1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass eliminates machine instruction PHI nodes by inserting copy 10 // instructions. This destroys SSA information, but is the desired input for 11 // some register allocators. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "PHIEliminationUtils.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/CodeGen/LiveInterval.h" 21 #include "llvm/CodeGen/LiveIntervals.h" 22 #include "llvm/CodeGen/LiveVariables.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineInstr.h" 28 #include "llvm/CodeGen/MachineInstrBuilder.h" 29 #include "llvm/CodeGen/MachineLoopInfo.h" 30 #include "llvm/CodeGen/MachineOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/SlotIndexes.h" 33 #include "llvm/CodeGen/TargetInstrInfo.h" 34 #include "llvm/CodeGen/TargetLowering.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/CodeGen/TargetPassConfig.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include <cassert> 44 #include <iterator> 45 #include <utility> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "phi-node-elimination" 50 51 static cl::opt<bool> 52 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), 53 cl::Hidden, cl::desc("Disable critical edge splitting " 54 "during PHI elimination")); 55 56 static cl::opt<bool> 57 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), 58 cl::Hidden, cl::desc("Split all critical edges during " 59 "PHI elimination")); 60 61 static cl::opt<bool> NoPhiElimLiveOutEarlyExit( 62 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden, 63 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true.")); 64 65 namespace { 66 67 class PHIElimination : public MachineFunctionPass { 68 MachineRegisterInfo *MRI; // Machine register information 69 LiveVariables *LV; 70 LiveIntervals *LIS; 71 72 public: 73 static char ID; // Pass identification, replacement for typeid 74 75 PHIElimination() : MachineFunctionPass(ID) { 76 initializePHIEliminationPass(*PassRegistry::getPassRegistry()); 77 } 78 79 bool runOnMachineFunction(MachineFunction &MF) override; 80 void getAnalysisUsage(AnalysisUsage &AU) const override; 81 82 private: 83 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions 84 /// in predecessor basic blocks. 85 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); 86 87 void LowerPHINode(MachineBasicBlock &MBB, 88 MachineBasicBlock::iterator LastPHIIt); 89 90 /// analyzePHINodes - Gather information about the PHI nodes in 91 /// here. In particular, we want to map the number of uses of a virtual 92 /// register which is used in a PHI node. We map that to the BB the 93 /// vreg is coming from. This is used later to determine when the vreg 94 /// is killed in the BB. 95 void analyzePHINodes(const MachineFunction& MF); 96 97 /// Split critical edges where necessary for good coalescer performance. 98 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, 99 MachineLoopInfo *MLI); 100 101 // These functions are temporary abstractions around LiveVariables and 102 // LiveIntervals, so they can go away when LiveVariables does. 103 bool isLiveIn(unsigned Reg, const MachineBasicBlock *MBB); 104 bool isLiveOutPastPHIs(unsigned Reg, const MachineBasicBlock *MBB); 105 106 using BBVRegPair = std::pair<unsigned, unsigned>; 107 using VRegPHIUse = DenseMap<BBVRegPair, unsigned>; 108 109 VRegPHIUse VRegPHIUseCount; 110 111 // Defs of PHI sources which are implicit_def. 112 SmallPtrSet<MachineInstr*, 4> ImpDefs; 113 114 // Map reusable lowered PHI node -> incoming join register. 115 using LoweredPHIMap = 116 DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>; 117 LoweredPHIMap LoweredPHIs; 118 }; 119 120 } // end anonymous namespace 121 122 STATISTIC(NumLowered, "Number of phis lowered"); 123 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); 124 STATISTIC(NumReused, "Number of reused lowered phis"); 125 126 char PHIElimination::ID = 0; 127 128 char& llvm::PHIEliminationID = PHIElimination::ID; 129 130 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE, 131 "Eliminate PHI nodes for register allocation", 132 false, false) 133 INITIALIZE_PASS_DEPENDENCY(LiveVariables) 134 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE, 135 "Eliminate PHI nodes for register allocation", false, false) 136 137 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { 138 AU.addUsedIfAvailable<LiveVariables>(); 139 AU.addPreserved<LiveVariables>(); 140 AU.addPreserved<SlotIndexes>(); 141 AU.addPreserved<LiveIntervals>(); 142 AU.addPreserved<MachineDominatorTree>(); 143 AU.addPreserved<MachineLoopInfo>(); 144 MachineFunctionPass::getAnalysisUsage(AU); 145 } 146 147 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { 148 MRI = &MF.getRegInfo(); 149 LV = getAnalysisIfAvailable<LiveVariables>(); 150 LIS = getAnalysisIfAvailable<LiveIntervals>(); 151 152 bool Changed = false; 153 154 // This pass takes the function out of SSA form. 155 MRI->leaveSSA(); 156 157 // Split critical edges to help the coalescer. 