1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass eliminates machine instruction PHI nodes by inserting copy 10 // instructions. This destroys SSA information, but is the desired input for 11 // some register allocators. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/PHIElimination.h" 16 #include "PHIEliminationUtils.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/CodeGen/LiveInterval.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/LiveVariables.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineDominators.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/SlotIndexes.h" 34 #include "llvm/CodeGen/TargetInstrInfo.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/TargetSubtargetInfo.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <cassert> 43 #include <iterator> 44 #include <utility> 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "phi-node-elimination" 49 50 static cl::opt<bool> 51 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), 52 cl::Hidden, 53 cl::desc("Disable critical edge splitting " 54 "during PHI elimination")); 55 56 static cl::opt<bool> 57 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), 58 cl::Hidden, 59 cl::desc("Split all critical edges during " 60 "PHI elimination")); 61 62 static cl::opt<bool> NoPhiElimLiveOutEarlyExit( 63 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden, 64 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true.")); 65 66 namespace { 67 68 class PHIEliminationImpl { 69 MachineRegisterInfo *MRI = nullptr; // Machine register information 70 LiveVariables *LV = nullptr; 71 LiveIntervals *LIS = nullptr; 72 MachineLoopInfo *MLI = nullptr; 73 MachineDominatorTree *MDT = nullptr; 74 75 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions 76 /// in predecessor basic blocks. 77 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); 78 79 void LowerPHINode(MachineBasicBlock &MBB, 80 MachineBasicBlock::iterator LastPHIIt, 81 bool AllEdgesCritical); 82 83 /// analyzePHINodes - Gather information about the PHI nodes in 84 /// here. In particular, we want to map the number of uses of a virtual 85 /// register which is used in a PHI node. We map that to the BB the 86 /// vreg is coming from. This is used later to determine when the vreg 87 /// is killed in the BB. 88 void analyzePHINodes(const MachineFunction &MF); 89 90 /// Split critical edges where necessary for good coalescer performance. 91 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, 92 MachineLoopInfo *MLI, 93 std::vector<SparseBitVector<>> *LiveInSets); 94 95 // These functions are temporary abstractions around LiveVariables and 96 // LiveIntervals, so they can go away when LiveVariables does. 97 bool isLiveIn(Register Reg, const MachineBasicBlock *MBB); 98 bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB); 99 100 using BBVRegPair = std::pair<unsigned, Register>; 101 using VRegPHIUse = DenseMap<BBVRegPair, unsigned>; 102 103 // Count the number of non-undef PHI uses of each register in each BB. 104 VRegPHIUse VRegPHIUseCount; 105 106 // Defs of PHI sources which are implicit_def. 107 SmallPtrSet<MachineInstr *, 4> ImpDefs; 108 109 // Map reusable lowered PHI node -> incoming join register. 110 using LoweredPHIMap = 111 DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>; 112 LoweredPHIMap LoweredPHIs; 113 114 MachineFunctionPass *P = nullptr; 115 MachineFunctionAnalysisManager *MFAM = nullptr; 116 117 public: 118 PHIEliminationImpl(MachineFunctionPass *P) : P(P) { 119 auto *LVWrapper = P->getAnalysisIfAvailable<LiveVariablesWrapperPass>(); 120 auto *LISWrapper = P->getAnalysisIfAvailable<LiveIntervalsWrapperPass>(); 121 auto *MLIWrapper = P->getAnalysisIfAvailable<MachineLoopInfoWrapperPass>(); 122 auto *MDTWrapper = 123 P->getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>(); 124 LV = LVWrapper ? &LVWrapper->getLV() : nullptr; 125 LIS = LISWrapper ? &LISWrapper->getLIS() : nullptr; 