xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/PHIElimination.cpp (revision be092bcde96bdcfde9013d60e442cca023bfbd1b)
1  //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This pass eliminates machine instruction PHI nodes by inserting copy
10  // instructions.  This destroys SSA information, but is the desired input for
11  // some register allocators.
12  //
13  //===----------------------------------------------------------------------===//
14  
15  #include "PHIEliminationUtils.h"
16  #include "llvm/ADT/DenseMap.h"
17  #include "llvm/ADT/SmallPtrSet.h"
18  #include "llvm/ADT/Statistic.h"
19  #include "llvm/Analysis/LoopInfo.h"
20  #include "llvm/CodeGen/LiveInterval.h"
21  #include "llvm/CodeGen/LiveIntervals.h"
22  #include "llvm/CodeGen/LiveVariables.h"
23  #include "llvm/CodeGen/MachineBasicBlock.h"
24  #include "llvm/CodeGen/MachineDominators.h"
25  #include "llvm/CodeGen/MachineFunction.h"
26  #include "llvm/CodeGen/MachineFunctionPass.h"
27  #include "llvm/CodeGen/MachineInstr.h"
28  #include "llvm/CodeGen/MachineInstrBuilder.h"
29  #include "llvm/CodeGen/MachineLoopInfo.h"
30  #include "llvm/CodeGen/MachineOperand.h"
31  #include "llvm/CodeGen/MachineRegisterInfo.h"
32  #include "llvm/CodeGen/SlotIndexes.h"
33  #include "llvm/CodeGen/TargetInstrInfo.h"
34  #include "llvm/CodeGen/TargetOpcodes.h"
35  #include "llvm/CodeGen/TargetRegisterInfo.h"
36  #include "llvm/CodeGen/TargetSubtargetInfo.h"
37  #include "llvm/Pass.h"
38  #include "llvm/Support/CommandLine.h"
39  #include "llvm/Support/Debug.h"
40  #include "llvm/Support/raw_ostream.h"
41  #include <cassert>
42  #include <iterator>
43  #include <utility>
44  
45  using namespace llvm;
46  
47  #define DEBUG_TYPE "phi-node-elimination"
48  
49  static cl::opt<bool>
50  DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
51                       cl::Hidden, cl::desc("Disable critical edge splitting "
52                                            "during PHI elimination"));
53  
54  static cl::opt<bool>
55  SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
56                        cl::Hidden, cl::desc("Split all critical edges during "
57                                             "PHI elimination"));
58  
59  static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
60      "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
61      cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
62  
63  namespace {
64  
65    class PHIElimination : public MachineFunctionPass {
66      MachineRegisterInfo *MRI; // Machine register information
67      LiveVariables *LV;
68      LiveIntervals *LIS;
69  
70    public:
71      static char ID; // Pass identification, replacement for typeid
72  
73      PHIElimination() : MachineFunctionPass(ID) {
74        initializePHIEliminationPass(*PassRegistry::getPassRegistry());
75      }
76  
77      bool runOnMachineFunction(MachineFunction &MF) override;
78      void getAnalysisUsage(AnalysisUsage &AU) const override;
79  
80    private:
81      /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
82      /// in predecessor basic blocks.
83      bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
84  
85      void LowerPHINode(MachineBasicBlock &MBB,
86                        MachineBasicBlock::iterator LastPHIIt);
87  
88      /// analyzePHINodes - Gather information about the PHI nodes in
89      /// here. In particular, we want to map the number of uses of a virtual
90      /// register which is used in a PHI node. We map that to the BB the
91      /// vreg is coming from. This is used later to determine when the vreg
92      /// is killed in the BB.
93      void analyzePHINodes(const MachineFunction& MF);
94  
95      /// Split critical edges where necessary for good coalescer performance.
96      bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
97                         MachineLoopInfo *MLI,
98                         std::vector<SparseBitVector<>> *LiveInSets);
99  
100      // These functions are temporary abstractions around LiveVariables and
101      // LiveIntervals, so they can go away when LiveVariables does.
