xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/PeepholeOptimizer.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Perform peephole optimizations on the machine code:
10 //
11 // - Optimize Extensions
12 //
13 //     Optimization of sign / zero extension instructions. It may be extended to
14 //     handle other instructions with similar properties.
15 //
16 //     On some targets, some instructions, e.g. X86 sign / zero extension, may
17 //     leave the source value in the lower part of the result. This optimization
18 //     will replace some uses of the pre-extension value with uses of the
19 //     sub-register of the results.
20 //
21 // - Optimize Comparisons
22 //
23 //     Optimization of comparison instructions. For instance, in this code:
24 //
25 //       sub r1, 1
26 //       cmp r1, 0
27 //       bz  L1
28 //
29 //     If the "sub" instruction all ready sets (or could be modified to set) the
30 //     same flag that the "cmp" instruction sets and that "bz" uses, then we can
31 //     eliminate the "cmp" instruction.
32 //
33 //     Another instance, in this code:
34 //
35 //       sub r1, r3 | sub r1, imm
36 //       cmp r3, r1 or cmp r1, r3 | cmp r1, imm
37 //       bge L1
38 //
39 //     If the branch instruction can use flag from "sub", then we can replace
40 //     "sub" with "subs" and eliminate the "cmp" instruction.
41 //
42 // - Optimize Loads:
43 //
44 //     Loads that can be folded into a later instruction. A load is foldable
45 //     if it loads to virtual registers and the virtual register defined has
46 //     a single use.
47 //
48 // - Optimize Copies and Bitcast (more generally, target specific copies):
49 //
50 //     Rewrite copies and bitcasts to avoid cross register bank copies
51 //     when possible.
52 //     E.g., Consider the following example, where capital and lower
53 //     letters denote different register file:
54 //     b = copy A <-- cross-bank copy
55 //     C = copy b <-- cross-bank copy
56 //   =>
57 //     b = copy A <-- cross-bank copy
58 //     C = copy A <-- same-bank copy
59 //
60 //     E.g., for bitcast:
61 //     b = bitcast A <-- cross-bank copy
62 //     C = bitcast b <-- cross-bank copy
63 //   =>
64 //     b = bitcast A <-- cross-bank copy
65 //     C = copy A    <-- same-bank copy
66 //===----------------------------------------------------------------------===//
67 
68 #include "llvm/ADT/DenseMap.h"
69 #include "llvm/ADT/SmallPtrSet.h"
70 #include "llvm/ADT/SmallSet.h"
71 #include "llvm/ADT/SmallVector.h"
72 #include "llvm/ADT/Statistic.h"
73 #include "llvm/CodeGen/MachineBasicBlock.h"
74 #include "llvm/CodeGen/MachineDominators.h"
75 #include "llvm/CodeGen/MachineFunction.h"
76 #include "llvm/CodeGen/MachineFunctionPass.h"
77 #include "llvm/CodeGen/MachineInstr.h"
78 #include "llvm/CodeGen/MachineInstrBuilder.h"
79 #include "llvm/CodeGen/MachineLoopInfo.h"
80 #include "llvm/CodeGen/MachineOperand.h"
81 #include "llvm/CodeGen/MachineRegisterInfo.h"
82 #include "llvm/CodeGen/TargetInstrInfo.h"
83 #include "llvm/CodeGen/TargetOpcodes.h"
84 #include "llvm/CodeGen/TargetRegisterInfo.h"
85 #include "llvm/CodeGen/TargetSubtargetInfo.h"
86 #include "llvm/InitializePasses.h"
87 #include "llvm/MC/LaneBitmask.h"
88 #include "llvm/MC/MCInstrDesc.h"
89 #include "llvm/Pass.h"
90 #include "llvm/Support/CommandLine.h"
91 #include "llvm/Support/Debug.h"
92 #include "llvm/Support/raw_ostream.h"
93 #include <cassert>
94 #include <cstdint>
95 #include <memory>
96 #include <utility>
97 
98 using namespace llvm;
99 using RegSubRegPair = TargetInstrInfo::RegSubRegPair;
100 using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx;
101 
102 #define DEBUG_TYPE "peephole-opt"
103 
104 // Optimize Extensions
105 static cl::opt<bool>
106 Aggressive("aggressive-ext-opt", cl::Hidden,
107            cl::desc("Aggressive extension optimization"));
108 
109 static cl::opt<bool>
110 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
111                 cl::desc("Disable the peephole optimizer"));
112 
113 /// Specifiy whether or not the value tracking looks through
114 /// complex instructions. When this is true, the value tracker
115 /// bails on everything that is not a copy or a bitcast.
116 static cl::opt<bool>
117 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
118                   cl::desc("Disable advanced copy optimization"));
119 
120 static cl::opt<bool> DisableNAPhysCopyOpt(
121     "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false),
122     cl::desc("Disable non-allocatable physical register copy optimization"));
123 
124 // Limit the number of PHI instructions to process
125 // in PeepholeOptimizer::getNextSource.
126 static cl::opt<unsigned> RewritePHILimit(
127     "rewrite-phi-limit", cl::Hidden, cl::init(10),
128     cl::desc("Limit the length of PHI chains to lookup"));
129 
130 // Limit the length of recurrence chain when evaluating the benefit of
131 // commuting operands.
132 static cl::opt<unsigned> MaxRecurrenceChain(
133     "recurrence-chain-limit", cl::Hidden, cl::init(3),
134     cl::desc("Maximum length of recurrence chain when evaluating the benefit "
135              "of commuting operands"));
136 
137 
138 STATISTIC(NumReuse, "Number of extension results reused");
139 STATISTIC(NumCmps, "Number of compares eliminated");
140 STATISTIC(NumImmFold, "Number of move immediate folded");
141 STATISTIC(NumLoadFold, "Number of loads folded");
142 STATISTIC(NumSelects, "Number of selects optimized");
143 STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
144 STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
145 STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed");
146 
147 namespace {
148 
149   class ValueTrackerResult;
150   class RecurrenceInstr;
151 
152   class PeepholeOptimizer : public MachineFunctionPass,
153                             private MachineFunction::Delegate {
154     const TargetInstrInfo *TII = nullptr;
155     const TargetRegisterInfo *TRI = nullptr;
156     MachineRegisterInfo *MRI = nullptr;
157     MachineDominatorTree *DT = nullptr; // Machine dominator tree
158     MachineLoopInfo *MLI = nullptr;
159 
160   public:
161     static char ID; // Pass identification
162 
163     PeepholeOptimizer() : MachineFunctionPass(ID) {
164       initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
165     }
166 
167     bool runOnMachineFunction(MachineFunction &MF) override;
168 
169     void getAnalysisUsage(AnalysisUsage &AU) const override {
170       AU.setPreservesCFG();
171       MachineFunctionPass::getAnalysisUsage(AU);
172       AU.addRequired<MachineLoopInfoWrapperPass>();
173       AU.addPreserved<MachineLoopInfoWrapperPass>();
174       if (Aggressive) {
175         AU.addRequired<MachineDominatorTreeWrapperPass>();
176         AU.addPreserved<MachineDominatorTreeWrapperPass>();
177       }
178     }
179 
180     MachineFunctionProperties getRequiredProperties() const override {
181       return MachineFunctionProperties()
182         .set(MachineFunctionProperties::Property::IsSSA);
183     }
184 
185     /// Track Def -> Use info used for rewriting copies.
186     using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>;
187 
188     /// Sequence of instructions that formulate recurrence cycle.
189     using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>;
190 
191   private:
192     bool optimizeCmpInstr(MachineInstr &MI);
193     bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
194                           SmallPtrSetImpl<MachineInstr*> &LocalMIs);
195     bool optimizeSelect(MachineInstr &MI,
196                         SmallPtrSetImpl<MachineInstr *> &LocalMIs);
197     bool optimizeCondBranch(MachineInstr &MI);
198     bool optimizeCoalescableCopy(MachineInstr &MI);
199     bool optimizeUncoalescableCopy(MachineInstr &MI,
200                                    SmallPtrSetImpl<MachineInstr *> &LocalMIs);
201     bool optimizeRecurrence(MachineInstr &PHI);
202     bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap);
203     bool isMoveImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
204                          DenseMap<Register, MachineInstr *> &ImmDefMIs);
205     bool foldImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
206                        DenseMap<Register, MachineInstr *> &ImmDefMIs,
207                        bool &Deleted);
208 
209     /// Finds recurrence cycles, but only ones that formulated around
210     /// a def operand and a use operand that are tied. If there is a use
211     /// operand commutable with the tied use operand, find recurrence cycle
212     /// along that operand as well.
213     bool findTargetRecurrence(Register Reg,
214                               const SmallSet<Register, 2> &TargetReg,
215                               RecurrenceCycle &RC);
216 
217     /// If copy instruction \p MI is a virtual register copy or a copy of a
218     /// constant physical register to a virtual register, track it in the
219     /// set CopySrcMIs. If this virtual register was previously seen as a
220     /// copy, replace the uses of this copy with the previously seen copy's
221     /// destination register.
222     bool foldRedundantCopy(MachineInstr &MI);
223 
224     /// Is the register \p Reg a non-allocatable physical register?
225     bool isNAPhysCopy(Register Reg);
226 
227     /// If copy instruction \p MI is a non-allocatable virtual<->physical
228     /// register copy, track it in the \p NAPhysToVirtMIs map. If this
229     /// non-allocatable physical register was previously copied to a virtual
230     /// registered and hasn't been clobbered, the virt->phys copy can be
231     /// deleted.
232     bool foldRedundantNAPhysCopy(
233         MachineInstr &MI, DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs);
234 
235     bool isLoadFoldable(MachineInstr &MI,
236                         SmallSet<Register, 16> &FoldAsLoadDefCandidates);
237 
238     /// Check whether \p MI is understood by the register coalescer
239     /// but may require some rewriting.
240     bool isCoalescableCopy(const MachineInstr &MI) {
241       // SubregToRegs are not interesting, because they are already register
242       // coalescer friendly.
243       return MI.isCopy() || (!DisableAdvCopyOpt &&
244                              (MI.isRegSequence() || MI.isInsertSubreg() ||
245                               MI.isExtractSubreg()));
246     }
247 
248     /// Check whether \p MI is a copy like instruction that is
249     /// not recognized by the register coalescer.