126 MLI = MLIWrapper ? &MLIWrapper->getLI() : nullptr; 127 MDT = MDTWrapper ? &MDTWrapper->getDomTree() : nullptr; 128 } 129 130 PHIEliminationImpl(MachineFunction &MF, MachineFunctionAnalysisManager &AM) 131 : LV(AM.getCachedResult<LiveVariablesAnalysis>(MF)), 132 LIS(AM.getCachedResult<LiveIntervalsAnalysis>(MF)), 133 MLI(AM.getCachedResult<MachineLoopAnalysis>(MF)), 134 MDT(AM.getCachedResult<MachineDominatorTreeAnalysis>(MF)), MFAM(&AM) {} 135 136 bool run(MachineFunction &MF); 137 }; 138 139 class PHIElimination : public MachineFunctionPass { 140 public: 141 static char ID; // Pass identification, replacement for typeid 142 143 PHIElimination() : MachineFunctionPass(ID) { 144 initializePHIEliminationPass(*PassRegistry::getPassRegistry()); 145 } 146 147 bool runOnMachineFunction(MachineFunction &MF) override { 148 PHIEliminationImpl Impl(this); 149 return Impl.run(MF); 150 } 151 152 MachineFunctionProperties getSetProperties() const override { 153 return MachineFunctionProperties().set( 154 MachineFunctionProperties::Property::NoPHIs); 155 } 156 157 void getAnalysisUsage(AnalysisUsage &AU) const override; 158 }; 159 160 } // end anonymous namespace 161 162 PreservedAnalyses 163 PHIEliminationPass::run(MachineFunction &MF, 164 MachineFunctionAnalysisManager &MFAM) { 165 PHIEliminationImpl Impl(MF, MFAM); 166 bool Changed = Impl.run(MF); 167 if (!Changed) 168 return PreservedAnalyses::all(); 169 auto PA = getMachineFunctionPassPreservedAnalyses(); 170 PA.preserve<LiveIntervalsAnalysis>(); 171 PA.preserve<LiveVariablesAnalysis>(); 172 PA.preserve<SlotIndexesAnalysis>(); 173 PA.preserve<MachineDominatorTreeAnalysis>(); 174 PA.preserve<MachineLoopAnalysis>(); 175 return PA; 176 } 177 178 STATISTIC(NumLowered, "Number of phis lowered"); 179 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); 180 STATISTIC(NumReused, "Number of reused lowered phis"); 181 182 char PHIElimination::ID = 0; 183 184 char &llvm::PHIEliminationID = PHIElimination::ID; 185 186 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE, 187 "Eliminate PHI nodes for register allocation", false, 188 false) 189 INITIALIZE_PASS_DEPENDENCY(LiveVariablesWrapperPass) 190 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE, 191 "Eliminate PHI nodes for register allocation", false, false) 192 193 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { 194 AU.addUsedIfAvailable<LiveVariablesWrapperPass>(); 195 AU.addPreserved<LiveVariablesWrapperPass>(); 196 AU.addPreserved<SlotIndexesWrapperPass>(); 197 AU.addPreserved<LiveIntervalsWrapperPass>(); 198 AU.addPreserved<MachineDominatorTreeWrapperPass>(); 199 AU.addPreserved<MachineLoopInfoWrapperPass>(); 200 MachineFunctionPass::getAnalysisUsage(AU); 201 } 202 203 bool PHIEliminationImpl::run(MachineFunction &MF) { 204 MRI = &MF.getRegInfo(); 205 206 bool Changed = false; 207 208 // Split critical edges to help the coalescer. 209 if (!DisableEdgeSplitting && (LV || LIS)) { 210 // A set of live-in regs for each MBB which is used to update LV 211 // efficiently also with large functions. 212 std::vector<SparseBitVector<>> LiveInSets; 213 if (LV) { 214 LiveInSets.resize(MF.size()); 215 for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) { 216 // Set the bit for this register for each MBB where it is 217 // live-through or live-in (killed). 218 Register VirtReg = Register::index2VirtReg(Index); 219 MachineInstr *DefMI = MRI->getVRegDef(VirtReg); 220 if (!DefMI) 221 continue; 222 LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg); 223 SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin(); 224 SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end(); 225 while (AliveBlockItr != EndItr) { 226 unsigned BlockNum = *(AliveBlockItr++); 227 LiveInSets[BlockNum].set(Index); 228 } 229 // The register is live into an MBB in which it is killed but not 230 // defined. See comment for VarInfo in LiveVariables.h. 231 MachineBasicBlock *DefMBB = DefMI->getParent(); 232 if (VI.Kills.size() > 1 || 233 (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB)) 234 for (auto *MI : VI.Kills) 235 LiveInSets[MI->getParent()->getNumber()].set(Index); 236 } 237 } 238 239 for (auto &MBB : MF) 240 Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr)); 241 } 242 243 // This pass takes the function out of SSA form. 244 MRI->leaveSSA(); 245 246 // Populate VRegPHIUseCount 247 if (LV || LIS) 248 analyzePHINodes(MF); 249 250 // Eliminate PHI instructions by inserting copies into predecessor blocks. 