1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass eliminates machine instruction PHI nodes by inserting copy 10 // instructions. This destroys SSA information, but is the desired input for 11 // some register allocators. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "PHIEliminationUtils.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/CodeGen/LiveInterval.h" 21 #include "llvm/CodeGen/LiveIntervals.h" 22 #include "llvm/CodeGen/LiveVariables.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineLoopInfo.h" 30 #include "llvm/CodeGen/MachineOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/SlotIndexes.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetOpcodes.h" 35 #include "llvm/CodeGen/TargetRegisterInfo.h" 36 #include "llvm/CodeGen/TargetSubtargetInfo.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/raw_ostream.h" 41 #include <cassert> 42 #include <iterator> 43 #include <utility> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "phi-node-elimination" 48 49 static cl::opt<bool> 50 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), 51 cl::Hidden, cl::desc("Disable critical edge splitting " 52 "during PHI elimination")); 53 54 static cl::opt<bool> 55 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), 56 cl::Hidden, cl::desc("Split all critical edges during " 57 "PHI elimination")); 58 59 static cl::opt<bool> NoPhiElimLiveOutEarlyExit( 60 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden, 61 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true.")); 62 63 namespace { 64 65 class PHIElimination : public MachineFunctionPass { 66 MachineRegisterInfo *MRI; // Machine register information 67 LiveVariables *LV; 68 LiveIntervals *LIS; 69 70 public: 71 static char ID; // Pass identification, replacement for typeid 72 73 PHIElimination() : MachineFunctionPass(ID) { 74 initializePHIEliminationPass(*PassRegistry::getPassRegistry()); 75 } 76 77 bool runOnMachineFunction(MachineFunction &MF) override; 78 void getAnalysisUsage(AnalysisUsage &AU) const override; 79 80 private: 81 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions 82 /// in predecessor basic blocks. 83 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); 84 85 void LowerPHINode(MachineBasicBlock &MBB, 86 MachineBasicBlock::iterator LastPHIIt); 87 88 /// analyzePHINodes - Gather information about the PHI nodes in 89 /// here. In particular, we want to map the number of uses of a virtual 90 /// register which is used in a PHI node. We map that to the BB the 91 /// vreg is coming from. This is used later to determine when the vreg 92 /// is killed in the BB. 93 void analyzePHINodes(const MachineFunction& MF); 94 95 /// Split critical edges where necessary for good coalescer performance. 96 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, 97 MachineLoopInfo *MLI); 98 99 // These functions are temporary abstractions around LiveVariables and 100 // LiveIntervals, so they can go away when LiveVariables does. 101 bool isLiveIn(unsigned Reg, const MachineBasicBlock *MBB); 102 bool isLiveOutPastPHIs(unsigned Reg, const MachineBasicBlock *MBB); 103 104 using BBVRegPair = std::pair<unsigned, unsigned>; 105 using VRegPHIUse = DenseMap<BBVRegPair, unsigned>; 106 107 VRegPHIUse VRegPHIUseCount; 108 109 // Defs of PHI sources which are implicit_def. 110 SmallPtrSet<MachineInstr*, 4> ImpDefs; 111 112 // Map reusable lowered PHI node -> incoming join register. 113 using LoweredPHIMap = 114 DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>; 115 LoweredPHIMap LoweredPHIs; 116 }; 117 118 } // end anonymous namespace 119 120 STATISTIC(NumLowered, "Number of phis lowered"); 121 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); 122 STATISTIC(NumReused, "Number of reused lowered phis"); 123 124 char PHIElimination::ID = 0; 125 126 char& llvm::PHIEliminationID = PHIElimination::ID; 127 128 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE, 129 "Eliminate PHI nodes for register allocation", 130 false, false) 131 INITIALIZE_PASS_DEPENDENCY(LiveVariables) 132 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE, 133 "Eliminate PHI nodes for register allocation", false, false) 134 135 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { 136 AU.addUsedIfAvailable<LiveVariables>(); 137 AU.addPreserved<LiveVariables>(); 138 AU.addPreserved<SlotIndexes>(); 139 AU.addPreserved<LiveIntervals>(); 140 AU.addPreserved<MachineDominatorTree>(); 141 AU.addPreserved<MachineLoopInfo>(); 142 MachineFunctionPass::getAnalysisUsage(AU); 143 } 144 145 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { 146 MRI = &MF.getRegInfo(); 147 LV = getAnalysisIfAvailable<LiveVariables>(); 148 LIS = getAnalysisIfAvailable<LiveIntervals>(); 149 150 bool Changed = false; 151 152 // This pass takes the function out of SSA form. 153 MRI->leaveSSA(); 154 155 // Split critical edges to help the coalescer. 