250     bool isUncoalescableCopy(const MachineInstr &MI) {
251       return MI.isBitcast() ||
252              (!DisableAdvCopyOpt &&
253               (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
254                MI.isExtractSubregLike()));
255     }
256 
257     MachineInstr &rewriteSource(MachineInstr &CopyLike,
258                                 RegSubRegPair Def, RewriteMapTy &RewriteMap);
259 
260     // Set of copies to virtual registers keyed by source register.  Never
261     // holds any physreg which requires def tracking.
262     DenseMap<RegSubRegPair, MachineInstr *> CopySrcMIs;
263 
264     // MachineFunction::Delegate implementation. Used to maintain CopySrcMIs.
265     void MF_HandleInsertion(MachineInstr &MI) override {
266       return;
267     }
268 
269     bool getCopySrc(MachineInstr &MI, RegSubRegPair &SrcPair) {
270       if (!MI.isCopy())
271         return false;
272 
273       Register SrcReg = MI.getOperand(1).getReg();
274       unsigned SrcSubReg = MI.getOperand(1).getSubReg();
275       if (!SrcReg.isVirtual() && !MRI->isConstantPhysReg(SrcReg))
276         return false;
277 
278       SrcPair = RegSubRegPair(SrcReg, SrcSubReg);
279       return true;
280     }
281 
282     // If a COPY instruction is to be deleted or changed, we should also remove
283     // it from CopySrcMIs.
284     void deleteChangedCopy(MachineInstr &MI) {
285       RegSubRegPair SrcPair;
286       if (!getCopySrc(MI, SrcPair))
287         return;
288 
289       auto It = CopySrcMIs.find(SrcPair);
290       if (It != CopySrcMIs.end() && It->second == &MI)
291         CopySrcMIs.erase(It);
292     }
293 
294     void MF_HandleRemoval(MachineInstr &MI) override {
295       deleteChangedCopy(MI);
296     }
297 
298     void MF_HandleChangeDesc(MachineInstr &MI, const MCInstrDesc &TID) override
299     {
300       deleteChangedCopy(MI);
301     }
302   };
303 
304   /// Helper class to hold instructions that are inside recurrence cycles.
305   /// The recurrence cycle is formulated around 1) a def operand and its
306   /// tied use operand, or 2) a def operand and a use operand that is commutable
307   /// with another use operand which is tied to the def operand. In the latter
308   /// case, index of the tied use operand and the commutable use operand are
309   /// maintained with CommutePair.
310   class RecurrenceInstr {
311   public:
312     using IndexPair = std::pair<unsigned, unsigned>;
313 
314     RecurrenceInstr(MachineInstr *MI) : MI(MI) {}
315     RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2)
316       : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {}
317 
318     MachineInstr *getMI() const { return MI; }
319     std::optional<IndexPair> getCommutePair() const { return CommutePair; }
320 
321   private:
322     MachineInstr *MI;
323     std::optional<IndexPair> CommutePair;
324   };
325 
326   /// Helper class to hold a reply for ValueTracker queries.
327   /// Contains the returned sources for a given search and the instructions
328   /// where the sources were tracked from.
329   class ValueTrackerResult {
330   private:
331     /// Track all sources found by one ValueTracker query.
332     SmallVector<RegSubRegPair, 2> RegSrcs;
333 
334     /// Instruction using the sources in 'RegSrcs'.
335     const MachineInstr *Inst = nullptr;
336 
337   public:
338     ValueTrackerResult() = default;
339 
340     ValueTrackerResult(Register Reg, unsigned SubReg) {
341       addSource(Reg, SubReg);
342     }
343 
344     bool isValid() const { return getNumSources() > 0; }
345 
346     void setInst(const MachineInstr *I) { Inst = I; }
347     const MachineInstr *getInst() const { return Inst; }
348 
349     void clear() {
350       RegSrcs.clear();
351       Inst = nullptr;
352     }
353 
354     void addSource(Register SrcReg, unsigned SrcSubReg) {
355       RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg));
356     }
357 
358     void setSource(int Idx, Register SrcReg, unsigned SrcSubReg) {
359       assert(Idx < getNumSources() && "Reg pair source out of index");
360       RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg);
361     }
362 
363     int getNumSources() const { return RegSrcs.size(); }
364 
365     RegSubRegPair getSrc(int Idx) const {
366       return RegSrcs[Idx];
367     }
368 
369     Register getSrcReg(int Idx) const {
370       assert(Idx < getNumSources() && "Reg source out of index");
371       return RegSrcs[Idx].Reg;
372     }
373 
374     unsigned getSrcSubReg(int Idx) const {
375       assert(Idx < getNumSources() && "SubReg source out of index");
376       return RegSrcs[Idx].SubReg;
377     }
378 
379     bool operator==(const ValueTrackerResult &Other) const {
380       if (Other.getInst() != getInst())
381         return false;
382 
383       if (Other.getNumSources() != getNumSources())
384         return false;
385 
386       for (int i = 0, e = Other.getNumSources(); i != e; ++i)
387         if (Other.getSrcReg(i) != getSrcReg(i) ||
388             Other.getSrcSubReg(i) != getSrcSubReg(i))
389           return false;
390       return true;
391     }
392   };
393 
394   /// Helper class to track the possible sources of a value defined by
395   /// a (chain of) copy related instructions.
396   /// Given a definition (instruction and definition index), this class
397   /// follows the use-def chain to find successive suitable sources.
398   /// The given source can be used to rewrite the definition into
399   /// def = COPY src.
400   ///
401   /// For instance, let us consider the following snippet:
402   /// v0 =
403   /// v2 = INSERT_SUBREG v1, v0, sub0
404   /// def = COPY v2.sub0
405   ///
406   /// Using a ValueTracker for def = COPY v2.sub0 will give the following
407   /// suitable sources:
408   /// v2.sub0 and v0.
409   /// Then, def can be rewritten into def = COPY v0.
410   class ValueTracker {
411   private:
412     /// The current point into the use-def chain.
413     const MachineInstr *Def = nullptr;
414 
415     /// The index of the definition in Def.
416     unsigned DefIdx = 0;
417 
418     /// The sub register index of the definition.
419     unsigned DefSubReg;
420 
421     /// The register where the value can be found.
422     Register Reg;
423 
424     /// MachineRegisterInfo used to perform tracking.
425     const MachineRegisterInfo &MRI;
426 
427     /// Optional TargetInstrInfo used to perform some complex tracking.
428     const TargetInstrInfo *TII;
429 
430     /// Dispatcher to the right underlying implementation of getNextSource.
431     ValueTrackerResult getNextSourceImpl();
432 
433     /// Specialized version of getNextSource for Copy instructions.
434     ValueTrackerResult getNextSourceFromCopy();
435 
436     /// Specialized version of getNextSource for Bitcast instructions.
437     ValueTrackerResult getNextSourceFromBitcast();
438 
439     /// Specialized version of getNextSource for RegSequence instructions.
440     ValueTrackerResult getNextSourceFromRegSequence();
441 
442     /// Specialized version of getNextSource for InsertSubreg instructions.
443     ValueTrackerResult getNextSourceFromInsertSubreg();
444 
445     /// Specialized version of getNextSource for ExtractSubreg instructions.
446     ValueTrackerResult getNextSourceFromExtractSubreg();
447 
448     /// Specialized version of getNextSource for SubregToReg instructions.
449     ValueTrackerResult getNextSourceFromSubregToReg();
450 
451     /// Specialized version of getNextSource for PHI instructions.
452     ValueTrackerResult getNextSourceFromPHI();
453 
454   public:
455     /// Create a ValueTracker instance for the value defined by \p Reg.
456     /// \p DefSubReg represents the sub register index the value tracker will
457     /// track. It does not need to match the sub register index used in the
458     /// definition of \p Reg.
459     /// If \p Reg is a physical register, a value tracker constructed with
460     /// this constructor will not find any alternative source.
461     /// Indeed, when \p Reg is a physical register that constructor does not
462     /// know which definition of \p Reg it should track.
463     /// Use the next constructor to track a physical register.
464     ValueTracker(Register Reg, unsigned DefSubReg,
465                  const MachineRegisterInfo &MRI,
466                  const TargetInstrInfo *TII = nullptr)
467         : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) {
468       if (!Reg.isPhysical()) {
469         Def = MRI.getVRegDef(Reg);
470         DefIdx = MRI.def_begin(Reg).getOperandNo();
471       }
472     }
473 
474     /// Following the use-def chain, get the next available source
475     /// for the tracked value.
476     /// \return A ValueTrackerResult containing a set of registers
477     /// and sub registers with tracked values. A ValueTrackerResult with
478     /// an empty set of registers means no source was found.
479     ValueTrackerResult getNextSource();
480   };
481 
482 } // end anonymous namespace
483 
484 char PeepholeOptimizer::ID = 0;
485 
486 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
487 
488 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE,
489                       "Peephole Optimizations", false, false)
490 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
491 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
492 INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE,
493                     "Peephole Optimizations", false, false)
494 
495 /// If instruction is a copy-like instruction, i.e. it reads a single register
496 /// and writes a single register and it does not modify the source, and if the
497 /// source value is preserved as a sub-register of the result, then replace all
498 /// reachable uses of the source with the subreg of the result.
499 ///
500 /// Do not generate an EXTRACT that is used only in a debug use, as this changes
501 /// the code. Since this code does not currently share EXTRACTs, just ignore all
502 /// debug uses.
503 bool PeepholeOptimizer::
504 optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
505                  SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
506   Register SrcReg, DstReg;
507   unsigned SubIdx;
508   if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx))
509     return false;
510 
511   if (DstReg.isPhysical() || SrcReg.isPhysical())
512     return false;
513 
514   if (MRI->hasOneNonDBGUse(SrcReg))
515     // No other uses.
516     return false;
517 
518   // Ensure DstReg can get a register class that actually supports
519   // sub-registers. Don't change the class until we commit.
520   const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
521   DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
522   if (!DstRC)
523     return false;
524 
525   // The ext instr may be operating on a sub-register of SrcReg as well.
526   // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
527   // register.
528   // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
529   // SrcReg:SubIdx should be replaced.
530   bool UseSrcSubIdx =
531       TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
532 
533   // The source has other uses. See if we can replace the other uses with use of
534   // the result of the extension.
535   SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
536   for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
537     ReachedBBs.insert(UI.getParent());
538 
539   // Uses that are in the same BB of uses of the result of the instruction.
540   SmallVector<MachineOperand*, 8> Uses;
541 
542   // Uses that the result of the instruction can reach.