158 if (!DisableEdgeSplitting && (LV || LIS)) { 159 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 160 for (auto &MBB : MF) 161 Changed |= SplitPHIEdges(MF, MBB, MLI); 162 } 163 164 // Populate VRegPHIUseCount 165 analyzePHINodes(MF); 166 167 // Eliminate PHI instructions by inserting copies into predecessor blocks. 168 for (auto &MBB : MF) 169 Changed |= EliminatePHINodes(MF, MBB); 170 171 // Remove dead IMPLICIT_DEF instructions. 172 for (MachineInstr *DefMI : ImpDefs) { 173 Register DefReg = DefMI->getOperand(0).getReg(); 174 if (MRI->use_nodbg_empty(DefReg)) { 175 if (LIS) 176 LIS->RemoveMachineInstrFromMaps(*DefMI); 177 DefMI->eraseFromParent(); 178 } 179 } 180 181 // Clean up the lowered PHI instructions. 182 for (auto &I : LoweredPHIs) { 183 if (LIS) 184 LIS->RemoveMachineInstrFromMaps(*I.first); 185 MF.DeleteMachineInstr(I.first); 186 } 187 188 // TODO: we should use the incremental DomTree updater here. 189 if (Changed) 190 if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>()) 191 MDT->getBase().recalculate(MF); 192 193 LoweredPHIs.clear(); 194 ImpDefs.clear(); 195 VRegPHIUseCount.clear(); 196 197 MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs); 198 199 return Changed; 200 } 201 202 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in 203 /// predecessor basic blocks. 204 bool PHIElimination::EliminatePHINodes(MachineFunction &MF, 205 MachineBasicBlock &MBB) { 206 if (MBB.empty() || !MBB.front().isPHI()) 207 return false; // Quick exit for basic blocks without PHIs. 208 209 // Get an iterator to the last PHI node. 210 MachineBasicBlock::iterator LastPHIIt = 211 std::prev(MBB.SkipPHIsAndLabels(MBB.begin())); 212 213 while (MBB.front().isPHI()) 214 LowerPHINode(MBB, LastPHIIt); 215 216 return true; 217 } 218 219 /// Return true if all defs of VirtReg are implicit-defs. 220 /// This includes registers with no defs. 221 static bool isImplicitlyDefined(unsigned VirtReg, 222 const MachineRegisterInfo &MRI) { 223 for (MachineInstr &DI : MRI.def_instructions(VirtReg)) 224 if (!DI.isImplicitDef()) 225 return false; 226 return true; 227 } 228 229 /// Return true if all sources of the phi node are implicit_def's, or undef's. 230 static bool allPhiOperandsUndefined(const MachineInstr &MPhi, 231 const MachineRegisterInfo &MRI) { 232 for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) { 233 const MachineOperand &MO = MPhi.getOperand(I); 234 if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef()) 235 return false; 236 } 237 return true; 238 } 239 /// LowerPHINode - Lower the PHI node at the top of the specified block. 240 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB, 241 MachineBasicBlock::iterator LastPHIIt) { 242 ++NumLowered; 243 244 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt); 245 246 // Unlink the PHI node from the basic block, but don't delete the PHI yet. 247 MachineInstr *MPhi = MBB.remove(&*MBB.begin()); 248 249 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; 250 Register DestReg = MPhi->getOperand(0).getReg(); 251 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); 252 bool isDead = MPhi->getOperand(0).isDead(); 253 254 // Create a new register for the incoming PHI arguments. 255 MachineFunction &MF = *MBB.getParent(); 256 unsigned IncomingReg = 0; 257 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? 258 259 // Insert a register to register copy at the top of the current block (but 260 // after any remaining phi nodes) which copies the new incoming register 261 // into the phi node destination. 262 MachineInstr *PHICopy = nullptr; 263 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 264 if (allPhiOperandsUndefined(*MPhi, *MRI)) 265 // If all sources of a PHI node are implicit_def or undef uses, just emit an 266 // implicit_def instead of a copy. 267 PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 268 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 269 else { 270 // Can we reuse an earlier PHI node? This only happens for critical edges, 271 // typically those created by tail duplication. 272 unsigned &entry = LoweredPHIs[MPhi]; 273 if (entry) { 274 // An identical PHI node was already lowered. Reuse the incoming register. 275 IncomingReg = entry; 276 reusedIncoming = true; 277 ++NumReused; 278 LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for " 279 << *MPhi); 280 } else { 281 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); 282 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC); 283 } 284 // Give the target possiblity to handle special cases fallthrough otherwise 285 PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 286 IncomingReg, DestReg); 287 } 288 289 // Update live variable information if there is any. 290 if (LV) { 291 if (IncomingReg) { 292 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); 293 294 // Increment use count of the newly created virtual register. 