251 for (auto &MBB : MF) 252 Changed |= EliminatePHINodes(MF, MBB); 253 254 // Remove dead IMPLICIT_DEF instructions. 255 for (MachineInstr *DefMI : ImpDefs) { 256 Register DefReg = DefMI->getOperand(0).getReg(); 257 if (MRI->use_nodbg_empty(DefReg)) { 258 if (LIS) 259 LIS->RemoveMachineInstrFromMaps(*DefMI); 260 DefMI->eraseFromParent(); 261 } 262 } 263 264 // Clean up the lowered PHI instructions. 265 for (auto &I : LoweredPHIs) { 266 if (LIS) 267 LIS->RemoveMachineInstrFromMaps(*I.first); 268 MF.deleteMachineInstr(I.first); 269 } 270 271 // TODO: we should use the incremental DomTree updater here. 272 if (Changed && MDT) 273 MDT->getBase().recalculate(MF); 274 275 LoweredPHIs.clear(); 276 ImpDefs.clear(); 277 VRegPHIUseCount.clear(); 278 279 MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs); 280 281 return Changed; 282 } 283 284 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in 285 /// predecessor basic blocks. 286 bool PHIEliminationImpl::EliminatePHINodes(MachineFunction &MF, 287 MachineBasicBlock &MBB) { 288 if (MBB.empty() || !MBB.front().isPHI()) 289 return false; // Quick exit for basic blocks without PHIs. 290 291 // Get an iterator to the last PHI node. 292 MachineBasicBlock::iterator LastPHIIt = 293 std::prev(MBB.SkipPHIsAndLabels(MBB.begin())); 294 295 // If all incoming edges are critical, we try to deduplicate identical PHIs so 296 // that we generate fewer copies. If at any edge is non-critical, we either 297 // have less than two predecessors (=> no PHIs) or a predecessor has only us 298 // as a successor (=> identical PHI node can't occur in different block). 299 bool AllEdgesCritical = MBB.pred_size() >= 2; 300 for (MachineBasicBlock *Pred : MBB.predecessors()) { 301 if (Pred->succ_size() < 2) { 302 AllEdgesCritical = false; 303 break; 304 } 305 } 306 307 while (MBB.front().isPHI()) 308 LowerPHINode(MBB, LastPHIIt, AllEdgesCritical); 309 310 return true; 311 } 312 313 /// Return true if all defs of VirtReg are implicit-defs. 314 /// This includes registers with no defs. 315 static bool isImplicitlyDefined(unsigned VirtReg, 316 const MachineRegisterInfo &MRI) { 317 for (MachineInstr &DI : MRI.def_instructions(VirtReg)) 318 if (!DI.isImplicitDef()) 319 return false; 320 return true; 321 } 322 323 /// Return true if all sources of the phi node are implicit_def's, or undef's. 324 static bool allPhiOperandsUndefined(const MachineInstr &MPhi, 325 const MachineRegisterInfo &MRI) { 326 for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) { 327 const MachineOperand &MO = MPhi.getOperand(I); 328 if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef()) 329 return false; 330 } 331 return true; 332 } 333 /// LowerPHINode - Lower the PHI node at the top of the specified block. 334 void PHIEliminationImpl::LowerPHINode(MachineBasicBlock &MBB, 335 MachineBasicBlock::iterator LastPHIIt, 336 bool AllEdgesCritical) { 337 ++NumLowered; 338 339 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt); 340 341 // Unlink the PHI node from the basic block, but don't delete the PHI yet. 342 MachineInstr *MPhi = MBB.remove(&*MBB.begin()); 343 344 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; 345 Register DestReg = MPhi->getOperand(0).getReg(); 346 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); 347 bool isDead = MPhi->getOperand(0).isDead(); 348 349 // Create a new register for the incoming PHI arguments. 