543   SmallVector<MachineOperand*, 8> ExtendedUses;
544 
545   bool ExtendLife = true;
546   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
547     MachineInstr *UseMI = UseMO.getParent();
548     if (UseMI == &MI)
549       continue;
550 
551     if (UseMI->isPHI()) {
552       ExtendLife = false;
553       continue;
554     }
555 
556     // Only accept uses of SrcReg:SubIdx.
557     if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
558       continue;
559 
560     // It's an error to translate this:
561     //
562     //    %reg1025 = <sext> %reg1024
563     //     ...
564     //    %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
565     //
566     // into this:
567     //
568     //    %reg1025 = <sext> %reg1024
569     //     ...
570     //    %reg1027 = COPY %reg1025:4
571     //    %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
572     //
573     // The problem here is that SUBREG_TO_REG is there to assert that an
574     // implicit zext occurs. It doesn't insert a zext instruction. If we allow
575     // the COPY here, it will give us the value after the <sext>, not the
576     // original value of %reg1024 before <sext>.
577     if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
578       continue;
579 
580     MachineBasicBlock *UseMBB = UseMI->getParent();
581     if (UseMBB == &MBB) {
582       // Local uses that come after the extension.
583       if (!LocalMIs.count(UseMI))
584         Uses.push_back(&UseMO);
585     } else if (ReachedBBs.count(UseMBB)) {
586       // Non-local uses where the result of the extension is used. Always
587       // replace these unless it's a PHI.
588       Uses.push_back(&UseMO);
589     } else if (Aggressive && DT->dominates(&MBB, UseMBB)) {
590       // We may want to extend the live range of the extension result in order
591       // to replace these uses.
592       ExtendedUses.push_back(&UseMO);
593     } else {
594       // Both will be live out of the def MBB anyway. Don't extend live range of
595       // the extension result.
596       ExtendLife = false;
597       break;
598     }
599   }
600 
601   if (ExtendLife && !ExtendedUses.empty())
602     // Extend the liveness of the extension result.
603     Uses.append(ExtendedUses.begin(), ExtendedUses.end());
604 
605   // Now replace all uses.
606   bool Changed = false;
607   if (!Uses.empty()) {
608     SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
609 
610     // Look for PHI uses of the extended result, we don't want to extend the
611     // liveness of a PHI input. It breaks all kinds of assumptions down
612     // stream. A PHI use is expected to be the kill of its source values.
613     for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
614       if (UI.isPHI())
615         PHIBBs.insert(UI.getParent());
616 
617     const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
618     for (MachineOperand *UseMO : Uses) {
619       MachineInstr *UseMI = UseMO->getParent();
620       MachineBasicBlock *UseMBB = UseMI->getParent();
621       if (PHIBBs.count(UseMBB))
622         continue;
623 
624       // About to add uses of DstReg, clear DstReg's kill flags.
625       if (!Changed) {
626         MRI->clearKillFlags(DstReg);
627         MRI->constrainRegClass(DstReg, DstRC);
628       }
629 
630       // SubReg defs are illegal in machine SSA phase,
631       // we should not generate SubReg defs.
632       //
633       // For example, for the instructions:
634       //
635       // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc
636       // %3:gprc_and_gprc_nor0 = COPY %0.sub_32:g8rc
637       //
638       // We should generate:
639       //
640       // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc
641       // %6:gprc_and_gprc_nor0 = COPY %1.sub_32:g8rc_and_g8rc_nox0
642       // %3:gprc_and_gprc_nor0 = COPY %6:gprc_and_gprc_nor0
643       //
644       if (UseSrcSubIdx)
645         RC = MRI->getRegClass(UseMI->getOperand(0).getReg());
646 
647       Register NewVR = MRI->createVirtualRegister(RC);
648       BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
649               TII->get(TargetOpcode::COPY), NewVR)
650         .addReg(DstReg, 0, SubIdx);
651       if (UseSrcSubIdx)
652         UseMO->setSubReg(0);
653 
654       UseMO->setReg(NewVR);
655       ++NumReuse;
656       Changed = true;
657     }
658   }
659 
660   return Changed;
661 }
662 
663 /// If the instruction is a compare and the previous instruction it's comparing
664 /// against already sets (or could be modified to set) the same flag as the
665 /// compare, then we can remove the comparison and use the flag from the
666 /// previous instruction.
667 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) {
668   // If this instruction is a comparison against zero and isn't comparing a
669   // physical register, we can try to optimize it.
670   Register SrcReg, SrcReg2;
671   int64_t CmpMask, CmpValue;
672   if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
673       SrcReg.isPhysical() || SrcReg2.isPhysical())
674     return false;
675 
676   // Attempt to optimize the comparison instruction.
677   LLVM_DEBUG(dbgs() << "Attempting to optimize compare: " << MI);
678   if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
679     LLVM_DEBUG(dbgs() << "  -> Successfully optimized compare!\n");
680     ++NumCmps;
681     return true;
682   }
683 
684   return false;
685 }
686 
687 /// Optimize a select instruction.
688 bool PeepholeOptimizer::optimizeSelect(MachineInstr &MI,
689                             SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
690   unsigned TrueOp = 0;
691   unsigned FalseOp = 0;
692   bool Optimizable = false;
693   SmallVector<MachineOperand, 4> Cond;
694   if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
695     return false;
696   if (!Optimizable)
697     return false;
698   if (!TII->optimizeSelect(MI, LocalMIs))
699     return false;
700   LLVM_DEBUG(dbgs() << "Deleting select: " << MI);
701   MI.eraseFromParent();
702   ++NumSelects;
703   return true;
704 }
705 
706 /// Check if a simpler conditional branch can be generated.
707 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) {
708   return TII->optimizeCondBranch(MI);
709 }
710 
711 /// Try to find the next source that share the same register file
712 /// for the value defined by \p Reg and \p SubReg.
713 /// When true is returned, the \p RewriteMap can be used by the client to
714 /// retrieve all Def -> Use along the way up to the next source. Any found
715 /// Use that is not itself a key for another entry, is the next source to
716 /// use. During the search for the next source, multiple sources can be found
717 /// given multiple incoming sources of a PHI instruction. In this case, we
718 /// look in each PHI source for the next source; all found next sources must
719 /// share the same register file as \p Reg and \p SubReg. The client should
720 /// then be capable to rewrite all intermediate PHIs to get the next source.
721 /// \return False if no alternative sources are available. True otherwise.
722 bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg,
723                                        RewriteMapTy &RewriteMap) {
724   // Do not try to find a new source for a physical register.
725   // So far we do not have any motivating example for doing that.
726   // Thus, instead of maintaining untested code, we will revisit that if
727   // that changes at some point.
728   Register Reg = RegSubReg.Reg;
729   if (Reg.isPhysical())
730     return false;
731   const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
732 
733   SmallVector<RegSubRegPair, 4> SrcToLook;
734   RegSubRegPair CurSrcPair = RegSubReg;
735   SrcToLook.push_back(CurSrcPair);
736 
737   unsigned PHICount = 0;
738   do {
739     CurSrcPair = SrcToLook.pop_back_val();
740     // As explained above, do not handle physical registers
741     if (CurSrcPair.Reg.isPhysical())
742       return false;
743 
744     ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII);
745 
746     // Follow the chain of copies until we find a more suitable source, a phi
747     // or have to abort.
748     while (true) {
749       ValueTrackerResult Res = ValTracker.getNextSource();
750       // Abort at the end of a chain (without finding a suitable source).
751       if (!Res.isValid())
752         return false;
753 
754       // Insert the Def -> Use entry for the recently found source.
755       ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair);
756       if (CurSrcRes.isValid()) {
757         assert(CurSrcRes == Res && "ValueTrackerResult found must match");
758         // An existent entry with multiple sources is a PHI cycle we must avoid.
759         // Otherwise it's an entry with a valid next source we already found.
760         if (CurSrcRes.getNumSources() > 1) {
761           LLVM_DEBUG(dbgs()
762                      << "findNextSource: found PHI cycle, aborting...\n");
763           return false;
764         }
765         break;
766       }
767       RewriteMap.insert(std::make_pair(CurSrcPair, Res));
768 
769       // ValueTrackerResult usually have one source unless it's the result from
770       // a PHI instruction. Add the found PHI edges to be looked up further.
771       unsigned NumSrcs = Res.getNumSources();
772       if (NumSrcs > 1) {
773         PHICount++;
774         if (PHICount >= RewritePHILimit) {
775           LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n");
776           return false;
777         }
778 
779         for (unsigned i = 0; i < NumSrcs; ++i)
780           SrcToLook.push_back(Res.getSrc(i));
781         break;
782       }
783 
784       CurSrcPair = Res.getSrc(0);
785       // Do not extend the live-ranges of physical registers as they add
786       // constraints to the register allocator. Moreover, if we want to extend
787       // the live-range of a physical register, unlike SSA virtual register,
788       // we will have to check that they aren't redefine before the related use.
789       if (CurSrcPair.Reg.isPhysical())
790         return false;
791 
792       // Keep following the chain if the value isn't any better yet.
793       const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg);
794       if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC,
795                                      CurSrcPair.SubReg))
796         continue;
797 
798       // We currently cannot deal with subreg operands on PHI instructions
799       // (see insertPHI()).
800       if (PHICount > 0 && CurSrcPair.SubReg != 0)
801         continue;
802 
803       // We found a suitable source, and are done with this chain.
804       break;
805     }
806   } while (!SrcToLook.empty());
807 
808   // If we did not find a more suitable source, there is nothing to optimize.
809   return CurSrcPair.Reg != Reg;
810 }
811 
812 /// Insert a PHI instruction with incoming edges \p SrcRegs that are
813 /// guaranteed to have the same register class. This is necessary whenever we
814 /// successfully traverse a PHI instruction and find suitable sources coming
815 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def
816 /// suitable to be used in a new COPY instruction.
817 static MachineInstr &
818 insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
819           const SmallVectorImpl<RegSubRegPair> &SrcRegs,
820           MachineInstr &OrigPHI) {
821   assert(!SrcRegs.empty() && "No sources to create a PHI instruction?");
822 
823   const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg);
824   // NewRC is only correct if no subregisters are involved. findNextSource()
825   // should have rejected those cases already.
826   assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand");
827   Register NewVR = MRI.createVirtualRegister(NewRC);
828   MachineBasicBlock *MBB = OrigPHI.getParent();
829   MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(),
830                                     TII.get(TargetOpcode::PHI), NewVR);
831 
832   unsigned MBBOpIdx = 2;
833   for (const RegSubRegPair &RegPair : SrcRegs) {
834     MIB.addReg(RegPair.Reg, 0, RegPair.SubReg);
835     MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB());
836     // Since we're extended the lifetime of RegPair.Reg, clear the
837     // kill flags to account for that and make RegPair.Reg reaches
838     // the new PHI.