156 if (!DisableEdgeSplitting && (LV || LIS)) { 157 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 158 for (auto &MBB : MF) 159 Changed |= SplitPHIEdges(MF, MBB, MLI); 160 } 161 162 // Populate VRegPHIUseCount 163 analyzePHINodes(MF); 164 165 // Eliminate PHI instructions by inserting copies into predecessor blocks. 166 for (auto &MBB : MF) 167 Changed |= EliminatePHINodes(MF, MBB); 168 169 // Remove dead IMPLICIT_DEF instructions. 170 for (MachineInstr *DefMI : ImpDefs) { 171 unsigned DefReg = DefMI->getOperand(0).getReg(); 172 if (MRI->use_nodbg_empty(DefReg)) { 173 if (LIS) 174 LIS->RemoveMachineInstrFromMaps(*DefMI); 175 DefMI->eraseFromParent(); 176 } 177 } 178 179 // Clean up the lowered PHI instructions. 180 for (auto &I : LoweredPHIs) { 181 if (LIS) 182 LIS->RemoveMachineInstrFromMaps(*I.first); 183 MF.DeleteMachineInstr(I.first); 184 } 185 186 LoweredPHIs.clear(); 187 ImpDefs.clear(); 188 VRegPHIUseCount.clear(); 189 190 MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs); 191 192 return Changed; 193 } 194 195 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in 196 /// predecessor basic blocks. 197 bool PHIElimination::EliminatePHINodes(MachineFunction &MF, 198 MachineBasicBlock &MBB) { 199 if (MBB.empty() || !MBB.front().isPHI()) 200 return false; // Quick exit for basic blocks without PHIs. 201 202 // Get an iterator to the last PHI node. 203 MachineBasicBlock::iterator LastPHIIt = 204 std::prev(MBB.SkipPHIsAndLabels(MBB.begin())); 205 206 while (MBB.front().isPHI()) 207 LowerPHINode(MBB, LastPHIIt); 208 209 return true; 210 } 211 212 /// Return true if all defs of VirtReg are implicit-defs. 213 /// This includes registers with no defs. 214 static bool isImplicitlyDefined(unsigned VirtReg, 215 const MachineRegisterInfo &MRI) { 216 for (MachineInstr &DI : MRI.def_instructions(VirtReg)) 217 if (!DI.isImplicitDef()) 218 return false; 219 return true; 220 } 221 222 /// Return true if all sources of the phi node are implicit_def's, or undef's. 223 static bool allPhiOperandsUndefined(const MachineInstr &MPhi, 224 const MachineRegisterInfo &MRI) { 225 for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) { 226 const MachineOperand &MO = MPhi.getOperand(I); 227 if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef()) 228 return false; 229 } 230 return true; 231 } 232 /// LowerPHINode - Lower the PHI node at the top of the specified block. 233 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB, 234 MachineBasicBlock::iterator LastPHIIt) { 235 ++NumLowered; 236 237 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt); 238 239 // Unlink the PHI node from the basic block, but don't delete the PHI yet. 240 MachineInstr *MPhi = MBB.remove(&*MBB.begin()); 241 242 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; 243 unsigned DestReg = MPhi->getOperand(0).getReg(); 244 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); 245 bool isDead = MPhi->getOperand(0).isDead(); 246 247 // Create a new register for the incoming PHI arguments. 248 MachineFunction &MF = *MBB.getParent(); 249 unsigned IncomingReg = 0; 250 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? 251 252 // Insert a register to register copy at the top of the current block (but 253 // after any remaining phi nodes) which copies the new incoming register 254 // into the phi node destination. 255 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 256 if (allPhiOperandsUndefined(*MPhi, *MRI)) 257 // If all sources of a PHI node are implicit_def or undef uses, just emit an 258 // implicit_def instead of a copy. 259 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 260 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 261 else { 262 // Can we reuse an earlier PHI node? This only happens for critical edges, 263 // typically those created by tail duplication. 264 unsigned &entry = LoweredPHIs[MPhi]; 265 if (entry) { 266 // An identical PHI node was already lowered. Reuse the incoming register. 267 IncomingReg = entry; 268 reusedIncoming = true; 269 ++NumReused; 270 LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for " 271 << *MPhi); 272 } else { 273 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); 274 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC); 275 } 276 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 277 TII->get(TargetOpcode::COPY), DestReg) 278 .addReg(IncomingReg); 279 } 280 281 // Update live variable information if there is any. 282 if (LV) { 283 MachineInstr &PHICopy = *std::prev(AfterPHIsIt); 284 285 if (IncomingReg) { 286 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); 287 288 // Increment use count of the newly created virtual register. 