350 MachineFunction &MF = *MBB.getParent(); 351 unsigned IncomingReg = 0; 352 bool EliminateNow = true; // delay elimination of nodes in LoweredPHIs 353 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? 354 355 // Insert a register to register copy at the top of the current block (but 356 // after any remaining phi nodes) which copies the new incoming register 357 // into the phi node destination. 358 MachineInstr *PHICopy = nullptr; 359 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 360 if (allPhiOperandsUndefined(*MPhi, *MRI)) 361 // If all sources of a PHI node are implicit_def or undef uses, just emit an 362 // implicit_def instead of a copy. 363 PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 364 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 365 else { 366 // Can we reuse an earlier PHI node? This only happens for critical edges, 367 // typically those created by tail duplication. Typically, an identical PHI 368 // node can't occur, so avoid hashing/storing such PHIs, which is somewhat 369 // expensive. 370 unsigned *Entry = nullptr; 371 if (AllEdgesCritical) 372 Entry = &LoweredPHIs[MPhi]; 373 if (Entry && *Entry) { 374 // An identical PHI node was already lowered. Reuse the incoming register. 375 IncomingReg = *Entry; 376 reusedIncoming = true; 377 ++NumReused; 378 LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for " 379 << *MPhi); 380 } else { 381 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); 382 IncomingReg = MF.getRegInfo().createVirtualRegister(RC); 383 if (Entry) { 384 EliminateNow = false; 385 *Entry = IncomingReg; 386 } 387 } 388 389 // Give the target possiblity to handle special cases fallthrough otherwise 390 PHICopy = TII->createPHIDestinationCopy( 391 MBB, AfterPHIsIt, MPhi->getDebugLoc(), IncomingReg, DestReg); 392 } 393 394 if (MPhi->peekDebugInstrNum()) { 395 // If referred to by debug-info, store where this PHI was. 396 MachineFunction *MF = MBB.getParent(); 397 unsigned ID = MPhi->peekDebugInstrNum(); 398 auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0); 399 auto Res = MF->DebugPHIPositions.insert({ID, P}); 400 assert(Res.second); 401 (void)Res; 402 } 403 404 // Update live variable information if there is any. 405 if (LV) { 406 if (IncomingReg) { 407 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); 408 409 MachineInstr *OldKill = nullptr; 410 bool IsPHICopyAfterOldKill = false; 411 412 if (reusedIncoming && (OldKill = VI.findKill(&MBB))) { 413 // Calculate whether the PHICopy is after the OldKill. 414 // In general, the PHICopy is inserted as the first non-phi instruction 415 // by default, so it's before the OldKill. But some Target hooks for 416 // createPHIDestinationCopy() may modify the default insert position of 417 // PHICopy. 418 for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end(); I != E; 419 ++I) { 420 if (I == PHICopy) 421 break; 422 423 if (I == OldKill) { 424 IsPHICopyAfterOldKill = true; 425 break; 426 } 427 } 428 } 429 430 // When we are reusing the incoming register and it has been marked killed 431 // by OldKill, if the PHICopy is after the OldKill, we should remove the 432 // killed flag from OldKill. 433 if (IsPHICopyAfterOldKill) { 434 LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill); 435 LV->removeVirtualRegisterKilled(IncomingReg, *OldKill); 436 LLVM_DEBUG(MBB.dump()); 437 } 438 439 // Add information to LiveVariables to know that the first used incoming 440 // value or the resued incoming value whose PHICopy is after the OldKIll 441 // is killed. Note that because the value is defined in several places 442 // (once each for each incoming block), the "def" block and instruction 443 // fields for the VarInfo is not filled in. 444 if (!OldKill || IsPHICopyAfterOldKill) 445 LV->addVirtualRegisterKilled(IncomingReg, *PHICopy); 446 } 447 448 // Since we are going to be deleting the PHI node, if it is the last use of 449 // any registers, or if the value itself is dead, we need to move this 450 // information over to the new copy we just inserted. 