xref: /freebsd/contrib/llvm-project/llvm/lib/CodeGen/PHIElimination.cpp (revision b4af4f93c682e445bf159f0d1ec90b636296c946)
1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates machine instruction PHI nodes by inserting copy
10 // instructions.  This destroys SSA information, but is the desired input for
11 // some register allocators.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "PHIEliminationUtils.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "llvm/CodeGen/LiveIntervals.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SlotIndexes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetPassConfig.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <iterator>
45 #include <utility>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "phi-node-elimination"
50 
51 static cl::opt<bool>
52 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
53                      cl::Hidden, cl::desc("Disable critical edge splitting "
54                                           "during PHI elimination"));
55 
56 static cl::opt<bool>
57 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
58                       cl::Hidden, cl::desc("Split all critical edges during "
59                                            "PHI elimination"));
60 
61 static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
62     "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
63     cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
64 
65 namespace {
66 
67   class PHIElimination : public MachineFunctionPass {
68     MachineRegisterInfo *MRI; // Machine register information
69     LiveVariables *LV;
70     LiveIntervals *LIS;
71 
72   public:
73     static char ID; // Pass identification, replacement for typeid
74 
75     PHIElimination() : MachineFunctionPass(ID) {
76       initializePHIEliminationPass(*PassRegistry::getPassRegistry());
77     }
78 
79     bool runOnMachineFunction(MachineFunction &MF) override;
80     void getAnalysisUsage(AnalysisUsage &AU) const override;
81 
82   private:
83     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
84     /// in predecessor basic blocks.
85     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
86 
87     void LowerPHINode(MachineBasicBlock &MBB,
88                       MachineBasicBlock::iterator LastPHIIt);
89 
90     /// analyzePHINodes - Gather information about the PHI nodes in
91     /// here. In particular, we want to map the number of uses of a virtual
92     /// register which is used in a PHI node. We map that to the BB the
93     /// vreg is coming from. This is used later to determine when the vreg
94     /// is killed in the BB.
95     void analyzePHINodes(const MachineFunction& MF);
96 
97     /// Split critical edges where necessary for good coalescer performance.
98     bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
99                        MachineLoopInfo *MLI);
100 
101     // These functions are temporary abstractions around LiveVariables and
102     // LiveIntervals, so they can go away when LiveVariables does.
103     bool isLiveIn(unsigned Reg, const MachineBasicBlock *MBB);
104     bool isLiveOutPastPHIs(unsigned Reg, const MachineBasicBlock *MBB);
105 
106     using BBVRegPair = std::pair<unsigned, unsigned>;
107     using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;
108 
109     VRegPHIUse VRegPHIUseCount;
110 
111     // Defs of PHI sources which are implicit_def.
112     SmallPtrSet<MachineInstr*, 4> ImpDefs;
113 
114     // Map reusable lowered PHI node -> incoming join register.
115     using LoweredPHIMap =
116         DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>;
117     LoweredPHIMap LoweredPHIs;
118   };
119 
120 } // end anonymous namespace
121 
122 STATISTIC(NumLowered, "Number of phis lowered");
123 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
124 STATISTIC(NumReused, "Number of reused lowered phis");
125 
126 char PHIElimination::ID = 0;
127 
128 char& llvm::PHIEliminationID = PHIElimination::ID;
129 
130 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE,
131                       "Eliminate PHI nodes for register allocation",
132                       false, false)
133 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
134 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE,
135                     "Eliminate PHI nodes for register allocation", false, false)
136 
137 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
138   AU.addUsedIfAvailable<LiveVariables>();
139   AU.addPreserved<LiveVariables>();
140   AU.addPreserved<SlotIndexes>();
141   AU.addPreserved<LiveIntervals>();
142   AU.addPreserved<MachineDominatorTree>();
143   AU.addPreserved<MachineLoopInfo>();
144   MachineFunctionPass::getAnalysisUsage(AU);
145 }
146 
147 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
148   MRI = &MF.getRegInfo();
149   LV = getAnalysisIfAvailable<LiveVariables>();
150   LIS = getAnalysisIfAvailable<LiveIntervals>();
151 
152   bool Changed = false;
153 
154   // This pass takes the function out of SSA form.
155   MRI->leaveSSA();
156 
157   // Split critical edges to help the coalescer.