839     MRI.clearKillFlags(RegPair.Reg);
840     MBBOpIdx += 2;
841   }
842 
843   return *MIB;
844 }
845 
846 namespace {
847 
848 /// Interface to query instructions amenable to copy rewriting.
849 class Rewriter {
850 protected:
851   MachineInstr &CopyLike;
852   unsigned CurrentSrcIdx = 0;   ///< The index of the source being rewritten.
853 public:
854   Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {}
855   virtual ~Rewriter() = default;
856 
857   /// Get the next rewritable source (SrcReg, SrcSubReg) and
858   /// the related value that it affects (DstReg, DstSubReg).
859   /// A source is considered rewritable if its register class and the
860   /// register class of the related DstReg may not be register
861   /// coalescer friendly. In other words, given a copy-like instruction
862   /// not all the arguments may be returned at rewritable source, since
863   /// some arguments are none to be register coalescer friendly.
864   ///
865   /// Each call of this method moves the current source to the next
866   /// rewritable source.
867   /// For instance, let CopyLike be the instruction to rewrite.
868   /// CopyLike has one definition and one source:
869   /// dst.dstSubIdx = CopyLike src.srcSubIdx.
870   ///
871   /// The first call will give the first rewritable source, i.e.,
872   /// the only source this instruction has:
873   /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
874   /// This source defines the whole definition, i.e.,
875   /// (DstReg, DstSubReg) = (dst, dstSubIdx).
876   ///
877   /// The second and subsequent calls will return false, as there is only one
878   /// rewritable source.
879   ///
880   /// \return True if a rewritable source has been found, false otherwise.
881   /// The output arguments are valid if and only if true is returned.
882   virtual bool getNextRewritableSource(RegSubRegPair &Src,
883                                        RegSubRegPair &Dst) = 0;
884 
885   /// Rewrite the current source with \p NewReg and \p NewSubReg if possible.
886   /// \return True if the rewriting was possible, false otherwise.
887   virtual bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) = 0;
888 };
889 
890 /// Rewriter for COPY instructions.
891 class CopyRewriter : public Rewriter {
892 public:
893   CopyRewriter(MachineInstr &MI) : Rewriter(MI) {
894     assert(MI.isCopy() && "Expected copy instruction");
895   }
896   virtual ~CopyRewriter() = default;
897 
898   bool getNextRewritableSource(RegSubRegPair &Src,
899                                RegSubRegPair &Dst) override {
900     // CurrentSrcIdx > 0 means this function has already been called.
901     if (CurrentSrcIdx > 0)
902       return false;
903     // This is the first call to getNextRewritableSource.
904     // Move the CurrentSrcIdx to remember that we made that call.
905     CurrentSrcIdx = 1;
906     // The rewritable source is the argument.
907     const MachineOperand &MOSrc = CopyLike.getOperand(1);
908     Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg());
909     // What we track are the alternative sources of the definition.
910     const MachineOperand &MODef = CopyLike.getOperand(0);
911     Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
912     return true;
913   }
914 
915   bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
916     if (CurrentSrcIdx != 1)
917       return false;
918     MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
919     MOSrc.setReg(NewReg);
920     MOSrc.setSubReg(NewSubReg);
921     return true;
922   }
923 };
924 
925 /// Helper class to rewrite uncoalescable copy like instructions
926 /// into new COPY (coalescable friendly) instructions.
927 class UncoalescableRewriter : public Rewriter {
928   unsigned NumDefs;  ///< Number of defs in the bitcast.
929 
930 public:
931   UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) {
932     NumDefs = MI.getDesc().getNumDefs();
933   }
934 
935   /// \see See Rewriter::getNextRewritableSource()
936   /// All such sources need to be considered rewritable in order to
937   /// rewrite a uncoalescable copy-like instruction. This method return
938   /// each definition that must be checked if rewritable.
939   bool getNextRewritableSource(RegSubRegPair &Src,
940                                RegSubRegPair &Dst) override {
941     // Find the next non-dead definition and continue from there.
942     if (CurrentSrcIdx == NumDefs)
943       return false;
944 
945     while (CopyLike.getOperand(CurrentSrcIdx).isDead()) {
946       ++CurrentSrcIdx;
947       if (CurrentSrcIdx == NumDefs)
948         return false;
949     }
950 
951     // What we track are the alternative sources of the definition.
952     Src = RegSubRegPair(0, 0);
953     const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx);
954     Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
955 
956     CurrentSrcIdx++;
957     return true;
958   }
959 
960   bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
961     return false;
962   }
963 };
964 
965 /// Specialized rewriter for INSERT_SUBREG instruction.
966 class InsertSubregRewriter : public Rewriter {
967 public:
968   InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) {
969     assert(MI.isInsertSubreg() && "Invalid instruction");
970   }
971 
972   /// \see See Rewriter::getNextRewritableSource()
973   /// Here CopyLike has the following form:
974   /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
975   /// Src1 has the same register class has dst, hence, there is
976   /// nothing to rewrite.
977   /// Src2.src2SubIdx, may not be register coalescer friendly.
978   /// Therefore, the first call to this method returns:
979   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
980   /// (DstReg, DstSubReg) = (dst, subIdx).
981   ///
982   /// Subsequence calls will return false.
983   bool getNextRewritableSource(RegSubRegPair &Src,
984                                RegSubRegPair &Dst) override {
985     // If we already get the only source we can rewrite, return false.
986     if (CurrentSrcIdx == 2)
987       return false;
988     // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
989     CurrentSrcIdx = 2;
990     const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
991     Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg());
992     const MachineOperand &MODef = CopyLike.getOperand(0);
993 
994     // We want to track something that is compatible with the
995     // partial definition.
996     if (MODef.getSubReg())
997       // Bail if we have to compose sub-register indices.
998       return false;
999     Dst = RegSubRegPair(MODef.getReg(),
1000                         (unsigned)CopyLike.getOperand(3).getImm());
1001     return true;
1002   }
1003 
1004   bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
1005     if (CurrentSrcIdx != 2)
1006       return false;
1007     // We are rewriting the inserted reg.
1008     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
1009     MO.setReg(NewReg);
1010     MO.setSubReg(NewSubReg);
1011     return true;
1012   }
1013 };
1014 
1015 /// Specialized rewriter for EXTRACT_SUBREG instruction.
1016 class ExtractSubregRewriter : public Rewriter {
1017   const TargetInstrInfo &TII;
1018 
1019 public:
1020   ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
1021       : Rewriter(MI), TII(TII) {
1022     assert(MI.isExtractSubreg() && "Invalid instruction");
1023   }
1024 
1025   /// \see Rewriter::getNextRewritableSource()
1026   /// Here CopyLike has the following form:
1027   /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
1028   /// There is only one rewritable source: Src.subIdx,
1029   /// which defines dst.dstSubIdx.
1030   bool getNextRewritableSource(RegSubRegPair &Src,
1031                                RegSubRegPair &Dst) override {
1032     // If we already get the only source we can rewrite, return false.
1033     if (CurrentSrcIdx == 1)
1034       return false;
1035     // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
1036     CurrentSrcIdx = 1;
1037     const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
1038     // If we have to compose sub-register indices, bail out.
1039     if (MOExtractedReg.getSubReg())
1040       return false;
1041 
1042     Src = RegSubRegPair(MOExtractedReg.getReg(),
1043                         CopyLike.getOperand(2).getImm());
1044 
1045     // We want to track something that is compatible with the definition.
1046     const MachineOperand &MODef = CopyLike.getOperand(0);
1047     Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
1048     return true;
1049   }
1050 
1051   bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
1052     // The only source we can rewrite is the input register.
1053     if (CurrentSrcIdx != 1)
1054       return false;
1055 
1056     CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
1057 
1058     // If we find a source that does not require to extract something,
1059     // rewrite the operation with a copy.
1060     if (!NewSubReg) {
1061       // Move the current index to an invalid position.
1062       // We do not want another call to this method to be able
1063       // to do any change.
1064       CurrentSrcIdx = -1;
1065       // Rewrite the operation as a COPY.
1066       // Get rid of the sub-register index.
1067       CopyLike.removeOperand(2);
1068       // Morph the operation into a COPY.
1069       CopyLike.setDesc(TII.get(TargetOpcode::COPY));
1070       return true;
1071     }
1072     CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
1073     return true;
1074   }
1075 };
1076 
1077 /// Specialized rewriter for REG_SEQUENCE instruction.
1078 class RegSequenceRewriter : public Rewriter {
1079 public:
1080   RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) {
1081     assert(MI.isRegSequence() && "Invalid instruction");
1082   }
1083 
1084   /// \see Rewriter::getNextRewritableSource()
1085   /// Here CopyLike has the following form:
1086   /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
1087   /// Each call will return a different source, walking all the available
1088   /// source.
1089   ///
1090   /// The first call returns:
1091   /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
1092   /// (DstReg, DstSubReg) = (dst, subIdx1).
1093   ///
1094   /// The second call returns:
1095   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
1096   /// (DstReg, DstSubReg) = (dst, subIdx2).
1097   ///
1098   /// And so on, until all the sources have been traversed, then
1099   /// it returns false.
1100   bool getNextRewritableSource(RegSubRegPair &Src,
1101                                RegSubRegPair &Dst) override {
1102     // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
1103 
1104     // If this is the first call, move to the first argument.
1105     if (CurrentSrcIdx == 0) {
1106       CurrentSrcIdx = 1;
1107     } else {
1108       // Otherwise, move to the next argument and check that it is valid.
1109       CurrentSrcIdx += 2;
1110       if (CurrentSrcIdx >= CopyLike.getNumOperands())
1111         return false;
1112     }
1113     const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
1114     Src.Reg = MOInsertedReg.getReg();
1115     // If we have to compose sub-register indices, bail out.
1116     if ((Src.SubReg = MOInsertedReg.getSubReg()))
1117       return false;
1118 
1119     // We want to track something that is compatible with the related
1120     // partial definition.
1121     Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
1122 
1123     const MachineOperand &MODef = CopyLike.getOperand(0);
1124     Dst.Reg = MODef.getReg();
1125     // If we have to compose sub-registers, bail.
1126     return MODef.getSubReg() == 0;
1127   }
1128 
1129   bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
1130     // We cannot rewrite out of bound operands.
1131     // Moreover, rewritable sources are at odd positions.