451 LV->removeVirtualRegistersKilled(*MPhi); 452 453 // If the result is dead, update LV. 454 if (isDead) { 455 LV->addVirtualRegisterDead(DestReg, *PHICopy); 456 LV->removeVirtualRegisterDead(DestReg, *MPhi); 457 } 458 } 459 460 // Update LiveIntervals for the new copy or implicit def. 461 if (LIS) { 462 SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy); 463 464 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB); 465 if (IncomingReg) { 466 // Add the region from the beginning of MBB to the copy instruction to 467 // IncomingReg's live interval. 468 LiveInterval &IncomingLI = LIS->getOrCreateEmptyInterval(IncomingReg); 469 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex); 470 if (!IncomingVNI) 471 IncomingVNI = 472 IncomingLI.getNextValue(MBBStartIndex, LIS->getVNInfoAllocator()); 473 IncomingLI.addSegment(LiveInterval::Segment( 474 MBBStartIndex, DestCopyIndex.getRegSlot(), IncomingVNI)); 475 } 476 477 LiveInterval &DestLI = LIS->getInterval(DestReg); 478 assert(!DestLI.empty() && "PHIs should have non-empty LiveIntervals."); 479 480 SlotIndex NewStart = DestCopyIndex.getRegSlot(); 481 482 SmallVector<LiveRange *> ToUpdate({&DestLI}); 483 for (auto &SR : DestLI.subranges()) 484 ToUpdate.push_back(&SR); 485 486 for (auto LR : ToUpdate) { 487 auto DestSegment = LR->find(MBBStartIndex); 488 assert(DestSegment != LR->end() && 489 "PHI destination must be live in block"); 490 491 if (LR->endIndex().isDead()) { 492 // A dead PHI's live range begins and ends at the start of the MBB, but 493 // the lowered copy, which will still be dead, needs to begin and end at 494 // the copy instruction. 495 VNInfo *OrigDestVNI = LR->getVNInfoAt(DestSegment->start); 496 assert(OrigDestVNI && "PHI destination should be live at block entry."); 497 LR->removeSegment(DestSegment->start, DestSegment->start.getDeadSlot()); 498 LR->createDeadDef(NewStart, LIS->getVNInfoAllocator()); 499 LR->removeValNo(OrigDestVNI); 500 continue; 501 } 502 503 // Destination copies are not inserted in the same order as the PHI nodes 504 // they replace. Hence the start of the live range may need to be adjusted 505 // to match the actual slot index of the copy. 506 if (DestSegment->start > NewStart) { 507 VNInfo *VNI = LR->getVNInfoAt(DestSegment->start); 508 assert(VNI && "value should be defined for known segment"); 509 LR->addSegment( 510 LiveInterval::Segment(NewStart, DestSegment->start, VNI)); 511 } else if (DestSegment->start < NewStart) { 512 assert(DestSegment->start >= MBBStartIndex); 513 assert(DestSegment->end >= DestCopyIndex.getRegSlot()); 514 LR->removeSegment(DestSegment->start, NewStart); 515 } 516 VNInfo *DestVNI = LR->getVNInfoAt(NewStart); 517 assert(DestVNI && "PHI destination should be live at its definition."); 518 DestVNI->def = NewStart; 519 } 520 } 521 522 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. 523 if (LV || LIS) { 524 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { 525 if (!MPhi->getOperand(i).isUndef()) { 526 --VRegPHIUseCount[BBVRegPair( 527 MPhi->getOperand(i + 1).getMBB()->getNumber(), 528 MPhi->getOperand(i).getReg())]; 529 } 530 } 531 } 532 533 // Now loop over all of the incoming arguments, changing them to copy into the 534 // IncomingReg register in the corresponding predecessor basic block. 535 SmallPtrSet<MachineBasicBlock *, 8> MBBsInsertedInto; 536 for (int i = NumSrcs - 1; i >= 0; --i) { 537 Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg(); 538 unsigned SrcSubReg = MPhi->getOperand(i * 2 + 1).getSubReg(); 539 bool SrcUndef = MPhi->getOperand(i * 2 + 1).isUndef() || 540 isImplicitlyDefined(SrcReg, *MRI); 541 assert(SrcReg.isVirtual() && 542 "Machine PHI Operands must all be virtual registers!"); 543 544 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source 545 // path the PHI. 546 MachineBasicBlock &opBlock = *MPhi->getOperand(i * 2 + 2).getMBB(); 547 548 // Check to make sure we haven't already emitted the copy for this block. 