158   if (!DisableEdgeSplitting && (LV || LIS)) {
159     MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
160     for (auto &MBB : MF)
161       Changed |= SplitPHIEdges(MF, MBB, MLI);
162   }
163 
164   // Populate VRegPHIUseCount
165   analyzePHINodes(MF);
166 
167   // Eliminate PHI instructions by inserting copies into predecessor blocks.
168   for (auto &MBB : MF)
169     Changed |= EliminatePHINodes(MF, MBB);
170 
171   // Remove dead IMPLICIT_DEF instructions.
172   for (MachineInstr *DefMI : ImpDefs) {
173     Register DefReg = DefMI->getOperand(0).getReg();
174     if (MRI->use_nodbg_empty(DefReg)) {
175       if (LIS)
176         LIS->RemoveMachineInstrFromMaps(*DefMI);
177       DefMI->eraseFromParent();
178     }
179   }
180 
181   // Clean up the lowered PHI instructions.
182   for (auto &I : LoweredPHIs) {
183     if (LIS)
184       LIS->RemoveMachineInstrFromMaps(*I.first);
185     MF.DeleteMachineInstr(I.first);
186   }
187 
188   // TODO: we should use the incremental DomTree updater here.
189   if (Changed)
190     if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>())
191       MDT->getBase().recalculate(MF);
192 
193   LoweredPHIs.clear();
194   ImpDefs.clear();
195   VRegPHIUseCount.clear();
196 
197   MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
198 
199   return Changed;
200 }
201 
202 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
203 /// predecessor basic blocks.
204 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
205                                        MachineBasicBlock &MBB) {
206   if (MBB.empty() || !MBB.front().isPHI())
207     return false;   // Quick exit for basic blocks without PHIs.
208 
209   // Get an iterator to the last PHI node.
210   MachineBasicBlock::iterator LastPHIIt =
211     std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
212 
213   while (MBB.front().isPHI())
214     LowerPHINode(MBB, LastPHIIt);
215 
216   return true;
217 }
218 
219 /// Return true if all defs of VirtReg are implicit-defs.
220 /// This includes registers with no defs.
221 static bool isImplicitlyDefined(unsigned VirtReg,
222                                 const MachineRegisterInfo &MRI) {
223   for (MachineInstr &DI : MRI.def_instructions(VirtReg))
224     if (!DI.isImplicitDef())
225       return false;
226   return true;
227 }
228 
229 /// Return true if all sources of the phi node are implicit_def's, or undef's.
230 static bool allPhiOperandsUndefined(const MachineInstr &MPhi,
231                                     const MachineRegisterInfo &MRI) {
232   for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) {
233     const MachineOperand &MO = MPhi.getOperand(I);
234     if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef())
235       return false;
236   }
237   return true;
238 }
239 /// LowerPHINode - Lower the PHI node at the top of the specified block.
240 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
241                                   MachineBasicBlock::iterator LastPHIIt) {
242   ++NumLowered;
243 
244   MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
245 
246   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
247   MachineInstr *MPhi = MBB.remove(&*MBB.begin());
248 
249   unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
250   Register DestReg = MPhi->getOperand(0).getReg();
251   assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
252   bool isDead = MPhi->getOperand(0).isDead();
253 
254   // Create a new register for the incoming PHI arguments.
255   MachineFunction &MF = *MBB.getParent();
256   unsigned IncomingReg = 0;
257   bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
258 
259   // Insert a register to register copy at the top of the current block (but
260   // after any remaining phi nodes) which copies the new incoming register
261   // into the phi node destination.
262   MachineInstr *PHICopy = nullptr;
263   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
264   if (allPhiOperandsUndefined(*MPhi, *MRI))
265     // If all sources of a PHI node are implicit_def or undef uses, just emit an
266     // implicit_def instead of a copy.
267     PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
268             TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
269   else {
270     // Can we reuse an earlier PHI node? This only happens for critical edges,
271     // typically those created by tail duplication.
272     unsigned &entry = LoweredPHIs[MPhi];
273     if (entry) {
274       // An identical PHI node was already lowered. Reuse the incoming register.
275       IncomingReg = entry;
276       reusedIncoming = true;
277       ++NumReused;
278       LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
279                         << *MPhi);
280     } else {
281       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
282       entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
283     }
284     // Give the target possiblity to handle special cases fallthrough otherwise
285     PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
286                                   IncomingReg, DestReg);
287   }
288 
289   // Update live variable information if there is any.