295 LV->setPHIJoin(IncomingReg); 296 297 // When we are reusing the incoming register, it may already have been 298 // killed in this block. The old kill will also have been inserted at 299 // AfterPHIsIt, so it appears before the current PHICopy. 300 if (reusedIncoming) 301 if (MachineInstr *OldKill = VI.findKill(&MBB)) { 302 LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill); 303 LV->removeVirtualRegisterKilled(IncomingReg, *OldKill); 304 LLVM_DEBUG(MBB.dump()); 305 } 306 307 // Add information to LiveVariables to know that the incoming value is 308 // killed. Note that because the value is defined in several places (once 309 // each for each incoming block), the "def" block and instruction fields 310 // for the VarInfo is not filled in. 311 LV->addVirtualRegisterKilled(IncomingReg, *PHICopy); 312 } 313 314 // Since we are going to be deleting the PHI node, if it is the last use of 315 // any registers, or if the value itself is dead, we need to move this 316 // information over to the new copy we just inserted. 317 LV->removeVirtualRegistersKilled(*MPhi); 318 319 // If the result is dead, update LV. 320 if (isDead) { 321 LV->addVirtualRegisterDead(DestReg, *PHICopy); 322 LV->removeVirtualRegisterDead(DestReg, *MPhi); 323 } 324 } 325 326 // Update LiveIntervals for the new copy or implicit def. 327 if (LIS) { 328 SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy); 329 330 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB); 331 if (IncomingReg) { 332 // Add the region from the beginning of MBB to the copy instruction to 333 // IncomingReg's live interval. 334 LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg); 335 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex); 336 if (!IncomingVNI) 337 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex, 338 LIS->getVNInfoAllocator()); 339 IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex, 340 DestCopyIndex.getRegSlot(), 341 IncomingVNI)); 342 } 343 344 LiveInterval &DestLI = LIS->getInterval(DestReg); 345 assert(DestLI.begin() != DestLI.end() && 346 "PHIs should have nonempty LiveIntervals."); 347 if (DestLI.endIndex().isDead()) { 348 // A dead PHI's live range begins and ends at the start of the MBB, but 349 // the lowered copy, which will still be dead, needs to begin and end at 350 // the copy instruction. 351 VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex); 352 assert(OrigDestVNI && "PHI destination should be live at block entry."); 353 DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot()); 354 DestLI.createDeadDef(DestCopyIndex.getRegSlot(), 355 LIS->getVNInfoAllocator()); 356 DestLI.removeValNo(OrigDestVNI); 357 } else { 358 // Otherwise, remove the region from the beginning of MBB to the copy 359 // instruction from DestReg's live interval. 360 DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot()); 361 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot()); 362 assert(DestVNI && "PHI destination should be live at its definition."); 363 DestVNI->def = DestCopyIndex.getRegSlot(); 364 } 365 } 366 367 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. 368 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) 369 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(), 370 MPhi->getOperand(i).getReg())]; 371 372 // Now loop over all of the incoming arguments, changing them to copy into the 373 // IncomingReg register in the corresponding predecessor basic block. 374 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; 375 for (int i = NumSrcs - 1; i >= 0; --i) { 376 Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg(); 377 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); 378 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() || 379 isImplicitlyDefined(SrcReg, *MRI); 380 assert(Register::isVirtualRegister(SrcReg) && 381 "Machine PHI Operands must all be virtual registers!"); 382 383 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source 384 // path the PHI. 385 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); 386 387 // Check to make sure we haven't already emitted the copy for this block. 388 // This can happen because PHI nodes may have multiple entries for the same 389 // basic block. 390 if (!MBBsInsertedInto.insert(&opBlock).second) 391 continue; // If the copy has already been emitted, we're done. 392 393 // Find a safe location to insert the copy, this may be the first terminator 394 // in the block (or end()). 395 MachineBasicBlock::iterator InsertPos = 396 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); 397 398 // Insert the copy. 399 MachineInstr *NewSrcInstr = nullptr; 400 if (!reusedIncoming && IncomingReg) { 401 if (SrcUndef) { 402 // The source register is undefined, so there is no need for a real 403 // COPY, but we still need to ensure joint dominance by defs. 404 // Insert an IMPLICIT_DEF instruction. 