102      bool isLiveIn(Register Reg, const MachineBasicBlock *MBB);
103      bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB);
104  
105      using BBVRegPair = std::pair<unsigned, Register>;
106      using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;
107  
108      // Count the number of non-undef PHI uses of each register in each BB.
109      VRegPHIUse VRegPHIUseCount;
110  
111      // Defs of PHI sources which are implicit_def.
112      SmallPtrSet<MachineInstr*, 4> ImpDefs;
113  
114      // Map reusable lowered PHI node -> incoming join register.
115      using LoweredPHIMap =
116          DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>;
117      LoweredPHIMap LoweredPHIs;
118    };
119  
120  } // end anonymous namespace
121  
122  STATISTIC(NumLowered, "Number of phis lowered");
123  STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
124  STATISTIC(NumReused, "Number of reused lowered phis");
125  
126  char PHIElimination::ID = 0;
127  
128  char& llvm::PHIEliminationID = PHIElimination::ID;
129  
130  INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE,
131                        "Eliminate PHI nodes for register allocation",
132                        false, false)
133  INITIALIZE_PASS_DEPENDENCY(LiveVariables)
134  INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE,
135                      "Eliminate PHI nodes for register allocation", false, false)
136  
137  void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
138    AU.addUsedIfAvailable<LiveVariables>();
139    AU.addPreserved<LiveVariables>();
140    AU.addPreserved<SlotIndexes>();
141    AU.addPreserved<LiveIntervals>();
142    AU.addPreserved<MachineDominatorTree>();
143    AU.addPreserved<MachineLoopInfo>();
144    MachineFunctionPass::getAnalysisUsage(AU);
145  }
146  
147  bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
148    MRI = &MF.getRegInfo();
149    LV = getAnalysisIfAvailable<LiveVariables>();
150    LIS = getAnalysisIfAvailable<LiveIntervals>();
151  
152    bool Changed = false;
153  
154    // Split critical edges to help the coalescer.
155    if (!DisableEdgeSplitting && (LV || LIS)) {
156      // A set of live-in regs for each MBB which is used to update LV
157      // efficiently also with large functions.
158      std::vector<SparseBitVector<>> LiveInSets;
159      if (LV) {
160        LiveInSets.resize(MF.size());
161        for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) {
162          // Set the bit for this register for each MBB where it is
163          // live-through or live-in (killed).
164          Register VirtReg = Register::index2VirtReg(Index);
165          MachineInstr *DefMI = MRI->getVRegDef(VirtReg);
166          if (!DefMI)
167            continue;
168          LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg);
169          SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin();
170          SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end();
171          while (AliveBlockItr != EndItr) {
172            unsigned BlockNum = *(AliveBlockItr++);
173            LiveInSets[BlockNum].set(Index);
174          }
175          // The register is live into an MBB in which it is killed but not
176          // defined. See comment for VarInfo in LiveVariables.h.
177          MachineBasicBlock *DefMBB = DefMI->getParent();
178          if (VI.Kills.size() > 1 ||
179              (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB))
180            for (auto *MI : VI.Kills)
181              LiveInSets[MI->getParent()->getNumber()].set(Index);
182        }
183      }
184  
185      MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
186      for (auto &MBB : MF)
187        Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr));
188    }
189  
190    // This pass takes the function out of SSA form.
191    MRI->leaveSSA();
192  
193    // Populate VRegPHIUseCount
194    analyzePHINodes(MF);
195  
196    // Eliminate PHI instructions by inserting copies into predecessor blocks.
197    for (auto &MBB : MF)
198      Changed |= EliminatePHINodes(MF, MBB);
199  
200    // Remove dead IMPLICIT_DEF instructions.