290   if (LV) {
291     if (IncomingReg) {
292       LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
293 
294       // Increment use count of the newly created virtual register.
295       LV->setPHIJoin(IncomingReg);
296 
297       // When we are reusing the incoming register, it may already have been
298       // killed in this block. The old kill will also have been inserted at
299       // AfterPHIsIt, so it appears before the current PHICopy.
300       if (reusedIncoming)
301         if (MachineInstr *OldKill = VI.findKill(&MBB)) {
302           LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill);
303           LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
304           LLVM_DEBUG(MBB.dump());
305         }
306 
307       // Add information to LiveVariables to know that the incoming value is
308       // killed.  Note that because the value is defined in several places (once
309       // each for each incoming block), the "def" block and instruction fields
310       // for the VarInfo is not filled in.
311       LV->addVirtualRegisterKilled(IncomingReg, *PHICopy);
312     }
313 
314     // Since we are going to be deleting the PHI node, if it is the last use of
315     // any registers, or if the value itself is dead, we need to move this
316     // information over to the new copy we just inserted.
317     LV->removeVirtualRegistersKilled(*MPhi);
318 
319     // If the result is dead, update LV.
320     if (isDead) {
321       LV->addVirtualRegisterDead(DestReg, *PHICopy);
322       LV->removeVirtualRegisterDead(DestReg, *MPhi);
323     }
324   }
325 
326   // Update LiveIntervals for the new copy or implicit def.
327   if (LIS) {
328     SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy);
329 
330     SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
331     if (IncomingReg) {
332       // Add the region from the beginning of MBB to the copy instruction to
333       // IncomingReg's live interval.
334       LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
335       VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
336       if (!IncomingVNI)
337         IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
338                                               LIS->getVNInfoAllocator());
339       IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
340                                                   DestCopyIndex.getRegSlot(),
341                                                   IncomingVNI));
342     }
343 
344     LiveInterval &DestLI = LIS->getInterval(DestReg);
345     assert(DestLI.begin() != DestLI.end() &&
346            "PHIs should have nonempty LiveIntervals.");
347     if (DestLI.endIndex().isDead()) {
348       // A dead PHI's live range begins and ends at the start of the MBB, but
349       // the lowered copy, which will still be dead, needs to begin and end at
350       // the copy instruction.
351       VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
352       assert(OrigDestVNI && "PHI destination should be live at block entry.");
353       DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
354       DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
355                            LIS->getVNInfoAllocator());
356       DestLI.removeValNo(OrigDestVNI);
357     } else {
358       // Otherwise, remove the region from the beginning of MBB to the copy
359       // instruction from DestReg's live interval.
360       DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
361       VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
362       assert(DestVNI && "PHI destination should be live at its definition.");
363       DestVNI->def = DestCopyIndex.getRegSlot();
364     }
365   }
366 
367   // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
368   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
369     --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
370                                  MPhi->getOperand(i).getReg())];
371 
372   // Now loop over all of the incoming arguments, changing them to copy into the
373   // IncomingReg register in the corresponding predecessor basic block.
374   SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
375   for (int i = NumSrcs - 1; i >= 0; --i) {
376     Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg();
377     unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
378     bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
379       isImplicitlyDefined(SrcReg, *MRI);
380     assert(Register::isVirtualRegister(SrcReg) &&
381            "Machine PHI Operands must all be virtual registers!");
382 
383     // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
384     // path the PHI.
385     MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
386 
387     // Check to make sure we haven't already emitted the copy for this block.
388     // This can happen because PHI nodes may have multiple entries for the same
389     // basic block.
390     if (!MBBsInsertedInto.insert(&opBlock).second)
391       continue;  // If the copy has already been emitted, we're done.
392 
393     // Find a safe location to insert the copy, this may be the first terminator
394     // in the block (or end()).
395     MachineBasicBlock::iterator InsertPos =
396       findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
397 
398     // Insert the copy.
399     MachineInstr *NewSrcInstr = nullptr;
400     if (!reusedIncoming && IncomingReg) {
401       if (SrcUndef) {
402         // The source register is undefined, so there is no need for a real
403         // COPY, but we still need to ensure joint dominance by defs.
404         // Insert an IMPLICIT_DEF instruction.
405         NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
406                               TII->get(TargetOpcode::IMPLICIT_DEF),
407                               IncomingReg);
408 
409         // Clean up the old implicit-def, if there even was one.
