
1971   const MachineOperand &MODef = Def->getOperand(DefIdx);
1972   // If the result register (Def) and the base register (v0) do not
1973   // have the same register class or if we have to compose
1974   // subregisters, bail out.
1975   if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
1976       BaseReg.SubReg)
1977     return ValueTrackerResult();
1978 
1979   // Get the TRI and check if the inserted sub-register overlaps with the
1980   // sub-register we are tracking.
1981   const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
1982   if (!TRI ||
1983       !(TRI->getSubRegIndexLaneMask(DefSubReg) &
1984         TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none())
1985     return ValueTrackerResult();
1986   // At this point, the value is available in v0 via the same subreg
1987   // we used for Def.
1988   return ValueTrackerResult(BaseReg.Reg, DefSubReg);
1989 }
1990 
1991 ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() {
1992   assert((Def->isExtractSubreg() ||
1993           Def->isExtractSubregLike()) && "Invalid definition");
1994   // We are looking at:
1995   // Def = EXTRACT_SUBREG v0, sub0
1996 
1997   // Bail if we have to compose sub registers.
1998   // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
1999   if (DefSubReg)
2000     return ValueTrackerResult();
2001 
2002   if (!TII)
2003     // We could handle the EXTRACT_SUBREG here, but we do not want to
2004     // duplicate the code from the generic TII.
2005     return ValueTrackerResult();
2006 
2007   RegSubRegPairAndIdx ExtractSubregInputReg;
2008   if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
2009     return ValueTrackerResult();
2010 
2011   // Bail if we have to compose sub registers.
2012   // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
2013   if (ExtractSubregInputReg.SubReg)
2014     return ValueTrackerResult();
2015   // Otherwise, the value is available in the v0.sub0.
2016   return ValueTrackerResult(ExtractSubregInputReg.Reg,
2017                             ExtractSubregInputReg.SubIdx);
2018 }
2019 
2020 ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() {
2021   assert(Def->isSubregToReg() && "Invalid definition");
2022   // We are looking at:
2023   // Def = SUBREG_TO_REG Imm, v0, sub0
2024 
2025   // Bail if we have to compose sub registers.
2026   // If DefSubReg != sub0, we would have to check that all the bits
2027   // we track are included in sub0 and if yes, we would have to
2028   // determine the right subreg in v0.
2029   if (DefSubReg != Def->getOperand(3).getImm())
2030     return ValueTrackerResult();
2031   // Bail if we have to compose sub registers.
2032   // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
2033   if (Def->getOperand(2).getSubReg())
2034     return ValueTrackerResult();
2035 
2036   return ValueTrackerResult(Def->getOperand(2).getReg(),
2037                             Def->getOperand(3).getImm());
2038 }
2039 
2040 /// Explore each PHI incoming operand and return its sources.
2041 ValueTrackerResult ValueTracker::getNextSourceFromPHI() {
2042   assert(Def->isPHI() && "Invalid definition");
2043   ValueTrackerResult Res;
2044 
2045   // If we look for a different subreg, bail as we do not support composing
2046   // subregs yet.
2047   if (Def->getOperand(0).getSubReg() != DefSubReg)
2048     return ValueTrackerResult();
2049 
2050   // Return all register sources for PHI instructions.
2051   for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) {
2052     const MachineOperand &MO = Def->getOperand(i);
2053     assert(MO.isReg() && "Invalid PHI instruction");
2054     // We have no code to deal with undef operands. They shouldn't happen in
2055     // normal programs anyway.
2056     if (MO.isUndef())
2057       return ValueTrackerResult();
2058     Res.addSource(MO.getReg(), MO.getSubReg());
2059   }
2060 
2061   return Res;
2062 }
2063 
2064 ValueTrackerResult ValueTracker::getNextSourceImpl() {
2065   assert(Def && "This method needs a valid definition");
2066 
2067   assert(((Def->getOperand(DefIdx).isDef() &&
2068            (DefIdx < Def->getDesc().getNumDefs() ||
2069             Def->getDesc().isVariadic())) ||
2070           Def->getOperand(DefIdx).isImplicit()) &&
2071          "Invalid DefIdx");
2072   if (Def->isCopy())
2073     return getNextSourceFromCopy();
2074   if (Def->isBitcast())
2075     return getNextSourceFromBitcast();
2076   // All the remaining cases involve "complex" instructions.
2077   // Bail if we did not ask for the advanced tracking.
2078   if (DisableAdvCopyOpt)
2079     return ValueTrackerResult();
2080   if (Def->isRegSequence() || Def->isRegSequenceLike())
2081     return getNextSourceFromRegSequence();
2082   if (Def->isInsertSubreg() || Def->isInsertSubregLike())
2083     return getNextSourceFromInsertSubreg();
2084   if (Def->isExtractSubreg() || Def->isExtractSubregLike())
2085     return getNextSourceFromExtractSubreg();
2086   if (Def->isSubregToReg())
2087     return getNextSourceFromSubregToReg();
2088   if (Def->isPHI())
2089     return getNextSourceFromPHI();
2090   return ValueTrackerResult();
2091 }
2092 
2093 ValueTrackerResult ValueTracker::getNextSource() {
2094   // If we reach a point where we cannot move up in the use-def chain,
2095   // there is nothing we can get.
2096   if (!Def)
2097     return ValueTrackerResult();
2098 
2099   ValueTrackerResult Res = getNextSourceImpl();
2100   if (Res.isValid()) {
2101     // Update definition, definition index, and subregister for the
2102     // next call of getNextSource.
2103     // Update the current register.
2104     bool OneRegSrc = Res.getNumSources() == 1;
2105     if (OneRegSrc)
2106       Reg = Res.getSrcReg(0);
2107     // Update the result before moving up in the use-def chain
2108     // with the instruction containing the last found sources.
2109     Res.setInst(Def);
2110 
2111     // If we can still move up in the use-def chain, move to the next
2112     // definition.
2113     if (!Register::isPhysicalRegister(Reg) && OneRegSrc) {
2114       MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg);
2115       if (DI != MRI.def_end()) {
2116         Def = DI->getParent();
2117         DefIdx = DI.getOperandNo();
2118         DefSubReg = Res.getSrcSubReg(0);
2119       } else {
2120         Def = nullptr;
2121       }
2122       return Res;
2123     }
2124   }
2125   // If we end up here, this means we will not be able to find another source
2126   // for the next iteration. Make sure any new call to getNextSource bails out
2127   // early by cutting the use-def chain.
2128   Def = nullptr;
2129   return Res;
2130 }
2131