1132     if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
1133       return false;
1134 
1135     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
1136     MO.setReg(NewReg);
1137     MO.setSubReg(NewSubReg);
1138     return true;
1139   }
1140 };
1141 
1142 } // end anonymous namespace
1143 
1144 /// Get the appropriated Rewriter for \p MI.
1145 /// \return A pointer to a dynamically allocated Rewriter or nullptr if no
1146 /// rewriter works for \p MI.
1147 static Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) {
1148   // Handle uncoalescable copy-like instructions.
1149   if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
1150       MI.isExtractSubregLike())
1151     return new UncoalescableRewriter(MI);
1152 
1153   switch (MI.getOpcode()) {
1154   default:
1155     return nullptr;
1156   case TargetOpcode::COPY:
1157     return new CopyRewriter(MI);
1158   case TargetOpcode::INSERT_SUBREG:
1159     return new InsertSubregRewriter(MI);
1160   case TargetOpcode::EXTRACT_SUBREG:
1161     return new ExtractSubregRewriter(MI, TII);
1162   case TargetOpcode::REG_SEQUENCE:
1163     return new RegSequenceRewriter(MI);
1164   }
1165 }
1166 
1167 /// Given a \p Def.Reg and Def.SubReg  pair, use \p RewriteMap to find
1168 /// the new source to use for rewrite. If \p HandleMultipleSources is true and
1169 /// multiple sources for a given \p Def are found along the way, we found a
1170 /// PHI instructions that needs to be rewritten.
1171 /// TODO: HandleMultipleSources should be removed once we test PHI handling
1172 /// with coalescable copies.
1173 static RegSubRegPair
1174 getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
1175              RegSubRegPair Def,
1176              const PeepholeOptimizer::RewriteMapTy &RewriteMap,
1177              bool HandleMultipleSources = true) {
1178   RegSubRegPair LookupSrc(Def.Reg, Def.SubReg);
1179   while (true) {
1180     ValueTrackerResult Res = RewriteMap.lookup(LookupSrc);
1181     // If there are no entries on the map, LookupSrc is the new source.
1182     if (!Res.isValid())
1183       return LookupSrc;
1184 
1185     // There's only one source for this definition, keep searching...
1186     unsigned NumSrcs = Res.getNumSources();
1187     if (NumSrcs == 1) {
1188       LookupSrc.Reg = Res.getSrcReg(0);
1189       LookupSrc.SubReg = Res.getSrcSubReg(0);
1190       continue;
1191     }
1192 
1193     // TODO: Remove once multiple srcs w/ coalescable copies are supported.
1194     if (!HandleMultipleSources)
1195       break;
1196 
1197     // Multiple sources, recurse into each source to find a new source
1198     // for it. Then, rewrite the PHI accordingly to its new edges.
1199     SmallVector<RegSubRegPair, 4> NewPHISrcs;
1200     for (unsigned i = 0; i < NumSrcs; ++i) {
1201       RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i));
1202       NewPHISrcs.push_back(
1203           getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources));
1204     }
1205 
1206     // Build the new PHI node and return its def register as the new source.
1207     MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst());
1208     MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI);
1209     LLVM_DEBUG(dbgs() << "-- getNewSource\n");
1210     LLVM_DEBUG(dbgs() << "   Replacing: " << OrigPHI);
1211     LLVM_DEBUG(dbgs() << "        With: " << NewPHI);
1212     const MachineOperand &MODef = NewPHI.getOperand(0);
1213     return RegSubRegPair(MODef.getReg(), MODef.getSubReg());
1214   }
1215 
1216   return RegSubRegPair(0, 0);
1217 }
1218 
1219 /// Optimize generic copy instructions to avoid cross register bank copy.
1220 /// The optimization looks through a chain of copies and tries to find a source
1221 /// that has a compatible register class.
1222 /// Two register classes are considered to be compatible if they share the same
1223 /// register bank.
1224 /// New copies issued by this optimization are register allocator
1225 /// friendly. This optimization does not remove any copy as it may
1226 /// overconstrain the register allocator, but replaces some operands
1227 /// when possible.
1228 /// \pre isCoalescableCopy(*MI) is true.
1229 /// \return True, when \p MI has been rewritten. False otherwise.
1230 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) {
1231   assert(isCoalescableCopy(MI) && "Invalid argument");
1232   assert(MI.getDesc().getNumDefs() == 1 &&
1233          "Coalescer can understand multiple defs?!");
1234   const MachineOperand &MODef = MI.getOperand(0);
1235   // Do not rewrite physical definitions.
1236   if (MODef.getReg().isPhysical())
1237     return false;
1238 
1239   bool Changed = false;
1240   // Get the right rewriter for the current copy.
1241   std::unique_ptr<Rewriter> CpyRewriter(getCopyRewriter(MI, *TII));
1242   // If none exists, bail out.
1243   if (!CpyRewriter)
1244     return false;
1245   // Rewrite each rewritable source.
1246   RegSubRegPair Src;
1247   RegSubRegPair TrackPair;
1248   while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) {
1249     // Keep track of PHI nodes and its incoming edges when looking for sources.
1250     RewriteMapTy RewriteMap;
1251     // Try to find a more suitable source. If we failed to do so, or get the
1252     // actual source, move to the next source.
1253     if (!findNextSource(TrackPair, RewriteMap))
1254       continue;
1255 
1256     // Get the new source to rewrite. TODO: Only enable handling of multiple
1257     // sources (PHIs) once we have a motivating example and testcases for it.
1258     RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap,
1259                                         /*HandleMultipleSources=*/false);
1260     if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0)
1261       continue;
1262 
1263     // Rewrite source.
1264     if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) {
1265       // We may have extended the live-range of NewSrc, account for that.
1266       MRI->clearKillFlags(NewSrc.Reg);
1267       Changed = true;
1268     }
1269   }
1270   // TODO: We could have a clean-up method to tidy the instruction.
1271   // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
1272   // => v0 = COPY v1
1273   // Currently we haven't seen motivating example for that and we
1274   // want to avoid untested code.
1275   NumRewrittenCopies += Changed;
1276   return Changed;
1277 }
1278 
1279 /// Rewrite the source found through \p Def, by using the \p RewriteMap
1280 /// and create a new COPY instruction. More info about RewriteMap in
1281 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle
1282 /// Uncoalescable copies, since they are copy like instructions that aren't
1283 /// recognized by the register allocator.
1284 MachineInstr &
1285 PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike,
1286                                  RegSubRegPair Def, RewriteMapTy &RewriteMap) {
1287   assert(!Def.Reg.isPhysical() && "We do not rewrite physical registers");
1288 
1289   // Find the new source to use in the COPY rewrite.
1290   RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap);
1291 
1292   // Insert the COPY.
1293   const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
1294   Register NewVReg = MRI->createVirtualRegister(DefRC);
1295 
1296   MachineInstr *NewCopy =
1297       BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(),
1298               TII->get(TargetOpcode::COPY), NewVReg)
1299           .addReg(NewSrc.Reg, 0, NewSrc.SubReg);
1300 
1301   if (Def.SubReg) {
1302     NewCopy->getOperand(0).setSubReg(Def.SubReg);
1303     NewCopy->getOperand(0).setIsUndef();
1304   }
1305 
1306   LLVM_DEBUG(dbgs() << "-- RewriteSource\n");
1307   LLVM_DEBUG(dbgs() << "   Replacing: " << CopyLike);
1308   LLVM_DEBUG(dbgs() << "        With: " << *NewCopy);
1309   MRI->replaceRegWith(Def.Reg, NewVReg);
1310   MRI->clearKillFlags(NewVReg);
1311 
1312   // We extended the lifetime of NewSrc.Reg, clear the kill flags to
1313   // account for that.
1314   MRI->clearKillFlags(NewSrc.Reg);
1315 
1316   return *NewCopy;
1317 }
1318 
1319 /// Optimize copy-like instructions to create
1320 /// register coalescer friendly instruction.
1321 /// The optimization tries to kill-off the \p MI by looking
1322 /// through a chain of copies to find a source that has a compatible
1323 /// register class.
1324 /// If such a source is found, it replace \p MI by a generic COPY
1325 /// operation.
1326 /// \pre isUncoalescableCopy(*MI) is true.
1327 /// \return True, when \p MI has been optimized. In that case, \p MI has
1328 /// been removed from its parent.
1329 /// All COPY instructions created, are inserted in \p LocalMIs.
1330 bool PeepholeOptimizer::optimizeUncoalescableCopy(
1331     MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
1332   assert(isUncoalescableCopy(MI) && "Invalid argument");
1333   UncoalescableRewriter CpyRewriter(MI);
1334 
1335   // Rewrite each rewritable source by generating new COPYs. This works
1336   // differently from optimizeCoalescableCopy since it first makes sure that all
1337   // definitions can be rewritten.
1338   RewriteMapTy RewriteMap;
1339   RegSubRegPair Src;
1340   RegSubRegPair Def;
1341   SmallVector<RegSubRegPair, 4> RewritePairs;
1342   while (CpyRewriter.getNextRewritableSource(Src, Def)) {
1343     // If a physical register is here, this is probably for a good reason.
1344     // Do not rewrite that.
1345     if (Def.Reg.isPhysical())
1346       return false;
1347 
1348     // If we do not know how to rewrite this definition, there is no point
1349     // in trying to kill this instruction.
1350     if (!findNextSource(Def, RewriteMap))
1351       return false;
1352 
1353     RewritePairs.push_back(Def);
1354   }
1355 
1356   // The change is possible for all defs, do it.
1357   for (const RegSubRegPair &Def : RewritePairs) {
1358     // Rewrite the "copy" in a way the register coalescer understands.
1359     MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap);
1360     LocalMIs.insert(&NewCopy);
1361   }
1362 
1363   // MI is now dead.
1364   LLVM_DEBUG(dbgs() << "Deleting uncoalescable copy: " << MI);
1365   MI.eraseFromParent();
1366   ++NumUncoalescableCopies;
1367   return true;
1368 }
1369 
1370 /// Check whether MI is a candidate for folding into a later instruction.
1371 /// We only fold loads to virtual registers and the virtual register defined
1372 /// has a single user.
1373 bool PeepholeOptimizer::isLoadFoldable(
1374     MachineInstr &MI, SmallSet<Register, 16> &FoldAsLoadDefCandidates) {
1375   if (!MI.canFoldAsLoad() || !MI.mayLoad())
1376     return false;
1377   const MCInstrDesc &MCID = MI.getDesc();
1378   if (MCID.getNumDefs() != 1)
1379     return false;
1380 
1381   Register Reg = MI.getOperand(0).getReg();
1382   // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting
1383   // loads. It should be checked when processing uses of the load, since
1384   // uses can be removed during peephole.