289 LV->setPHIJoin(IncomingReg); 290 291 // When we are reusing the incoming register, it may already have been 292 // killed in this block. The old kill will also have been inserted at 293 // AfterPHIsIt, so it appears before the current PHICopy. 294 if (reusedIncoming) 295 if (MachineInstr *OldKill = VI.findKill(&MBB)) { 296 LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill); 297 LV->removeVirtualRegisterKilled(IncomingReg, *OldKill); 298 LLVM_DEBUG(MBB.dump()); 299 } 300 301 // Add information to LiveVariables to know that the incoming value is 302 // killed. Note that because the value is defined in several places (once 303 // each for each incoming block), the "def" block and instruction fields 304 // for the VarInfo is not filled in. 305 LV->addVirtualRegisterKilled(IncomingReg, PHICopy); 306 } 307 308 // Since we are going to be deleting the PHI node, if it is the last use of 309 // any registers, or if the value itself is dead, we need to move this 310 // information over to the new copy we just inserted. 311 LV->removeVirtualRegistersKilled(*MPhi); 312 313 // If the result is dead, update LV. 314 if (isDead) { 315 LV->addVirtualRegisterDead(DestReg, PHICopy); 316 LV->removeVirtualRegisterDead(DestReg, *MPhi); 317 } 318 } 319 320 // Update LiveIntervals for the new copy or implicit def. 321 if (LIS) { 322 SlotIndex DestCopyIndex = 323 LIS->InsertMachineInstrInMaps(*std::prev(AfterPHIsIt)); 324 325 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB); 326 if (IncomingReg) { 327 // Add the region from the beginning of MBB to the copy instruction to 328 // IncomingReg's live interval. 329 LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg); 330 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex); 331 if (!IncomingVNI) 332 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex, 333 LIS->getVNInfoAllocator()); 334 IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex, 335 DestCopyIndex.getRegSlot(), 336 IncomingVNI)); 337 } 338 339 LiveInterval &DestLI = LIS->getInterval(DestReg); 340 assert(DestLI.begin() != DestLI.end() && 341 "PHIs should have nonempty LiveIntervals."); 342 if (DestLI.endIndex().isDead()) { 343 // A dead PHI's live range begins and ends at the start of the MBB, but 344 // the lowered copy, which will still be dead, needs to begin and end at 345 // the copy instruction. 346 VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex); 347 assert(OrigDestVNI && "PHI destination should be live at block entry."); 348 DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot()); 349 DestLI.createDeadDef(DestCopyIndex.getRegSlot(), 350 LIS->getVNInfoAllocator()); 351 DestLI.removeValNo(OrigDestVNI); 352 } else { 353 // Otherwise, remove the region from the beginning of MBB to the copy 354 // instruction from DestReg's live interval. 355 DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot()); 356 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot()); 357 assert(DestVNI && "PHI destination should be live at its definition."); 358 DestVNI->def = DestCopyIndex.getRegSlot(); 359 } 360 } 361 362 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. 363 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) 364 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(), 365 MPhi->getOperand(i).getReg())]; 366 367 // Now loop over all of the incoming arguments, changing them to copy into the 368 // IncomingReg register in the corresponding predecessor basic block. 369 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; 370 for (int i = NumSrcs - 1; i >= 0; --i) { 371 unsigned SrcReg = MPhi->getOperand(i*2+1).getReg(); 372 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); 373 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() || 374 isImplicitlyDefined(SrcReg, *MRI); 375 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) && 376 "Machine PHI Operands must all be virtual registers!"); 377 378 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source 379 // path the PHI. 380 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); 381 382 // Check to make sure we haven't already emitted the copy for this block. 383 // This can happen because PHI nodes may have multiple entries for the same 384 // basic block. 385 if (!MBBsInsertedInto.insert(&opBlock).second) 386 continue; // If the copy has already been emitted, we're done. 387 388 // Find a safe location to insert the copy, this may be the first terminator 389 // in the block (or end()). 390 MachineBasicBlock::iterator InsertPos = 391 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); 392 393 // Insert the copy. 394 MachineInstr *NewSrcInstr = nullptr; 395 if (!reusedIncoming && IncomingReg) { 396 if (SrcUndef) { 397 // The source register is undefined, so there is no need for a real 398 // COPY, but we still need to ensure joint dominance by defs. 399 // Insert an IMPLICIT_DEF instruction. 