410         if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
411           if (DefMI->isImplicitDef())
412             ImpDefs.insert(DefMI);
413       } else {
414         NewSrcInstr =
415             TII->createPHISourceCopy(opBlock, InsertPos, MPhi->getDebugLoc(),
416                                      SrcReg, SrcSubReg, IncomingReg);
417       }
418     }
419 
420     // We only need to update the LiveVariables kill of SrcReg if this was the
421     // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
422     // out of the predecessor. We can also ignore undef sources.
423     if (LV && !SrcUndef &&
424         !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
425         !LV->isLiveOut(SrcReg, opBlock)) {
426       // We want to be able to insert a kill of the register if this PHI (aka,
427       // the copy we just inserted) is the last use of the source value. Live
428       // variable analysis conservatively handles this by saying that the value
429       // is live until the end of the block the PHI entry lives in. If the value
430       // really is dead at the PHI copy, there will be no successor blocks which
431       // have the value live-in.
432 
433       // Okay, if we now know that the value is not live out of the block, we
434       // can add a kill marker in this block saying that it kills the incoming
435       // value!
436 
437       // In our final twist, we have to decide which instruction kills the
438       // register.  In most cases this is the copy, however, terminator
439       // instructions at the end of the block may also use the value. In this
440       // case, we should mark the last such terminator as being the killing
441       // block, not the copy.
442       MachineBasicBlock::iterator KillInst = opBlock.end();
443       MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
444       for (MachineBasicBlock::iterator Term = FirstTerm;
445           Term != opBlock.end(); ++Term) {
446         if (Term->readsRegister(SrcReg))
447           KillInst = Term;
448       }
449 
450       if (KillInst == opBlock.end()) {
451         // No terminator uses the register.
452 
453         if (reusedIncoming || !IncomingReg) {
454           // We may have to rewind a bit if we didn't insert a copy this time.
455           KillInst = FirstTerm;
456           while (KillInst != opBlock.begin()) {
457             --KillInst;
458             if (KillInst->isDebugInstr())
459               continue;
460             if (KillInst->readsRegister(SrcReg))
461               break;
462           }
463         } else {
464           // We just inserted this copy.
465           KillInst = NewSrcInstr;
466         }
467       }
468       assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
469 
470       // Finally, mark it killed.
471       LV->addVirtualRegisterKilled(SrcReg, *KillInst);
472 
473       // This vreg no longer lives all of the way through opBlock.
474       unsigned opBlockNum = opBlock.getNumber();
475       LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
476     }
477 
478     if (LIS) {
479       if (NewSrcInstr) {
480         LIS->InsertMachineInstrInMaps(*NewSrcInstr);
481         LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
482       }
483 
484       if (!SrcUndef &&
485           !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
486         LiveInterval &SrcLI = LIS->getInterval(SrcReg);
487 
488         bool isLiveOut = false;
489         for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
490              SE = opBlock.succ_end(); SI != SE; ++SI) {
491           SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
492           VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
493 
494           // Definitions by other PHIs are not truly live-in for our purposes.
495           if (VNI && VNI->def != startIdx) {
496             isLiveOut = true;
497             break;
498           }
499         }
500 
501         if (!isLiveOut) {
502           MachineBasicBlock::iterator KillInst = opBlock.end();
503           MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
504           for (MachineBasicBlock::iterator Term = FirstTerm;
505               Term != opBlock.end(); ++Term) {
506             if (Term->readsRegister(SrcReg))
507               KillInst = Term;
508           }
509 
510           if (KillInst == opBlock.end()) {
511             // No terminator uses the register.
512 
513             if (reusedIncoming || !IncomingReg) {
514               // We may have to rewind a bit if we didn't just insert a copy.
515               KillInst = FirstTerm;
516               while (KillInst != opBlock.begin()) {
517                 --KillInst;
518                 if (KillInst->isDebugInstr())
519                   continue;
520                 if (KillInst->readsRegister(SrcReg))
521                   break;
522               }
523             } else {
524               // We just inserted this copy.