1385   if (Reg.isVirtual() && !MI.getOperand(0).getSubReg() &&
1386       MRI->hasOneNonDBGUser(Reg)) {
1387     FoldAsLoadDefCandidates.insert(Reg);
1388     return true;
1389   }
1390   return false;
1391 }
1392 
1393 bool PeepholeOptimizer::isMoveImmediate(
1394     MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
1395     DenseMap<Register, MachineInstr *> &ImmDefMIs) {
1396   const MCInstrDesc &MCID = MI.getDesc();
1397   if (MCID.getNumDefs() != 1 || !MI.getOperand(0).isReg())
1398     return false;
1399   Register Reg = MI.getOperand(0).getReg();
1400   if (!Reg.isVirtual())
1401     return false;
1402 
1403   int64_t ImmVal;
1404   if (!MI.isMoveImmediate() && !TII->getConstValDefinedInReg(MI, Reg, ImmVal))
1405     return false;
1406 
1407   ImmDefMIs.insert(std::make_pair(Reg, &MI));
1408   ImmDefRegs.insert(Reg);
1409   return true;
1410 }
1411 
1412 /// Try folding register operands that are defined by move immediate
1413 /// instructions, i.e. a trivial constant folding optimization, if
1414 /// and only if the def and use are in the same BB.
1415 bool PeepholeOptimizer::foldImmediate(
1416     MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
1417     DenseMap<Register, MachineInstr *> &ImmDefMIs, bool &Deleted) {
1418   Deleted = false;
1419   for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1420     MachineOperand &MO = MI.getOperand(i);
1421     if (!MO.isReg() || MO.isDef())
1422       continue;
1423     Register Reg = MO.getReg();
1424     if (!Reg.isVirtual())
1425       continue;
1426     if (ImmDefRegs.count(Reg) == 0)
1427       continue;
1428     DenseMap<Register, MachineInstr *>::iterator II = ImmDefMIs.find(Reg);
1429     assert(II != ImmDefMIs.end() && "couldn't find immediate definition");
1430     if (TII->foldImmediate(MI, *II->second, Reg, MRI)) {
1431       ++NumImmFold;
1432       // foldImmediate can delete ImmDefMI if MI was its only user. If ImmDefMI
1433       // is not deleted, and we happened to get a same MI, we can delete MI and
1434       // replace its users.
1435       if (MRI->getVRegDef(Reg) &&
1436           MI.isIdenticalTo(*II->second, MachineInstr::IgnoreVRegDefs)) {
1437         Register DstReg = MI.getOperand(0).getReg();
1438         if (DstReg.isVirtual() &&
1439             MRI->getRegClass(DstReg) == MRI->getRegClass(Reg)) {
1440           MRI->replaceRegWith(DstReg, Reg);
1441           MI.eraseFromParent();
1442           Deleted = true;
1443         }
1444       }
1445       return true;
1446     }
1447   }
1448   return false;
1449 }
1450 
1451 // FIXME: This is very simple and misses some cases which should be handled when
1452 // motivating examples are found.
1453 //
1454 // The copy rewriting logic should look at uses as well as defs and be able to
1455 // eliminate copies across blocks.
1456 //
1457 // Later copies that are subregister extracts will also not be eliminated since
1458 // only the first copy is considered.
1459 //
1460 // e.g.
1461 // %1 = COPY %0
1462 // %2 = COPY %0:sub1
1463 //
1464 // Should replace %2 uses with %1:sub1
1465 bool PeepholeOptimizer::foldRedundantCopy(MachineInstr &MI) {
1466   assert(MI.isCopy() && "expected a COPY machine instruction");
1467 
1468   RegSubRegPair SrcPair;
1469   if (!getCopySrc(MI, SrcPair))
1470     return false;
1471 
1472   Register DstReg = MI.getOperand(0).getReg();
1473   if (!DstReg.isVirtual())
1474     return false;
1475 
1476   if (CopySrcMIs.insert(std::make_pair(SrcPair, &MI)).second) {
1477     // First copy of this reg seen.
1478     return false;
1479   }
1480 
1481   MachineInstr *PrevCopy = CopySrcMIs.find(SrcPair)->second;
1482 
1483   assert(SrcPair.SubReg == PrevCopy->getOperand(1).getSubReg() &&
1484          "Unexpected mismatching subreg!");
1485 
1486   Register PrevDstReg = PrevCopy->getOperand(0).getReg();
1487 
1488   // Only replace if the copy register class is the same.
1489   //
1490   // TODO: If we have multiple copies to different register classes, we may want
1491   // to track multiple copies of the same source register.
1492   if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg))
1493     return false;
1494 
1495   MRI->replaceRegWith(DstReg, PrevDstReg);
1496 
1497   // Lifetime of the previous copy has been extended.
1498   MRI->clearKillFlags(PrevDstReg);
1499   return true;
1500 }
1501 
1502 bool PeepholeOptimizer::isNAPhysCopy(Register Reg) {
1503   return Reg.isPhysical() && !MRI->isAllocatable(Reg);
1504 }
1505 
1506 bool PeepholeOptimizer::foldRedundantNAPhysCopy(
1507     MachineInstr &MI, DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs) {
1508   assert(MI.isCopy() && "expected a COPY machine instruction");
1509 
1510   if (DisableNAPhysCopyOpt)
1511     return false;
1512 
1513   Register DstReg = MI.getOperand(0).getReg();
1514   Register SrcReg = MI.getOperand(1).getReg();
1515   if (isNAPhysCopy(SrcReg) && DstReg.isVirtual()) {
1516     // %vreg = COPY $physreg
1517     // Avoid using a datastructure which can track multiple live non-allocatable
1518     // phys->virt copies since LLVM doesn't seem to do this.
1519     NAPhysToVirtMIs.insert({SrcReg, &MI});
1520     return false;
1521   }
1522 
1523   if (!(SrcReg.isVirtual() && isNAPhysCopy(DstReg)))
1524     return false;
1525 
1526   // $physreg = COPY %vreg
1527   auto PrevCopy = NAPhysToVirtMIs.find(DstReg);
1528   if (PrevCopy == NAPhysToVirtMIs.end()) {
1529     // We can't remove the copy: there was an intervening clobber of the
1530     // non-allocatable physical register after the copy to virtual.
1531     LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing "
1532                       << MI);
1533     return false;
1534   }
1535 
1536   Register PrevDstReg = PrevCopy->second->getOperand(0).getReg();
1537   if (PrevDstReg == SrcReg) {
1538     // Remove the virt->phys copy: we saw the virtual register definition, and
1539     // the non-allocatable physical register's state hasn't changed since then.
1540     LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI);
1541     ++NumNAPhysCopies;
1542     return true;
1543   }
1544 
1545   // Potential missed optimization opportunity: we saw a different virtual
1546   // register get a copy of the non-allocatable physical register, and we only
1547   // track one such copy. Avoid getting confused by this new non-allocatable
1548   // physical register definition, and remove it from the tracked copies.
1549   LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI);
1550   NAPhysToVirtMIs.erase(PrevCopy);
1551   return false;
1552 }
1553 
1554 /// \bried Returns true if \p MO is a virtual register operand.
1555 static bool isVirtualRegisterOperand(MachineOperand &MO) {
1556   return MO.isReg() && MO.getReg().isVirtual();
1557 }
1558 
1559 bool PeepholeOptimizer::findTargetRecurrence(
1560     Register Reg, const SmallSet<Register, 2> &TargetRegs,
1561     RecurrenceCycle &RC) {
1562   // Recurrence found if Reg is in TargetRegs.
1563   if (TargetRegs.count(Reg))
1564     return true;
1565 
1566   // TODO: Curerntly, we only allow the last instruction of the recurrence
1567   // cycle (the instruction that feeds the PHI instruction) to have more than
1568   // one uses to guarantee that commuting operands does not tie registers
1569   // with overlapping live range. Once we have actual live range info of
1570   // each register, this constraint can be relaxed.
1571   if (!MRI->hasOneNonDBGUse(Reg))
1572     return false;
1573 
1574   // Give up if the reccurrence chain length is longer than the limit.
1575   if (RC.size() >= MaxRecurrenceChain)
1576     return false;
1577 
1578   MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg));
1579   unsigned Idx = MI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr);
1580 
1581   // Only interested in recurrences whose instructions have only one def, which
1582   // is a virtual register.
1583   if (MI.getDesc().getNumDefs() != 1)
1584     return false;
1585 
1586   MachineOperand &DefOp = MI.getOperand(0);
1587   if (!isVirtualRegisterOperand(DefOp))
1588     return false;
1589 
1590   // Check if def operand of MI is tied to any use operand. We are only
1591   // interested in the case that all the instructions in the recurrence chain
1592   // have there def operand tied with one of the use operand.
1593   unsigned TiedUseIdx;
1594   if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx))
1595     return false;
1596 
1597   if (Idx == TiedUseIdx) {
1598     RC.push_back(RecurrenceInstr(&MI));
1599     return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1600   } else {
1601     // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx.
1602     unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex;
1603     if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) {
1604       RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx));
1605       return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1606     }
1607   }
1608 
1609   return false;
1610 }
1611 
1612 /// Phi instructions will eventually be lowered to copy instructions.
1613 /// If phi is in a loop header, a recurrence may formulated around the source
1614 /// and destination of the phi. For such case commuting operands of the
1615 /// instructions in the recurrence may enable coalescing of the copy instruction
1616 /// generated from the phi. For example, if there is a recurrence of
1617 ///
1618 /// LoopHeader:
1619 ///   %1 = phi(%0, %100)
1620 /// LoopLatch:
1621 ///   %0<def, tied1> = ADD %2<def, tied0>, %1
1622 ///
1623 /// , the fact that %0 and %2 are in the same tied operands set makes
1624 /// the coalescing of copy instruction generated from the phi in
1625 /// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and
1626 /// %2 have overlapping live range. This introduces additional move
1627 /// instruction to the final assembly. However, if we commute %2 and
1628 /// %1 of ADD instruction, the redundant move instruction can be
1629 /// avoided.
1630 bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) {
1631   SmallSet<Register, 2> TargetRegs;
1632   for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) {
1633     MachineOperand &MO = PHI.getOperand(Idx);
1634     assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction");
1635     TargetRegs.insert(MO.getReg());
1636   }
1637 
1638   bool Changed = false;
1639   RecurrenceCycle RC;
1640   if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) {
1641     // Commutes operands of instructions in RC if necessary so that the copy to
1642     // be generated from PHI can be coalesced.