400 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 401 TII->get(TargetOpcode::IMPLICIT_DEF), 402 IncomingReg); 403 404 // Clean up the old implicit-def, if there even was one. 405 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) 406 if (DefMI->isImplicitDef()) 407 ImpDefs.insert(DefMI); 408 } else { 409 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 410 TII->get(TargetOpcode::COPY), IncomingReg) 411 .addReg(SrcReg, 0, SrcSubReg); 412 } 413 } 414 415 // We only need to update the LiveVariables kill of SrcReg if this was the 416 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live 417 // out of the predecessor. We can also ignore undef sources. 418 if (LV && !SrcUndef && 419 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && 420 !LV->isLiveOut(SrcReg, opBlock)) { 421 // We want to be able to insert a kill of the register if this PHI (aka, 422 // the copy we just inserted) is the last use of the source value. Live 423 // variable analysis conservatively handles this by saying that the value 424 // is live until the end of the block the PHI entry lives in. If the value 425 // really is dead at the PHI copy, there will be no successor blocks which 426 // have the value live-in. 427 428 // Okay, if we now know that the value is not live out of the block, we 429 // can add a kill marker in this block saying that it kills the incoming 430 // value! 431 432 // In our final twist, we have to decide which instruction kills the 433 // register. In most cases this is the copy, however, terminator 434 // instructions at the end of the block may also use the value. In this 435 // case, we should mark the last such terminator as being the killing 436 // block, not the copy. 437 MachineBasicBlock::iterator KillInst = opBlock.end(); 438 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 439 for (MachineBasicBlock::iterator Term = FirstTerm; 440 Term != opBlock.end(); ++Term) { 441 if (Term->readsRegister(SrcReg)) 442 KillInst = Term; 443 } 444 445 if (KillInst == opBlock.end()) { 446 // No terminator uses the register. 447 448 if (reusedIncoming || !IncomingReg) { 449 // We may have to rewind a bit if we didn't insert a copy this time. 450 KillInst = FirstTerm; 451 while (KillInst != opBlock.begin()) { 452 --KillInst; 453 if (KillInst->isDebugInstr()) 454 continue; 455 if (KillInst->readsRegister(SrcReg)) 456 break; 457 } 458 } else { 459 // We just inserted this copy. 460 KillInst = std::prev(InsertPos); 461 } 462 } 463 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); 464 465 // Finally, mark it killed. 466 LV->addVirtualRegisterKilled(SrcReg, *KillInst); 467 468 // This vreg no longer lives all of the way through opBlock. 469 unsigned opBlockNum = opBlock.getNumber(); 470 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); 471 } 472 473 if (LIS) { 474 if (NewSrcInstr) { 475 LIS->InsertMachineInstrInMaps(*NewSrcInstr); 476 LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr); 477 } 478 479 if (!SrcUndef && 480 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { 481 LiveInterval &SrcLI = LIS->getInterval(SrcReg); 482 483 bool isLiveOut = false; 484 for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(), 485 SE = opBlock.succ_end(); SI != SE; ++SI) { 486 SlotIndex startIdx = LIS->getMBBStartIdx(*SI); 487 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx); 488 489 // Definitions by other PHIs are not truly live-in for our purposes. 490 if (VNI && VNI->def != startIdx) { 491 isLiveOut = true; 492 break; 493 } 494 } 495 496 if (!isLiveOut) { 497 MachineBasicBlock::iterator KillInst = opBlock.end(); 498 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 499 for (MachineBasicBlock::iterator Term = FirstTerm; 500 Term != opBlock.end(); ++Term) { 501 if (Term->readsRegister(SrcReg)) 502 KillInst = Term; 503 } 504 505 if (KillInst == opBlock.end()) { 506 // No terminator uses the register. 507 508 if (reusedIncoming || !IncomingReg) { 509 // We may have to rewind a bit if we didn't just insert a copy. 510 KillInst = FirstTerm; 511 while (KillInst != opBlock.begin()) { 512 --KillInst; 513 if (KillInst->isDebugInstr()) 514 continue; 515 if (KillInst->readsRegister(SrcReg)) 516 break; 517 } 518 } else { 519 // We just inserted this copy. 520 KillInst = std::prev(InsertPos); 521 } 522 } 523 assert(KillInst->readsRegister(SrcReg) && 524 "Cannot find kill instruction"); 525 526 SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst); 527 SrcLI.removeSegment(LastUseIndex.getRegSlot(), 528 LIS->getMBBEndIdx(&opBlock)); 529 } 530 } 531 } 532 } 533 534 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. 