201    for (MachineInstr *DefMI : ImpDefs) {
202      Register DefReg = DefMI->getOperand(0).getReg();
203      if (MRI->use_nodbg_empty(DefReg)) {
204        if (LIS)
205          LIS->RemoveMachineInstrFromMaps(*DefMI);
206        DefMI->eraseFromParent();
207      }
208    }
209  
210    // Clean up the lowered PHI instructions.
211    for (auto &I : LoweredPHIs) {
212      if (LIS)
213        LIS->RemoveMachineInstrFromMaps(*I.first);
214      MF.deleteMachineInstr(I.first);
215    }
216  
217    // TODO: we should use the incremental DomTree updater here.
218    if (Changed)
219      if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>())
220        MDT->getBase().recalculate(MF);
221  
222    LoweredPHIs.clear();
223    ImpDefs.clear();
224    VRegPHIUseCount.clear();
225  
226    MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
227  
228    return Changed;
229  }
230  
231  /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
232  /// predecessor basic blocks.
233  bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
234                                         MachineBasicBlock &MBB) {
235    if (MBB.empty() || !MBB.front().isPHI())
236      return false;   // Quick exit for basic blocks without PHIs.
237  
238    // Get an iterator to the last PHI node.
239    MachineBasicBlock::iterator LastPHIIt =
240      std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
241  
242    while (MBB.front().isPHI())
243      LowerPHINode(MBB, LastPHIIt);
244  
245    return true;
246  }
247  
248  /// Return true if all defs of VirtReg are implicit-defs.
249  /// This includes registers with no defs.
250  static bool isImplicitlyDefined(unsigned VirtReg,
251                                  const MachineRegisterInfo &MRI) {
252    for (MachineInstr &DI : MRI.def_instructions(VirtReg))
253      if (!DI.isImplicitDef())
254        return false;
255    return true;
256  }
257  
258  /// Return true if all sources of the phi node are implicit_def's, or undef's.
259  static bool allPhiOperandsUndefined(const MachineInstr &MPhi,
260                                      const MachineRegisterInfo &MRI) {
261    for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) {
262      const MachineOperand &MO = MPhi.getOperand(I);
263      if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef())
264        return false;
265    }
266    return true;
267  }
268  /// LowerPHINode - Lower the PHI node at the top of the specified block.
269  void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
270                                    MachineBasicBlock::iterator LastPHIIt) {
271    ++NumLowered;
272  
273    MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
274  
275    // Unlink the PHI node from the basic block, but don't delete the PHI yet.
276    MachineInstr *MPhi = MBB.remove(&*MBB.begin());
277  
278    unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
279    Register DestReg = MPhi->getOperand(0).getReg();
280    assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
281    bool isDead = MPhi->getOperand(0).isDead();
282  
283    // Create a new register for the incoming PHI arguments.
284    MachineFunction &MF = *MBB.getParent();
285    unsigned IncomingReg = 0;
286    bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
287  
288    // Insert a register to register copy at the top of the current block (but
289    // after any remaining phi nodes) which copies the new incoming register
290    // into the phi node destination.
291    MachineInstr *PHICopy = nullptr;
292    const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
293    if (allPhiOperandsUndefined(*MPhi, *MRI))
294      // If all sources of a PHI node are implicit_def or undef uses, just emit an
295      // implicit_def instead of a copy.
296      PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
297              TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
298    else {
299      // Can we reuse an earlier PHI node? This only happens for critical edges,
300      // typically those created by tail duplication.
301      unsigned &entry = LoweredPHIs[MPhi];
302      if (entry) {
303        // An identical PHI node was already lowered. Reuse the incoming register.
304        IncomingReg = entry;
305        reusedIncoming = true;
306        ++NumReused;
307        LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
308                          << *MPhi);
309      } else {
310        const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
311        entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
312      }
313      // Give the target possiblity to handle special cases fallthrough otherwise
314      PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
315                                    IncomingReg, DestReg);
316    }
317  
318    if (MPhi->peekDebugInstrNum()) {
319      // If referred to by debug-info, store where this PHI was.