1643     LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI);
1644     for (auto &RI : RC) {
1645       LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI()));
1646       auto CP = RI.getCommutePair();
1647       if (CP) {
1648         Changed = true;
1649         TII->commuteInstruction(*(RI.getMI()), false, (*CP).first,
1650                                 (*CP).second);
1651         LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI()));
1652       }
1653     }
1654   }
1655 
1656   return Changed;
1657 }
1658 
1659 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
1660   if (skipFunction(MF.getFunction()))
1661     return false;
1662 
1663   LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
1664   LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
1665 
1666   if (DisablePeephole)
1667     return false;
1668 
1669   TII = MF.getSubtarget().getInstrInfo();
1670   TRI = MF.getSubtarget().getRegisterInfo();
1671   MRI = &MF.getRegInfo();
1672   DT = Aggressive ? &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree()
1673                   : nullptr;
1674   MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
1675   MF.setDelegate(this);
1676 
1677   bool Changed = false;
1678 
1679   for (MachineBasicBlock &MBB : MF) {
1680     bool SeenMoveImm = false;
1681 
1682     // During this forward scan, at some point it needs to answer the question
1683     // "given a pointer to an MI in the current BB, is it located before or
1684     // after the current instruction".
1685     // To perform this, the following set keeps track of the MIs already seen
1686     // during the scan, if a MI is not in the set, it is assumed to be located
1687     // after. Newly created MIs have to be inserted in the set as well.
1688     SmallPtrSet<MachineInstr*, 16> LocalMIs;
1689     SmallSet<Register, 4> ImmDefRegs;
1690     DenseMap<Register, MachineInstr *> ImmDefMIs;
1691     SmallSet<Register, 16> FoldAsLoadDefCandidates;
1692 
1693     // Track when a non-allocatable physical register is copied to a virtual
1694     // register so that useless moves can be removed.
1695     //
1696     // $physreg is the map index; MI is the last valid `%vreg = COPY $physreg`
1697     // without any intervening re-definition of $physreg.
1698     DenseMap<Register, MachineInstr *> NAPhysToVirtMIs;
1699 
1700     CopySrcMIs.clear();
1701 
1702     bool IsLoopHeader = MLI->isLoopHeader(&MBB);
1703 
1704     for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
1705          MII != MIE; ) {
1706       MachineInstr *MI = &*MII;
1707       // We may be erasing MI below, increment MII now.
1708       ++MII;
1709       LocalMIs.insert(MI);
1710 
1711       // Skip debug instructions. They should not affect this peephole
1712       // optimization.
1713       if (MI->isDebugInstr())
1714         continue;
1715 
1716       if (MI->isPosition())
1717         continue;
1718 
1719       if (IsLoopHeader && MI->isPHI()) {
1720         if (optimizeRecurrence(*MI)) {
1721           Changed = true;
1722           continue;
1723         }
1724       }
1725 
1726       if (!MI->isCopy()) {
1727         for (const MachineOperand &MO : MI->operands()) {
1728           // Visit all operands: definitions can be implicit or explicit.
1729           if (MO.isReg()) {
1730             Register Reg = MO.getReg();
1731             if (MO.isDef() && isNAPhysCopy(Reg)) {
1732               const auto &Def = NAPhysToVirtMIs.find(Reg);
1733               if (Def != NAPhysToVirtMIs.end()) {
1734                 // A new definition of the non-allocatable physical register
1735                 // invalidates previous copies.
1736                 LLVM_DEBUG(dbgs()
1737                            << "NAPhysCopy: invalidating because of " << *MI);
1738                 NAPhysToVirtMIs.erase(Def);
1739               }
1740             }
1741           } else if (MO.isRegMask()) {
1742             const uint32_t *RegMask = MO.getRegMask();
1743             for (auto &RegMI : NAPhysToVirtMIs) {
1744               Register Def = RegMI.first;
1745               if (MachineOperand::clobbersPhysReg(RegMask, Def)) {
1746                 LLVM_DEBUG(dbgs()
1747                            << "NAPhysCopy: invalidating because of " << *MI);
1748                 NAPhysToVirtMIs.erase(Def);
1749               }
1750             }
1751           }
1752         }
1753       }
1754 
1755       if (MI->isImplicitDef() || MI->isKill())
1756         continue;
1757 
1758       if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) {
1759         // Blow away all non-allocatable physical registers knowledge since we
1760         // don't know what's correct anymore.
1761         //
1762         // FIXME: handle explicit asm clobbers.
1763         LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to "
1764                           << *MI);
1765         NAPhysToVirtMIs.clear();
1766       }
1767 
1768       if ((isUncoalescableCopy(*MI) &&
1769            optimizeUncoalescableCopy(*MI, LocalMIs)) ||
1770           (MI->isCompare() && optimizeCmpInstr(*MI)) ||
1771           (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) {
1772         // MI is deleted.
1773         LocalMIs.erase(MI);
1774         Changed = true;
1775         continue;
1776       }
1777 
1778       if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) {
1779         Changed = true;
1780         continue;
1781       }
1782 
1783       if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) {
1784         // MI is just rewritten.
1785         Changed = true;
1786         continue;
1787       }
1788 
1789       if (MI->isCopy() && (foldRedundantCopy(*MI) ||
1790                            foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) {
1791         LocalMIs.erase(MI);
1792         LLVM_DEBUG(dbgs() << "Deleting redundant copy: " << *MI << "\n");
1793         MI->eraseFromParent();
1794         Changed = true;
1795         continue;
1796       }
1797 
1798       if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) {
1799         SeenMoveImm = true;
1800       } else {
1801         Changed |= optimizeExtInstr(*MI, MBB, LocalMIs);
1802         // optimizeExtInstr might have created new instructions after MI
1803         // and before the already incremented MII. Adjust MII so that the
1804         // next iteration sees the new instructions.
1805         MII = MI;
1806         ++MII;
1807         if (SeenMoveImm) {
1808           bool Deleted;
1809           Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs, Deleted);
1810           if (Deleted) {
1811             LocalMIs.erase(MI);
1812             continue;
1813           }
1814         }
1815       }
1816 
1817       // Check whether MI is a load candidate for folding into a later
1818       // instruction. If MI is not a candidate, check whether we can fold an
1819       // earlier load into MI.
1820       if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) &&
1821           !FoldAsLoadDefCandidates.empty()) {
1822 
1823         // We visit each operand even after successfully folding a previous
1824         // one.  This allows us to fold multiple loads into a single
1825         // instruction.  We do assume that optimizeLoadInstr doesn't insert
1826         // foldable uses earlier in the argument list.  Since we don't restart
1827         // iteration, we'd miss such cases.
1828         const MCInstrDesc &MIDesc = MI->getDesc();
1829         for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands();
1830              ++i) {
1831           const MachineOperand &MOp = MI->getOperand(i);
1832           if (!MOp.isReg())
1833             continue;
1834           Register FoldAsLoadDefReg = MOp.getReg();
1835           if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
1836             // We need to fold load after optimizeCmpInstr, since
1837             // optimizeCmpInstr can enable folding by converting SUB to CMP.
1838             // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
1839             // we need it for markUsesInDebugValueAsUndef().
1840             Register FoldedReg = FoldAsLoadDefReg;
1841             MachineInstr *DefMI = nullptr;
1842             if (MachineInstr *FoldMI =
1843                     TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) {
1844               // Update LocalMIs since we replaced MI with FoldMI and deleted
1845               // DefMI.
1846               LLVM_DEBUG(dbgs() << "Replacing: " << *MI);
1847               LLVM_DEBUG(dbgs() << "     With: " << *FoldMI);
1848               LocalMIs.erase(MI);
1849               LocalMIs.erase(DefMI);
1850               LocalMIs.insert(FoldMI);
1851               // Update the call site info.
1852               if (MI->shouldUpdateCallSiteInfo())
1853                 MI->getMF()->moveCallSiteInfo(MI, FoldMI);
1854               MI->eraseFromParent();
1855               DefMI->eraseFromParent();
1856               MRI->markUsesInDebugValueAsUndef(FoldedReg);
1857               FoldAsLoadDefCandidates.erase(FoldedReg);
1858               ++NumLoadFold;
1859 
1860               // MI is replaced with FoldMI so we can continue trying to fold
1861               Changed = true;
1862               MI = FoldMI;
1863             }
1864           }
1865         }
1866       }
1867 
1868       // If we run into an instruction we can't fold across, discard
1869       // the load candidates.  Note: We might be able to fold *into* this
1870       // instruction, so this needs to be after the folding logic.
1871       if (MI->isLoadFoldBarrier()) {
1872         LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI);
1873         FoldAsLoadDefCandidates.clear();
1874       }
1875     }
1876   }
1877 
1878   MF.resetDelegate(this);
1879   return Changed;
1880 }
1881 
1882 ValueTrackerResult ValueTracker::getNextSourceFromCopy() {
1883   assert(Def->isCopy() && "Invalid definition");
1884   // Copy instruction are supposed to be: Def = Src.
1885   // If someone breaks this assumption, bad things will happen everywhere.
1886   // There may be implicit uses preventing the copy to be moved across
1887   // some target specific register definitions
1888   assert(Def->getNumOperands() - Def->getNumImplicitOperands() == 2 &&
1889          "Invalid number of operands");
1890   assert(!Def->hasImplicitDef() && "Only implicit uses are allowed");
1891 
1892   if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
1893     // If we look for a different subreg, it means we want a subreg of src.
1894     // Bails as we do not support composing subregs yet.
1895     return ValueTrackerResult();
1896   // Otherwise, we want the whole source.
1897   const MachineOperand &Src = Def->getOperand(1);
1898   if (Src.isUndef())
1899     return ValueTrackerResult();
1900   return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1901 }
1902 
1903 ValueTrackerResult ValueTracker::getNextSourceFromBitcast() {
1904   assert(Def->isBitcast() && "Invalid definition");
1905 
1906   // Bail if there are effects that a plain copy will not expose.
1907   if (Def->mayRaiseFPException() || Def->hasUnmodeledSideEffects())
1908     return ValueTrackerResult();
1909 
1910   // Bitcasts with more than one def are not supported.
1911   if (Def->getDesc().getNumDefs() != 1)
1912     return ValueTrackerResult();
1913   const MachineOperand DefOp = Def->getOperand(DefIdx);
1914   if (DefOp.getSubReg() != DefSubReg)
1915     // If we look for a different subreg, it means we want a subreg of the src.