535 if (reusedIncoming || !IncomingReg) { 536 if (LIS) 537 LIS->RemoveMachineInstrFromMaps(*MPhi); 538 MF.DeleteMachineInstr(MPhi); 539 } 540 } 541 542 /// analyzePHINodes - Gather information about the PHI nodes in here. In 543 /// particular, we want to map the number of uses of a virtual register which is 544 /// used in a PHI node. We map that to the BB the vreg is coming from. This is 545 /// used later to determine when the vreg is killed in the BB. 546 void PHIElimination::analyzePHINodes(const MachineFunction& MF) { 547 for (const auto &MBB : MF) 548 for (const auto &BBI : MBB) { 549 if (!BBI.isPHI()) 550 break; 551 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) 552 ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(), 553 BBI.getOperand(i).getReg())]; 554 } 555 } 556 557 bool PHIElimination::SplitPHIEdges(MachineFunction &MF, 558 MachineBasicBlock &MBB, 559 MachineLoopInfo *MLI) { 560 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad()) 561 return false; // Quick exit for basic blocks without PHIs. 562 563 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr; 564 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); 565 566 bool Changed = false; 567 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); 568 BBI != BBE && BBI->isPHI(); ++BBI) { 569 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 570 unsigned Reg = BBI->getOperand(i).getReg(); 571 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); 572 // Is there a critical edge from PreMBB to MBB? 573 if (PreMBB->succ_size() == 1) 574 continue; 575 576 // Avoid splitting backedges of loops. It would introduce small 577 // out-of-line blocks into the loop which is very bad for code placement. 578 if (PreMBB == &MBB && !SplitAllCriticalEdges) 579 continue; 580 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr; 581 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) 582 continue; 583 584 // LV doesn't consider a phi use live-out, so isLiveOut only returns true 585 // when the source register is live-out for some other reason than a phi 586 // use. That means the copy we will insert in PreMBB won't be a kill, and 587 // there is a risk it may not be coalesced away. 588 // 589 // If the copy would be a kill, there is no need to split the edge. 590 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB); 591 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit) 592 continue; 593 if (ShouldSplit) { 594 LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge " 595 << printMBBReference(*PreMBB) << " -> " 596 << printMBBReference(MBB) << ": " << *BBI); 597 } 598 599 // If Reg is not live-in to MBB, it means it must be live-in to some 600 // other PreMBB successor, and we can avoid the interference by splitting 601 // the edge. 602 // 603 // If Reg *is* live-in to MBB, the interference is inevitable and a copy 604 // is likely to be left after coalescing. If we are looking at a loop 605 // exiting edge, split it so we won't insert code in the loop, otherwise 606 // don't bother. 607 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB); 608 609 // Check for a loop exiting edge. 610 if (!ShouldSplit && CurLoop != PreLoop) { 611 LLVM_DEBUG({ 612 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; 613 if (PreLoop) 614 dbgs() << "PreLoop: " << *PreLoop; 615 if (CurLoop) 616 dbgs() << "CurLoop: " << *CurLoop; 617 }); 618 // This edge could be entering a loop, exiting a loop, or it could be 619 // both: Jumping directly form one loop to the header of a sibling 620 // loop. 621 // Split unless this edge is entering CurLoop from an outer loop. 622 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); 623 } 624 if (!ShouldSplit && !SplitAllCriticalEdges) 625 continue; 626 if (!PreMBB->SplitCriticalEdge(&MBB, *this)) { 627 LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n"); 628 continue; 629 } 630 Changed = true; 631 ++NumCriticalEdgesSplit; 632 } 633 } 634 return Changed; 635 } 636 637 bool PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock *MBB) { 638 assert((LV || LIS) && 639 "isLiveIn() requires either LiveVariables or LiveIntervals"); 640 if (LIS) 641 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB); 642 else 643 return LV->isLiveIn(Reg, *MBB); 644 } 645 646 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, 647 const MachineBasicBlock *MBB) { 648 assert((LV || LIS) && 649 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals"); 650 // LiveVariables considers uses in PHIs to be in the predecessor basic block, 651 // so that a register used only in a PHI is not live out of the block. In 652 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than 653 // in the predecessor basic block, so that a register used only in a PHI is live 654 // out of the block. 655 if (LIS) { 656 const LiveInterval &LI = LIS->getInterval(Reg); 657 for (const MachineBasicBlock *SI : MBB->successors()) 658 if (LI.liveAt(LIS->getMBBStartIdx(SI))) 659 return true; 660 return false; 661 } else { 662 return LV->isLiveOut(Reg, *MBB); 663 } 664 } 665