549 // This can happen because PHI nodes may have multiple entries for the same 550 // basic block. 551 if (!MBBsInsertedInto.insert(&opBlock).second) 552 continue; // If the copy has already been emitted, we're done. 553 554 MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg); 555 if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) { 556 assert(SrcRegDef->getOperand(0).isReg() && 557 SrcRegDef->getOperand(0).isDef() && 558 "Expected operand 0 to be a reg def!"); 559 // Now that the PHI's use has been removed (as the instruction was 560 // removed) there should be no other uses of the SrcReg. 561 assert(MRI->use_empty(SrcReg) && 562 "Expected a single use from UnspillableTerminator"); 563 SrcRegDef->getOperand(0).setReg(IncomingReg); 564 565 // Update LiveVariables. 566 if (LV) { 567 LiveVariables::VarInfo &SrcVI = LV->getVarInfo(SrcReg); 568 LiveVariables::VarInfo &IncomingVI = LV->getVarInfo(IncomingReg); 569 IncomingVI.AliveBlocks = std::move(SrcVI.AliveBlocks); 570 SrcVI.AliveBlocks.clear(); 571 } 572 573 continue; 574 } 575 576 // Find a safe location to insert the copy, this may be the first terminator 577 // in the block (or end()). 578 MachineBasicBlock::iterator InsertPos = 579 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); 580 581 // Insert the copy. 582 MachineInstr *NewSrcInstr = nullptr; 583 if (!reusedIncoming && IncomingReg) { 584 if (SrcUndef) { 585 // The source register is undefined, so there is no need for a real 586 // COPY, but we still need to ensure joint dominance by defs. 587 // Insert an IMPLICIT_DEF instruction. 588 NewSrcInstr = 589 BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 590 TII->get(TargetOpcode::IMPLICIT_DEF), IncomingReg); 591 592 // Clean up the old implicit-def, if there even was one. 593 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) 594 if (DefMI->isImplicitDef()) 595 ImpDefs.insert(DefMI); 596 } else { 597 // Delete the debug location, since the copy is inserted into a 598 // different basic block. 599 NewSrcInstr = TII->createPHISourceCopy(opBlock, InsertPos, nullptr, 600 SrcReg, SrcSubReg, IncomingReg); 601 } 602 } 603 604 // We only need to update the LiveVariables kill of SrcReg if this was the 605 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live 606 // out of the predecessor. We can also ignore undef sources. 607 if (LV && !SrcUndef && 608 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && 609 !LV->isLiveOut(SrcReg, opBlock)) { 610 // We want to be able to insert a kill of the register if this PHI (aka, 611 // the copy we just inserted) is the last use of the source value. Live 612 // variable analysis conservatively handles this by saying that the value 613 // is live until the end of the block the PHI entry lives in. If the value 614 // really is dead at the PHI copy, there will be no successor blocks which 615 // have the value live-in. 616 617 // Okay, if we now know that the value is not live out of the block, we 618 // can add a kill marker in this block saying that it kills the incoming 619 // value! 620 621 // In our final twist, we have to decide which instruction kills the 622 // register. In most cases this is the copy, however, terminator 623 // instructions at the end of the block may also use the value. In this 624 // case, we should mark the last such terminator as being the killing 625 // block, not the copy. 626 MachineBasicBlock::iterator KillInst = opBlock.end(); 627 for (MachineBasicBlock::iterator Term = InsertPos; Term != opBlock.end(); 628 ++Term) { 629 if (Term->readsRegister(SrcReg, /*TRI=*/nullptr)) 630 KillInst = Term; 631 } 632 633 if (KillInst == opBlock.end()) { 634 // No terminator uses the register. 