320      MachineFunction *MF = MBB.getParent();
321      unsigned ID = MPhi->peekDebugInstrNum();
322      auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0);
323      auto Res = MF->DebugPHIPositions.insert({ID, P});
324      assert(Res.second);
325      (void)Res;
326    }
327  
328    // Update live variable information if there is any.
329    if (LV) {
330      if (IncomingReg) {
331        LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
332  
333        // Increment use count of the newly created virtual register.
334        LV->setPHIJoin(IncomingReg);
335  
336        MachineInstr *OldKill = nullptr;
337        bool IsPHICopyAfterOldKill = false;
338  
339        if (reusedIncoming && (OldKill = VI.findKill(&MBB))) {
340          // Calculate whether the PHICopy is after the OldKill.
341          // In general, the PHICopy is inserted as the first non-phi instruction
342          // by default, so it's before the OldKill. But some Target hooks for
343          // createPHIDestinationCopy() may modify the default insert position of
344          // PHICopy.
345          for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end();
346               I != E; ++I) {
347            if (I == PHICopy)
348              break;
349  
350            if (I == OldKill) {
351              IsPHICopyAfterOldKill = true;
352              break;
353            }
354          }
355        }
356  
357        // When we are reusing the incoming register and it has been marked killed
358        // by OldKill, if the PHICopy is after the OldKill, we should remove the
359        // killed flag from OldKill.
360        if (IsPHICopyAfterOldKill) {
361          LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill);
362          LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
363          LLVM_DEBUG(MBB.dump());
364        }
365  
366        // Add information to LiveVariables to know that the first used incoming
367        // value or the resued incoming value whose PHICopy is after the OldKIll
368        // is killed. Note that because the value is defined in several places
369        // (once each for each incoming block), the "def" block and instruction
370        // fields for the VarInfo is not filled in.
371        if (!OldKill || IsPHICopyAfterOldKill)
372          LV->addVirtualRegisterKilled(IncomingReg, *PHICopy);
373      }
374  
375      // Since we are going to be deleting the PHI node, if it is the last use of
376      // any registers, or if the value itself is dead, we need to move this
377      // information over to the new copy we just inserted.
378      LV->removeVirtualRegistersKilled(*MPhi);
379  
380      // If the result is dead, update LV.
381      if (isDead) {
382        LV->addVirtualRegisterDead(DestReg, *PHICopy);
383        LV->removeVirtualRegisterDead(DestReg, *MPhi);
384      }
385    }
386  
387    // Update LiveIntervals for the new copy or implicit def.
388    if (LIS) {
389      SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy);
390  
391      SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
392      if (IncomingReg) {
393        // Add the region from the beginning of MBB to the copy instruction to
394        // IncomingReg's live interval.
395        LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
396        VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
397        if (!IncomingVNI)
398          IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
399                                                LIS->getVNInfoAllocator());
400        IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
401                                                    DestCopyIndex.getRegSlot(),
402                                                    IncomingVNI));
403      }
404  
405      LiveInterval &DestLI = LIS->getInterval(DestReg);
406      assert(!DestLI.empty() && "PHIs should have nonempty LiveIntervals.");
407      if (DestLI.endIndex().isDead()) {
408        // A dead PHI's live range begins and ends at the start of the MBB, but
409        // the lowered copy, which will still be dead, needs to begin and end at
410        // the copy instruction.
411        VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
412        assert(OrigDestVNI && "PHI destination should be live at block entry.");
413        DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
414        DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
415                             LIS->getVNInfoAllocator());
416        DestLI.removeValNo(OrigDestVNI);
417      } else {
418        // Otherwise, remove the region from the beginning of MBB to the copy
419        // instruction from DestReg's live interval.