405 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 406 TII->get(TargetOpcode::IMPLICIT_DEF), 407 IncomingReg); 408 409 // Clean up the old implicit-def, if there even was one. 410 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) 411 if (DefMI->isImplicitDef()) 412 ImpDefs.insert(DefMI); 413 } else { 414 NewSrcInstr = 415 TII->createPHISourceCopy(opBlock, InsertPos, MPhi->getDebugLoc(), 416 SrcReg, SrcSubReg, IncomingReg); 417 } 418 } 419 420 // We only need to update the LiveVariables kill of SrcReg if this was the 421 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live 422 // out of the predecessor. We can also ignore undef sources. 423 if (LV && !SrcUndef && 424 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && 425 !LV->isLiveOut(SrcReg, opBlock)) { 426 // We want to be able to insert a kill of the register if this PHI (aka, 427 // the copy we just inserted) is the last use of the source value. Live 428 // variable analysis conservatively handles this by saying that the value 429 // is live until the end of the block the PHI entry lives in. If the value 430 // really is dead at the PHI copy, there will be no successor blocks which 431 // have the value live-in. 432 433 // Okay, if we now know that the value is not live out of the block, we 434 // can add a kill marker in this block saying that it kills the incoming 435 // value! 436 437 // In our final twist, we have to decide which instruction kills the 438 // register. In most cases this is the copy, however, terminator 439 // instructions at the end of the block may also use the value. In this 440 // case, we should mark the last such terminator as being the killing 441 // block, not the copy. 442 MachineBasicBlock::iterator KillInst = opBlock.end(); 443 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 444 for (MachineBasicBlock::iterator Term = FirstTerm; 445 Term != opBlock.end(); ++Term) { 446 if (Term->readsRegister(SrcReg)) 447 KillInst = Term; 448 } 449 450 if (KillInst == opBlock.end()) { 451 // No terminator uses the register. 452 453 if (reusedIncoming || !IncomingReg) { 454 // We may have to rewind a bit if we didn't insert a copy this time. 455 KillInst = FirstTerm; 456 while (KillInst != opBlock.begin()) { 457 --KillInst; 458 if (KillInst->isDebugInstr()) 459 continue; 460 if (KillInst->readsRegister(SrcReg)) 461 break; 462 } 463 } else { 464 // We just inserted this copy. 465 KillInst = NewSrcInstr; 466 } 467 } 468 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); 469 470 // Finally, mark it killed. 471 LV->addVirtualRegisterKilled(SrcReg, *KillInst); 472 473 // This vreg no longer lives all of the way through opBlock. 474 unsigned opBlockNum = opBlock.getNumber(); 475 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); 476 } 477 478 if (LIS) { 479 if (NewSrcInstr) { 480 LIS->InsertMachineInstrInMaps(*NewSrcInstr); 481 LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr); 482 } 483 484 if (!SrcUndef && 485 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { 486 LiveInterval &SrcLI = LIS->getInterval(SrcReg); 487 488 bool isLiveOut = false; 489 for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(), 490 SE = opBlock.succ_end(); SI != SE; ++SI) { 491 SlotIndex startIdx = LIS->getMBBStartIdx(*SI); 492 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx); 493 494 // Definitions by other PHIs are not truly live-in for our purposes. 495 if (VNI && VNI->def != startIdx) { 496 isLiveOut = true; 497 break; 498 } 499 } 500 501 if (!isLiveOut) { 502 MachineBasicBlock::iterator KillInst = opBlock.end(); 503 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 504 for (MachineBasicBlock::iterator Term = FirstTerm; 505 Term != opBlock.end(); ++Term) { 506 if (Term->readsRegister(SrcReg)) 507 KillInst = Term; 508 } 509 510 if (KillInst == opBlock.end()) { 511 // No terminator uses the register. 512 513 if (reusedIncoming || !IncomingReg) { 514 // We may have to rewind a bit if we didn't just insert a copy. 515 KillInst = FirstTerm; 516 while (KillInst != opBlock.begin()) { 517 --KillInst; 518 if (KillInst->isDebugInstr()) 519 continue; 520 if (KillInst->readsRegister(SrcReg)) 521 break; 522 } 523 } else { 524 // We just inserted this copy. 525 KillInst = std::prev(InsertPos); 526 } 527 } 528 assert(KillInst->readsRegister(SrcReg) && 529 "Cannot find kill instruction"); 530 531 SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst); 532 SrcLI.removeSegment(LastUseIndex.getRegSlot(), 533 LIS->getMBBEndIdx(&opBlock)); 534 } 535 } 536 } 537 } 538 539 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. 