635 636 if (reusedIncoming || !IncomingReg) { 637 // We may have to rewind a bit if we didn't insert a copy this time. 638 KillInst = InsertPos; 639 while (KillInst != opBlock.begin()) { 640 --KillInst; 641 if (KillInst->isDebugInstr()) 642 continue; 643 if (KillInst->readsRegister(SrcReg, /*TRI=*/nullptr)) 644 break; 645 } 646 } else { 647 // We just inserted this copy. 648 KillInst = NewSrcInstr; 649 } 650 } 651 assert(KillInst->readsRegister(SrcReg, /*TRI=*/nullptr) && 652 "Cannot find kill instruction"); 653 654 // Finally, mark it killed. 655 LV->addVirtualRegisterKilled(SrcReg, *KillInst); 656 657 // This vreg no longer lives all of the way through opBlock. 658 unsigned opBlockNum = opBlock.getNumber(); 659 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); 660 } 661 662 if (LIS) { 663 if (NewSrcInstr) { 664 LIS->InsertMachineInstrInMaps(*NewSrcInstr); 665 LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr); 666 } 667 668 if (!SrcUndef && 669 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { 670 LiveInterval &SrcLI = LIS->getInterval(SrcReg); 671 672 bool isLiveOut = false; 673 for (MachineBasicBlock *Succ : opBlock.successors()) { 674 SlotIndex startIdx = LIS->getMBBStartIdx(Succ); 675 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx); 676 677 // Definitions by other PHIs are not truly live-in for our purposes. 678 if (VNI && VNI->def != startIdx) { 679 isLiveOut = true; 680 break; 681 } 682 } 683 684 if (!isLiveOut) { 685 MachineBasicBlock::iterator KillInst = opBlock.end(); 686 for (MachineBasicBlock::iterator Term = InsertPos; 687 Term != opBlock.end(); ++Term) { 688 if (Term->readsRegister(SrcReg, /*TRI=*/nullptr)) 689 KillInst = Term; 690 } 691 692 if (KillInst == opBlock.end()) { 693 // No terminator uses the register. 694 695 if (reusedIncoming || !IncomingReg) { 696 // We may have to rewind a bit if we didn't just insert a copy. 697 KillInst = InsertPos; 698 while (KillInst != opBlock.begin()) { 699 --KillInst; 700 if (KillInst->isDebugInstr()) 701 continue; 702 if (KillInst->readsRegister(SrcReg, /*TRI=*/nullptr)) 703 break; 704 } 705 } else { 706 // We just inserted this copy. 707 KillInst = std::prev(InsertPos); 708 } 709 } 710 assert(KillInst->readsRegister(SrcReg, /*TRI=*/nullptr) && 711 "Cannot find kill instruction"); 712 713 SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst); 714 SrcLI.removeSegment(LastUseIndex.getRegSlot(), 715 LIS->getMBBEndIdx(&opBlock)); 716 for (auto &SR : SrcLI.subranges()) { 717 SR.removeSegment(LastUseIndex.getRegSlot(), 718 LIS->getMBBEndIdx(&opBlock)); 719 } 720 } 721 } 722 } 723 } 724 725 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. 726 if (EliminateNow) { 727 if (LIS) 728 LIS->RemoveMachineInstrFromMaps(*MPhi); 729 MF.deleteMachineInstr(MPhi); 730 } 731 } 732 733 /// analyzePHINodes - Gather information about the PHI nodes in here. In 734 /// particular, we want to map the number of uses of a virtual register which is 735 /// used in a PHI node. We map that to the BB the vreg is coming from. This is 736 /// used later to determine when the vreg is killed in the BB. 737 void PHIEliminationImpl::analyzePHINodes(const MachineFunction &MF) { 738 for (const auto &MBB : MF) { 739 for (const auto &BBI : MBB) { 740 if (!BBI.isPHI()) 741 break; 742 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { 743 if (!BBI.getOperand(i).isUndef()) { 744 ++VRegPHIUseCount[BBVRegPair( 745 BBI.getOperand(i + 1).getMBB()->getNumber(), 746 BBI.getOperand(i).getReg())]; 747 } 748 } 749 } 750 } 751 } 752 753 bool PHIEliminationImpl::SplitPHIEdges( 754 MachineFunction &MF, MachineBasicBlock &MBB, MachineLoopInfo *MLI, 755 std::vector<SparseBitVector<>> *LiveInSets) { 756 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad()) 757 return false; // Quick exit for basic blocks without PHIs. 758 759 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr; 760 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); 761 762 bool Changed = false; 763 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); 764 BBI != BBE && BBI->isPHI(); ++BBI) { 765 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 766 Register Reg = BBI->getOperand(i).getReg(); 767 MachineBasicBlock *PreMBB = BBI->getOperand(i + 1).getMBB(); 768 // Is there a critical edge from PreMBB to MBB? 769 if (PreMBB->succ_size() == 1) 770 continue; 771 772 // Avoid splitting backedges of loops. It would introduce small 773 // out-of-line blocks into the loop which is very bad for code placement. 