420        DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
421        VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
422        assert(DestVNI && "PHI destination should be live at its definition.");
423        DestVNI->def = DestCopyIndex.getRegSlot();
424      }
425    }
426  
427    // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
428    for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
429      if (!MPhi->getOperand(i).isUndef()) {
430        --VRegPHIUseCount[BBVRegPair(
431            MPhi->getOperand(i + 1).getMBB()->getNumber(),
432            MPhi->getOperand(i).getReg())];
433      }
434    }
435  
436    // Now loop over all of the incoming arguments, changing them to copy into the
437    // IncomingReg register in the corresponding predecessor basic block.
438    SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
439    for (int i = NumSrcs - 1; i >= 0; --i) {
440      Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg();
441      unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
442      bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
443        isImplicitlyDefined(SrcReg, *MRI);
444      assert(SrcReg.isVirtual() &&
445             "Machine PHI Operands must all be virtual registers!");
446  
447      // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
448      // path the PHI.
449      MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
450  
451      // Check to make sure we haven't already emitted the copy for this block.
452      // This can happen because PHI nodes may have multiple entries for the same
453      // basic block.
454      if (!MBBsInsertedInto.insert(&opBlock).second)
455        continue;  // If the copy has already been emitted, we're done.
456  
457      MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
458      if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) {
459        assert(SrcRegDef->getOperand(0).isReg() &&
460               SrcRegDef->getOperand(0).isDef() &&
461               "Expected operand 0 to be a reg def!");
462        // Now that the PHI's use has been removed (as the instruction was
463        // removed) there should be no other uses of the SrcReg.
464        assert(MRI->use_empty(SrcReg) &&
465               "Expected a single use from UnspillableTerminator");
466        SrcRegDef->getOperand(0).setReg(IncomingReg);
467  
468        // Update LiveVariables.
469        if (LV) {
470          LiveVariables::VarInfo &SrcVI = LV->getVarInfo(SrcReg);
471          LiveVariables::VarInfo &IncomingVI = LV->getVarInfo(IncomingReg);
472          IncomingVI.AliveBlocks = std::move(SrcVI.AliveBlocks);
473          SrcVI.AliveBlocks.clear();
474        }
475  
476        continue;
477      }
478  
479      // Find a safe location to insert the copy, this may be the first terminator
480      // in the block (or end()).
481      MachineBasicBlock::iterator InsertPos =
482        findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
483  
484      // Insert the copy.
485      MachineInstr *NewSrcInstr = nullptr;
486      if (!reusedIncoming && IncomingReg) {
487        if (SrcUndef) {
488          // The source register is undefined, so there is no need for a real
489          // COPY, but we still need to ensure joint dominance by defs.
490          // Insert an IMPLICIT_DEF instruction.
491          NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
492                                TII->get(TargetOpcode::IMPLICIT_DEF),
493                                IncomingReg);
494  
495          // Clean up the old implicit-def, if there even was one.
496          if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
497            if (DefMI->isImplicitDef())
498              ImpDefs.insert(DefMI);
499        } else {
500          // Delete the debug location, since the copy is inserted into a
501          // different basic block.
502          NewSrcInstr = TII->createPHISourceCopy(opBlock, InsertPos, nullptr,
503                                                 SrcReg, SrcSubReg, IncomingReg);
504        }
505      }
506  
507      // We only need to update the LiveVariables kill of SrcReg if this was the
508      // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
509      // out of the predecessor. We can also ignore undef sources.
510      if (LV && !SrcUndef &&
511          !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
512          !LV->isLiveOut(SrcReg, opBlock)) {
513        // We want to be able to insert a kill of the register if this PHI (aka,
514        // the copy we just inserted) is the last use of the source value. Live
515        // variable analysis conservatively handles this by saying that the value
516        // is live until the end of the block the PHI entry lives in. If the value
517        // really is dead at the PHI copy, there will be no successor blocks which
518        // have the value live-in.
519  
520        // Okay, if we now know that the value is not live out of the block, we
521        // can add a kill marker in this block saying that it kills the incoming
522        // value!
523  
524        // In our final twist, we have to decide which instruction kills the
525        // register.  In most cases this is the copy, however, terminator
526        // instructions at the end of the block may also use the value. In this
527        // case, we should mark the last such terminator as being the killing
528        // block, not the copy.