1916     // Bails as we do not support composing subregs yet.
1917     return ValueTrackerResult();
1918 
1919   unsigned SrcIdx = Def->getNumOperands();
1920   for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
1921        ++OpIdx) {
1922     const MachineOperand &MO = Def->getOperand(OpIdx);
1923     if (!MO.isReg() || !MO.getReg())
1924       continue;
1925     // Ignore dead implicit defs.
1926     if (MO.isImplicit() && MO.isDead())
1927       continue;
1928     assert(!MO.isDef() && "We should have skipped all the definitions by now");
1929     if (SrcIdx != EndOpIdx)
1930       // Multiple sources?
1931       return ValueTrackerResult();
1932     SrcIdx = OpIdx;
1933   }
1934 
1935   // In some rare case, Def has no input, SrcIdx is out of bound,
1936   // getOperand(SrcIdx) will fail below.
1937   if (SrcIdx >= Def->getNumOperands())
1938     return ValueTrackerResult();
1939 
1940   // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY
1941   // will break the assumed guarantees for the upper bits.
1942   for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) {
1943     if (UseMI.isSubregToReg())
1944       return ValueTrackerResult();
1945   }
1946 
1947   const MachineOperand &Src = Def->getOperand(SrcIdx);
1948   if (Src.isUndef())
1949     return ValueTrackerResult();
1950   return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1951 }
1952 
1953 ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() {
1954   assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
1955          "Invalid definition");
1956 
1957   if (Def->getOperand(DefIdx).getSubReg())
1958     // If we are composing subregs, bail out.
1959     // The case we are checking is Def.<subreg> = REG_SEQUENCE.
1960     // This should almost never happen as the SSA property is tracked at
1961     // the register level (as opposed to the subreg level).
1962     // I.e.,
1963     // Def.sub0 =
1964     // Def.sub1 =
1965     // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
1966     // Def. Thus, it must not be generated.
1967     // However, some code could theoretically generates a single
1968     // Def.sub0 (i.e, not defining the other subregs) and we would
1969     // have this case.
1970     // If we can ascertain (or force) that this never happens, we could
1971     // turn that into an assertion.
1972     return ValueTrackerResult();
1973 
1974   if (!TII)
1975     // We could handle the REG_SEQUENCE here, but we do not want to
1976     // duplicate the code from the generic TII.
1977     return ValueTrackerResult();
1978 
1979   SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs;
1980   if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
1981     return ValueTrackerResult();
1982 
1983   // We are looking at:
1984   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1985   // Check if one of the operand defines the subreg we are interested in.
1986   for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) {
1987     if (RegSeqInput.SubIdx == DefSubReg)
1988       return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg);
1989   }
1990 
1991   // If the subreg we are tracking is super-defined by another subreg,
1992   // we could follow this value. However, this would require to compose
1993   // the subreg and we do not do that for now.
1994   return ValueTrackerResult();
1995 }
1996 
1997 ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() {
1998   assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
1999          "Invalid definition");
2000 
2001   if (Def->getOperand(DefIdx).getSubReg())
2002     // If we are composing subreg, bail out.
2003     // Same remark as getNextSourceFromRegSequence.
2004     // I.e., this may be turned into an assert.
2005     return ValueTrackerResult();
2006 
2007   if (!TII)
2008     // We could handle the REG_SEQUENCE here, but we do not want to
2009     // duplicate the code from the generic TII.
2010     return ValueTrackerResult();
2011 
2012   RegSubRegPair BaseReg;
2013   RegSubRegPairAndIdx InsertedReg;
2014   if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
2015     return ValueTrackerResult();
2016 
2017   // We are looking at:
2018   // Def = INSERT_SUBREG v0, v1, sub1
2019   // There are two cases:
2020   // 1. DefSubReg == sub1, get v1.
2021   // 2. DefSubReg != sub1, the value may be available through v0.
2022 
2023   // #1 Check if the inserted register matches the required sub index.
2024   if (InsertedReg.SubIdx == DefSubReg) {
2025     return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg);
2026   }
2027   // #2 Otherwise, if the sub register we are looking for is not partial
2028   // defined by the inserted element, we can look through the main
2029   // register (v0).
2030   const MachineOperand &MODef = Def->getOperand(DefIdx);
2031   // If the result register (Def) and the base register (v0) do not
2032   // have the same register class or if we have to compose
2033   // subregisters, bail out.
2034   if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
2035       BaseReg.SubReg)
2036     return ValueTrackerResult();
2037 
2038   // Get the TRI and check if the inserted sub-register overlaps with the
2039   // sub-register we are tracking.
2040   const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
2041   if (!TRI ||
2042       !(TRI->getSubRegIndexLaneMask(DefSubReg) &
2043         TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none())
2044     return ValueTrackerResult();
2045   // At this point, the value is available in v0 via the same subreg
2046   // we used for Def.
2047   return ValueTrackerResult(BaseReg.Reg, DefSubReg);
2048 }
2049 
2050 ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() {
2051   assert((Def->isExtractSubreg() ||
2052           Def->isExtractSubregLike()) && "Invalid definition");
2053   // We are looking at:
2054   // Def = EXTRACT_SUBREG v0, sub0
2055 
2056   // Bail if we have to compose sub registers.
2057   // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
2058   if (DefSubReg)
2059     return ValueTrackerResult();
2060 
2061   if (!TII)
2062     // We could handle the EXTRACT_SUBREG here, but we do not want to
2063     // duplicate the code from the generic TII.
2064     return ValueTrackerResult();
2065 
2066   RegSubRegPairAndIdx ExtractSubregInputReg;
2067   if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
2068     return ValueTrackerResult();
2069 
2070   // Bail if we have to compose sub registers.
2071   // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
2072   if (ExtractSubregInputReg.SubReg)
2073     return ValueTrackerResult();
2074   // Otherwise, the value is available in the v0.sub0.
2075   return ValueTrackerResult(ExtractSubregInputReg.Reg,
2076                             ExtractSubregInputReg.SubIdx);
2077 }
2078 
2079 ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() {
2080   assert(Def->isSubregToReg() && "Invalid definition");
2081   // We are looking at:
2082   // Def = SUBREG_TO_REG Imm, v0, sub0
2083 
2084   // Bail if we have to compose sub registers.
2085   // If DefSubReg != sub0, we would have to check that all the bits
2086   // we track are included in sub0 and if yes, we would have to
2087   // determine the right subreg in v0.
2088   if (DefSubReg != Def->getOperand(3).getImm())
2089     return ValueTrackerResult();
2090   // Bail if we have to compose sub registers.
2091   // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
2092   if (Def->getOperand(2).getSubReg())
2093     return ValueTrackerResult();
2094 
2095   return ValueTrackerResult(Def->getOperand(2).getReg(),
2096                             Def->getOperand(3).getImm());
2097 }
2098 
2099 /// Explore each PHI incoming operand and return its sources.
2100 ValueTrackerResult ValueTracker::getNextSourceFromPHI() {
2101   assert(Def->isPHI() && "Invalid definition");
2102   ValueTrackerResult Res;
2103 
2104   // If we look for a different subreg, bail as we do not support composing
2105   // subregs yet.
2106   if (Def->getOperand(0).getSubReg() != DefSubReg)
2107     return ValueTrackerResult();
2108 
2109   // Return all register sources for PHI instructions.
2110   for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) {
2111     const MachineOperand &MO = Def->getOperand(i);
2112     assert(MO.isReg() && "Invalid PHI instruction");
2113     // We have no code to deal with undef operands. They shouldn't happen in
2114     // normal programs anyway.
2115     if (MO.isUndef())
2116       return ValueTrackerResult();
2117     Res.addSource(MO.getReg(), MO.getSubReg());
2118   }
2119 
2120   return Res;
2121 }
2122 
2123 ValueTrackerResult ValueTracker::getNextSourceImpl() {
2124   assert(Def && "This method needs a valid definition");
2125 
2126   assert(((Def->getOperand(DefIdx).isDef() &&
2127            (DefIdx < Def->getDesc().getNumDefs() ||
2128             Def->getDesc().isVariadic())) ||
2129           Def->getOperand(DefIdx).isImplicit()) &&
2130          "Invalid DefIdx");
2131   if (Def->isCopy())
2132     return getNextSourceFromCopy();
2133   if (Def->isBitcast())
2134     return getNextSourceFromBitcast();
2135   // All the remaining cases involve "complex" instructions.
2136   // Bail if we did not ask for the advanced tracking.
2137   if (DisableAdvCopyOpt)
2138     return ValueTrackerResult();
2139   if (Def->isRegSequence() || Def->isRegSequenceLike())
2140     return getNextSourceFromRegSequence();
2141   if (Def->isInsertSubreg() || Def->isInsertSubregLike())
2142     return getNextSourceFromInsertSubreg();
2143   if (Def->isExtractSubreg() || Def->isExtractSubregLike())
2144     return getNextSourceFromExtractSubreg();
2145   if (Def->isSubregToReg())
2146     return getNextSourceFromSubregToReg();
2147   if (Def->isPHI())
2148     return getNextSourceFromPHI();
2149   return ValueTrackerResult();
2150 }
2151 
2152 ValueTrackerResult ValueTracker::getNextSource() {
2153   // If we reach a point where we cannot move up in the use-def chain,
2154   // there is nothing we can get.
2155   if (!Def)
2156     return ValueTrackerResult();
2157 
2158   ValueTrackerResult Res = getNextSourceImpl();
2159   if (Res.isValid()) {
2160     // Update definition, definition index, and subregister for the
2161     // next call of getNextSource.
2162     // Update the current register.
2163     bool OneRegSrc = Res.getNumSources() == 1;
2164     if (OneRegSrc)
2165       Reg = Res.getSrcReg(0);
2166     // Update the result before moving up in the use-def chain
2167     // with the instruction containing the last found sources.
2168     Res.setInst(Def);
2169 
2170     // If we can still move up in the use-def chain, move to the next
2171     // definition.
2172     if (!Reg.isPhysical() && OneRegSrc) {
2173       MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg);
2174       if (DI != MRI.def_end()) {
2175         Def = DI->getParent();
2176         DefIdx = DI.getOperandNo();
2177         DefSubReg = Res.getSrcSubReg(0);
2178       } else {
2179         Def = nullptr;
2180       }
2181       return Res;
2182     }
2183   }
2184   // If we end up here, this means we will not be able to find another source
2185   // for the next iteration. Make sure any new call to getNextSource bails out
2186   // early by cutting the use-def chain.
2187   Def = nullptr;
2188   return Res;
2189 }
2190