774 if (PreMBB == &MBB && !SplitAllCriticalEdges) 775 continue; 776 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr; 777 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) 778 continue; 779 780 // LV doesn't consider a phi use live-out, so isLiveOut only returns true 781 // when the source register is live-out for some other reason than a phi 782 // use. That means the copy we will insert in PreMBB won't be a kill, and 783 // there is a risk it may not be coalesced away. 784 // 785 // If the copy would be a kill, there is no need to split the edge. 786 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB); 787 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit) 788 continue; 789 if (ShouldSplit) { 790 LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge " 791 << printMBBReference(*PreMBB) << " -> " 792 << printMBBReference(MBB) << ": " << *BBI); 793 } 794 795 // If Reg is not live-in to MBB, it means it must be live-in to some 796 // other PreMBB successor, and we can avoid the interference by splitting 797 // the edge. 798 // 799 // If Reg *is* live-in to MBB, the interference is inevitable and a copy 800 // is likely to be left after coalescing. If we are looking at a loop 801 // exiting edge, split it so we won't insert code in the loop, otherwise 802 // don't bother. 803 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB); 804 805 // Check for a loop exiting edge. 806 if (!ShouldSplit && CurLoop != PreLoop) { 807 LLVM_DEBUG({ 808 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; 809 if (PreLoop) 810 dbgs() << "PreLoop: " << *PreLoop; 811 if (CurLoop) 812 dbgs() << "CurLoop: " << *CurLoop; 813 }); 814 // This edge could be entering a loop, exiting a loop, or it could be 815 // both: Jumping directly form one loop to the header of a sibling 816 // loop. 817 // Split unless this edge is entering CurLoop from an outer loop. 818 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); 819 } 820 if (!ShouldSplit && !SplitAllCriticalEdges) 821 continue; 822 if (!(P ? PreMBB->SplitCriticalEdge(&MBB, *P, LiveInSets) 823 : PreMBB->SplitCriticalEdge(&MBB, *MFAM, LiveInSets))) { 824 LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n"); 825 continue; 826 } 827 Changed = true; 828 ++NumCriticalEdgesSplit; 829 } 830 } 831 return Changed; 832 } 833 834 bool PHIEliminationImpl::isLiveIn(Register Reg, const MachineBasicBlock *MBB) { 835 assert((LV || LIS) && 836 "isLiveIn() requires either LiveVariables or LiveIntervals"); 837 if (LIS) 838 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB); 839 else 840 return LV->isLiveIn(Reg, *MBB); 841 } 842 843 bool PHIEliminationImpl::isLiveOutPastPHIs(Register Reg, 844 const MachineBasicBlock *MBB) { 845 assert((LV || LIS) && 846 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals"); 847 // LiveVariables considers uses in PHIs to be in the predecessor basic block, 848 // so that a register used only in a PHI is not live out of the block. In 849 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather 850 // than in the predecessor basic block, so that a register used only in a PHI 851 // is live out of the block. 852 if (LIS) { 853 const LiveInterval &LI = LIS->getInterval(Reg); 854 for (const MachineBasicBlock *SI : MBB->successors()) 855 if (LI.liveAt(LIS->getMBBStartIdx(SI))) 856 return true; 857 return false; 858 } else { 859 return LV->isLiveOut(Reg, *MBB); 860 } 861 } 862