525               KillInst = std::prev(InsertPos);
526             }
527           }
528           assert(KillInst->readsRegister(SrcReg) &&
529                  "Cannot find kill instruction");
530 
531           SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
532           SrcLI.removeSegment(LastUseIndex.getRegSlot(),
533                               LIS->getMBBEndIdx(&opBlock));
534         }
535       }
536     }
537   }
538 
539   // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
540   if (reusedIncoming || !IncomingReg) {
541     if (LIS)
542       LIS->RemoveMachineInstrFromMaps(*MPhi);
543     MF.DeleteMachineInstr(MPhi);
544   }
545 }
546 
547 /// analyzePHINodes - Gather information about the PHI nodes in here. In
548 /// particular, we want to map the number of uses of a virtual register which is
549 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
550 /// used later to determine when the vreg is killed in the BB.
551 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
552   for (const auto &MBB : MF)
553     for (const auto &BBI : MBB) {
554       if (!BBI.isPHI())
555         break;
556       for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
557         ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(),
558                                      BBI.getOperand(i).getReg())];
559     }
560 }
561 
562 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
563                                    MachineBasicBlock &MBB,
564                                    MachineLoopInfo *MLI) {
565   if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
566     return false;   // Quick exit for basic blocks without PHIs.
567 
568   const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
569   bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
570 
571   bool Changed = false;
572   for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
573        BBI != BBE && BBI->isPHI(); ++BBI) {
574     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
575       Register Reg = BBI->getOperand(i).getReg();
576       MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
577       // Is there a critical edge from PreMBB to MBB?
578       if (PreMBB->succ_size() == 1)
579         continue;
580 
581       // Avoid splitting backedges of loops. It would introduce small
582       // out-of-line blocks into the loop which is very bad for code placement.
583       if (PreMBB == &MBB && !SplitAllCriticalEdges)
584         continue;
585       const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
586       if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
587         continue;
588 
589       // LV doesn't consider a phi use live-out, so isLiveOut only returns true
590       // when the source register is live-out for some other reason than a phi
591       // use. That means the copy we will insert in PreMBB won't be a kill, and
592       // there is a risk it may not be coalesced away.
593       //
594       // If the copy would be a kill, there is no need to split the edge.
595       bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
596       if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
597         continue;
598       if (ShouldSplit) {
599         LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
600                           << printMBBReference(*PreMBB) << " -> "
601                           << printMBBReference(MBB) << ": " << *BBI);
602       }
603 
604       // If Reg is not live-in to MBB, it means it must be live-in to some
605       // other PreMBB successor, and we can avoid the interference by splitting
606       // the edge.
607       //
608       // If Reg *is* live-in to MBB, the interference is inevitable and a copy
609       // is likely to be left after coalescing. If we are looking at a loop
610       // exiting edge, split it so we won't insert code in the loop, otherwise
611       // don't bother.
612       ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
613 
614       // Check for a loop exiting edge.
615       if (!ShouldSplit && CurLoop != PreLoop) {
616         LLVM_DEBUG({
617           dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
618           if (PreLoop)
619             dbgs() << "PreLoop: " << *PreLoop;
620           if (CurLoop)
621             dbgs() << "CurLoop: " << *CurLoop;
622         });
623         // This edge could be entering a loop, exiting a loop, or it could be
624         // both: Jumping directly form one loop to the header of a sibling
625         // loop.
626         // Split unless this edge is entering CurLoop from an outer loop.
627         ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
628       }
629       if (!ShouldSplit && !SplitAllCriticalEdges)
630         continue;
631       if (!PreMBB->SplitCriticalEdge(&MBB, *this)) {
632         LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
633         continue;
634       }
635       Changed = true;
636       ++NumCriticalEdgesSplit;
637     }
638   }
639   return Changed;
640 }
641 
642 bool PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock *MBB) {
643   assert((LV || LIS) &&
644          "isLiveIn() requires either LiveVariables or LiveIntervals");
645   if (LIS)
646     return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
647   else
648     return LV->isLiveIn(Reg, *MBB);
649 }
650 
651 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg,
652                                        const MachineBasicBlock *MBB) {
653   assert((LV || LIS) &&
654          "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
655   // LiveVariables considers uses in PHIs to be in the predecessor basic block,
656   // so that a register used only in a PHI is not live out of the block. In
657   // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
658   // in the predecessor basic block, so that a register used only in a PHI is live
659   // out of the block.
660   if (LIS) {
661     const LiveInterval &LI = LIS->getInterval(Reg);
662     for (const MachineBasicBlock *SI : MBB->successors())
663       if (LI.liveAt(LIS->getMBBStartIdx(SI)))
664         return true;
665     return false;
666   } else {
667     return LV->isLiveOut(Reg, *MBB);
668   }
669 }
670