529        MachineBasicBlock::iterator KillInst = opBlock.end();
530        for (MachineBasicBlock::iterator Term = InsertPos; Term != opBlock.end();
531             ++Term) {
532          if (Term->readsRegister(SrcReg))
533            KillInst = Term;
534        }
535  
536        if (KillInst == opBlock.end()) {
537          // No terminator uses the register.
538  
539          if (reusedIncoming || !IncomingReg) {
540            // We may have to rewind a bit if we didn't insert a copy this time.
541            KillInst = InsertPos;
542            while (KillInst != opBlock.begin()) {
543              --KillInst;
544              if (KillInst->isDebugInstr())
545                continue;
546              if (KillInst->readsRegister(SrcReg))
547                break;
548            }
549          } else {
550            // We just inserted this copy.
551            KillInst = NewSrcInstr;
552          }
553        }
554        assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
555  
556        // Finally, mark it killed.
557        LV->addVirtualRegisterKilled(SrcReg, *KillInst);
558  
559        // This vreg no longer lives all of the way through opBlock.
560        unsigned opBlockNum = opBlock.getNumber();
561        LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
562      }
563  
564      if (LIS) {
565        if (NewSrcInstr) {
566          LIS->InsertMachineInstrInMaps(*NewSrcInstr);
567          LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
568        }
569  
570        if (!SrcUndef &&
571            !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
572          LiveInterval &SrcLI = LIS->getInterval(SrcReg);
573  
574          bool isLiveOut = false;
575          for (MachineBasicBlock *Succ : opBlock.successors()) {
576            SlotIndex startIdx = LIS->getMBBStartIdx(Succ);
577            VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
578  
579            // Definitions by other PHIs are not truly live-in for our purposes.
580            if (VNI && VNI->def != startIdx) {
581              isLiveOut = true;
582              break;
583            }
584          }
585  
586          if (!isLiveOut) {
587            MachineBasicBlock::iterator KillInst = opBlock.end();
588            for (MachineBasicBlock::iterator Term = InsertPos;
589                 Term != opBlock.end(); ++Term) {
590              if (Term->readsRegister(SrcReg))
591                KillInst = Term;
592            }
593  
594            if (KillInst == opBlock.end()) {
595              // No terminator uses the register.
596  
597              if (reusedIncoming || !IncomingReg) {
598                // We may have to rewind a bit if we didn't just insert a copy.
599                KillInst = InsertPos;
600                while (KillInst != opBlock.begin()) {
601                  --KillInst;
602                  if (KillInst->isDebugInstr())
603                    continue;
604                  if (KillInst->readsRegister(SrcReg))
605                    break;
606                }
607              } else {
608                // We just inserted this copy.
609                KillInst = std::prev(InsertPos);
610              }
611            }
612            assert(KillInst->readsRegister(SrcReg) &&
613                   "Cannot find kill instruction");
614  
615            SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
616            SrcLI.removeSegment(LastUseIndex.getRegSlot(),
617                                LIS->getMBBEndIdx(&opBlock));
618          }
619        }
620      }
621    }
622  
623    // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
624    if (reusedIncoming || !IncomingReg) {
625      if (LIS)
626        LIS->RemoveMachineInstrFromMaps(*MPhi);
627      MF.deleteMachineInstr(MPhi);
628    }
629  }
630  
631  /// analyzePHINodes - Gather information about the PHI nodes in here. In
632  /// particular, we want to map the number of uses of a virtual register which is
633  /// used in a PHI node. We map that to the BB the vreg is coming from. This is
634  /// used later to determine when the vreg is killed in the BB.