540 if (reusedIncoming || !IncomingReg) { 541 if (LIS) 542 LIS->RemoveMachineInstrFromMaps(*MPhi); 543 MF.DeleteMachineInstr(MPhi); 544 } 545 } 546 547 /// analyzePHINodes - Gather information about the PHI nodes in here. In 548 /// particular, we want to map the number of uses of a virtual register which is 549 /// used in a PHI node. We map that to the BB the vreg is coming from. This is 550 /// used later to determine when the vreg is killed in the BB. 551 void PHIElimination::analyzePHINodes(const MachineFunction& MF) { 552 for (const auto &MBB : MF) 553 for (const auto &BBI : MBB) { 554 if (!BBI.isPHI()) 555 break; 556 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) 557 ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(), 558 BBI.getOperand(i).getReg())]; 559 } 560 } 561 562 bool PHIElimination::SplitPHIEdges(MachineFunction &MF, 563 MachineBasicBlock &MBB, 564 MachineLoopInfo *MLI) { 565 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad()) 566 return false; // Quick exit for basic blocks without PHIs. 567 568 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr; 569 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); 570 571 bool Changed = false; 572 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); 573 BBI != BBE && BBI->isPHI(); ++BBI) { 574 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 575 Register Reg = BBI->getOperand(i).getReg(); 576 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); 577 // Is there a critical edge from PreMBB to MBB? 578 if (PreMBB->succ_size() == 1) 579 continue; 580 581 // Avoid splitting backedges of loops. It would introduce small 582 // out-of-line blocks into the loop which is very bad for code placement. 583 if (PreMBB == &MBB && !SplitAllCriticalEdges) 584 continue; 585 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr; 586 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) 587 continue; 588 589 // LV doesn't consider a phi use live-out, so isLiveOut only returns true 590 // when the source register is live-out for some other reason than a phi 591 // use. That means the copy we will insert in PreMBB won't be a kill, and 592 // there is a risk it may not be coalesced away. 593 // 594 // If the copy would be a kill, there is no need to split the edge. 595 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB); 596 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit) 597 continue; 598 if (ShouldSplit) { 599 LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge " 600 << printMBBReference(*PreMBB) << " -> " 601 << printMBBReference(MBB) << ": " << *BBI); 602 } 603 604 // If Reg is not live-in to MBB, it means it must be live-in to some 605 // other PreMBB successor, and we can avoid the interference by splitting 606 // the edge. 607 // 608 // If Reg *is* live-in to MBB, the interference is inevitable and a copy 609 // is likely to be left after coalescing. If we are looking at a loop 610 // exiting edge, split it so we won't insert code in the loop, otherwise 611 // don't bother. 612 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB); 613 614 // Check for a loop exiting edge. 615 if (!ShouldSplit && CurLoop != PreLoop) { 616 LLVM_DEBUG({ 617 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; 618 if (PreLoop) 619 dbgs() << "PreLoop: " << *PreLoop; 620 if (CurLoop) 621 dbgs() << "CurLoop: " << *CurLoop; 622 }); 623 // This edge could be entering a loop, exiting a loop, or it could be 624 // both: Jumping directly form one loop to the header of a sibling 625 // loop. 626 // Split unless this edge is entering CurLoop from an outer loop. 627 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); 628 } 629 if (!ShouldSplit && !SplitAllCriticalEdges) 630 continue; 631 if (!PreMBB->SplitCriticalEdge(&MBB, *this)) { 632 LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n"); 633 continue; 634 } 635 Changed = true; 636 ++NumCriticalEdgesSplit; 637 } 638 } 639 return Changed; 640 } 641 642 bool PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock *MBB) { 643 assert((LV || LIS) && 644 "isLiveIn() requires either LiveVariables or LiveIntervals"); 645 if (LIS) 646 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB); 647 else 648 return LV->isLiveIn(Reg, *MBB); 649 } 650 651 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, 652 const MachineBasicBlock *MBB) { 653 assert((LV || LIS) && 654 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals"); 655 // LiveVariables considers uses in PHIs to be in the predecessor basic block, 656 // so that a register used only in a PHI is not live out of the block. In 657 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than 658 // in the predecessor basic block, so that a register used only in a PHI is live 659 // out of the block. 660 if (LIS) { 661 const LiveInterval &LI = LIS->getInterval(Reg); 662 for (const MachineBasicBlock *SI : MBB->successors()) 663 if (LI.liveAt(LIS->getMBBStartIdx(SI))) 664 return true; 665 return false; 666 } else { 667 return LV->isLiveOut(Reg, *MBB); 668 } 669 } 670