635  void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
636    for (const auto &MBB : MF) {
637      for (const auto &BBI : MBB) {
638        if (!BBI.isPHI())
639          break;
640        for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
641          if (!BBI.getOperand(i).isUndef()) {
642            ++VRegPHIUseCount[BBVRegPair(
643                BBI.getOperand(i + 1).getMBB()->getNumber(),
644                BBI.getOperand(i).getReg())];
645          }
646        }
647      }
648    }
649  }
650  
651  bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
652                                     MachineBasicBlock &MBB,
653                                     MachineLoopInfo *MLI,
654                                     std::vector<SparseBitVector<>> *LiveInSets) {
655    if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
656      return false;   // Quick exit for basic blocks without PHIs.
657  
658    const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
659    bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
660  
661    bool Changed = false;
662    for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
663         BBI != BBE && BBI->isPHI(); ++BBI) {
664      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
665        Register Reg = BBI->getOperand(i).getReg();
666        MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
667        // Is there a critical edge from PreMBB to MBB?
668        if (PreMBB->succ_size() == 1)
669          continue;
670  
671        // Avoid splitting backedges of loops. It would introduce small
672        // out-of-line blocks into the loop which is very bad for code placement.
673        if (PreMBB == &MBB && !SplitAllCriticalEdges)
674          continue;
675        const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
676        if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
677          continue;
678  
679        // LV doesn't consider a phi use live-out, so isLiveOut only returns true
680        // when the source register is live-out for some other reason than a phi
681        // use. That means the copy we will insert in PreMBB won't be a kill, and
682        // there is a risk it may not be coalesced away.
683        //
684        // If the copy would be a kill, there is no need to split the edge.
685        bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
686        if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
687          continue;
688        if (ShouldSplit) {
689          LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
690                            << printMBBReference(*PreMBB) << " -> "
691                            << printMBBReference(MBB) << ": " << *BBI);
692        }
693  
694        // If Reg is not live-in to MBB, it means it must be live-in to some
695        // other PreMBB successor, and we can avoid the interference by splitting
696        // the edge.
697        //
698        // If Reg *is* live-in to MBB, the interference is inevitable and a copy
699        // is likely to be left after coalescing. If we are looking at a loop
700        // exiting edge, split it so we won't insert code in the loop, otherwise
701        // don't bother.
702        ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
703  
704        // Check for a loop exiting edge.
705        if (!ShouldSplit && CurLoop != PreLoop) {
706          LLVM_DEBUG({
707            dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
708            if (PreLoop)
709              dbgs() << "PreLoop: " << *PreLoop;
710            if (CurLoop)
711              dbgs() << "CurLoop: " << *CurLoop;
712          });
713          // This edge could be entering a loop, exiting a loop, or it could be
714          // both: Jumping directly form one loop to the header of a sibling
715          // loop.
716          // Split unless this edge is entering CurLoop from an outer loop.
717          ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
718        }
719        if (!ShouldSplit && !SplitAllCriticalEdges)
720          continue;
721        if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) {
722          LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
723          continue;
724        }
725        Changed = true;
726        ++NumCriticalEdgesSplit;
727      }
728    }
729    return Changed;
730  }
731  
732  bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) {
733    assert((LV || LIS) &&
734           "isLiveIn() requires either LiveVariables or LiveIntervals");
735    if (LIS)
736      return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
737    else
738      return LV->isLiveIn(Reg, *MBB);
739  }
740  
741  bool PHIElimination::isLiveOutPastPHIs(Register Reg,
742                                         const MachineBasicBlock *MBB) {
743    assert((LV || LIS) &&
744           "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
745    // LiveVariables considers uses in PHIs to be in the predecessor basic block,
746    // so that a register used only in a PHI is not live out of the block. In
747    // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
748    // in the predecessor basic block, so that a register used only in a PHI is live
749    // out of the block.
750    if (LIS) {
751      const LiveInterval &LI = LIS->getInterval(Reg);
752      for (const MachineBasicBlock *SI : MBB->successors())
753        if (LI.liveAt(LIS->getMBBStartIdx(SI)))
754          return true;
755      return false;
756    } else {
757      return LV->isLiveOut(Reg, *MBB);
758    }
759  }
760